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Abstract 1 

This paper addresses the limitations of 2 

current Automatic Speech Recognition 3 

(ASR) evaluation metrics by highlighting 4 

the inadequacies of overall error rates, 5 

particularly Word Error Rate. While this 6 

offers a broad assessment, it lacks the 7 

granularity needed to discern specific 8 

linguistic categories affected by errors. We 9 

offer an NLP-driven metric based on parts 10 

of speech and grammatical categories, to 11 

provide a more in-depth analysis of ASR 12 

errors. Using the Whisper ASR system on 13 

English, Japanese, and Spanish, within the 14 

CommonVoice 15 dataset, we analyze 15 

GRAMMATICAL and LEXICAL error rates. 16 

Results show that GRAMMATICAL words 17 

trigger less errors than LEXICAL words 18 

across all languages, and Proper Nouns in 19 

Japanese combined with case markers are 20 

related to higher accuracy. By categorizing 21 

errors based on these linguistic attributes, 22 

our methodology aims to enhance the 23 

explanatory power of error analysis in 24 

ASR, contributing to a more precise 25 

evaluation of system performance based on 26 

NLP approaches. 27 

1 Introduction 28 

Automatic Speech Recognition (ASR) 29 

technologies have undergone significant 30 

advancements (O’Shaughnessy, 2023; Reitmaier et 31 

al., 2022) and the widespread adoption of ASR 32 

systems in various industries (e.g., Healthcare, 33 

Defence and Automotive) highlight the critical role 34 

of accurate evaluation to ensure their effectiveness, 35 

reliability and user satisfaction. 36 

    Word Error Rate (WER) is a crucial metric used 37 

to evaluate the performance of ASR systems. It 38 

measures the operational accuracy of an ASR 39 

system by calculating the ratio of the total number 40 

of errors – comprising substitutions, deletions, and 41 

insertions in the transcription output – to the 42 

number of words in the audio signal input to the 43 

ASR system (Kumalija and Nakamoto, 2022). 44 

    While WER is used widely as a standard metric 45 

(Ali and Renals, 2004; NithyaKalyani and 46 

Jothilakshmi, 2019; Park et al., 2023), it has been 47 

reported to have some critical limitations (He et al., 48 

2011). The primary limitation of WER lies in 49 

treating all errors equally, regardless of their impact 50 

on the meaning of the transcribed text. For 51 

instance, misrecognizing a key word might change 52 

the meaning of a sentence significantly than other 53 

non-key words, but WER weighs all the errors the 54 

same. 55 

    Additionally, WER cannot gauge the relative 56 

importance of specific words in the ground truth 57 

transcription, prompting the proposal of alternative 58 

metrics that account for semantics (Kafle and 59 

Huenerfauth, 2017), entity recognition (Garofolo et 60 

al., 1998), and parts of speech (Roux et al., 2022). 61 

    Prior studies indicate that WER does not 62 

consistently correlate with human judgment on 63 

ASR system performance (Morris et al., 2004; 64 

Whetten and Kennigton, 2023). These findings 65 

highlight the necessity for refined linguistic metrics 66 

that enable a more granular analysis of errors. 67 

    Another critical limitation of the existing metric 68 

is its inability to unveil the specific characteristics 69 

of errors. Although ASR systems may exhibit 70 

similar overall error rates as measured by WER, 71 

this metric fails to distinguish between errors 72 

affecting different linguistic categories. For 73 

example, two ASR systems with equivalent WERs 74 

might impact linguistic accuracy differently: one 75 

may disproportionately affect GRAMMATICAL 76 

words, while the other could affect more frequently 77 

LEXICAL or content words. Consequently, a deeper 78 

examination of error complexities within linguistic 79 

categories is essential to identify and specify areas 80 
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of vulnerability within ASR systems (Adegbegha 81 

