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ABSTRACT

Transfer-based attackers craft adversarial examples against surrogate models and
transfer them to victim models deployed in the black-box situation. It is gener-
ally accepted that gradients from diverse modules of surrogate models used for
perturbation generation contribute differently to transferability. In this paper, we
propose backPropagation pAth Search (PAS), which enhances adversarial trans-
ferability from the backpropagation perspective. We use structural reparameteri-
zation to make the basic modules of DNNs (i.e., convolution and activation) cal-
culate forward as normal but backpropagate the gradients in a skip connection
form. Thus, a DAG-based search space is constructed for the backpropagation
path. PAS employs Bayesian Optimization to search for the most transferable
path and reduces the search overhead by the one-step approximation. We conduct
comprehensive attack experiments in a wide range of transfer settings, showing
that PAS improves the attack success rate by a huge margin for both normally
trained and defense models.

1 INTRODUCTION

Deep neural networks (DNNs) are vulnerable to adversarial examples (Szegedy et al., 2013) despite
their success in a wide variety of applications (He et al., 2016; Guo et al., 2017; Kenton & Toutanova,
2019). It is imperative to devise effective attackers to identify the deficiencies of DNNs beforehand,
which serves as the first step to improve the model’s robustness. White-box attackers (Madry et al.,
2018; Carlini & Wagner, 2017; Croce & Hein, 2020) have complete access to the structures and
parameters of victim models and effectively cause them to misclassify. However, DNNs are gener-
ally deployed in the black-box situation. Transfer-based attackers, as a typical black-box attackers
scheme without access to information about the victim model, have drawn more and more attention
in the research community (Liu et al., 2017; Xie et al., 2019; Zhang et al., 2022).

Goodfellow et al. (2015) points out that due to the linear nature of DNNs, adversarial examples
crafted following a white-box situation against a surrogate model are transferable to unaccessible
victim models. To boost adversarial transferability, various methods have been proposed, which
focus on different aspects, e.g., momentum terms (Dong et al., 2018; Lin et al., 2019), data augmen-
tation (Xie et al., 2019; Dong et al., 2019), model augmentation (Liu et al., 2017; Li et al., 2020),
intermediate features (Ganeshan et al., 2019; Zhang et al., 2022) and meta learning (Fang et al.,
2022; Zhu et al., 2021). In this paper, we enhance adversarial transferability from the backpropaga-
tion perspective.

Specific network modules (e.g., the widely-used residual module) help with training but do not
increase model capacity. Similarly, the backpropagation paths for the gradient of modules have dif-
ferent effects on adversarial transferability. SGM (Wu et al., 2019) and LinBP (Guo et al., 2020)
boost adversarial transferability by skipping the gradient from residual modules and nonlinear acti-
vation modules, respectively. However, skipping less transferable gradients is limited to the specific
modules. As a basic module, convolution modules are used to extract diverse features. Since the
most critical features are shared among different DNNs, convolution modules likewise play a key
role in adversarial transferability. Besides existing attackers to the intermediate features, the skip
of less critical convolution modules in backpropagation is missing and worth exploring. Moreover,
most existing works are designed in a heuristic manner. Even for boosting transferability via meta
learning, the absence of optimizable variables limits its further development.
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Figure 1: Overview of PAS. The blue and green boxes indicate the normal and structural reparam-
eterized modules, respectively. The solid and dashed arrows indicate the forward calculation and
backward gradient propagation of models, respectively. After searching for the most transferable
path on DAG, all adversarial examples are crafted against the structural reparameterized surrogate.

In this paper, we propose backPropagation pAth Search (PAS), which expands the backpropagation
as a Directed Acyclic graph (DAG) and search for the most transferable path. As depicted in Fig-
ure 1, PAS craft adversarial examples against the reparameterized surrogate model after the most
transferable path on DAG is searched. First, inspired by structural reparameterization for training in
RepVGG (Ding et al., 2021), we keep the convolution modules calculating forward as normal but
backpropagating the loss in a skip connection form. Specifically, as shown in Figure 2, we repa-
rameterize a single convolution kernel into the sum of two kernels according to the distributivity
of convolution. Thus, the reparameterized convolution behaves like a residual module with a skip
connection, namely SkipConv. Second, combining the skip paths of convolution, activation, and
residual modules in DNNs, we construct a DAG for backpropagation. Figure 3 shows that the gra-
dient is backward propagated from the loss to the input through such DAG by the chain rule. Third,
we employ Bayesian Optimization to search for the most transferable path on DAG. Based on the
intuitive idea that a highly transferable path attacks any victim model with a high success rate, we
adopt an approximation schema to efficiently evaluate the paths and reduce the search overhead. Fi-
nally, we generate adversarial examples against the surrogate model based on the most transferable
backpropagation path. Extensive experiments on the subsets of ImageNet from different surrogate
models demonstrate the effectiveness of PAS against both normally trained and defense models in
comparison with the baseline and state-of-the-art (SOTA) transfer-based attackers.

