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Abstract: Constructing a diverse repertoire of manipulation skills in a scalable
fashion remains an unsolved challenge in robotics. One way to address this chal-
lenge is with unstructured human play, where humans operate freely in an en-
vironment to reach unspecified goals. Play is a simple and cheap method for
collecting diverse user demonstrations with broad state and goal coverage over
an environment. Due to this diverse coverage, existing approaches for learning
from play are more robust to online policy deviations from the offline data dis-
tribution. However, these methods often struggle to learn under scene variation
and on challenging manipulation primitives, due in part to improperly associating
complex behaviors to the scene changes they induce. Our insight is that an object-
centric view of play data can help link human behaviors and the resulting changes
in the environment, and thus improve multi-task policy learning. In this work, we
construct a latent space to model object affordances – properties of an object that
define its uses – in the environment, and then learn a policy to achieve the desired
affordances. By modeling and predicting the desired affordance across variable
horizon tasks, our method, Predicting Latent Affordances Through Object-Centric
Play (PLATO), outperforms existing methods on complex manipulation tasks in
both 2D and 3D object manipulation simulation and real world environments for
diverse types of interactions. Videos can be found on our website.
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1 Introduction
The field of robotics has seen tremendous progress in solving manipulation tasks, but learning a gen-
eral multi-task policy remains an open challenge. Imitation learning methods are sample-efficient
at replicating demonstrated behaviors, but are often presented with structured, predefined tasks and
therefore struggle to generalize outside of the data distribution [1, 2]. Rather than using predefined
task demonstrations, recent work has shown that learning from play data – an unstructured form
of demonstration without predefined goals – can lead to policies that are more robust to online de-
viations [3]. Play data is easy to collect at scale since it requires no task specification or manual
resetting, and play can have broad data coverage over the set of object interactions necessary for
performing a variety of tasks.

Existing approaches for learning from play sample short horizon-length windows from play data
to learn goal-conditioned imitation policies in an offline fashion [3, 4]. However, not all facets of
the demonstrator’s behavior are captured by the goal alone; thus prior work learns a latent space to
model the variation in human behaviors. Such a latent space captures a representation of “plans,” for
example plans representing reaching or grasping motions, for a given goal state during play. These
latent plans can then help inform robot policies at test time [3].

These approaches make several restrictive assumptions. Firstly, they assume that given a fixed short-
horizon window of play, the agent’s goal is the environment state at the end of the window. This
assumption however is not always true: since the desired robot state is not available at test time,
the goal is chosen as the environment state a few seconds in the future. Since the goal might be
close or the same as the initial state, it can be uninformative for the policy, nor does it necessarily
represent the human’s true goal. Crediting behavior to an incorrect environment goal can obscure
why a human chose the actions during that window, and thus hinder policy learning. For example,
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if we want to grasp and move a block on a table but our goal is sampled after the robot has initiated
motion but before initiating the grasp, the sampled goal will have no change in the object state and
thus gives us no information on the true goal that the user had in mind. Secondly, by randomly
sampling windows from play data, the learned latent space will be forced to model all sequences
of behaviors equally, even though many sequences will be less critical to achieving the desired
environment goal. These restrictive assumptions leads to suboptimal behaviors when increasing the
complexity and variability of tasks, e.g., tasks with varying horizons, when learning from play.

Instead of defining goals and plans based on arbitrary horizon lengths, we posit that humans often
define goals and plan in terms of interactions with objects: rather than planning over the individual
joint motions required to grasp and open a door handle, we think about turning the handle and then
opening the door. Our key insight is that viewing offline play data as diverse object interactions en-
ables better modeling of both a human’s goals and the behaviors that can achieve these goals. Rather
than learning to represent fixed short-horizon robot trajectories, or plans, we bias the latent space
towards learning demonstrated object affordances that accomplish tasks in object-space. Imitation
policies can then condition on these affordances directly to gain insight into human’s behaviors.

We propose an algorithm, PLATO – Predicting Latent Affordances Through Object-Centric Play –
that automatically segments play into a series of object interactions using proprioceptive informa-
tion, and then learns a latent affordance space over object interactions. Simultaneously, it learns to
imitate human actions over variable horizon interactions, conditioned on the latent affordance and
goal. By considering object interactions in play and correctly attributing goals to robot behaviors,
PLATO builds a robust mapping between the true goals, desired object affordances, and actions on
the robot over varying horizons. This leads to PLATO significantly outperforming prior methods
especially when increasing the complexity and variability of play data. Our contributions are:

1. We have developed an object-centric paradigm for learning from unstructured human play data,
which views play as sequential, unlabeled interactions with objects.