et al., 2024; Errattahi et al., 2018; Kheddar et al., 82 

2023; Lee et al., 2011; Li et al., 2023). 83 

    Recognizing the limitations of current 84 

methodologies, we propose the integration of 85 

linguistic metrics into the evaluation of ASR 86 

systems. An in-depth analysis based on linguistic 87 

categories, including parts of speech and 88 

grammatical classifications, enriches our 89 

understanding of error complexities. By 90 

categorizing errors based on linguistic attributes, 91 

we gain valuable insights into the nature of errors 92 

and how they behave within the context of these 93 

systems. This approach not only clarifies the types 94 

of errors but also enhances the explanatory power 95 

of error analysis, providing a more comprehensive 96 

understanding of ASR system performance. 97 

    Our proposed methodology presents an 98 

approach to analyze and report errors in ASR 99 

outputs. Adopting a multilingual perspective, we 100 

examine errors in English, Japanese, and Spanish, 101 

leveraging the Whisper ASR system (Radford et 102 

al., 2023) on the CommonVoice 15 dataset (Ardila 103 

et al., 2020). Utilizing Parts of Speech tagging 104 

(POS), we differentiate errors into two specific 105 

categories: those affecting grammatical or function 106 

words (referred as GRAMMATICAL error), and those 107 

impacting lexical or content words (referred as 108 

LEXICAL error).  109 

    The distinction between GRAMMATICAL and 110 

LEXICAL categories facilitates a layered 111 

comparison of ASR errors, examining not only 112 

their aggregate impact but also their specific 113 

manifestation across different linguistic types. This 114 

dual-level analysis enhances our understanding of 115 

ASR errors, significantly addressing the gaps 116 

identified in literature. This approach provides a 117 

more specific and informative perspective of ASR 118 

performance, addressing to the need for detailed 119 

error analysis in the advancing field of speech 120 

recognition technologies. 121 

    This work significantly advances the reporting 122 

of detailed linguistic layers in ASR systems, 123 

establishing a more consistent methodology that 124 

extends beyond the limited scope of previous 125 

research, which often confined analyses to specific 126 

databases/languages. We propose a systematic 127 

approach applicable across all languages supported 128 

by the ASR system with available universal 129 

dependencies. By developing metrics within a 130 

single widely used ASR system, we enable refined 131 

comparison between the reference text (REF) and 132 

the generated hypothesized text (HYP) across 133 

languages with varying typological characteristics. 134 

2 Related Work 135 

2.1 Current Progress on Metrics 136 

ASR evaluation methodologies have undergone 137 

some refinements, incorporating diverse error 138 

metrics that surpass mere word counts, including 139 

word embeddings (Devlin et al., 2019), sentence 140 

embeddings (Reimers and Gurevych, 2019), and 141 

semantic proximity (Zhang et al., 2020).  142 

Taking inspiration from machine translation, 143 

wherein linguistic metrics significantly enhance 144 

translation accuracy, this paper adapts similar 145 

methodologies to ASR. Popović and Ney (2007) 146 

effectively incorporated linguistic attributes, like 147 

parts of speech, into translation evaluation and 148 

introduced the Position Independent Error Rate 149 

(PER) to measure the impact of each POS class on 150 

overall word error rates. While their study analyzed 151 

POS-based in two languages, English and Spanish, 152 

and compared them with human assessments, it 153 

remains to be determined whether these findings 154 

can be generalized to other languages with different 155 

typological characteristics.  156 

2.2 Main Gaps in Previous Work 157 

Although previous studies have covered relevant 158 

aspects of the error assessment and description in 159 

ASR system outputs, there are yet three significant 160 

gaps remaining. Firstly, these studies have relied on 161 

custom-built or less standardized ASR systems, 162 

limiting the generalizability and reproducibility of 163 

their findings. Our research counters this limitation 164 

by employing the widely recognized and 165 

standardized Whisper ASR system; we ensure that 166 

our findings are more applicable to a broader range 167 

of applications and that our methodology can be 168 

more easily replicated by other researchers in the 169 

field. 170 

Secondly, earlier studies have often focused on 171 

analyzing ASR errors in a single language or 172 

closely related languages, which limits the 173 

understanding of ASR performance across diverse 174 

linguistic parameters. Our study expands this scope 175 

by examining ASR errors in three linguistically 176 

differentiated languages – English, Japanese and 177 

Spanish – thus broadening the evaluation of our 178 

proposed error metrics and enhancing 179 

understanding of ASR systems across varied 180 

language families. 181 
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Lastly, although previous studies have measured 182 