Our main contributions can be summarized as follows:

• We propose SkipConv, which acts as standard convolutions during the forward phase but
backpropagates loss in a skip connection form via structural reparameterization. We further
propose a DAG-based search space for the backpropagation path by combining the existing
structural reparameterization of residual and activation modules.

• To our best knowledge, we propose the first transfer-based attacker to search the backprop-
agation path for adversarial transferability. PAS employs Bayesian Optimization to search
for the most transferable path and reduces the search overhead by one-step approximation.

• We conduct comprehensive transfer attack experiments in a wide range of transfer settings,
showing that PAS improves the attack success rate by a huge margin for both normally
trained and defense models.

2 PRELIMINARY

Given a clean example x with class label y and a victim model fθ parameterized by θ, the goal of
an adversary is to find an adversarial example xadv , which is constrained by Lp norm with a bound
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ϵ, to fool the model into making an incorrect prediction:

fθ(xadv) ̸= y, where ∥xadv − x∥p ≤ ϵ (1)

In the white-box situation, FGSM (Goodfellow et al., 2015) perturbs the clean example x for one
step by the amount of ϵ along the gradient direction. As an iterative version, I-FGSM (Kurakin et al.,
2018b) perturbs x for T steps with smaller step size η and achieves a high attack success rate:

xt+1
adv = Πx

ϵ

(
xt
adv + η · sign

(
∇xl

(
fθ

(
xt
adv

)
, y
)))

, where t ∈ {0, . . . , T − 1} (2)

Without access to the victim model fθ, transfer-based attackers craft adversarial examples against
a white-box surrogate model fθs,Γ with structure hyper-parameters Γ (e.g., hyper-parameters for
residual and activation modules) to achieve Equation 1:

xt+1
adv = Πx

ϵ

(
xt
adv + η · sign

(
∇xl

(
fθs,Γ

(
xt
adv

)
, y
)))

, where t ∈ {0, . . . , T − 1} (3)

Backpropagation is essential in the process of adversarial example generation. Classical DNNs
is consisted of several layers, i.e., f = f1 ◦ · · · ◦ fL, where i ∈ {1, . . . L} is the layer index, and
zi = fi(zi−1) indicates the intermediate output and z0 = x. According to the chain rule in calculus,
the gradient of the loss l with respect to input x can be then decomposed as:

∂l

∂x
=

∂l

∂zL

∂fL
∂zL−1

· · · ∂f1
∂z0

∂z0
∂x

(4)

Thus, a single path is used for the gradient propagation backward from the loss to the input. Taking
the common ReLU activation module fReLU

i as an example, the gradient is propagated backward
as ∂fReLU

i /∂zi−1 = WiMiWi+1, where Mi is a diagonal matrix whose entries are 1 if the cor-
responding entris of WT

i zi−1 are positive and 0 otherwise. Extending f to a ResNet-like (with
skip connections) networks, the residual module in layer i where fres

i (zi−1) = zi−1 + fi(zi−1)
decomposes the gradient as:

∂l

∂z0
=
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∂zL
· · · ∂f

res
i
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· · · ∂z0

∂x
=

∂l

∂zL
· · ·

(
1 +

∂fi
∂zi−1

)
· · · ∂z0

∂x
(5)

Such residual module provides a gradient highway for training (He et al., 2016). Similarly, the use
of skip connections in backpropagation allows easier generation of highly transferable adversarial
examples. SGM (Wu et al., 2019) introduces a decay parameter to use more gradients from the
skip connections in residual modules, i.e., ∂fres

i /∂zi−1 = 1 + γ · ∂fi/∂zi−1. LinBP (Guo et al.,
2020) skips the ReLU module and renormalizes the gradient passing backward as ∂fReLU

i /∂zi−1 =
αi ·WiWi−1 where αi = ∥WiMiWi−1∥2/∥WiWi−1∥2.

