
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GENERALIZATION OF SPECTRAL GRAPH NEURAL
NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Spectral graph neural networks (GNNs) have achieved remarkable success across
various applications, yet their generalization properties remain poorly understood.
This paper bridges this gap by analyzing the impact of graph homophily and ar-
chitectural choices on the generalization of spectral GNNs. We derive a general
form of uniform transductive stability for spectral GNNs and provide an explicit
stability analysis for graphs with two node classes, providing a comprehensive
framework to understand their generalization. Based on this stability analysis, we
establish a generalization error bound, demonstrating that better stability leads
to improved generalization. Our theoretical findings reveal that spectral GNNs
generalize well on graphs with strong homophily or heterophily but struggle on
graphs with weaker structural properties. We also identify conditions under which
increasing the polynomial order in spectral GNN architectures may degrade gener-
alization. Empirical results on synthetic and real-world benchmark datasets align
closely with our theoretical findings.

1 INTRODUCTION

Generalization is a fundamental challenge in machine learning, crucial for understanding both the
theoretical limits and practical performance of algorithms. Researchers have developed various
measures to study generalization, including Vapnik–Chervonenkis (VC) dimension (Cherkassky
et al., 1999), PAC-Bayes bound (McAllester, 1998), Rademacher complexity (Bartlett & Mendelson,
2002), and the stability of learning algorithms (Bousquet & Elisseeff, 2002). These measures provide
insights into a model’s ability to generalize beyond its training data. Graph neural networks (GNNs)
have achieved remarkable success across various practical applications (Zhou et al., 2020), yet their
generalization capabilities remain poorly understood. Unlike traditional machine learning models
that operate on independent and identically distributed (i.i.d.) data, GNNs work on interdependent
data where the graph topology and node/edge features are inherently linked. This interconnected
structure makes it difficult to evaluate how well a GNN trained on one graph or a set of graphs can
generalize to unseen graphs.

Research on GNN generalization primarily focuses on two tasks: graph classification and node
classification. In graph classification, where graphs are typically i.i.d., generalization has been
studied through connections with WL algorithms (Morris et al., 2023; D’Inverno et al., 2024; Franks
et al., 2024) and data-dependent PAC-Bayes bounds (Liao et al., 2021; Ju et al., 2023). In node
classification, which involves transductive learning where node features are known during training,
approaches like Transductive Rademacher complexity and uniform transductive stability are more
common. These methods explore the impact of factors such as graph matrix representations and GNN
depth on generalization (Oono & Suzuki, 2020; El-Yaniv & Pechyony, 2007; Tang & Liu, 2023b;
Zhou & Wang, 2021; Cong et al., 2021).

In this work, we focus on the generalization of GNNs for node classification. Unlike graph
classification, node classification performance is influenced by the distribution of node classes,
which is closely tied to graph homophily. In homophilic graphs, connected nodes tend to belong
to the same class, whereas in heterophilic graphs, connected nodes are often from different classes.
Empirical evidence shows that the edge homophilic ratio (Zhu et al., 2020) significantly affects GNN
performance. For example, models like GCN and GAT excel on homophilic graphs but underperform
on heterophilic graphs (Kipf & Welling, 2017; Velickovic et al., 2018). This motivates us to explore
the relationship between graph homophily and the generalization of GNNs in node classification tasks,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

raising the question: how does GNN generalization depend on node class distributions? Notably, this
question has remained largely unexplored in previous research.

We examine the generalization of GNNs through a spectral perspective, as spectral GNNs have
demonstrated strong performance on both homophilic and heterophilic graphs. Spectral GNNs
operate in the spectral domain, applying frequency-domain convolutions to extract structural informa-
tion (Balcilar et al., 2021). Formally, a spectral GNN is defined as:

Ψ(M,X) = σ(gΘ(M)fW (X)), (1)

whereM ∈ Rn×n is a graph matrix (e.g., Laplacian or adjacency matrix), gΘ(M) =
∑K

k=0 θkTk(M)
represents graph convolution using Θ = {θk}Kk=0 and the k-th polynomial basis Tk(·), fW (X) is a
feature transformation function parameterized by W , and σ is a non-linear function such as softmax.

One notable observation about spectral GNNs is that, although the frequency response function
can theoretically be approximated by a sum of polynomial basis with negligible error as the order K
increases (Powell, 1981), empirical results show that higher polynomial orders do not consistently lead
to better performance. This discrepancy raises the question: is the gap between theoretical study and
empirical performance, particularly with respect to polynomial order K, related to the generalization
of spectral GNNs? To date, no work has provided a clear explanation for this phenomenon.

We address the aforementioned questions by focusing on the generalization of spectral GNNs.
In transductive learning, the relationships between labeled and unlabeled nodes are critical for gen-
eralization. To measure this, we employ uniform transductive stability (El-Yaniv & Pechyony, 2006),
which evaluates the stability of spectral GNNs under perturbations to individual training samples.

To study the interplay between graph structure and GNN performance, we use the contextual
stochastic block model (cSBM) (Baranwal et al., 2023; Deshpande et al., 2018), a widely used
generative model that captures both homophilic and heterophilic graph structures in a controlled
and analytically tractable manner. Previous studies have demonstrated that cSBM models real-world
datasets such as Citeseer, Cora, and Polblogs, which are frequently used in GNN research (Deshpande
et al., 2018; LEI, 2016; Dreveton et al., 2023; Kipf & Welling, 2017; Zhang et al., 2021). Specifically,
cSBM generates graphs with well-defined block structures, where nodes within the same block
are more likely to be connected (homophilic graphs) or nodes between blocks have a higher
connection probability (heterophilic graphs). Leveraging cSBM allows us to systematically vary
graph homophily and examine its impact on GNN generalization properties.