ASR errors at various linguistic levels, they have 183 

not being consistent in proposing a direct 184 

integration of these detailed measurements into the 185 

overall reporting of ASR outputs. Our study 186 

addresses this by not only detailing these 187 

measurements but also integrating them with the 188 

general reporting of ASR errors. This integrated 189 

approach provides a more comprehensive and 190 

informative analysis of ASR performance. 191 

3 Methodology 192 

In our methodology, we build upon the linguistic-193 

based error metrics found in Cao et al., (2023) and 194 

Roux et al. (2022), which provide a finer-grained 195 

analysis of errors and discrepancies. Our approach 196 

enhances this framework through two distinct 197 

strategies. First, we conduct a comparative analysis 198 

of three linguistically diverse languages: English, 199 

Japanese and Spanish. Each language exhibits 200 

different levels of linguistic inflections, such as 201 

changes in word form to mark distinctions such as 202 

tense, person, and number. For example, verb 203 

conjugations are a type of inflections and regular 204 

plurals in English. This comparative study allows 205 

us to assess how inflectional complexity impacts 206 

ASR accuracy across different linguistic systems. 207 

    In the second aspect of our methodology, we 208 

differentiate between GRAMMATICAL and LEXICAL 209 

categories, grouping POS categories into these 210 

classes since their errors have different impacts on 211 

the HYP text. This categorization is crucial 212 

because LEXICAL errors directly lead to the 213 

misunderstanding of the intended message and the 214 

incorrect interpretation of the text (Hemchua and 215 

Schmitt, 2006). In contrast, while GRAMMATICAL 216 

errors can also cause misunderstandings, their 217 

effect on the overall comprehension of the text is 218 

generally less disruptive than that of LEXICAL 219 

errors. Table 1 shows examples of GRAMMATICAL 220 

and LEXICAL errors. 221 

    In developing performance metrics for ASR 222 

systems, we adhered to four essential criteria 223 

(Morris et al., 2004; McCowan et al., 2004). First, 224 

it should reflect some level of human judgment, 225 

aiding in the identification of how much 226 

information is effectively communicated and how 227 

much is lost. Second, it must be straightforward to 228 

apply, facilitating comparisons across various ASR 229 

systems. Third, it should be language-independent 230 

to ensure unbiased error comparisons across 231 

languages from different typological 232 

classifications. Finally, the metric should be easy to 233 

interpret from the outputs. These principles ensure 234 

that our metrics are both practical and applicable in 235 

real-world settings. 236 

 Words 
REF text The cat sat on the mat 
LEXICAL error The dog sat on the mat 
GRAM. error The cat sat on that mat 

Table 1: Examples of Differences between 237 

GRAMMATICAL and LEXICAL errors. 238 

Figure 1 below summarizes the main six stages 239 

followed in this paper, and these are expanded in 240 

the following sections. The first three correspond 241 

to the ASR processing, four and five correspond to 242 

the NLP processing and categorization of errors, 243 

and the final stage corresponds to the error 244 

reporting. 245 

 246 

Figure 1: Data Processing and Analysis Stages. 247 

3.1 Languages Chosen 248 

The selection of languages was driven by both data 249 

availability and the authors’ expertise, resulting in 250 

the choice of English, Japanese, and Spanish. 251 

These languages serve as robust testing grounds 252 

due to their shared characteristics and notable 253 

differences. Both English and Spanish belong to 254 

the Indo-European language family, and Japanese 255 

belongs to the Japonic language family 256 

(Ethnologue, 1999). They also exhibit divergences 257 

in their levels of inflection, a factor relevant to ASR 258 

system errors. 259 

Some research has found that word classes with 260 

higher inflection are more prone to errors 261 

compared to those with less or no inflection (Berg 262 

et al., 2024; Smith-Lock, 1991). For instance, the 263 

English article the remains uninflected, while its 264 

Spanish counterparts carry gender and number 265 

inflections (feminine singular: “la”, masculine 266 

singular: “el”, feminine plural: “las,” masculine 267 

plural: “los”). Additionally, variations in inflection 268 

levels are evident in verb paradigms. While English 269 

may have six main isolated forms (base, infinitive, 270 

past simple, past participle, gerund, and third 271 
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person singular) (Lee and Seneff, 2008), Japanese 272 