3 METHODOLOGY

In this section, we first introduce how we use structural reparameterization to expand the back-
propagation as a DAG in Section 3.1. Then, to reduce the search overhead, we propose a one-step
approximation in Section 3.2. Finally, we present the overall process of PAS in Section 3.3.

3.1 BACKPROPAGATION DAG

In this part, we introduce how we expand the backpropagation as a DAG via structural reparameter-
ization. Unlike works that use the existing skip connections of the surrogate model (e.g., residual
module), PAS reparameterizes normal modules with skip connections to search for transferable
backpropagation paths.

Skip Convolution. As a basic module, convolution extracts diverse features and affects adversarial
transferability since the most critical features are shared among different DNNs. Unlike existing
attackers to intermediate features (Ganeshan et al., 2019; Zhang et al., 2022), we propose SkipConv
and use more gradients from critical features through skip connection.

SkipConv is realized by structural reparameterization. As shown in the Figure 2, for a convolution
module f conv

i with kernel ki, we expand the kernel according to convolution distributivity as the sum
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Figure 2: SkipConv: structural reparameterization of convolution module. Take the 3×3 convolution
as an example. According to convolution distributivity, the normal kernel k is reparameterized into
the sum of the skip kernel and I the residual kernel k − I . γ is introduced to control the gradient
from the residual kernel.

of a constant 1× 1 kernel I with all values 1 and the corresponding residual kernel ki − I . Since all
values of the kernel I are 1, we replace the special convolution with the sum of each channel as a
skip connection. In this way, we reparameterize the normal convolution into the skip connection I
and the residual ki−I . A decay factor γi ∈ [0, 1] is introduced as the weight of the residual gradient
in backpropagation. Thus, we modify the convolution module in a skip connection form as:

f conv
i (zi−1; ki) = sumch(zi−1) + γi · f conv

i (zi−1; ki − I) + C (6)

where C is equal to (1 − γi) · f conv
i (zi−1; ki − I) without gradient backward. Such SkipConv

requires no fine-tuning since it calculates forward as normal. For backpropagation, γi is used to
relatively adjust the gradient of the residual, i.e., 1 + γi · ∂f conv

i (zi−1; ki − I)/∂zi−1.

Skip Activation. ReLU is a common activation module in neural networks. Guo et al. (2020)
demonstrates that the gradient of ReLU is sparse, which degrades adversarial transferability. LinBP
skips the gradient of ReLU with a dense all-1 matrix and then normalizes the gradient. However,
the scalar αi used for normalization needs to be calculated based on the weight of the front and back
layers. We further devise an approximation for αi and reparameterize ReLU as follows:

fReLU
i (zi−1) = α̂i · (zi−1 +ReLU (−zi−1)) + (1− α̂i) ·ReLU(zi−1) (7)

where α̂i = ∥Mi∥2/∥zi−1∥2 uses the sparsity as the estimation of the re-normalizing factor.

Skip Gradient. For gradient paths within different layers, we use the following SkipGrad in SGM:

fres
i (zi−1) = zi−1 + γi · fi(zi−1) + C (8)

where C is equal to (1− γi) · fi(zi−1) without gradient backward.

In summary, we reparameterize the structure of diverse basic modules in DNNs and control the
weight of backpropagation paths by γ. For each module’s backpropagation path, we control the
gradient backward via SkipConv and LinReLU. For cross-module paths, we use the existing skip
connection as a highway for adversarial transferability. By combining all the paths of the above
modules, we construct the Directed Acyclic Graph (DAG) for gradient propagation backward. As
shown in Figure 3, we use Γ = {γi} to control the weight of the residual path, and hence black-box
optimization can be used to search for the most transferable paths.

3.2 ONE-STEP APPROXIMATION FOR PATH EVALUATION

In this part, we show how PAS efficiently evaluates the adversarial transferability of backpropagation
paths.

