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ABSTRACT

For many reasoning-heavy tasks, it is challenging to find an appropriate end-
to-end differentiable approximation to domain-specific inference mechanisms.
Neural-Symbolic (NeSy) Al divides the end-to-end pipeline into neural percep-
tion and symbolic reasoning, which can directly exploit general domain knowl-
edge such as algorithms and logic rules. However, it suffers from the exponential
computational complexity caused by the interface between the two components,
where the neural model lacks direct supervision, and the symbolic model lacks
accurate input facts. As a result, they usually focus on learning the neural model
with a sound and complete symbolic knowledge base while avoiding a crucial
problem: where does the knowledge come from? In this paper, we present Abduc-
tive Meta-Interpretive Learning (M eta 4p4), Wwhich unites abduction and induction
to learn perceptual neural network and first-order logic theories simultaneously
from raw data. Given the same amount of domain knowledge, we demonstrate
that Meta 444 not only outperforms the compared end-to-end models in predic-
tive accuracy and data efficiency but also induces logic programs that can be re-
used as background knowledge in subsequent learning tasks. To the best of our
knowledge, M eta 434 is the first system that can jointly learn neural networks and
recursive first-order logic theories with predicate invention.

1 INTRODUCTION

Inductive bias, background knowledge, is an essential component in machine learning. Despite
the success of data-driven end-to-end deep learning in many traditional machine learning tasks, it
has been shown that incorporating domain knowledge is still necessary for some complex learning
problems (Dhingra et al., |2020; |Grover et al., 2019; Trask et al.| 2018)).

In order to leverage complex domain knowledge that is discrete and relational, end-to-end learning
systems need to represent it with a differentiable module that can be embedded in the deep learning
context. For example, graph neural networks (GNN) use relational graphs as an external knowledge
base (Zhou et al 2018); some works even considers more specific domain knowledge such as
differentiable primitive programs (Gaunt et al.l 2017). However, the design of these modules is
usually ad hoc. Sometimes, it is not easy to find an appropriate approximation that is suited for
single-model based end-to-end learning (Glasmachers, [2017; (Garcez et al.|[2019).

Therefore, many researchers propose to break the end-to-end learning pipeline apart and build a
hybrid model that consists of smaller modules where each of them only accounts for one specific
function (Glasmachers, 2017)). A representative branch in this line of research is Neural-Symbolic
(NeSy) AI (De Raedt et al., [2020; |Garcez et al., 2019) aiming to bridge System 1 and System 2
Al (Kahneman| 2011; Bengio, [2017), i.e., neural-network-based machine learning and symbolic-
based relational inference. In NeSy models, the neural network extracts high-level symbols from
noisy raw data and the symbolic model performs relational inference over the extracted symbols.

However, the non-differentiable interface between neural and symbolic systems (i.e., the facts ex-
tracted from raw data and their truth values) leads to high computational complexity in learning.
For example, due to the lack of direct supervision to the neural network and reliable inputs to the
symbolic model, some works have to use Markov Chain Monte Carlo (MCMC) sampling or zero-
order optimisation to train the model (Li et al.| 2020; Dai et al.,|[2019), which could be inefficient in
practice. Consequently, almost all hybrid models assume the existence of a very strong predefined
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domain knowledge base and focus on using it to train neural networks. It limits the expressive power
of the hybrid-structured model and sacrifices many benefits of symbolic learning (e.g., predicate in-
vention, learning recursive theories, and re-using learned models as background knowledge).

In this paper, we integrate neural networks with Inductive Logic Programming (ILP) (Muggleton &
de Raedt, [1994)—a general framework for symbolic machine learning—to enable first-order logic
theory induction from raw data. More specifically, we present Abductive Meta-Interpretive Learning
(M etagqpq) which extends the Abductive Learning (ABL) framework (Dai et al.,|2019; |Zhou, 2019)
by combining logical induction and abduction (Flach et al., 2000) with neural networks in Meta-
Interpretive Learning (MIL) (Muggleton et al.,2014). Meta 254 employs neural networks to extract
probabilistic logic facts from raw data, and induces an abductive logic program (Kakas et al.,|1992)
that can efficiently infer possible truth values of the probabilistic facts to train the neural model.