has 12 inflections (Hisamitsu and Nitta, 1994), and 273 

Spanish can have 52 distinct forms reflecting 274 

person, number, tense, aspect, and mood (Centeno 275 

and Obler, 2001). 276 

Another major difference in Japanese, unlike 277 

English and Spanish, is that it does not generally 278 

use white spaces to separate words. To identify 279 

morphemes and words in Japanese, two main 280 

approaches have been taken. The first approach is 281 

to define base unit words by first identifying 282 

syntactic words, which is done in Universal 283 

Dependencies (UD) by using Short Unit Words 284 

(SUW). The second approach uses Long Unit 285 

Words (LUW) as the base units in Japanese. 286 

Although similar results were achieved from both 287 

approaches, Omura et al. (2021) argue that 288 

lemmatization of LUW is more complex for a 289 

morphologically rich language. The pretrained 290 

model used in this paper utilized the SUW 291 

approach. 292 

The choice of these three languages allows for 293 

typological comparisons, highlighting 294 

characteristics that are shared by all three 295 

languages, by two of them, or individually. The 296 

comparison is shown in Table 2. This summarizes 297 

the main linguistic classifications across the three 298 

languages. We present the major morphological 299 

features relevant for the current study. 300 

 EN JA SP 

Deriv. 
Morphology Prefixes and Suffixes 

Morphology Analytic Synthetic 

Gender No Nouns 

Word 
Order SVO SOV SVO 

Word 
Formation 

Mostly 
analytic Agglutination Inflections 

Inflection Limited Verbs and 
Adjectives Rich 

Case 
Marking Pronouns Extensive 

Nominative 
Accusative 

Dative 

Table 2: Main Morphological Descriptions for each 301 

Language. 302 

These linguistic differences in inflection levels 303 

contribute to the richness of errors observed in 304 

ASR systems. 305 

3.2 Speech Datasets 306 

We utilized the Common Voice 15 dataset, a 307 

publicly available collection of multilingual and 308 

open voice data provided by the Mozilla Common 309 

Voice Project (Ardila et al., 2020). Designed for 310 

training and validating automatic speech 311 

recognition systems, the dataset encompasses a 312 

diverse range of voices and linguistic contexts. The 313 

data does not contain personally identifying 314 

information. Table 3 below displays the 315 

characteristics of the datasets per language. 316 

 Descriptors  EN JA SP 
 Number of Files 16,386 4,978 15,796 

au
di

o  

Duration (hr) 26.9 6.6 26.8 
Speech Dur. (hr) 22.7 5.4 23.2 
Mean Dur. (sec) 5.9 4.8 6.11 

Mean Speech Dur. 
(sec) 

4.9 3.9 5.3 
te

xt
 

Total Characters 890K 105K 960K 
Total Words 153K 55K 156K 

Unique Words 21K 8K 23K 
Characters p/Text 54 21 61 

Words p/Text 10 10 10 

Table 3: Dataset Descriptions for each Language. 317 

The dataset encompasses contributions from a 318 

substantial number of speakers, providing a rich 319 

variety of linguistic and acoustic characteristics. In 320 

our analysis, we focused on a subset consisting of 321 

recordings from the test sets for the three 322 

languages. The dataset comprises over 16,000 323 

sentences for English, approximately 5,000 for 324 

Japanese, and more than 15,000 sentences for 325 

Spanish. This offers a comprehensive sample of 326 

spoken language for evaluating ASR systems. The 327 

inclusion of a broad range of sentences and 328 

speakers enhances the robustness and 329 

generalizability of our findings, contributing to a 330 

more comprehensive understanding of the 331 

performance of the ASR system in diverse 332 

linguistic contexts. This includes variations in 333 

syntactic, semantic, and phonetic-phonological 334 

contexts. 335 

3.3 ASR System 336 

All our experiments were conducted using OpenAI 337 

Whisper (Radford et al., 2023). Whisper comprises 338 

multilingual multitask models trained on 680,000 339 

hours of labelled and curated speech data from 340 

diverse internet sources. In this experiment, we 341 

employed Whisper-Tiny (T), Whisper-Medium 342 

(M), Whisper-Large-v2 (LV2) and Whisper Large-343 
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v3 (LV3). Comparing these four model sizes allows 344 