To guide the search on the backpropagation DAG, we need to evaluate the sampled paths. Different
from other attackers (Yuan et al., 2021; Zhu et al., 2021), we propose the one-step approximation to
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Figure 3: Example of backpropagation DAG. The color transparency indicates the weight γ of the
corresponding path.

alleviate the large overhead consumed in the search process. It is a good and intuitive rule of thumb
that the highly transferable paths have a high attack success rate on all data for any victim model.
Based on this, an approximate schema is adopted, i.e., we use the one-step attack success rate of
samples on only one white-box meta victim model as the estimation of transferability.

To verify the improved transferability, we leverage the chi-square test to judge whether there is a
significant difference between candidates. Specifically, the question is whether there is a significant
difference in the transferability of paths p1 and p2 on a meta dataset of N samples, for which the
attack success rate is s1 and s2, respectively. We calculate the statistic as stats = 2N(s1−s2)

2

(s1+s2)(2−s1−s2)
,

which follows the χ2 distribution with 1 degree of freedom. The corresponding statistics should
satisfy stats ≥ 3.841 for the confidence interval of 95%. Thus, we maintain a sliding window
to store the paths that are not significantly different as candidates in the search process based on
statistical confidence.

All in all, to efficiently evaluate the transferability of paths, we use only a vgg19 as the meta victim
model θm, and randomly sample N = 200 clean examples as the meta dataset to calculate the one-
step attack success rate as Equation 9. Then, the paths without significant differences are stored as
candidates for further evaluation.

s(Γ; θs, θm, N) =
1

N

N∑
i=0

1
(
fθm

(
Πx(i)

ϵ

(
x(i) + η · sign

(
∇x(i) l

(
fθs,Γ(x

(i)), y(i)
))))

̸= y(i)
)

(9)

Considering the worst case (i.e., s1 + s2 = 1), we plot the relationship between the sample size N
and the significant difference of attack success rate |s1 − s2|. As shown in Figure 4(a), we need 200
samples (i.e., 20% of the test set) to observe better paths with a 10% difference in the attack success
rate. To further verify its effectiveness, we select two paths with a difference of 5% in the test set,
sample meta datasets of different sizes 20 times, and draw a box plot. Figure 4(b) shows that the
difference in transferability is more obvious as the size of the meta dataset increases. Moreover, the
evaluation of adversarial transferability on 200∼300 samples is sufficient to distinguish between the
two paths, except for a few outliers.

3.3 PAS: SEARCH FOR ADVERSARIAL TRANSFERABILITY

In this part, we introduce how PAS searches the backpropagation DAG for adversarial transferability.

To optimize the above objective, we use Bayesian optimization1 to search the structure parameters
Γ and combine it with Hyperband (Li et al., 2017) to allocate resources for each trial of the sampled
path. The overall procedure is shown in Algorithm 1. We first search for the most transferable path

1https://optuna.org/
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Figure 4: Relationship between sample size N and difference of attack success rate |s1 − s2|.

Γ∗ of the surrogate model according to Equation 9 and then craft adversarial examples, which are
transferred to unaccessible victim models.

In the search process, PAS reparameterizes the structure of the surrogate model and initializes Γ.
Bayesian Optimization is used to sample the backpropagation path Γk. According to the sampled
paths, adversarial examples for the meta dataset are crafted against fθs,Γk

. PAS calculates the attack
success rate on the meta victim model and uses it as the feedback for Bayesian Optimization for the
next iteration. When predefined resources are exhausted, PAS uses the optimal structure Γ∗ to craft
adversarial examples on the test set and transfers them to all victim models.

Algorithm 1 PAS: Backpropagation Path Search on Adversarial Transferability
Input: Surrogate model fθs , meta victim model θm, perturbation bound ϵ, the number of attack
steps T , the number of trials Nt

1: Reparameterize the structure of fθs as fθs,Γ
2: for j = 1, . . . , Nt do
3: sample Γj by Bayesian Optimization according to the trail history
4: evaluate Γj by Equation 9 and add it to the history
5: end for
6: select the most transferable path Γ∗ according to the history
7: return adversarial examples crafted against fθs,Γ∗

4 EXPERIMENTS

In this section, we conduct extensive experiments to investigate the effectiveness of PAS.