2. We have developed a new algorithm, PLATO, that extracts and leverages these interactions to
model diverse object affordances from play data and learn a robust policy.

3. We have tested PLATO on a number of 2D and 3D manipulation environments in simulation and
the real world, including diverse objects such as blocks, mugs, cabinets, and drawers, with broad
coverage over possible tasks and object affordances. We demonstrate that PLATO substantially
outperforms state-of-the-art learning from play baselines in these complex manipulation tasks.

2 Related Work
In this section, we will discuss prior work in goal-conditioned imitation learning, learning from play,
and object-centric policy learning. Our work brings an object-centric perspective on learning from
play to learn effective imitation policies that generalize across different manipulation tasks.

Imitation Learning. Imitation Learning is a common method for learning robot policies from hu-
man demonstrations, where a policy learns to mimic human actions [1]. These methods often strug-
gle to generalize to new environments and to learn from multi-task data [5, 6, 2]. To improve gener-

alization, Ho, et al. introduced generative adversarial IL to learn from imitation data while matching
the expert policy distribution [7]. Recently, implicit imitation learning policies using energy-based
models have also been shown to improve generalization as compared to explicit policy models [8].
To enable multi-task learning, one can condition the policy on goal states, either explicitly labelled
or inferred via hindsight experience replay [9, 10, 11]. Other methods have leveraged meta-learning
for multi-task imitation learning to enable better multi-task performance and one-shot generaliza-
tion [12]. A key limitation of these works is the dependency on demonstration quality and quantity,
for example the state-action coverage within the dataset for each task [13]. Our work utilizes an
approach built on top of goal-conditioned imitation learning to learn multi-task policies. However,
we use play data as opposed to expert demonstrations, which enables a much broader state-action
coverage to learn generalizable and robust policies.

Learning from Play. Human play data is defined as unstructured and unsupervised human interac-
tion with an environment, as a means to let the user guide the data collection process, and provide
broader coverage of the task-relevant state and goal space. Because humans can freely choose how
to interact with the environment, play data is easy and cheap to collect without the need for prior task
specification or environment resets. These factors make play data a rich source for skill learning; as
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a result, imitation policies trained on play data are more robust to deviations from the expert trajec-
tories than those trained on single-task demonstrations [3]. The state of the art method, Play-LMP,
learns latent “plans” over short, fixed horizon trajectories from play data [3]. This approach can also
be used to ground language with play data using pretrained language models [14]. These learned
short-horizon skills have also been chained together to accomplish long horizon tasks using motion
planning inspired techniques [15]. Additionally, using small variations in the horizon length of play
windows has been shown to improve test time performance [4]. These methods benefit from the
broad coverage of play data, but suffer from distribution shift at test time due to incorrectly inferred
goals during training. Therefore, our approach also imitates play, but we take an object-centric
view: by learning from diverse interactions with the environment, we can more accurately infer the
human’s goals during play and thus obtain a better state-action-goal distribution.

Object-Centric Modeling and Policy Learning. There is strong evidence that humans have neu-
ral pathways specific to object recognition, dynamics understanding, and scene segmentation [16].
Inspired by humans, this notion of object centrism has been applied in many recent works in object
manipulation for better policy generalization and sample efficiency. Formalisms like object-oriented
MDPs have been introduced to better model effects of agent behaviors as functions of individual ob-
jects and their affordances [17]. Object affordances have also been learned from labeled interaction
examples in multi-task environments and were shown to benefit policy learning downstream [18, 19].
Planning relative to object reference frames and primitives can enable plans to generalize to chang-
ing environments [20, 21]. Similarly, focusing on objects during policy learning can allow behaviors
to generalize to novel scenarios [22, 23]. A recent work leveraged labelled object motions in play
data to predict grasp points, and showed RL becomes more sample efficient post-grasping [24].
We employ object centrism to guide learning from play data, specifically by extracting affordances
through unsupervised temporal segmentation over object interactions.