us to examine whether there are relevant accuracy 345 

gains across all ASR models. 346 

3.4 Analysis 347 

Word Error Rate: WER is computed by 348 

comparing the reference transcript (ground truth) 349 

with the output generated by the ASR system. The 350 

formula for WER is given by: 351 

WER = (S+D+I) / N 352 

Where, S represents the number of substitutions, D 353 

represents the number of deletions, I represents the 354 

number of insertions, and N is the total number of 355 

words in the reference transcript. 356 

The analysis was conducted in R (R Core Team, 357 

2023) using the outputs of Whisper. Our focus lies 358 

in ASR errors when comparing the reference text 359 

(REF) to the hypothesis text (HYP). SCLITE was 360 

employed for error calculation, identifying 361 

substitutions, insertions, and deletions per 362 

sentence. SCLITE, part of the NIST SCT1 Scoring 363 

Toolkit, is a tool for scoring and evaluating speech 364 

recognition system output. It compares the HYP to 365 

the correct REF. Post-comparison, statistics are 366 

gathered, and various reports can be generated to 367 

summarize recognition system performance. To 368 

assess the performance of the ASR system, we 369 

utilized the WER metric, a widely accepted 370 

measure for transcription accuracy assessment.  371 

Parts of Speech and Lexical Items: Linguistic 372 

tagging was conducted using the UDPIPE (Straka 373 

and Straková, 2017) library (Wijffels et al., 2023) 374 

in R to enhance the textual analysis of transcribed 375 

speech data. UDPIPE, a state-of-the-art Natural 376 

Language Processing (NLP) library, incorporates 377 

pre-trained models for various linguistic tasks, 378 

which are based on Universal Dependencies (UD). 379 

Specifically, we employed UDPIPE’s pipeline for 380 

POS tagging. The tagging process consisted of 381 

three main steps. 382 

Firstly, in text preprocessing, raw transcripts 383 

underwent preprocessing to eliminate artifacts or 384 

noise that might impact tagging accuracy. 385 

Secondly, during tokenization, preprocessed 386 

transcripts were tokenized into individual words or 387 

sub-word units using UDPIPE’s tokenization 388 

module. The third step involved POS Tagging, 389 

where the POS tagging module assigned 390 

 
1 https://github.com/usnistgov/SCT 

grammatical categories – such as nouns, verbs, 391 

adjectives – to each token in the transcripts. This 392 

information was crucial for understanding the 393 

syntactic structure of the spoken content. Careful 394 

consideration of punctuation, case sensitivity, and 395 

text normalization procedures was carried out to 396 

ensure accurate comparisons between REF and 397 

ASR-generated transcripts. UDPIPE outputs have 398 

been reported to exhibit varying levels of 399 

performance. Straka and Straková (2017) reported 400 

that the automatic identification of POS has an 401 

accuracy of 93.50% for English, 88.19% for 402 

Japanese, and 98.14% for Spanish. We assess our 403 

outputs based on these reported accuracy levels. 404 

Linguistic Metric Analysis: We propose a 405 

metric that categorizes errors based on whether 406 

they occur in any of the two categories within a 407 

Word Class: GRAMMATICAL and LEXICAL. From 408 

the UDPIPE output, each POS was grouped into 409 

either the GRAMMATICAL group (ADP, AUX, 410 

CCONJ, DET, PART, PRON, SCONJ) or the LEXICAL 411 

Group (ADJ, ADV, NOUN, NUM, PROPN, VERB). 412 

From this, we calculated errors at the POS tagging 413 

in the REF and HYP texts, defined as POS_er, and 414 

we also calculated differences at the LEXICAL and 415 

GRAMMATICAL levels, following the formulae 416 

below: 417 

POS_er = (SPOS+DPOS+IPOS) / NPOS 418 

LEX_er = (SLEX+DLEX+ILEX) / NLEX 419 

GRAM_er = (SGRAM +DGRAM +IGRAM) / NGRAM 420 

Word Class errors are then calculated for each 421 

group across the entire dataset per language and 422 

ASR model size: LEXICAL errors (LEX_er) and 423 

GRAMMATICAL errors (GRAM_er). 424 

Table 4: Number of Sentences included in the Analyses. 425 

 Total Size Subset Diff. 

EN 16386 

T 14459 12% 
M 14855 9% 

LV2 14886 9% 
LV3 14896 9% 

JA 4978 

T 573 88% 
M 1544 69% 

LV2 1634 67% 
LV3 1724 65% 

SP 15796 

T 12569 20% 
M 14833 6% 

LV2 14910 6% 
LV3 14967 5% 
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To ensure fair comparisons, the analysis was 426 

conducted on sentences with matching number of 427 

words, i.e., when REF and HYP have the same 428 

number of words, avoiding penalization for 429 

incorrect pairs due to deletions and insertions. 430 

Table 4 above shows the differences in the number 431 

of sentences in the original transcriptions and the 432 

ones filtered in the analyses. 433 

4 Experiment and Results 434 

4.1 ASR Model Size Comparison 435 

Table 5 provides a summary of the experiment 436 

results, highlighting significant differences in 437 

performance across the T, M, LV2 and LV3 438 

models for all evaluated languages.  439 

 Category 
ASR Model (%) 

LV3 LV2 M T 

EN
 

WER 8.3 8.9 9.9 23.7 
POS_er 5.2 5.5 6.1 17 
LEX_er 11 11.4 11.9 22.4 
GRAM_er 4.6 4.8 5.3 15.1 