Contributions. Our main contributions are summarized as follows:

• We analyze the γ-uniform transductive stability of spectral GNNs by decomposing it into
two factors: the Lipschitz continuity and smoothness of the loss function and the spectral
GNN, and the gradient norm bound (Theorem 6). This enables us to study the effects
of node class distribution and spectral GNN architecture on training gradients through an
explicit gradient norm bound (Theorem 8).

• We establish the generalization error bound of spectral GNNs based on their stability, where
good stability indicates strong generalization capability (Theorem 9). To further explicitly
analyze the effects of graph homophily and polynomial order on generalization, we derive
an explicit form of the gradient norm bound for two node classes (Theorem 13).

• We prove that spectral GNNs generalize well on graphs that are strong homophilic or het-
erophilic, but perform poorly on graphs that are moderately homophilic or heterophilic. We
identify conditions under which increasing the polynomial order in spectral GNN architec-
tures may degrade generalization, providing insights into architectural design (Theorems 14
and 15; Proposition 16).

To validate our theoretical findings, we conduct experiments on nine synthetic datasets and nine
real-world benchmark datasets for node classification. The experimental results align closely with
our theoretical analysis.

2 RELATED WORKS

Previous work. We review prior studies on GNN generalization, typically categorized into graph
classification and node classification, with a primary focus on the latter.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Generalization Bound Methods Analysis Key factors in Bounds
Lipschitz Gradient Graph Matrix Tsize Depth Hom Poly

VC bound (Scarselli et al., 2018) – n/a n
√

– – –

RC bound (Esser et al., 2021)
√

n/a ∥M∥∞, ∥MX∥2→∞
√ √

– –
(transductive) (Tang & Liu, 2023b)

√
n/a ∥M∥∞

√ √
– –

(Oono & Suzuki, 2020)
√

n/a ∥MX∥F
√ √

– –

US bound (Verma & Zhang, 2019) –
√

∥M∥2
√

– – –
(Inductive) (Zhou & Wang, 2021) –

√
∥M∥2, ∥MX∥2

√ √
– –

US bound (Cong et al., 2021)
√ √

dmax
√ √

– –
(transductive) Our work

√ √
Mij

√
–

√ √

Table 1: Comparison of generalization bounds for GNNs on node classification. Here, ∥ · ∥2, ∥ · ∥F ,
∥ · ∥∞,∥ · ∥2→∞ denote the spectral norm, Frobenius norm, infinity norm and maximum column
ℓ2-norm. n is graph node number. dmax denotes the maximum node degree. The other factors Tsize,
Depth, Hom, and Poly refer to training sample size, model depth, graph homophily, and polynomial
order, respectively.

√
indicates “discussed”, while – indicates “not discussed”.

Graph classification is typically considered as an inductive learning task. One prominent method
is the Vapnik–Chervonenkis (VC) bound, which relates the VC dimension of a GNN to the number
of colors generated by the 1-WL algorithm, reflecting the number of graphs the 1-WL algorithm
can distinguish (Morris et al., 2023). The PAC-Bayes bound is another approach. Liao et al. (2021)
connects generalization bound to factors like maximum node degree and GNN depth, while Ju et al.
(2023) refines this by tying the bound to the largest singular value of the graph matrix. Behboodi et al.
(2022) further extends the PAC-Bayes framework to equivariant networks, highlighting the influence
of group properties on generalization. Rademacher complexity and uniform convergence have also
been explored. Garg et al. (2020) shows that a GNN’s computational tree complexity bounds its
overall complexity, and Maskey et al. (2022) shows that generalization bound increases with model
complexity but decreases with higher average node degrees.

Generalization analysis for node classification is more challenging than for graph classification
due to its transductive nature (Tang & Liu, 2023b). Recent studies focus on how graph matrices
and GNN depth influence generalization. Rademacher complexity (RC) is commonly used for node
classification tasks due to its strong theoretical foundation in transductive learning (El-Yaniv &
Pechyony, 2007). It has been shown that the transductive RC of a GNN is proportional to the infinity
norm of its graph matrix, with generalization bounds provided for several classic GNNs (Tang &
Liu, 2023b). Esser et al. (2021) uses a planted model to illustrate the relationship between GNN
generalization and graph matrix compatibility. Oono & Suzuki (2020) shows that gradient boosting
reduces RC in multi-scale GNNs. Uniform stability (US) offers another key approach for analyzing
generalization. Verma & Zhang (2019) relates the generalization error bound of single-layer GCNs
to the largest absolute eigenvalue of the graph matrix, while Cong et al. (2021) demonstrates that
increasing GNN depth improves stability and lowers generalization error bounds. Other works deviate
from transductive assumptions, addressing non-i.i.d. settings. For example, Ma et al. (2021) derives
PAC-Bayesian bounds by assuming i.i.d. node classes given fixed node features.

Our work. In this work, we focus on node classification tasks, investigating how node class
distribution and the architecture of spectral GNNs influence generalization. While prior studies have
examined factors like graph size, training set size, graph matrix norms, and node features, they have
largely overlooked the role of graph homophily in generalization and the impact of increasing the
polynomial order of spectral GNNs. To our knowledge, this is the first study to analyze the effects of
graph homophily and polynomial order on the generalization of spectral GNNs.