On the one hand, the abductive logic program learned by Meta 4pq can largely prune the search
space of the truth value assignments to the logical facts extracted by an under-trained neural model.
On the other hand, the extracted probabilistic facts, although noisy, provide a distribution on the
possible worlds (Nilsson, 1986) reflecting the raw data distribution, which helps logical induction to
identify the most probable hypothesis. The two systems in M eta 454 are integrated by a probabilistic
model that can be optimised with Expectation Maximisation (EM).

To the best of our knowledge, Meta,pq is the first system that can simultaneously (1) train neural
models, (2) learn recursive logic theories and (3) perform predicate invention from domains with
sub-symbolic representation. In the experiments we compare M eta 454 to the compared state-of-
the-art end-to-end deep learning models on two complex learning tasks. The results show that,
given the same amount of background knowledge, Meta,pq outperforms the end-to-end models
significantly in terms of predictive accuracy and data efficiency, and learns human interpretable
models that could be re-used in subsequent learning tasks.

2 RELATED WORK

Solving “System 2” problems require the ability of relational and logical reasoning instead of “in-
tuitive and unconscious thinking” (Kahneman| 2011} [Bengio} [2017). Due to the complexity of this
type of tasks, many researchers have tried to embed intricate background knowledge in end-to-end
deep learning models. For example, [Irask et al.|(2018) propose the differentiable Neural Arithmetic
Logic Units (NALU) to model basic arithmetic functions (e.g., addition, multiplication, etc.) in neu-
ral cells; |Grover et al.| (2019) encode permutation operators with a stochastic matrix and present a
continuous and differentiable approximation to the sort operation; Wang et al.|(2019) introduce a dif-
ferentiable SAT solver to enable gradient-based constraint solving. However, most of these specially
designed differentiable modules are ad hoc approximations to the original inference mechanisms,
which can not represent the inductive bias in a general form such as formal languages.

In order to directly exploit the complex background knowledge expressed by formal languages,
Statistical Relational (StarAl) and Neural Symbolic (NeSy) Al (De Raedt et al., 2020; (Garcez et al.,
2019) are proposed. Some works try to approximate logical inference with continuous functions or
use probabilistic logical inference to enable the end-to-end training (Cohen et al., [2020; Manhaeve
et al.l 2018} Donadello et al., 2017); others try to combine neural networks and pure symbolic
reasoning by performing a combinatorial search over the truth values of the output facts of the neural
model (Li et al.,[2020;|Dai et al.,|2019). Because of the highly complex statistical relational inference
and combinatorial search, it is difficult for them to learn first-order logic theories. Therefore, most
existing StarAl and NeSy systems focus on utilising a pre-defined symbolic knowledge base to help
the parameter learning of the neural model and probabilistic model.

One way to learn symbolic models is to use Inductive Logic Programming (Muggleton & de Raedt,
1994). Some early work on combining logical abduction and induction can learn logic theories
even when input data is incomplete (Flach et al., 2000). Recently, OILP was proposed for learning
first-order logic theories from noisy data (Evans & Grefenstette, [2018)). However, these works are
designed for learning from domains. Otherwise, they need to use a fully trained neural model to
extract primitive facts from raw data before symbolic learning. Machine apperception (Evans et al.,
2019) unifies reasoning and perception by combining logical inference and binary neural networks
in Answer Set Programming, in which logic hypotheses and parameters of neural networks are all
represented by logical groundings, making the system hard to optimise. For problems involving
noisy inputs like MNIST images, it still requires a fully pre-trained neural net for pre-processing.
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Different to the previous work, our presented Abductive Meta-Interpretive Learning (Meta 4pq)
aims to combine symbolic and sub-symbolic learning in a mutually beneficial way, where the in-
duced abductive logic program prunes the combinatorial search of the unknown labels for training
the neural model; and the probabilistic facts output by the neural model provide a distribution on the
possible worlds of the symbolic domain to help logic theory induction.