3 Predicting Latent Affordances Through Object-Centric Play
A play dataset Dplay consists of N varying length episodes of undirected, human generated state-
action trajectories Tj , 8j 2 {1, . . . , N}, where Tj = {s1, a1, . . . , sLj} for length Lj . The state
feature space S may be learned or predefined, and consists of a proprioceptive state space Sr (robot
state space) and an environmental state space S

o (object state space) such that Sr � S
o = S. The

goals that generated these trajectories are not included in the dataset, and are defined as og 2 G, for
goal space G ✓ S

o. We use o and s
o interchangeably to refer to environmental state, and likewise

for r and s
r to refer to the robot state. We assume that goals only consist of the environmental state,

since access to proprioceptive state goals at test time is unrealistic as it requires the robot having
access to a policy for achieving the given environmental goal.

Given access to this play dataset Dplay, a new initial state s 2 S, and an object goal state og , our
problem is to learn a robot policy ⇡ to achieve the desired goal state. In prior work, sampled trajec-
tories of play ⌧ consist of a contiguous fixed-horizon segment from an episode Tj . For simplicity we
denote sampling these segments from play as ⌧ ⇠ Dplay, where the length of the segment is the fixed
horizon H . We propose viewing play sequences from a bird’s eye view, namely object interactions,
instead of from myopic and fixed 1-2 second windows used in prior work. From this perspective,
we hypothesize human play is just a series of environment interactions induced by a robot’s actions.
If we can somehow detect where interactions begin and end, we can learn to relate interaction and
pre-interaction robot behaviors to the state of the world post-interaction. First, we discuss how we
detect interactions in the environment in offline play by leveraging proprioceptive cues. Next, we
formalize how we properly choose and associate goals with robot behaviors.

Segmenting Play into Interaction Phases: When we interact with an environment, we change
its state through our own actions, whether it be through direct or indirect contact. In this work,
we focus on single-object interactions, but we emphasize that interactions can be defined even over
multiple objects that are being influenced by the robot behavior (e.g., in tool-mediated manipulation,
interaction is defined between the tool and the environment). We break down an interaction into the
following phases:
1. Pre-interaction: This phase usually involves orienting the robot to interact with an object, e.g.,

reaching the purple block in Fig. 1.
2. Interaction: This phase involves joint and interdependent motions between the robot and the

object(s), e.g., pulling the purple block in Fig. 1.
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Figure 1: Our method shown on pre-interaction (purple), interaction (blue), and post-interaction (green) pe-
riods. (1) Posterior E encodes the interaction sequence ⌧

(i) into affordance z. (2) Prior E0 encodes object
start and goal states o(i)1 and og to predict z. og is sampled from post-interaction. (3) Policy trained to output
actions on interaction period conditioned on affordance, and simultaneously (4) to output actions from pre-
interaction period conditioned on the “future” affordance. The assumed causal structure is shown in the lower
right: PLATO claims the robot behavior can be explained with knowledge of the long term goal and future
affordance z: the policy reasons about its desired affordance and goal to determine its actions.

3. Post-interaction: This phase involves separation from the object and any downstream effects
on the object, e.g., the purple block coming to rest after releasing it in Fig. 1. For repetitive
interactions, this is the same as the next pre-interaction period.

To account for these periods, we detect the robot’s influence over the environment, e.g., grasping
a door handle or lifting a mug, to automatically segment play into the periods above. For detect-
ing single-object interactions, contact signals are readily available with modern robots. The contact
signal is smoothed and then chunks of play with contiguous contact are labelled as interaction peri-
ods. Several ideas for extending PLATO to handle multi-object interaction detection are discussed
in detail in Appendix E. Since play consists of many back-to-back interactions, the post interaction
phase of one segment, e.g., retreating from a block and moving towards a cup, is simply the pre-
interaction for the next segment, e.g., lifting the cup. We denote pre, interaction, and post windows
with superscripts (�), (i), and (+), respectively.

Sampling Task Relevant Goals Post-Interaction: By segmenting play into interaction phases,
we can more accurately sample an accurate goal environment state. Critically, goals result from
an interaction by definition. At the end of an interaction, the environment state will very likely
have changed. Therefore, rather than arbitrarily labeling the goal as the last state of a 1-2 second
window, as in prior work, we can label the goal as any state from the end of the interaction through
post-interaction (see og in Figure 1). This includes any downstream effects on the object from the
interaction (e.g., gravity or inertia). For example, if we slide a block along a table, a valid og is any
block state before the block stops sliding. With an informative goal sampled, we can proceed to
learn a goal-conditioned policy.