JA
 

WER 5.7 6.4 7.5 24.6 
POS_er 1.7 2 2.4 12.7 
LEX_er 3.6 3.9 5.4 22.9 
GRAM_er 1.9 2.7 3.2 13.7 

SP
 

WER 4 4.9 5.8 23.5 
POS_er 1.5 1.9 2.2 10.9 
LEX_er 4.2 4.7 5 12.4 
GRAM_er 1.6 1.3 3.4 8.5 

Table 5: Breakdown of Error Rates Results. Values are 440 

shown in Percentage of Errors (%). 441 

The T models consistently show the highest error 442 

rates (English = 23.7%; Japanese = 24.6%; Spanish 443 

= 23.5%), while the other models (M, LV2 and 444 

LV3) demonstrate notably lower and more uniform 445 

WERs across all languages. Among these, the LV3 446 

model yields the most accurate results (English = 447 

8.3%; Japanese = 5.7%; Spanish = 4%). It is 448 

evident that the T models show comparable WERs 449 

for the three languages, whereas the larger models 450 

exhibit higher accuracy, with Spanish being the 451 

most accurate and English the least accurate. 452 

4.2 Parts of Speech Comparison 453 

When delving into the other metrics, our results 454 

discover a more nuanced understanding, shedding 455 

light on the categories to which ASR systems are 456 

more susceptible for errors. POS_er results 457 

demonstrate lower error rates in comparison to 458 

WER. This is notably more distinctive for Japanese 459 

and Spanish (English = 8.3%WER vs 5.2% 460 

POS_er; Japanese = 5.7% vs 1.7%; Spanish = 4% 461 

vs 1.5%). 462 

These results indicate that errors are more 463 

generalizable at the POS level, as compared to the 464 

word level. As such, this can help better our 465 

understanding of what types of errors can be 466 

consistently expected from ASR outputs, and in 467 

what morphological contexts. A more in-depth 468 

analysis looked at those cases where the word form 469 

was incorrect (which counts to more WER) but it 470 

still had the same POS (which did not count as error 471 

for the POS_er). 472 

 473 

Figure 2: Percentage of Cases (and Counts) of 474 

Wrong Words but with Correct POS. 475 

In the case of highly inflectional languages, this 476 

difference can be observed when the HYP text has 477 

a singular form of a noun (e.g., cat), but the REF 478 

text was the same word in the plural form (e.g., 479 

cats). This observation underscores the limitations 480 

of relying solely on WER, as it fails to capture 481 

subtle linguistic nuances retained in POS_er. Figure 482 

2 shows a breakdown by language and model size 483 

for this experiment. It shows that Japanese and 484 

Spanish have more cases where errors are 485 

explained by inflectional differences between 486 

words (i.e., words are different but not their POS), 487 

as compared to English. 488 

4.3 Word Class Comparison 489 

The third layer of analysis distinguishes between 490 

LEXICAL error rate (LEX_er) and GRAMMATICAL 491 

error rate (GRAM_er), revealing patterns not 492 
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captured by the previous two layers (WER and 493 