Table 1 compares our work with other methods for node classification, highlighting several key
aspects: (1) Analysis settings (inductive or transductive): The VC bound (Scarselli et al., 2018)
is data-independent and thus agnostic to inductive or transductive settings. While Verma & Zhang
(2019); Zhou & Wang (2021) derive bounds for GNNs in inductive settings, others (Esser et al.,
2021; Tang & Liu, 2023b; Oono & Suzuki, 2020; Cong et al., 2021) and our work address the
more complex transductive setting. (2) Analysis frameworks: Rademacher complexity estimates a
model’s capacity to fit noise based on graph structure and node features but does not account for node
labels. As a result, methods such as (Esser et al., 2021; Tang & Liu, 2023b; Oono & Suzuki, 2020)
are unable to analyze the effect of graph homophily, which depends on both graph structure and node

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

labels. In contrast, uniform stability enables analysis of the relationship between generalization and
graph homophily using gradient-based analysis. It is worth noting that while (Cong et al., 2021)
employs uniform transductive stability, their analysis focuses solely on how GNN depth impacts
Lipschitz continuity and gradient. (3) Key factors in bounds: Training sample size is a critical factor
in all bounds except the VC bound (Scarselli et al., 2018). Model depth (number of GNN layers)
is addressed in (Esser et al., 2021; Tang & Liu, 2023b; Zhou & Wang, 2021; Cong et al., 2021).
Our work examines spectral GNNs, where the architecture comprises only one layer of K-order
polynomials. Unlike prior studies that focus on various graph matrix norms, our analysis takes a
finer-grained approach by considering the expectation of individual graph matrix elements. Moreover,
we explore the effects of graph homophily and the polynomial order on the generalization of spectral
GNNs, aspects not previously investigated.

3 PROBLEM SETUP

An undirected, unweighted graph is denoted as G = (V,E), where V is the set of nodes, E is the
set of edges, and |V | = n. In this work, we model graphs with controlled properties using the
generalized multi-class contextual stochastic block model (cSBM) (Baranwal et al., 2023). A graph
G ∼ cSBM(n, f,Π, Q) consists of n nodes, partitioned into C distinct classes. Here, f is the
dimension of node features, Π = {Πi}i∈[C] is a set of C continuous distributions, where πi ∈ Rf

and Σi ∈ Rf×f are the mean and variance of Πi respectively, and Q ∈ RC×C is a symmetric
edge-probability matrix. Each node vi is assigned a class yi sampled uniformly from a set of C
classes, and its feature vector xi ∈ Rf is drawn from the distribution Πyi

. This generates the node
feature matrixX ∈ Rn×f . For the adjacency matrixA ∈ Rn×n, an edge between node vi and vj (i.e.,
Aij = 1) is generated according to the edge-probability matrix Q based on the following probability:

P (Aij = 1 | yi, yj) = Qyiyj
,

where Qyiyj
gives the edge formation probability between class yi and class yj .

For a spectral GNN Ψ, following (Wang & Zhang, 2022; Lu et al., 2024), we first consider
fW (X) = XW , and then discuss the effect of non-linear feature transformation. Here W ∈ Rf×C .
Let Sm = (X, {yi}mi=1) be a training set containing m labelled nodes, randomly sampled form the
graph G, and Du = (X, {yi}ni=m+1) be the testing set containing the other nodes in the graph G. We
define a loss function ℓ(yi, ŷi|Θ,W) to measure the discrepancy between the truth class yi and the
prediction ŷi when a spectral GNN is parameterized by Θ,W . The empirical loss LSm

(Θ,W) and
the expected loss LDu

(Θ,W) are defined as:

LSm(Θ,W) =
1

m

m∑
i=1

ℓ(yi, ŷi|Θ,W), LDu(Θ,W) =
1

n−m

n∑
i=m+1

ℓ(yi, ŷi|Θ,W).

Following (El-Yaniv & Pechyony, 2006), testing datasets are randomly sampled from real data and
we treat the loss on these testing datasets as the expected loss. Given that the optimal parameters
Θ∗,W ∗ minimize the empirical loss LSm

(Θ∗,W ∗), our goal is to bound the generalization error:

LDU
(Θ∗,W ∗)− LSm(Θ∗,W ∗).

A small generalization error bound indicates that spectral GNNs can perform well on testing data.

3.1 ASSUMPTIONS

We first introduce assumptions used in the generalization analysis of spectral GNNs.
Assumption 1 (Lipschitz Continuity and Smoothness). The loss function ℓ and the spectral GNN Ψ
are both Lipschitz continuous and smooth.

Assumption 1 is commonly used in the analysis of neural networks trained with gradient de-
scent (Ghadimi & Lan, 2013). They are necessary conditions ensuring that the neural network training
converges (Arfken et al., 2011; Liao et al., 2021). We use Lip(•) and Smt(•) to denote the Lipschitz
constant and smoothness of a function, respectively, and ∥ • ∥F denotes the Frobenius norm.
Assumption 2 (Bounded Gradients). The gradients of both the spectral GNN and the loss function
ℓ(yi, ŷi) w.r.t. any parameters Θ,W , and for any node vi with class yi and prediction ŷi, are bounded:

∥∇Θŷi∥2F + ∥∇W ŷi∥2F ≤ β2
2 ; ∥∇ŷiℓ(yi, ŷi)∥F ≤ β1. (2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Here, ∇Θŷi and ∇W ŷi represent the gradients of ŷi with respect to the parameters Θ and W ,
respectively. ∇ŷi

ℓ(yi, ŷi) refers to the gradient of the loss function with respect to ŷi.
Remark. The loss surface of neural networks often contains many local minima (Dinh et al., 2017).
The bounded gradient assumption ensures convergence during optimization (Li & Liu, 2021).