4.1 EXPERIMENT SETUP

Dataset. To compare with baselines, we report the results on two datasets: 1) Subset1000:
ImageNet-compatible dataset in the NIPS 2017 adversarial competition (Kurakin et al., 2018a),
which contains 1000 images; 2) Subset5000: a subset of ImageNet validation images, which con-
tains 5000 images and is used by SGM and IAA. We check that all of the models are almost ap-
proaching 100% classification success rate in this paper.

Models. We conduct experiments on both normally trained models and defense models. For nor-
mal trained models, we consider 7 models containing VGG19 (Simonyan & Zisserman, 2014),
ResNet-152 (RN152) (He et al., 2016), DenseNet-201 (DN201) (Huang et al., 2017), Squeeze-
and-Excitation network (SE154) (Hu et al., 2018), Inception-v3 (IncV3) (Szegedy et al., 2016),
Inception-v4 (IncV4) and Inception-Resnet-v2 (IncRes) (Szegedy et al., 2017). For defense mod-
els, we select advanced defense methods covering random resizing and padding (R&P) (Xie et al.,
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2018), NIPS-r32, randomized smoothing (RS) (Cohen et al., 2019), and 3 robustly trained models
using ensemble adversarial training (Tramèr et al., 2018): ensemble of 3 IncV3 models (IncV3ens3),
ensemble of 4 IncV3 models (IncV3ens4) and ensemble of 3 IncResV2 models (IncResV2ens3). We
choose different models (i.e., RN152, DN201, RN50, RN121, IncV4, and IncResV2) as surrogate
models to compare with different baselines. As PAS is inspired by RepVGG, VGG19 is used as the
meta model to evaluate the transferability of backpropagation paths.

Baseline Methods. To demonstrate the effectiveness of PAS, we compare it with existing compet-
itive baselines, i.e., I-FGSM (Kurakin et al., 2018b), MI (Dong et al., 2018), DI (Xie et al., 2019),
SGM (Wu et al., 2019), LinBP (Guo et al., 2020), IAA (Zhu et al., 2021), LLTA (Fang et al., 2022),
FDA (Ganeshan et al., 2019), FIA (Wang et al., 2021) and NAA (Zhang et al., 2022).

Metrics. Following the most widely adopted setting, we use the attack success rate as the met-
ric. Specifically, the attack success rate is defined as the percentage of adversarial examples that
successfully mislead the victim model among all adversarial examples generated by the attacker.

Hyperparameter. For the search process in PAS, we conduct K = 2000 trials to search on the
backpropagation DAG for each surrogate model, which evaluates the transferability of the back-
propagation path on 256 examples in one-step attacks against the meta model (i.e., VGG19). The
overall search overhead is approximately 20 times that of generating adversarial samples in a 10-
step attack on the test set. To craft adversarial examples, we use the hyperparameter setting in Zhang
et al. (2022) to set the maximum perturbation of ϵ = 16, the number of attack steps T = 10 and the
step size η = 1.6/255. Moreover, for a fair comparison on Subset5000 with IAA, which is not open
source, we follow its parameter setting and set the step size to η = 2/255.

4.2 ATTACK NORMALLY TRAINED MODELS (RQ1)

Table 1: Attack success rate (%) against normally trained and defense models on Subset5000. The
best results are in bold.

Attacker RN152 DN201 SE154 IncV3 IncV4 IncRes IncV3ens3 IncV3ens4 IncResens3

R
N

15
2

I-FGSM 99.91 51.00 26.32 23.50 22.58 18.72 12.20 10.80 5.70
MI 99.82 75.79 53.00 46.50 43.32 33.08 24.20 22.04 16.10
DI 99.78 77.81 57.49 50.28 47.16 35.10 35.97 32.81 20.16
SGM 99.87 82.76 61.90 53.16 49.24 43.30 31.57 27.77 20.84
IAA 99.87 95.06 82.46 76.34 71.04 58.34 43.28 37.88 26.78
PAS 99.96 96.76 84.98 83.82 78.82 77.18 59.34 54.46 44.74

D
N

20
1

I-FGSM 59.08 99.89 40.60 33.80 32.46 23.80 18.16 15.30 10.40
MI 76.39 99.84 64.38 59.62 54.85 39.40 31.79 28.21 20.60
DI 78.18 99.81 61.75 60.04 56.15 40.56 42.76 42.01 34.28
SGM 86.60 99.67 72.20 62.34 56.36 45.42 41.45 37.85 29.41
IAA 93.82 99.78 87.98 88.26 87.02 79.12 61.02 53.80 46.34
PAS 96.06 99.76 90.94 91.00 88.12 85.96 75.08 72.22 62.28

In this part, we investigate the transferability of attackers against normally trained models.