3 ABDUCTIVE META-INTERPRETIVE LEARNING

3.1 PROBLEM FORMULATION

A typical hybrid model bridging sub-symbolic and symbolic learning contains two major parts: a
perception model and a reasoning model (Dai et al.,[2019). The perception model maps raw inputs
r € X—which are usually noisy and represented by sub-symbolic features—to some primitive
symbols z € Z, such as digits, objects, ground logical expressions, etc. The reasoning model takes
the interpreted z as input and deduces the final output y € ) according to a symbolic background
knowledge base B. Because the primitive symbols z are uncertain and not observable from both
training data and the background knowledge, we have named them as pseudo-labels of x.

The perception model is parameterised with 6 and outputs the conditional probability Py(z|z) =
P(z|z, 6); the reasoning model H € H is a set of first-order logical clauses such that BUHUz = y,
where “=" means “logically entails”. Our target is to learn 6 and H simultaneously from training
data D = {(z;,y;)}_,. For example, if we have one example with = = [E}, ], H] and y = 6,
given background knowledge about adding two numbers, the hybrid model should learn a perception
model that recognises z = [1, 2, 3] and induce a program to add all numbers in z recursively.

Assuming that D is an i.i.d. sample from the underlying distribution of (z, y), the objective of our
learning problem can be represented as follows:

(H*,0") = argmax H ZP(y,z\B,a:,H,G), (D

H.$ (w,y)€D 2€Z

where z is a hidden variable in this model. Theoretically, this problem can be solved by Expectation
Maximisation (EM) algorithm. However, even if we can obtain the expectation of the hidden vari-
able z and efficiently estimate the perception model’s parameter # with numerical optimisation, the
hypothesis H, which is a first-order logic theory, is still difficult to be optimised together with 6.

We propose to solve this problem by treating H like z as an extra hidden variable, which gives us:

0* :arg;nax H Z ZP(y,H,z|B,x,9) 2)

(z,y)eD HEH 2€2

The hybrid-model learning problem in Equation|I]can be split into two EM steps: (1) Expectation:
obtain the expected value of H and z by sampling them in their discrete hypothesis space from
(H,z) ~ P(H,z|B,z,y,0); (2) Maximisation: estimate § by maximising the likelihood of training
data with efficient numerical optimisation approaches such as gradient descent.

As one can imagine, the main challenge is to estimate the expectation of the hidden variables H U z,
i.e., we need to search for the most probable H and z given the 8 learned in the previous iteration.

Challenges This search problem is nontrivial. Sampling the values of hidden variable z results
in a search space growing exponentially with the number of training examples. Even when B is
sound and complete, existing hybrid models that do not learn first-order hypotheses still have to use
Zero-Order Optimisation (ZOOpt) or Markov Chain Monte Carlo (MCMC) sampling to estimate
the expectation of z (Dai et al., 2019; |Li et al., |2020), which could be quite inefficient in practice.

Furthermore, the size and structure of hypothesis space H of first-order logic programs makes the
search problem even more complicated. For example, given = [E, ], H] and y = 6, when the
perception model is accurate enough to output the most probable z = [1, 2, 3], we have at least two
choices for H: cumulative sum or cumulative product. When the perception model is under-trained
and outputs the most probable z = [2, 2, 3], then H could be a program that only multiplies the last
two digits. Hence, H and z are entangled and cannot be treated independently.
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Example ((z,y)): Pseudo-labels (z):  Abduced constraints: Abductive hypotheses (H):
«(l BB, 1. [0,0,0] H-H+ s [£(,B) :- add(a,B). \

Abducible Primitives (B):
add([A,BIT], [CIT]) :- C#= A+B.
mult ([A,BIT], [CIT]) :- C #= AxB.
eq([Al], B) :- A#=B.
head([H|_], H).

tail([LIT], T).