Unlike margin loss, the cross-entropy loss function is unbounded. For theoretical analysis, it is
typically assumed that the sample loss is bounded.
Assumption 3 (Bounded Sample Loss). For any sample (xi, yi), the maximum loss between the
ground truth class yi and the prediction ŷi satisfies ℓ(ŷi, yi) ≤ Bℓ.

Following the previous work (Zhang et al., 2019; Kuzborskij & Lampert, 2018), we assume that
parameter norms are bounded during training.
Assumption 4 (Bounded Parameters). Each parameter θk ∈ Θ and the parameter matrix W in a
spectral GNN are bounded, i.e., |θk| ≤ BΘ and ∥W∥F ≤ BW .

4 GENERAL RESULTS

In this section, we examine the generalization of spectral GNNs through uniform transductive
stability (El-Yaniv & Pechyony, 2006). We define γ-uniform transductive stability for spectral GNNs,
analyze the key factors influencing γ by deriving the gradient norm bound, and use these insights to
establish the generalization error bound.
Definition 5 (γ-Uniform Transductive Stability). Let Sij

m = (X, {yt}mt=1,t̸=i ∪ {yj}) be a perturbed
dataset obtained by replacing the i-th sample in Sm with the j-th sample from Du. Let {Θ∗,W ∗}
and {Θ′,W ′} be the optimal parameters of a spectral GNN Ψ trained on Sm and Sij

m, respectively.
Denote the predictions for node vi by ŷi|Θ∗,W∗ and ŷi|Θ′,W ′ . The spectral GNN Ψ is γ-uniform
transductive stable if for any i ∈ [n]:

max
1≤i≤n

|ℓ(yi, ŷi|Θ∗,W∗)− ℓ(yi, ŷi|Θ′,W ′)| ≤ γ.

A larger γ indicates worse stability of spectral GNNs. Below, we decompose γ into two terms: r
and β. Here, r accounts for the Lipschitz continuity and smoothness of the loss function and spectral
GNNs, while β bounds the gradient norm during training.
Theorem 6 (Stability and Gradient Norm). Let Ψ be a spectral GNN trained using gradient descent
for T iterations with a learning rate η on a training dataset Sm, and evaluated on a testing set Du.
Under Assumption 1, for all iterations t ∈ [1, T] and any sample (xi, yi) in Sm or Du, if the gradient
norm satisfies ∥∇ℓ(yi, ŷi|Θt,W t)∥F ≤ β, where {Θt,W t} are the parameters at the t-th iteration,
then Ψ satisfies γ-uniform transductive stability with:

γ = rβ, r =
2ηα1

m

T∑
t=1

(1 + ηα2)
t−1,

where α1 = Lip(ℓ) · Lip(Ψ) and α2 = Smt(Ψ)β1 + Smt(ℓ)Lip(Ψ)β2.
Remark. α1 and α2 represent the Lipschitz constant and smoothness of the loss function ℓ and the
spectral GNN Ψ, respectively. They determine how parameter updates Θt and W t during training
affect the loss of a sample (xi, yi) through the term r. As described in Eq. (2), β1 and β2 are the
bounds for the loss and its gradient, respectively. The proof is provided in Appendix A.2.

Unlike previous work (Cong et al., 2021), which assumes a fixed gradient norm β, we explicitly
derive β to analyze how graph homophily and the polynomial order of spectral GNNs influence the
gradient norm and, in turn, stability. To begin, we introduce the concept of a walk on a graph and its
expectation, both critical for analyzing the stability of spectral GNNs. A k-length walk on a graph
G is defined as a sequence of k edges {e1, e2, . . . , ek}, where ei ∈ E, and the endpoint of ei is the
starting point of ei+1 for i ∈ {1, . . . , k− 1}. The expectation of k-length walks is defined as follows.

Definition 7 (E
[
Ak

ij

]
). For a graph G ∼ cSBM(n, f,Π, Q) with adjacency matrix A, the expecta-

tion of the element Ak
ij in the k-th power of A is:

E[Ak
ij] =

∑
p∈Pk

ij

∏
(v,v′)∈p

Qyy′ ,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where P k
ij is the set of all k-length walks between vi and vj , and Qyy′ is the transition probability

between the classes y of v and y′ of v′.
Remark. Intuitively, Ak

ij represents the number of k-length walks between nodes vi and vj . The
first moment E[Ak

ij] gives the expected number of such walks in the random graph generated by the
cSBM. Since Qyy′ represents the probability of an edge between nodes of classes y and y′, a larger
Qyy′ increases the likelihood of edges in walks involving transitions between these classes, resulting
in higher expected counts of such walks.