Extracting Affordances from Interaction for Robust Policy Learning: We define every interac-
tion between the robot and the environment as exploiting some affordance on an object in the scene.
Affordances are properties of objects that define how they can be used (e.g., a block being grasped,
a door knob being turned, or a drawer being opened). Our insight is that learning these affordances
(what happens to the object) instead of plans (what happens to the robot) from play will lead to a
much simpler and more robust task representation that can operate over varying horizons, and thus
will yield much better policies at test time. This paradigm empowers the policy to reason about
the environment: given access to an affordance (e.g., the door knob being turned) and the goal (e.g,
opened door), the policy should be able to work backwards to infer the behavior to exploit that af-
fordance (e.g., reach the knob and rotate the gripper to turn it). This is in contrast to prior work that
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relies on randomly selected, short, fixed horizon windows to learn latent representations of plans—
such plans fail to capture varying horizon tasks and overly depend on the robot state, leading to
generalization issues at test time [3].

PLATO Design: The PLATO architecture is shown in Fig. 1. At a high level, PLATO learns to
model each interaction trajectory ⌧

(i) as a latent affordance z ((1) Posterior in Fig. 1). This latent
affordance z explains the actions both leading up to (pre-interaction) and during the interaction (see
causal structure in Fig. 1). For example, knowing that we want to push a block (goal) and how we
want to push it (affordance) allows the policy to infer that it should servo to the correct side of the
block first. Therefore, the latent space is learned end-to-end with the policy ⇡, which decodes latent
affordances conditioned on the current state and object goal states to reproduce both pre-interaction
and interaction robot actions ((3) Policy on Interaction and (4) Policy on Pre-Interaction in Fig. 1).
By not learning to encode pre-interaction sequences, the critical assumption we make here is that
variations in the affordances (interaction phase) are more relevant to the task and thus more important
to capture in our latent space than variations across any random behavior sequence (pre-interaction).

The policy action-reconstruction objective alone would encourage z to model robot behaviors
(plans), leading to a myopic view of the task. In order to force the latent space to focus on object
affordances and thus be more robust at test time, we simultaneously learn a prior on the affordance
distribution conditioned on just the start and goal object states ((2) Prior in Fig. 1), trained to regu-
larize the posterior latent affordance z. The posterior on z considers the full window ⌧

(i), while the
prior sees just the start and goal object states, and so the prior helps shape the latent space to encode
the affordance in ⌧

(i) rather than just the action information.

Algorithm 1 PLATO Training
1: Given: H(i), H(�), play data Dplay, interaction criteria f

(i),
2: D

(�)
play , D

(i)
play, D

(+)
play = f

(i)(Dplay) . Split into interactions
3: Initialize E, E0, ⇡
4: while not converged do
5: ⌧

(�)
, ⌧

(i)
, ⌧

(+) ⇠ D
(�)
play , D

(i)
play, D

(+)
play

6: Sample og ⇠ {o(+)
t

}
7: p(z) E(⌧ (i)) . Posterior Affordance Distribution
8: p(z0) E

0(o(i)1 , og) . Prior Affordance Distribution
9: z ⇠ p(z)

10: ã
(i)

1:H(i)  ⇡(s(i)
1:H(i) , og, z) . Policy in Interaction

11: ã
(�)

1:H(�)  ⇡(s(�)

1:H(�) , og, z) . Policy in Pre-Interaction
12: Compute LPLATO with Eq. (1) and update ⇡, E,E

0.

The training procedure is outlined in Alg. 1. After sampling windows from each interaction phase,
⌧
(�), ⌧ (i), and ⌧

(+) (Line 5), as well as a long term goal og (Line 6), PLATO encodes the interac-
tion into a posterior and prior affordance distribution (Lines 7-8). Next an affordance z is sampled
from the posterior using the reparameterization trick, and z is then used to decode actions during
interaction (Line 10) and pre-interaction (Line 11). See Appendix B.1 for more discussion of this
training procedure, including its computational efficiency. During training, we utilize action recon-
struction losses over both the pre-interaction region and the interaction region windows to train all
networks end-to-end. We utilize a KL divergence term to both train the affordance prior network
and regularize the affordance posterior network.