[£A,B) :- mult(A,B). \

£(A,B) :- add(A,0),eq(C,B). |

£(A,B) :- add(A,C),£(C,B).
£(A,B) :- eq(A,B).

Neural Probabilistic facts (pg(z|z)):

(@l =0, 0.02). nn(El= 1, 0.39). £(A,B) :- tail(4,0),£.1(C,B).

\ f_1(A,B) :- mult(A,C),eq(C,B).

f(A,B) :- mult(A,C),f 1(C,B).
f_1(A,B) :- mult(A,C),eq(C,B).

;u;(= 0,0.09). nn(Bg =1, 0.02).

—

nn(El=0, 0.07). nn(E]=1, 0.00).

Figure 1: Example of Metap4’s abduction-induction learning. Given training examples, back-
ground knowledge of abducible primitives and probabilistic facts generated by a perceptual neural
net, M eta 4pq learns an abductive logic program H and abduces relational constraints (implemented
with the CLP(Z) predicate “#=’ﬂ) over the input images; it then uses them to efficiently prune the
search space of the most probable pseudo-labels z (in grey blocks) for training the neural network.

3.2 EFFICIENT HYPOTHESIS SAMPLING BY COMBINING ABDUCTION AND INDUCTION

Inspired by early works in abductive logic programming (Flach et al.,|2000), we propose to solve the
challenges above by combining logical induction and abduction. The induction learns an abductive
logic theory H based on Py(z|z), and the abduction by H reduces the search space of z.

Abduction refers to the process of selectively inferring specific grounded facts and hypotheses that
give the best explanation to observations based on background knowledge of a deductive theory. For
example, if we know that H is a cumulative sum program and observe that z = [E], 5, Bl] and
y = 6, then we can abduce that x must satisfy the constraint Z1+72+23=6, where [Z1,Z2,Z3] = z
are the pseudo-labels of images in x. This constraint can largely prune the search space of z, in
which all Zi > 6 can be excluded. If the current perception model assigns very high probabilities to
Z1 = 2 and Z2 = 3, one can easily infer that Z3 = 1 even when the perception model has relatively
low confidence about it, as this is the only solution that satisfies the constraint.

An illustrative example of combining abduction and induction is shown in Figure[I} Briefly speak-
ing, instead of directly sampling pseudo-labels z and H together from the huge hypothesis space, our
proposed Abductive Meta-Interpretive Learning approach only samples the abductive logic program
H, and then use the abduced relational constraints to prune the search space of z. Meanwhile, the
perception model outputs the likelihood of pseudo-labels with pg(z|z) which defines a distribution
over all possible values of z and helps to find the most probable H U z.

Formally, for each example (x, y), we re-write the likelihood in Equation [2|as follows:
P(y,H,z|B,z,0) = P(y,H|B,z)Py(z|x)

P(y|B,H,z)P(H|B, z)Py(z|z)

= P(y|B,H,z)P,(H|B)Py(z|x), 3)

where P, (H|B) is the Bayesian prior distribution on first-order logic hypotheses, which is defined
by the transitive closure of stochastic refinements o* given the background knowledge B (Muggleton
et al.,|2013)), where a refinement is a unit modification (e.g., adding/removing a clause or literal) to
a logic theory. The equations hold because: (1) pseudo-label z is conditioned on x and 6 since it is
the output of the perception model; (2) H follows the prior distribution so it only depends on B; (3)
y U H is independent from x given z because the relations among B, H, y and z are determined by
pure logical inference, where:

1, fBUHUz}ly,
0, otherwise.