The following theorem reveals how the gradient norm bound β depends on the expectation of
k-length walks and their node class distributions within the graph.
Theorem 8. Consider a spectral GNN Ψ with polynomial order K trained using full-batch gradient
descent for T iterations with a learning rate η on a training dataset Sm sampled from a graph
G ∼ cSBM(n, f,Π, Q) with average node degree d ≪ n. When n → ∞ and K ≪ n, under
Assumptions 1, 2, and 4, for any node vi, i ∈ [n], and for a constant ϵ ∈ (0, 1), with probability at
least 1− ϵ, Ψ satisfies γ-uniform transductive stability, where γ = rβ and

β =
1

ϵ

[
O
(
E
[
∥ŷi − yi∥2F

])
+O

(
∥π⊤

yi
πyi +Σyi∥F

)
+O

 K∑
k=1

n∑
j=1

E[Ak
ij]

∥∥∥∥∥
n∑

t=1

E[Ak
it]π

⊤
yj
πyt

+ E[Ak
ij]Σyj

∥∥∥∥∥
F

].
Proof sketch. The main idea is to first derive the gradient of a sample loss and the expected gradient
norm E [∥∇ℓ(yi, ŷi|Θt,W t)∥F] for node (xi, yi) with fixed parameters (n, f,Π, Q). Then the gradient
norm bound β is derived using Markov’s Inequality (Evans & Rosenthal, 2004). When parameters
Θ,W are bounded (Assumption 4), the main factors in E [∥∇ℓ(yi, ŷi|Θt,W t)∥F] are ∥ŷi − yi∥2F
and moments of AkX . When graph structure and node features are independent given node labels,
we have E

[
AkX

]
= E

[
Ak
]
E [X]. While Ak depends on the graph structure, governed by the

parameter Q, node feature X is controlled by parameter Π, shown as the mean πyi
and variance Σyi

of nodes belong to class yi. The full proof is provided in Appendix B.2.

Remark. Theorem 8 shows that the gradient norm bound β is primarily influenced by two factors:

(1) Expected prediction error E[∥ŷi − yi∥2F] quantifies the difference between the truth node
class yi and the predicted label ŷi for a node vi by a spectral GNN. A well-performing
spectral GNN is characterized by a low expected prediction error.

(2) Expectation of k-length walks E[Ak
ij] measures the interaction between nodes vi and vj

through k-length walks. The existence of these walks depends on the labels of all nodes
along the walk, with edge probabilities in k-length walks determined by Q in cSBM.

When a γ-transductive learning algorithm is trained on two nearly identical training sets, differing
by just one sample, the expected generalization error equals the expected increase in sample loss (El-
Yaniv & Pechyony, 2006). Based on this known result, Theorem 6, and β obtained from Theorem 8,
we have the following generalization error bound for spectral GNNs.

Theorem 9 (Generalization Error Bound). Let H2(n) ≜
∑n

i=1
1
i2 and Ω(m,n − m) ≜

(n−m)
2
(H2(n)−H2(n−m)). For ϵ ∈ (0, 1), if a spectral GNN is γ-uniform transductive

stability with probability 1 − ϵ, then under Assumption 3, for δ ∈ (0, 1), with probability at least
(1− δ)(1− ϵ), the generalization error LDu

(Θ,W)− LSm
(Θ,W) is upper-bounded by:

γ +

(
2γ +

(
1

n−m
+

1

m

)
(Bℓ − γ)

)√
2Ω(m,n−m) log

1

δ
. (3)

Remark. The generalization error bound of a spectral GNN is closely related to its uniform trans-
ductive stability γ, the number of training samples m, and the total number of nodes n in the graph.
A smaller γ indicates stronger stability, which in turn suggests better generalization performance.
Factors such as graph homophily and the polynomial order of a spectral GNN affect γ, thereby
impacting the generalization error. From Theorem 6, we observe that γ = O(1/m). When n is
sufficiently large, the term 1/(n−m) becomes negligible, and Ω(m,n−m) increases as O(m1/2).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The following lemma shows that increasing the number of training samples m improves the
generalization. The proof is provided in Appendix C.2.
Lemma 10. Consider a spectral GNN trained with m samples as n → ∞. As the sample size m
increases, the generalization error bound decreases at the rate O(1/m) +O

(√
2 log(1/δ)/m

)
.

Thus far, we have considered only linear feature transformation functions fW in spectral GNNs.
We now establish a result on how a non-linear fW influences uniform transductive stability.
Proposition 11. For a spectral GNN Ψσ̃ with a non-linear feature transformation function fW (X) =
σ̃(XW), assume the gradient norm bound β in Theorem 9 is the same for Ψ and Ψσ̃ . If Lip(σ̃) ≤ 1
and Smt(σ̃) ≤ 1, then γσ̃ ≤ γ, where γσ̃ is the stability of Ψσ̃ .
Remark. The γσ̃-uniform transductive stability of spectral GNNs Ψσ̃ with a non-linear transformation
is bounded by the stability of its linear counterpart Ψ, provided that the activation function satisfies
Lip(σ̃) ≤ 1 and Smt(σ̃) ≤ 1. These conditions ensure that the non-linear transformation does not
excessively amplify inputs or gradients, thus maintaining stability. Common activation functions like
ReLU, Sigmoid, and Tanh satisfy these criteria, indicating that they may contribute to stabilizing the
training of spectral GNNs by preventing large output fluctuations in response to small input changes.
The proof is provided in Appendix C.2.

5 FURTHER ANALYSIS

In this section, we analyze the impact of node class distribution and spectral GNN architecture
on the generalization error bound. To derive an explicit form for property analysis, we consider
cSBM(n, f, µ, u, λ, d), a well-studied specialization of the general multi-class cSBM (Deshpande
et al., 2018), widely used in prior studies on graph analysis (Esser et al., 2021; Ma et al., 2022;
Baranwal et al., 2021; Baranwal et al.). Specifically, for a node vi with label yi ∈ {±1}, its feature
is sampled from a Gaussian distribution:

xi ∼ N (yi
√
µ/nu, If/f).

Two nodes of the same class are connected with probability cin = d+ λ
√
d, while nodes of different

classes are connected with probability cout = d − λ
√
d. In this simplified 2-class cSBM, the

distribution Π reduces to {Π±}, and the edge-probability matrix simplifies to a 2× 2 matrix with
diagonal elements cin/n and off-diagonal elements cout/n.