LPLATO = �log(⇡(a(i)1:H |s(i)1:H , og, z))� ↵ log(⇡(a(�)
1:H |s(�)

1:H , og, z)) + � KL(p(z) k p(z0)) (1)

Here, ↵ controls the policy focus on reconstructing pre-interaction behaviors, which usually is set
to 1. This procedure of learning a posterior and prior network and conditioning the policy on the
latent context resembles existing work [3]. The key differences are i) our goals are sampled based on
interactions with objects, ii) our latent representations capture object-centric affordances z by intel-
ligently shaping the learning objective, which can lead to more effective and generalizable policies,
and iii) the policy reasons over varying and longer horizon sequences by conditioning on the same
future desired affordance z and long term goal og throughout both pre-interaction and interaction.
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Figure 2: Block2D Success Rates, trained over 3 random seeds and evaluated on various primitives for PLATO
and baselines Play-LMP and Play-GCBC. Left: Scripted play data, with ablations PLATO-PRE and PLATO-R.
Right: Human play data. PLATO substantially outperforms baselines on both scripted and human play data.

Test Time: At test time, the affordance posterior network E cannot be used to output plans z, since
it assumes access to a trajectory. Similar to prior work [3], the prior network E

0 is used to propose z0
at test time, using only the current object state ot and the desired goal object state (og). Unlike prior
work, the prior network only depends on object states, and will be robust to different robot starting
states. Therefore instead of having to predict the exact robot behavior (i.e., plan) to achieve a goal,
PLATO predicts an affordance at test time and empowers the policy to exploit this affordance. The
policy conditions on z

0 and goal og to produce actions at the current state.

Addressing Challenges of Prior Work: By choosing goals og resulting from interactions with ob-
jects, PLATO better reflects the true demonstrator goal, and thus can reduce the credit assignment
problem found with fixed-horizon methods. PLATO handles variable horizon sequences by explic-
itly training the policy on pre-interaction and interaction sequences together, conditioned on the
affordance and long term goal. By biasing the latent space to model affordances during interaction,
rather than just any random sequence of play, PLATO learns the task relevant behaviors and varia-
tions therein to aid in generalization. Our results in Sec. 4 demonstrate the effectiveness of PLATO
compared to prior work on a wide range of complex tasks. See Appendix A for further discussion.

4 Experiments
In this section, we evaluate our approach extensively across three single-object manipula-
tion environments (Block2D, Block3D-Platforms, Mug3D-Platforms), one multi-object scene
(Playroom3D), and one real scene (Block-Real), across diverse tasks like pushing, lifting, and
rotating. These environments, shown in Fig. 3, enable a wide variety of objects and possible affor-
dances. We collect scripted play data in all environments as well as human play data for Block2D,
and train each method until convergence. See Appendix C for environment, task, data collection,
and training details, and Appendix B.2 for method implementation details.

Baselines: We compare PLATO against the two state-of-the-art methods for Learning from Play,
Play-GCBC (Goal-Conditioned BC) and Play-LMP (Latent Motor Plans) [3]. We also implement
two variants of our method, PLATO-PRE, which encodes both the interaction and the pre-interaction
periods into the latent space (adding ⌧

(�) as an input to E in step (1) in Fig. 1), and PLATO-R, which
replaces the object-centric prior with the prior from Play-LMP (adding the initial robot state as input
to E

0 in Fig. 1). PLATO-PRE results show the sufficiency of affordances as a latent representation,
while PLATO-R results show how object-centrism benefits the learned latent space and the policy.

Block2D Results: Evaluation results for PLATO for both scripted play data and human play data are
shown in Fig. 2, along with results on PLATO-PRE and PLATO-R. On scripted play data, PLATO is
able to substantially outperform the baselines on every task. Learning affordances from interactions
enables PLATO to model much more complex action sequences, such as those involving the tether
action, with high accuracy, even across variations in object dimensions, masses, and initial condi-
tions. On human play data, we again find that PLATO outperforms Play-GCBC and Play-LMP on all
of the tasks, emphasizing the ability of our method to scale to human generated data. Interestingly,
performance for all methods is worse on the human generated data than scripted data. We attribute
this to human data containing many sub-optimal trajectories due to the challenges of teleoperation.