POS_er). Figure 3 presents the error rates broken 494 

down by language, model size, and word class 495 

(GRAMMATICAL or LEXICAL) with a horizontal 496 

dotted line indicating the overall POS_er as 497 

reference. 498 

 499 

Figure 3: Error Rates across all Languages and 500 

Model Sizes split by Word Class Errors. 501 

Among the languages examined, Spanish 502 

consistently shows the lowest overall error rates, 503 

while English presents the highest. In the LV3 504 

model analysis, for LEX_er, Japanese records 505 

slightly lower rates than Spanish, while English 506 

exhibits the highest error rates (English = 11%; 507 

Japanese = 3.6%; Spanish = 4.2%). This variation 508 

can be explained linguistically by the fact that 509 

LEXICAL categories in Japanese and Spanish have 510 

higher inflections than in English, and these 511 

inflections are presented as affixes in both 512 

languages, helping the ASR system to understand 513 

the patterns of occurrence, useful to identify and 514 

predict the word form and its function in the 515 

language. This indicates that correct inflectional 516 

words significantly enhance predicting LEXICAL 517 

words. Although this finding is in contrast with 518 

Berg et al. (2024) and Smith-Lock. (1991), our 519 

results show that higher inflections are related to 520 

higher accuracy. 521 

Further examination explored the extent to 522 

which predictable inflections helped in correctly 523 

identifying words for the ASR system. For this, we 524 

chose PROPER NOUNS (PROPN), a subclass of the 525 

LEXICAL words (See Appendices for reference). 526 

Our results show that Japanese is the language with 527 

least error rates, and English with the most errors 528 

(English = 39.6%; Japanese = 5.7%; Spanish = 529 

18.6%). This is attributed to the use of case markers 530 

for Proper Nouns in Japanese, feature that is absent 531 

in English and Spanish, facilitating more accurate 532 

identification and prediction of Proper Nouns.  533 

The analysis revealed that the top six occurring 534 

words after PROPN were the case markers さん 535 

(3.4% – honorific particle), の (3.6% – possessive),  536 

に(2.4% – place), と(1.8% – joining nouns), は  537 

(1.8% – topic marking particle), and が (1.5% – 538 

grammatical subject), all accounting for 539 

approximately 15% of all words after PROPN in the 540 

Japanese dataset.  541 

GRAM_er results show that Spanish had the 542 

lowest error rates compared to Japanese (slight 543 

difference of 0.3%) and, more significantly, to 544 

English (English = 4.6%; Japanese = 1.9%; 545 

Spanish = 1.6%). An in-depth analysis highlighted 546 

that the primary errors in English were associated 547 

with subordinating conjunctions (e.g., if, that, 548 

while) whereas the coordinating conjunctions were 549 

the ones driving more errors in Japanese (e.g., と550 

and; も also) and Spanish (e.g., y and; o or). This 551 

indicates that a combination of grammatical 552 

assessment and linguistic function helps in a deeper 553 

understanding of how languages use specific words 554 

and the impact it has on the ASR accuracy. This 555 

approach is not necessarily language-dependent, 556 

but rather relies more on the typological function a 557 

word class has across multiple languages. 558 

4.4 Assessment across all Comparisons 559 

When assessing all error rate metrics, we find that 560 

POS_er, LEX_er and GRAM_er contribute to a more 561 

robust understanding of ASR errors. The examples 562 

below are used to analyze the different layers. The 563 

first line is the transcription and below each, the 564 

POS tagging is given for each word. 565 

 566 

(a) English 567 

REF:  what   is the   matter with a     thousand dollars 568 

           PRON V DET  NOUN  ADP DET NUM          N 569 

HYP:  what  is the   matter with  the   thousand dollar 570 

           PRON V DET  NOUN  ADP  DET  NUM           N 571 

 572 

(b) Spanish 573 

REF:  las   batallas se   libraron primero en  los   territories 574 

          DET N           PRON V              ADJ       ADP DET N 575 

HYP:  las batallas el    vibrado primero en   los   territories 576 

          DET N           DET  N               ADJ       ADP DET N 577 

 578 

Sentence (a) has a WER of 25% (two wrong words 579 

over eight words in total). The errors are found in 580 

the words a and dollars in the REF text. The word 581 

a, the indefinite article, changed to definite article 582 
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the in the HYP text. The change happened in a 583 