By adjusting the parameter λ in cSBM, we can generate graphs with varying node class distribu-
tions. One way to quantify the node class distribution is the edge homophilic ratio (Zhu et al., 2020),

Hedge =
|{eij | vi, vj ∈ V, eij ∈ E, yi = yj}|

|E|
.

The relationship between the parameters d, λ in cSBM and the edge homophilic ratio is as follows.
Proposition 12. For a graph G ∼ cSBM(n, µ, u, λ, d), the expected edge homophily ratio is:

E[Hedge] =
d+ λ

√
d

2d
; E[Hedge] =

cin
cin + cout

. (4)

When λ > 0, the graph tends to be homophilic as E[Hedge] > 0.5. Conversely, when λ < 0, the
graph tends to be heterophilic. The proof is provided in Appendix E.1.

5.1 UNIFORM TRANSDUCTIVE STABILITY

We now establish stability for graphs with two node classes and Gaussian-distributed node features.
Theorem 13. Consider a spectral GNN Ψ parameterized by Θ,W trained using full-batch gradient
descent for T iterations with a learning rate η on a training dataset containing m samples drawn
from nodes on a graph G ∼ cSBM(n, f, µ, u, λ, d). When n → ∞, k ≪ n, and d ≪ n, under
Assumptions 1, 2, and 4, for any node vi on the graph, with probability at least 1− ϵ for a constant
ϵ ∈ (0, 1), Ψ satisfies γ-uniform transductive stability, where γ = rβ and

β =
1

ϵ

[
O
(
E
[
∥ŷi − yi∥2F

])
+O

(
K∑

k=2

(
E
[(
Ak

ij | yi = yj
)2]

+ E
[(
Ak

ij | yi ̸= yj
)2]))]

.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Proof sketch. The proof follows the same structure as Theorem 8. The gradient norm bound β can
be explicitly expressed as the expected prediction error E

[
∥ŷi − yi∥2F

]
and the homophily-aware

walk variance ζk = E
[
(Ak

ij | yi = yj)
2
]
+ E

[
(Ak

ij | yi ̸= yj)
2
]
. The connection between ζk and

Hedge can be analyzed in a tractable manner. The full proof is provided in Appendix D.3.

Remark. The theorem derives the explicit form of k-length walks Ak
ij . Notably, (Ak

ij |yi = yj) and
(Ak

ij |yi ̸= yj) follow distinct distributions based on whether nodes vi and vj share the same label.
When k = 1, Ak

ij follows a Bernoulli distribution. For n → ∞ with d ≪ n and 2 ≤ k ≪ n, Ak
ij

follows a Poisson distribution. The term ζk = E[(Ak
ij |yi = yj)

2] + E[(Ak
ij |yi ̸= yj)

2] captures
the homophily-aware walk variance, reflecting the variance in k-length walks between same-class
or different-class nodes. This depends on the edge probabilities cin and cout: (1) cin = cout: the
graph is essentially an Erdős-Rényi graph, lacking clusters or multipartite structure, leading to higher
variance in k-length walks. (2) cin > cout: the graph is homophilic with cluster patterns, and walks
are concentrated within clusters, reducing variance. (3) cin < cout: the graph is heterophilic with
multipartite patterns, and walks are concentrated along edges connecting different classes, affecting
the variance. In general, the absence of clear cluster or multipartite structures increases randomness
in k-length walks, resulting in higher ζk.

5.2 MAIN FACTORS IN STABILITY

We first analyze how exactly the expected prediction error E[∥ŷi − yi∥2F] and the homophily-aware
walk variance ζk vary with the parameters λ and K, and then examine the combined effects of λ and
K on the stability and generalization of spectral GNNs.
Theorem 14 (E

[
∥ŷi − yi∥2F

]
and λ,K). Given a graph G ∼ cSBM(n, µ, u, λ, d) and a spectral

GNN of orderK, E[∥ŷi−yi∥2F] for any node vi satisfies the following: it increases with λ ∈ [−
√
d, 0],

decreases with λ ∈ [0,
√
d], and reaches its maximum at λ = 0; it increases withK if

∑K
k=2 θk

(k−1)!
2k−1

grows more slowly than
∑K

k=2 θ
2
k
(k−1)!

2k
as K increases.

Remark. When λ = 0, the graph is neither homophilic nor heterophilic, resulting in the maximum
expected error. When λ = ±

√
d, the expected error is minimized. This implies that spectral GNNs

perform well on strong homophilic or heterophilic graphs but poorly on graphs that are neither. The
relationship between the expected norm E[∥ŷi − yi∥2F] and the order K is nonetheless intricate,
depending on Θ = {θk}Kk=0. The proof is provided in Appendix E.2.

We observe that ζk exhibits the same trend as E[∥ŷi−yi∥2F] with respect to changes in λ; however,
their behavior diverges with respect to K, as characterized in the following theorem.
Theorem 15 (ζk and λ,K). Given a graph G ∼ cSBM(n, µ, u, λ, d) and a spectral GNN of order
K, ζk has the following properties: (1) it increases with λ ∈ [−

√
d, 0], decreases with λ ∈ [0,

√
d],

and achieves its maximum value at λ = 0; (2) it increases with k as k grows, for k ∈ [0,K].