P(y|B, H, z) ={ “4)

!CLP(Z) is a constraint logic programming package accessible at https://github.com/triska/clpz. More im-
plementation details please refer to the Appendix.
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Abductive Meta-Interpreter
prove([], Prog, Prog, [], Prob, Prob).
prove ([Atom|As], Progl, Progl, Abds, Probl, Prob2) :-
deduce (Atom) ,
prove (As, Progl, Prog2, Abds, Probl, Prob2).
prove ([Atom|As], Progl, Progl, Abds, Probl, Prob2) :-
call abducible (Atom, Abd, Prob),
Prob3 is Probl * Prob,
get max prob (Max), Prob3 > Max,
set max prob (Prob3),
prove (As, Progl, Progl, [Abd|Abds], Prob3, Prob2).
prove ([Atom|As], Progl, Prog2, Abds, Probl, Prob2) :-
meta-rule (Name, MetaSub, (Atom :- Body), Order),
Order,
substitue (metasub (Name, MetaSub), Progl, Prog3),
prove (Body, Prog3, Prog4),
prove (As, Prog4, Prog2, Abds, Probl, Prob2)

Figure 2: Prolog code for Meta 4pq. It recursively proves a series of atomic goals in three ways:
(1) deducing them from background knowledge; (2) abducing a possible grounded expression (e.g.,
relational constraint) to satisfy them (bold fonts); (3) matching them against the heads of meta-
rules and form an augmented program or prove it with the current program. Finally, the abduced
groundings Abd are used for searching the best pseudo-labels z; the probability of Abd is used for
calculating the score function in Equation E}

Following Bayes’ rule we have P(H, z|B,z,y,0) « P(y, H, z| B, z,0). Therefore, we can sample
the most probable H U z in the expectation step according to Equation [3|as follows:

1. Sample an abductive first-order logic hypothesis H ~ P, (H|B);

2. Use H U B and y to abduaﬂ possible pseudo-labels z, which are guaranteed to satisfy
H U BU z F y and exclude the values of z such that P(y|B, H, z) = 0;

3. According to Equation [3]and[4] tor each sampled H U z calculate its score by:
score(H,z) = Py« (H|B)Py(z|x) %)
4. Return the H U z with the highest score to continue the maximisation step.

By learning an abductive logic theory H, the search space of pseudo-label z can be largely pruned
thanks to the sparsity of the probabilistic distribution structured by BU H U z - .

3.3 THE Meta,pq IMPLEMENTATION

We implement the above abduction-induction algorithm with Abductive Meta-Interpretive Learn-
ing (Metaapq), whose codes are shown in Figure It extends the general meta-interpreter of
MIL (Muggleton et al.,2014) by including an abduction procedure (bold fonts in Figure |2)) that can
abduce relational constraints on pseudo-labels z for pruning the search space.

Meta-Interpretive Learning (MIL) is a form of ILP (Muggleton & de Raedt, [1994)). It learns first-
order logic programs with a second-order meta-interpreter, which is composed of a definite first-
order background knowledge B and meta-rules M. B contains the primitive predicates for con-
structing first-order hypotheses H'; M is second-order clauses with existentially quantified predicate
variables and universally quantified first-order variables that shape the structure of the hypothesis
space ‘H. Briefly speaking, MIL attempts to prove the training examples and saves the resulting
programs for successful proofs. However, MIL can only learn first-order logic programs from pure
symbolic domains, where the examples are deterministic and noise-free.

By combining abduction and induction, M eta 4,4 can learn abductive logic programs from noisy
domains where the distribution on possible worlds (Nilsson, [1986) is given by a set of probabilistic
facts. A possible world is a truth value assignment to the probabilistic logic facts. For the exam-
ple in Figure [I] each combination of the possible pseudo-labels of the three input images forms a

2The abduction can be naturally accelerated by parallel computing, more details are in the Appendix.
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Table 1: Domain knowledge used by the compared models.

Domain Knowledge | End-to-end Models Metaapg

Recurrence LSTM & RNN Prolog’s list operations

Arithmetic functions | NAC& NALU (Trask et al.[[2018) Predicates add, mult and eq
Permutation Permutation matrix P, (Grover et al.[[2019) | Prolog’s permutation

Sorting sort operator (Grover et al.[2019) Predicate s (learned from sub-task)

possible world, whose probability distribution is defined by the probability values output by the per-
ceptual neural net. As shown in the figure, given the abducible primitives as background knowledge
Meta apq can construct the hypotheses H while abducing the relational constraints on z.