GRAMMATICAL word. The second word, dollars, 584 

changed to the singular form in the HYP text, 585 

dollar. In terms of classification, it is a LEXICAL 586 

word, however, the change occurred in a 587 

morpheme that conveys plurality in English. 588 

Since these errors did not change the word class, 589 

POS_er, LEX_er, and GRAM_er have 0% error 590 

rate. This also shows that the NOUN dollar was not 591 

changed to another NOUN, but just its plurality, 592 

which did not compromise the meaning as 593 

compared to being changed to another word, like 594 

scholar, for example. 595 

Sentence (b) has the same WER as (a), 25%. 596 

However, the error patterns are different. The 597 

errors are found in the words “se” (reflexive 598 

PRON) and “libraron” (simple past on V to fight) 599 

in the REF text. Both words were substituted with 600 

different words and with different POS categories, 601 

however, they belong to the same word class 602 

(PRON > DET; V > N). POS_er is 25%, LEX_er is 603 

12.5%, and GRAM_er is 12.5%. Compared to 604 

sentence (a), only the WER is the same, but the 605 

other error metrics are all different. These two 606 

sentences exemplify the complementary nature of 607 

the application of all metrics, rather than being 608 

competing measures. 609 

5 Discussion 610 

This study examines two NLP-driven error metrics 611 

across English, Japanese, and Spanish to assess the 612 

accuracy of the Whisper ASR system. Given the 613 

higher inflectional complexity, Japanese and 614 

Spanish provide a valuable context for analysis, 615 

particularly in GRAMMATICAL words. Our findings 616 

reveal that relying solely on WER can obscure 617 

nuanced aspect of ASR performance. For instance, 618 

while WER figures maybe comparable across 619 

models, such as in the T model results, a closer 620 

examination at the GRAMMATICAL vs LEXICAL 621 

level unveils distinct accuracies. Conversely, even 622 

with differing WERs, such as in the Large models 623 

(LV2, LV3) where Japanese and Spanish 624 

outperform English, a detailed analysis exposes the 625 

ASR system’s consistent performance on LEXICAL 626 

words but divergence in handling GRAMMATICAL 627 

words, notably with English struggling more with 628 

subordinating conjunctions. 629 

These metrics bridge the gap between general 630 

WER assessment and more granular POS error 631 

analyses. While reporting each POS category 632 

individually could complicate comparisons across 633 

languages, our metrics offer a balanced approach. 634 

This approach allows for a detailed identification 635 

of strengths and weaknesses in ASR systems at 636 

crucial linguistic levels, enhancing both the 637 

interpretability and practical applicability of ASR 638 

performance evaluations.   639 

 For the areas of improvement pertinent to ASR 640 

systems, we can make suggestions based on the 641 

observed patterns and the datasets used. First, the 642 

training of the ASR systems should include more 643 

accurate weighting of words based on whether they 644 

are LEXICAL vs GRAMMATICAL in function. This 645 

adjustment will enable a better-informed decision 646 

driven by word usage in context. Second, 647 

performance can also be improved if more 648 

spontaneous speech is used in the training of ASR 649 

systems. This can lead to the observation of more 650 

LEXICAL words, such as low-frequency words or 651 

those more commonly found in spoken language, 652 

in contexts that are less typical of controlled 653 

speech. Finally, the errors observed strongly 654 

suggest that errors follow specific linguistic 655 

patterns (e.g., LEXICAL vs GRAMMATICAL, or 656 

PROPN vs NOUN). In this sense, they go beyond 657 

language-dependent patterns and can be better 658 

understood under linguistic typologies. 659 

6 Conclusions 660 

The automatic processing and annotation of natural 661 

speech are complex tasks influenced by both the 662 

systems themselves and, most importantly, by the 663 

inherent characteristics of languages and their 664 

typological differences. Current systems have 665 

made significant progress in addressing these 666 

complexities. One notable advancement is the 667 

ability to perform automatic grammatical error 668 

comparisons across languages with different 669 

typological classifications. This advancement 670 

necessitates a cautious approach to understanding 671 

intrinsic language differences and variations based 672 

on the ASR system or the data used for training. 673 

Linguistically informed metrics play a crucial 674 

role in interpreting performance. This, combined 675 

with robust NLP approaches, prove to be efficient 676 

for this task. Our metric and implementation 677 

developed for assessing ASR performance help 678 

identifying areas for improvement and linguistic 679 

aspects that pose specific challenges. Additionally, 680 

these metrics assist those working on ASR systems 681 

and datasets in developing more efficient 682 

algorithms and infrastructures. 683 
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7 Limitations 684 

In this study, we investigated three languages with 685 

different typological characteristics, highlighting 686 

both shared and unique features. However, the 687 

scope of our research did not extend to 688 

polysynthetic languages, presenting a limitation in 689 

the diversity of language types analyzed. Future 690 

work should include a broader range of languages 691 

to determine if the observed patterns are replicated 692 

or consistent across major language families. 693 

Our analysis was confined to the Whisper ASR 694 

system, chosen for its broad usage and 695 

accessibility. This focus presents a limitation as it 696 

does not address a comparative evaluation across 697 

different ASR systems. Future research should 698 

examine a variety of ASR systems to ascertain 699 

whether the observed errors are influenced by 700 

specific systems or linguistic characteristics 701 

themselves. 702 

Finally, we did not address fine-tuning of ASR 703 

models. This can help identify whether the errors 704 

are specific to the ASR model or the data used for 705 

training, and to what extent we can generalize these 706 

errors. Future research should also investigate the 707 

impact of linguistically-based fine-tuning on the 708 

performance of ASR systems. 709 
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A Appendices 907 

This section includes the breakdown of all errors 908 

for Parts of Speech across all languages. The 909 

horizontal dotted lines indicate the overall POS_er 910 

as reference. 911 
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