Remark. When d is fixed, λ→
√
d, nodes with the same class form clusters, and when λ→ −

√
d,

they form a bipartite structure. In both cases, the graph structure exhibits clear patterns, leading to
a small variance V

[
Ak

ij

]
= E

[
(Ak

ij)
2
]
− (E

[
Ak

ij

]
)2 and, consequently, a small ζk. When λ → 0,

the graph lacks simple patterns, resulting in a large variance and a correspondingly large ζk. When
k ∈ [0,K] increases, more walks between two nodes exist and thus the variance V

[
Ak

ij

]
increases.

Larger variance corresponds to a larger ζk. The proof is provided in Appendix E.3.

Based on Theorems 14 and 15, the following proposition summarizes how λ and K influence the
γ-uniform transductive stability of spectral GNNs. The proof is provided in Appendix E.4.
Proposition 16. For a fixed K, γ-uniform transductive stability and generalization error bound
strictly increase as λ moves from −

√
d to 0, and decreases as λ moves from 0 to

√
d. For a fixed λ, if∑K

k=2 θk
(k−1)!
2k−1 grows more slowly than

∑K
k=2 θ

2
k
(k−1)!

2k
asK increases, then γ-uniform transductive

stability and generalization error bound increase with K.

5.3 PRACTICAL IMPLICATIONS

We discuss two practical implications of our theoretical findings.
Rewiring graphs: Our analysis establishes a strong connection between graph homophily and the
generalization error bound, offering practical insights for rewiring graphs to enhance the performance

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 1: Testing accuracy, accuracy gap, and loss gap of five spectral GNNs on synthetic and
real-world datasets: (a)-(c) Syn-Varying-Hedge: synthetic datasets with varying Hedge ∈ [0.1, 0.9]
(step 0.1) and m = 3, 000; (d)-(f) Syn-Varying-m: synthetic datasets with varying training sample
sizes m ∈ [500, 4500] (step 500) of fixed Hedge; (g)-(i) Real-m-100: real-world datasets with varying
Hedge (shown on the right) and m = 100.

of spectral GNNs. Graphs with strong homophilic or heterophilic structures exhibit low variance in
k-length walks, which reveals clearer structural patterns. This reduction in variance decreases the
gradient norm bound β (Theorems 8 and 13), leading to improved γ-uniform transductive stability
(Theorem 6). Enhanced stability, in turn, reduces the generalization error bound (Theorem 9).

Constrained graph convolution: Our theoretical results indicate that constraining the graph con-
volution parameters 0 ≤ θk ≤ 1 prevents the generalization error bound from increasing with the
polynomial orderK. This is because the constraint ensures that the condition in Proposition 16, where∑K

k=2 θk
(k−1)!
2k−1 increases slower than

∑K
k=2 θ

2
k
(k−1)!

2k
, is violated, as θk ≥ θ2k. Previous work (He

et al., 2021) reports that constraining θk to non-negative values with Bernstein polynomial basis leads
to valid polynomial filters. Our analysis further suggests adding the constraint θk ≤ 1 to maintain
stable generalization error as K increases.

6 EXPERIMENTS

Synthetic and real-wrold datasets. We use the following datasets: (1) Synthetic datasets consist
of nine graphs generated using G ∼ cSBM(n, f, µ, u, λ, d) following (Chien et al., 2021). Each
graph contains 5,000 nodes with 2,000-dimensional features and an average degree of 5. The edge
homophily ratios (Hedge) range from 0.1 to 0.9 in steps of 0.1. (2) Real-world datasets consist of
ten benchmark node classification datasets (Texas, Wisconsin, Actor, Chameleon, Squirrel, Citeseer,
Pubmed, Cora, Ogbn-Arxiv, Ogbn-Products) with Hedge varying between 0.11 and 0.81. Following
previous work (He et al., 2021; 2022a; Chien et al., 2021), we randomly split each dataset into 60%
for training, 20% for validation, and 20% for testing.
Spectral GNNs. We select five widely recognized spectral GNNs for our experiments: ChebNet (Def-
ferrard et al., 2016), GPRGNN (Chien et al., 2021), BernNet (He et al., 2021), JacobiConv (Wang &
Zhang, 2022), and ChebNetII (He et al., 2022a). For consistency with Eq. (1), we use a single-layer
ChebNet rather than the typical two-layer version.

Further details about the dataset statistics, spectral GNNs, hyper-parameter settings used in our
experiments and additional experimental results are provided in Appendix F. Below, we discuss the
effects of node class distribution and polynomial order on the accuracy and loss gaps of spectral GNNs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 2: Accuracy gap and loss gap of JacobiConv and BernNet when the polynomial order K
increases, where ρ1 =

∑K
k=2 θk

(k−1)!
2k−1 and ρ2 =

∑K
k=2 θ

2
k
(k−1)!

2k
: (a-b),(e-f) show the results on a

synthetic dataset ofHedge = 0.2; (c-d),(g-h) show the results on Chameleon dataset ofHedge = 0.24.

Figure 1(a)-(c) illustrates that as Hedge of synthetic datasets varies from 0.1 to 0.9, accuracy and
loss gaps increase monotonically for Hedge ∈ [0.1, 0.5] and decrease for Hedge ∈ [0.5, 0.9], reaching
their maximum at Hedge = 0.5 across all spectral GNNs. This aligns with our theoretical analysis
in Proposition 16, which states that the generalization error bound increases as Hedge moves from
0 to 0.5 and decreases as Hedge moves from 0.5 to 1. In Figure 1(d)-(f), when the training sample
number m increases from 500 to 4, 500 on synthetic datasets, both accuracy and loss gaps decrease
consistently. This is consistent with Lemma 10, which shows that the generalization error bound
decreases with increasing m. Figure 1(g)-(i) shows that when training all real-world datasets with the
same sample size m = 100, spectral GNNs exhibit a similar trend to synthetic datasets. Loss gaps
are small at the extreme ends of the Hedge range but increase as Hedge transitions from Texas (0.11)
to Ogbn-Products (0.81). These results align with Proposition 16.