After an abductive hypothesis H has been sampled, the search for z will be done by logical abduc-
tion. Finally, the score of H U z will be calculated by Equation[5} where Py(z|x) is the output of the
perception model, which in this work is implemented with a neural network ¢y that outputs:

Py(z|z) = softmaz(pe(z, 2)).
Meanwhile, we define the prior distribution on H by following Hocquette & Muggleton|(2018):
6
(m - c(H))?’
where C(H) is the complexity of the learned program, e.g., the size of H.

P,.(H|B) =

4 EXPERIMENTS

This section describes the experiments which apply Meta 44 to learn first-order logic programs
from images of handwritten digits in two scenarios: (1) cumulative sum/product and (2) sorting.
The experiments aim to address the following two questions:

1. Can the abduction-induction strategy of M eta 4pq learn first-order logic programs and train
perceptual neural networks jointly?

2. Given the same type and amount of background knowledge shown in Table |1} is hybrid
modelling, which directly leverages the background knowledge in symbolic form, better
than end-to-end learning?

4.1 LEARNING CUMULATIVE SUM AND PRODUCT FROM IMAGES

Materials Following the setting of [Trask et al.[(2018)), the inputs of the two tasks are series of
randomly chosen MNIST digits; the numerical outputs are the sum and product of the digits, respec-
tively. The lengths of training sequences are 2-5. To verify if the learned models can extrapolate
to longer inputs, we also include test examples with length 10 (both tasks), 15 (in the cumulative
product task) and 100 (in the cumulative sum task). In the cumulative product experiments, when
the randomly generated sequence is long enough, it will be very likely to contain a 0 and makes the
final outputs equal to 0. So the extrapolation examples with length 15 only contain digits from 1 to
9. The dataset contains 3000 and 1000 examples for training and validation, respectively; the test
data of each length has 10,000 examples. Since the end-to-end models usually require more training
data due to the model complexity, we also did experiments with 10,000 training examples for them.

Methods We compare Metapq with four end-to-end learning baselines, including RNN,
LSTM and LSTMs attached to Neural Accumulators(NAC) and Neural Arithmetic Logic Units
(NALUf] (Trask et al., [2018)). The performance is measured by classification accuracy (Acc.) on
length-one inputs, mean average error (MAE) in sum tasks, and mean average error on logarithm
(log MAE) of the outputs in product tasks whose error grows exponentially with sequence length.

A convnet processes the input images to the recurrent networks, as [Trask et al. (2018)) described;
it also serves as the perception model of Meta 454 to output the probabilistic facts. As shown in
Table[T] all models are aware of the same amount of background knowledge: the end-to-end models
use LSTM or RNN to handle recurring inputs and use NACs and NALUSs to encode basic arithmetic
functions, while M eta 41,4 can exploit them explicitly as primitive predicates in the Prolog language.
Note that Meta 4 uses the same background knowledge for both sum and product tasks. Each
experiment is carried out five times, and the average of the results are reported.

3We use the implementation of NAC and NALU from https:/github.com/kevinzakka/NALU-pytorch
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Table 2: Results on the MNIST cumulative sum/product tasks.

MNIST cumulative sum MNIST cumulative product
Acc. MAE Acc. log MAE

Seq Len 1 5 10 100 1 5 10 15
LSTM 9.80% | 153008 44.3082 449.8304 || 9.80% | 11.1037 19.5594 21.6346
RNN-Relu 10.32% | 12.3664 41.4368 446.9737 || 9.80% | 10.7635 19.8029 21.8928
LSTM-NAC 7.02% 6.0531 29.8749 435.4106 || 0.00% 9.6164 209943 179787
LSTM-NAC; 8.85% 1.9013  21.4870 424.2194 || 10.50% | 9.3785 20.8712 17.2158
LSTM-NALU 0.00% 6.2233 32,7772 438.3457 || 0.00% 9.6154  20.9961 17.9487
LSTM-NALU o 0.00% 6.1041  31.2402 436.8040 || 0.00% 8.9741  20.9966 18.0257
Metaapq 95.27% | 0.5100  1.2994 6.5867 97.73% | 0.3340  0.4951  2.3735
LSTM-NAC | shot CNN 49.83% | 0.8737  21.1724 426.0690 || 0.00% 6.0190  13.4729 17.9787
LSTM-NALU | ghotenn | 0.00% 6.0070  30.2110 435.7494 || 0.00% 9.6176  20.9298 18.1792
Meta Apd-1-shot CNN 98.11% | 0.2610  0.6813 4.7090 97.94% | 03492  0.4920  2.4521