We report the attack success rates of PAS, baselines and backpropagation-based attackers with
RN152 and DN121 as the surrogate model on Subset5000 in Table 1. Table 1 demonstrates that
PAS beats other attackers in all black-box scenarios. Averagely, PAS achieves 88.13% attack suc-
cess rates for RN152, which is 5.62% higher than IAA and 20.90% higher than SGM. For DN201,
PAS achieves an average improvement of 2.25% in comparison with IAA, and we observe a better
improvement for PAS in victim models, which are more difficult to attack (e.g., 6.84% improvement
against IncRes). Since SGM manually tunes the decay factors for SkipGrad and IAA uses Bayesian
optimization for SkipGrad and LinReLU, we owe the improvement to both the DAG search space
and the efficient one-step approximation of PAS, which boosts adversarial transferability.
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Table 2: Attack success rate (%) against robustly trained models on Subset1000. The best results
are in bold.

Attacker IncV3ens3 IncV3ens4 IncResens3 Attacker IncV3ens3 IncV3ens4 IncResens3
R

N
50

I-FGSM 17.3 18.5 11.2

In
cV

4

MI-PD 23.9 24.5 12.5
SGM 30.4 28.4 18.6 FDA-MI-PD 21.9 20.9 9.1
LinBP 34.5 32.5 20.9 FIA-MI-PD 45.5 42.1 23.5
LLTA 50.6 47.3 33.6 NAA-MI-PD 55.4 53.6 34.4
PAS 72.8 70.4 57.9 PAS-MI-DI 71.5 66.8 49.7

D
N

12
1

I-FGSM 21.8 21.5 13.1

In
cR

es

MI-PD 28.8 26.7 16.3
SGM 36.8 36.8 22.5 FDA-MI-PD 17.4 29.9 25.3
LinBP 39.3 38.3 22.6 FIA-MI-PD 49.7 44.9 31.9
LLTA 59.1 60.5 46.8 NAA-MI-PD 61.9 59.0 48.3
PAS 70.9 70.8 57.4 PAS-MI-DI 76.9 71.2 59.8

4.3 ATTACK DEFENSE MODELS (RQ2)

In this part, to further verify the superiority of PAS, we conduct a series of experiments against de-
fense models. We illustrate the attacking results against competitive baseline methods under various
experimental settings.

Table 1 shows the attack success rate on Subset5000. The advantages of PAS are more obvious
against defense models. The average attack success rates are 52.85% and 69.86% for RN152 and
DN201, respectively, which are 16% more than the second-best attacker IAA.

For the commonly used Subset1000, we directly attack defense models since most of the existing
attackers have achieved a 90% attack success rate against normally trained models. The comparisons
between PAS and the feature-level and backpropgation-based attackers are presented in Table 2.
Table 2 demonstrate that highly transferable attacks are crafted against defense models in average
of 23.2% and 10.9% by PAS. Although LLTA tunes the data and model augmentation through meta
tasks, PAS searches the backpropagation DAG and achieves higher transferability, which shows the
improvement that comes with a larger search space.

We further demonstrate that the adversarial transferability of PAS can be exploited in combination
with existing methods. In contrast to the results in LLTA that DI conflicts with LinBP and leads
to large performance degradation, we combine PAS with DI for transferability gains. As shown
in Table 2, when combined with both MI and DI, PAS improves the SOTA transferability by a
huge margin consistently against robustly trained models by at least 11.5%. In addition, the attack
success rate in Table 3 demonstrates that PAS outperforms SOTA feature-level attackers with an
average improvement of 7.7%.

All in all, the experimental results identify higher adversarial transferability of PAS against defense
models. Compared with the existing methods, PAS achieves a 6.9%∼24.3% improvement in attack
success rate and demonstrates the generality with various surrogate models on two benchmarks.

4.4 ABLATION STUDY

In this part, we conduct the ablation study to verify the contribution of each part in PAS by removing
skip modules in DAG and performing hyperparameters experiments.