PLATO-PRE, which encodes the pre-interaction period, performs slightly worse but similar to
PLATO, validating our hypothesis that interaction trajectories (PLATO) contain sufficient informa-
tion about the task when compared to also including pre-interaction trajectories in the latent space
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Figure 3: 3D Environment Success Rates, trained over 3 random seeds and evaluated on various primitives for
PLATO and baselines Play-LMP and Play-GCBC. Top Left: Block3D-Platforms. Bottom: Mug3D-Platforms.
PLATO substantially outperforms baselines in 3D manipulation environments for pushing, rotating, and lifting
tasks. Top Right: Block-Real. PLATO trained only in simulation generalizes to real world pushing tasks.

(PLATO-PRE). We find that by adding robot state information to the prior (PLATO-R), performance
suffers on most tasks. We hypothesize that this phenomenon is caused by the prior relying too much
on the initial state of the robot, and not enough on that of the object. As a result, the latent space
will not generalize at test time when the agent inevitably diverges from the offline state distribution.
Overall, we see that framing play data through the lens of object interactions (both PLATO and
PLATO-PRE) results in much better policy learning than prior state-of-the-art methods.

Block3D-Platform & Mug3DPlatform Results: Fig. 3 shows the results of evaluating PLATO
on the harder Platform tasks. Interestingly, Both Play-GCBC and Play-LMP do well on the push-
ing tasks in this setting, but do very poorly on the more complex lifting tasks (and rotate tasks for
Mug3D). By modeling an affordance space and properly relating these affordances to goal environ-
ment states, our method is capable of recreating diverse types of varying horizon behaviors from
play, and unlike Play-LMP, our method scales smoothly as the number of tasks increases.

Playroom3D Results: Fig. 4 shows the results on the challenging Playroom3D environment with
the drawer, cabinet, and the block, with especially diverse affordances and varying horizon tasks.
Once again, PLATO outperforms the baselines on every task. While neither baseline can perform the
complex Cabinet-Close primitive, PLATO achieves 100% success. Notably, Play-GCBC performs
better than Play-LMP on several tasks, suggesting that the prior network and policy might be out of
distribution for the test time states and goals on these complex primitives.

Block-Real Results: Fig. 3 shows the results of evaluating PLATO on pushing tasks for a real
robot setup with no additional real world data (see Appendix C for details). Play-LMP and PLATO
both get near perfect success in simulation since these pushing tasks are less complex, but PLATO
generalizes better across the gap between real and simulated object dynamics.

Overall, PLATO achieves substantially higher success rates than the baselines on a wide variety of
tasks and object properties in simulation and real environments, along with lower variance across
random seeds. This trend is even more apparent when we go beyond simple pushing tasks and
consider more complex object interactions such as opening and closing doors, drawers, cabinets,
lifting, and others. Due to its object-centric view of play, PLATO is able to extract and exploit diverse
types of affordances in the environment and can handle varying horizon tasks. See Appendix D for
additional experiments including more tasks per scene and a longer discussion of results.

5 Conclusion
Summary: In this work, we introduced an object-centric paradigm for learning from play data
involving segmenting play into a series of object interactions. Prior state-of-the-art methods for
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Figure 4: Playroom3D 3D Environment Success Rates. The difference between PLATO and baselines is even
greater for more complex and varying horizon tasks, like opening and closing drawers and cabinets. See
Appendix D.1 for additional tasks in this environment involving object retrieval and button pressing.

learning from play suffer from credit assignment issues that stem from the short and fixed horizon
of sampled trajectories. Our method, PLATO, addresses these credit assignment issues by choosing
goals that involve meaningful changes in object state. PLATO learns a latent affordance space to
model these interactions and their variations, and simultaneously learns to predict these latent affor-
dances from the goal object state. These latent affordances help to inform the robot behavior across
varying horizon tasks. Through our extensive experiments in both 2D, 3D, and real world envi-
ronments spanning a wide variety of object manipulation tasks, we show that PLATO substantially
outperforms prior methods on both scripted and human play data.