Cumulative Sum:
f(A,B):-add(A,C),f(C,B).

Results Our experimental results are shown in Table fA B am
,B):-eq(A,B).

the learned first-order logic theories are shown in Fig-
ure 3a] End-to-end models that do not exploit any back-
ground knowledge (LSTM and RNN) perform worst on
these tasks. For NALU and NAC, even though they can

Cumulative Product:
f(A,B) :-mult(A,C),f(C,B).
£(A,B):-eq(4,B).

exploit background knowledge by using the specially de-
signed differentiable neural modules, the performance is
still significantly worse than Meta 4pq given the same
amount of training data or even more.

Although Metapq achieves the best result among the

Bogosort:

f(A,B) :-permute(4,B,C),s(C).
s(A):-s_1(A,B),s(B).
s(A):-tail(A,B) ,empty(B).
s_1(A,B) :-nn_pred(A),tail(4,B).

(a) Programs learned by Metaapq

compared methods, we observe that its EM learning

sometimes converges to saddle points or local optima . g
in the cumulative sum task. This phenomenon hap-

pens less in the other task, because of the distribution # ﬁzﬂ 0.77s
P(H,z|B,z,y,0) of learning the cumulative product 0.0
function is much sparser compared to cumulative sum.
Therefore, we also carry out extra experiments with 1-
shot pre-trained convnets, which are trained by randomly
sampling one example in each class of MNIST data. Al-
though the pre-trained convnet is weak (Acc. 20~35%),
it provides a good initialisation for the EM algorithm and improves the learning performance.

A 26.02s

0.5 1.0 1.5 2.0
Number of Prolog inferences x10%

(b) Comparison of sampling z and H

Figure 3: Learned programs and the
time efficiency of abduction.

Figure [3b] shows the time efficiency of Metaapq’s abduction-induction strategy on one batch of
examples in the cumulative sum task. “z — H” means first samples pseudo-labels z and then learn
H with ILP; “H — 2” means first sample an abductive hypothesis H and then use H to abduce z.
The unit of x-axis is the average number of Prolog inferences, the number at the end of each bar is
the average inference time in seconds. Evidently, the abduction leads to a substantial improvement
in the number of Prolog inferences and significantly reduces the search complexity.

4.2 LEARNING BOGOSORT FROM IMAGES

Materials Following the setting from |Grover et al| (2019), the input of this task is a sequence
of randomly chosen MNIST images of distinct numbers; the output is the correct ranking (from
large to small) of the digits. For example, when = = [Ef, E, B, B, H] ([5, 9, 4, 3, 81), then the
output should be y = [3, 1,4, 5, 2]. The training dataset contains 3000 training and 1000 validation
examples; the test dataset has 10,000 examples. The training examples contain five images, and we
test the learned models on image sequences with lengths 3, 5 and 7. Experiments are repeated five
times, and the average of results are reported.

Methods In this task, we compare Meta 4,4 to NeuralSorﬂ (Grover et al.l [2019), which imple-
ments a differentiable relaxation of sorting operator. Given an input list of scalars, it generates a
stochastic permutation matrix by applying the pre-defined deterministic or stochastic sort oper-
ator on the inputs, i.e., NeuralSort can be regarded as a differentiable approximation to bogosort

*We use the implementation of NeuralSort from https:/github.com/ermongroup/neuralsort
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Table 3: Average accuracy of the bogosort task. First value is the rate of correct permutations;

second value is the rate of correct individual element ranks.