Skip modules. We utilize PAS on different search spaces to search for the backpropagation path
and observe the attack success rate. As mentioned above, DAG consists of three kinds of skip
module, i.e., SkipConv, LinReLU and SkipGrad. Hence, we show the attack success rate of DAG
without each kind of skip module and DAG with only one kind of skip module, respectively. The
experimental results are reported in Table 4, and we draw the following conclusions:

• SkipConv leverages the gradient from the critical features and achieves the highest attack
success rate among all DAGs with a single skip module.

2https://github.com/anlthms/nips-2017/tree/master/mmd
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Table 3: Attack success rate (%) against de-
fense models. Avg. indicates the average
success rate on all black-box victim models.
The best results are in bold.

R&P NIPS-r3 RS Avg.

MI-PD 22.4 28.8 31.4 27.5
FDA-MI-PD 16.3 23.1 27.8 22.4
FIA-MI-PD 36.4 51.2 38.4 42.0
NAA-MI-PD 46.8 62.9 40.4 50.0
PAS-MI-DI 55.2 69.8 48.1 57.7

Table 4: The statistics of attack success rate
(%): w/o indicates the search space with-
out the skip module; w/ indicates the search
space with the skip module.

Normal Defense Total

PAS 90.43 66.63 83.94

w/o SkipConv 77.90 52.30 70.92
w/o SkipGrad 34.30 22.40 31.05
w/o LinReLU 76.35 38.33 65.98

w/ SkipConv 76.16 38.33 65.85
w/ SkipGrad 57.36 23.80 48.21
w/ LinReLU 33.11 20.17 29.58

• Since LinReLU is realized in an approximation form (i.e., α̂), adversarial transferability
degrades without scaling the gradient by SkipGrad.

• The most transferable path is searched for by combining all skip modules and achieves at
least a 13.02% improvement compared with the variants.

Number of instances for evaluation N . We measure the one-step approximation of transferability
by altering the sample size for path evaluation. We observe from Figure 4(b) that with the increase of
instances for evaluation, the difference in paths is more obvious. However, along with the obvious
difference caused by larger N , the overhead linearly increases. To balance the performance and
evaluation overhead, we choose N = 200 to achieve adequate performance.

5 RELATED WORK

Black-box attackers can be roughly divided into query-based and transfer-based schemes. Query-
based attackers estimate gradient with queries of the prediction to the victim model (Papernot et al.,
2017; Su et al., 2019). Due to the lack of access to numerous queries in reality, part of query-based
attackers focus on improving efficiency and reducing queries. In contrast, transfer-based attackers
do not require any query and can be applied to unaccessible victim models.

To boost adversarial transferability, various methods have been proposed: regarding the adversarial
example generation as an optimization process, Dong et al. (2018); Lin et al. (2019) leverage mo-
mentum terms to escape from poor local optima. To avoid overfitting with the surrogate model and
specific data pattern, data augmentation (Xie et al., 2019; Dong et al., 2019) and model augmentation
(Liu et al., 2017; Li et al., 2020) are effective strategies. Since the most critical features are shared
among different DNNs, feature-level attackers Ganeshan et al. (2019); Zhang et al. (2022) destroy
the intermediate feature maps. From the backpropagation perspective, Wu et al. (2019); Guo et al.
(2020) leverages more gradients from paths of more useful modules. Unlike most methods which
are designed in a heuristic manner, Fang et al. (2022); Yuan et al. (2021); Zhu et al. (2021) enhances
adversarial transferability by black-box optimization and meta learning.

6 CONCLUSION

In this paper, we enhance adversarial transferability from the backpropagation perspective and pro-
pose PAS to search backpropagation paths for adversarial transferability. We propose SkipConv,
which calculates forward as normal convolution modules but backpropagates loss in a skip connec-
tion form through structural reparameterization. We construct a DAG-based search space for the
backpropagation path by combining the existing structural reparameterization of residual and acti-
vation modules. Then, we employ Bayesian Optimization to search for the most transferable path
and further reduce the search overhead by one-step approximation for path evaluation. The results
of comprehensive attack experiments in a wide range of transfer settings show that PAS improves
the attack success rate by a huge margin for both normally trained and defense models.
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