Limitations and Future Work: Our work introduces a paradigm of learning from variable horizon
object interactions, and our method achieves substantially better performance across a variety of
single-object manipulation tasks. In future work, we intend to expand our notion of interaction
to encompass even multi-object interactions in play (e.g., tool use). When using tools, the robot
might have second and third order effects on the environment that we could model. We believe the
interaction paradigm introduced in this work is an important first step to reasoning about these higher
order effects. For both the single and multi-object settings, future work might leverage notions of
action information density or find bottleneck states to automatically segment interactions.

As shown in Section 4, data collection methods for play greatly affect final policy performance. We
primarily evaluate with scripted play, but we hope to collect large human play datasets in future
work. Compared to scripted play, we hypothesize that human play consists of much more behavior
variability, yielding significant plan and affordance variability for a given start and goal state. Iso-
lating affordances and interactions helps manage this variability, and PLATO is still able to perform
well on all the tasks as a result. However, a future direction would be to study how exactly human
play data differs from machine generated play data in order to develop more robust methods.

To add, our real robot experiments demonstrate PLATO trained in simulation can generalize to
real world dynamics for pushing tasks without any data from the real robot. We hope to collect
play data directly on the robot in future work to learn even more complex tasks in the real world.
Furthermore, our method makes use of object state information, which may not always be easily
available in practice. However, we claim this method can readily handle images with several simple
changes to the learned prior, described in Appendix E.

We present thorough discussions of these limitations as well as potential solutions in Appendix E.

Acknowledgements
This work was funded by JP Morgan, the Office of Naval Research, and NSF Award Numbers
1849952, 1941722, and 2006388.

8



References
[1] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In D. Touretzky,

editor, Advances in Neural Information Processing Systems, volume 1. Morgan-Kaufmann,
1989. URL https://proceedings.neurips.cc/paper/1988/file/812b4ba
287f5ee0bc9d43bbf5bbe87fb-Paper.pdf.

[2] S. Ross and D. Bagnell. Efficient reductions for imitation learning. In Y. W. Teh and M. Tit-
terington, editors, Proceedings of the Thirteenth International Conference on Artificial In-

telligence and Statistics, volume 9 of Proceedings of Machine Learning Research, pages
661–668, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR. URL https:
//proceedings.mlr.press/v9/ross10a.html.

[3] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and P. Sermanet. Learning
latent plans from play. In Conference on Robot Learning, pages 1113–1132. PMLR, 2020.

[4] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. Relay policy learning: Solving
long-horizon tasks via imitation and reinforcement learning. In L. P. Kaelbling, D. Kragic, and
K. Sugiura, editors, 3rd Annual Conference on Robot Learning, CoRL 2019, Osaka, Japan,

October 30 - November 1, 2019, Proceedings, volume 100 of Proceedings of Machine Learn-

ing Research, pages 1025–1037. PMLR, 2019. URL http://proceedings.mlr.pres
s/v100/gupta20a.html.

[5] S. Schaal. Is imitation learning the route to humanoid robots? Trends in Cognitive Sciences,
3(6):233–242, 1999. ISSN 1364-6613. doi:https://doi.org/10.1016/S1364-6613(99)01327-3.
URL https://www.sciencedirect.com/science/article/pii/S1364661
399013273.

[6] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from
demonstration. Robotics and Autonomous Systems, 57(5):469–483, 2009. ISSN 0921-8890.
doi:https://doi.org/10.1016/j.robot.2008.10.024. URL https://www.sciencedirect.
com/science/article/pii/S0921889008001772.

[7] J. Ho and S. Ermon. Generative adversarial imitation learning. In D. D. Lee, M. Sugiyama,
U. von Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing

Systems 29: Annual Conference on Neural Information Processing Systems 2016, December

5-10, 2016, Barcelona, Spain, pages 4565–4573, 2016. URL https://proceedings.
neurips.cc/paper/2016/hash/cc7e2b878868cbae992d1fb743995d8f-Ab
stract.html.

[8] P. Florence, C. Lynch, A. Zeng, O. A. Ramirez, A. Wahid, L. Downs, A. Wong, J. Lee,
I. Mordatch, and J. Tompson. Implicit behavioral cloning. In A. Faust, D. Hsu, and G. Neu-
mann, editors, Conference on Robot Learning, 8-11 November 2021, London, UK, volume
164 of Proceedings of Machine Learning Research, pages 158–168. PMLR, 2021. URL
https://proceedings.mlr.press/v164/florence22a.html.
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