Seq Len 3 5 7
Deterministic NeuralSort | 95.49% (96.82%) | 88.26% (94.32%) | 80.51% (92.38%)
Stochastic NeuralSort 95.37% (96.74%) | 87.46% (94.03%) | 78.50% (91.85%)

Metappq

96.33% (97.22%)

91.75% (95.24%)

87.42% (93.58 %)

(permutation sort). Although for Meta 434 it is easy to include stronger background knowledge for
learning more efficient sorting algorithms like quicksort (Cropper & Muggleton, 2019)), in order to
make a fair comparison, we adapt the same background knowledge as NeuralSort to logic rules and
learn bogosort. We did not compare to other baselines such as LSTM/RNN with different activation
layers because they are weaker than NeuralSort in this task (Grover et al.,|2019).

The background knowledge of permutation in M eta 434 is implemented with Prolog’s built-in predi-
cate permutation. Meanwhile, instead of providing the information about sorting as prior knowl-
edge like the NeuralSort, we try to learn the concept of “sorted” (represented by a monadic predicate
s) from data as a sub-task, whose training set is the subset of the sorted examples within the training
dataset (< 20 examples). To do this, Meta 454 uses an MLP attached to the same untrained convnet
as previous experiments to produce dyadic probabilistic facts nn_pred ( [[fl, ]! -1) , which learns
if the first two items in the image sequence satisfy a dyadic relation. Please note that the attached
MLP is not provided with supervision on nn_pred about whether it should learn “greater than” or
“less than”. Moreover, we do not provide any prior knowledge about total ordering, so nn_pred
only learns a dyadic partial order among the MNIST images. As we can see, the background knowl-
edge used by Metapq is much weaker than that is used by NeuralSort. The sorting task and its
sub-task are trained sequentially. In our experiments, the first five epochs of Meta 454 learn the
sub-task, and then it re-uses the learned models to learn bogosort.

Results Table [3| shows the average accuracy of the compared methods in the sorting tasks; Fig-
ure [3a] shows the learned programs. The performance is measured by the average proportion of
correct permutations and individual permutations following |Grover et al.| (2019). Although using
weaker background knowledge, M eta 454 has a significantly better performance than NeuralSort in
both interpolation (length 5) and extrapolation (length 3 & 7) experiments.

The learned program of s and the dyadic neural net nn_pred are both successfully re-used in
the sorting task, where the learned program of s is consulted as interpreted background knowl-
edge (Cropper et al.| [2020), and the neural network that generates probabilistic facts of nn_pred
is directly re-used and continuously trained during the learning of sorting. This experiment also
demonstrates Meta apq’s ability of learning recursive logic programs and predicate invention (the
invented predicate s_1 in Figure [3a).

5 CONCLUSION

In this paper, we present the Abductive Meta-Interpretive Learning (M eta ap4) approach that can
train neural networks and learn recursive first-order logic theories with predicate invention simul-
taneously. By combining symbolic learning with neural networks, Meta ;4 can learn human-
interpretable models directly from raw-data, and the learned neural models and logic theories can
be directly re-used in subsequent learning tasks. Meta 4pq is a general framework for combining
sub-symbolic perception with logical induction and abduction. The perception model extracts proba-
bilistic facts from sub-symbolic data; the logical induction searches for first-order abductive theories
in a relatively small hypothesis space; the logical abduction uses the abductive theory to prune the
vast search space of the truth values of the probabilistic facts. The three parts are optimised together
in a well-defined probabilistic model.

In future work, we would like to apply Meta 54 on more complicated tasks that involve sub-
symbolic perception and symbolic induction, such as reinforcement learning. Instead of approxi-
mating logical inference with continuous and differentiable functions, Meta 4,4 uses pure logical
inference for reasoning and it is possible to leverage more advanced symbolic inference/optimisation
techniques like Satisfiability Modulo Theories (SMT) (Barrett & Tinelli,2018)) and Answer Set Pro-
gramming (ASP) (Lifschitz, 2019), which are able to perform large scale inference efficiently.
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