Figure 2 shows that when the slope of ρ1 is smaller than that of ρ2, accuracy and loss gaps increase.
Conversely, gaps decrease when ρ1 grows faster than ρ2, aligning with Proposition 16. Intuitively,
this condition can be understood as follows: (1). Non-negative θk: Spectral GNNs constrained to
0 ≤ θk ≤ 1 demonstrate strong generalization. In this case, θk ≥ θ2k, ensuring ρ1 grows faster than
ρ2, violating the condition of Proposition 16, and preventing the generalization error bound from
increasing with K. For instance, BernNet enforces non-negative θk, and as shown in Figure 2(e-h),
its accuracy and loss gaps remain stable with increasing K. (2). Unrestricted θk: Spectral GNNs
allowing both positive and negative θk may exhibit poor generalization. If θk < 0, ρ1 ≤ ρ2. When
θk1 ≤ 0 and θk2 ≥ 0, ρ1 typically grows slower than ρ2, satisfying the condition of Proposition 16
and leading to increasing generalization error bounds with K. For example, JacobiConv does not
restrict the sign of θk, and its accuracy and loss gaps increase with K in Figure 2(a-b).

7 CONCLUSION, LIMITATIONS, AND FUTURE WORK

This work investigates how node class distribution and architectural choices impact the generalization
of spectral GNNs. Our findings show that spectral GNNs generalize well on graphs with strong
homophilic or heterophilic structures, where node class distributions exhibit clear patterns, and the
generalization error of spectral GNNs increases with polynomial order under certain conditions.

We derive the uniform transductive stability of spectral GNNs on graphs generated by the general
multi-class cSBM, providing insights into the relationships between graph homophily, polynomial
order, and generalization error bounds. However, this analysis is limited to a specialized cSBM,
leaving room for further exploration of more diverse graph generation models. Another limitation
lies in architectural choices. While these choices, such as the selection of the graph matrix (e.g.,
Laplacian vs. adjacency matrix) and polynomial basis (e.g., Chebyshev vs. Bernstein), are critical
to generalization performance, we do not explore their specific impacts on generalization bounds.
Future work could investigate how these design decisions influence the theoretical and practical
performance of spectral GNNs. Finally, our theoretical analysis assumes training with gradient
descent, whereas Adam is the optimizer most commonly used in practice. This discrepancy between
theoretical assumptions and practical applications highlights an important direction for future research
to bridge the gap and improve the relevance of theoretical findings to real-world scenarios.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

George B Arfken, Hans J Weber, and Frank E Harris. Mathematical methods for physicists: a
comprehensive guide. Academic press, 2011.

Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoit Gaüzère, Sébastien Adam, and Paul
Honeine. Analyzing the expressive power of graph neural networks in a spectral perspective. In
International Conference on Learning Representations, 2021.

Aseem Baranwal, Kimon Fountoulakis, and Aukosh Jagannath. Effects of graph convolutions in
multi-layer networks. In The Eleventh International Conference on Learning Representations.

Aseem Baranwal, Kimon Fountoulakis, and Aukosh Jagannath. Graph convolution for semi-
supervised classification: Improved linear separability and out-of-distribution generalization.
In International Conference on Machine Learning, pp. 684–693. PMLR, 2021.

Aseem Baranwal, Kimon Fountoulakis, and Aukosh Jagannath. Optimality of message-passing
architectures for sparse graphs. Advances in Neural Information Processing Systems, 36:40320–
40341, 2023.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

Arash Behboodi, Gabriele Cesa, and Taco Cohen. A pac-bayesian generalization bound for equivariant
networks. ArXiv, abs/2210.13150, 2022. URL https://api.semanticscholar.org/
CorpusID:253097790.

Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of Machine Learning
Research, 2:499–526, 2002.

Vladimir Cherkassky, Xuhui Shao, Filip M Mulier, and Vladimir N Vapnik. Model complexity
control for regression using vc generalization bounds. IEEE transactions on Neural Networks, 10
(5):1075–1089, 1999.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. arXiv: Learning, 2021.

Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. On provable benefits of depth in training
graph convolutional networks. Advances in Neural Information Processing Systems, 34:9936–9949,
2021.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29, 2016.

Yash Deshpande, Subhabrata Sen, Andrea Montanari, and Elchanan Mossel. Contextual stochastic
block models. Advances in Neural Information Processing Systems, 31, 2018.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for
deep nets. In International Conference on Machine Learning, 2017.

Maximilien Dreveton, Felipe S. Fernandes, and Daniel R. Figueiredo. Exact recovery and bregman
hard clustering of node-attributed stochastic block model. ArXiv, abs/2310.19854, 2023. URL
https://api.semanticscholar.org/CorpusID:264824545.

Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.

Giuseppe Alessio D’Inverno, Monica Bianchini, and Franco Scarselli. Vc dimension of graph neural
networks with pfaffian activation functions. 2024. URL https://api.semanticscholar.
org/CorpusID:267095159.

Ran El-Yaniv and Dmitry Pechyony. Stable transductive learning. In Learning Theory: 19th Annual
Conference on Learning Theory, COLT 2006, Pittsburgh, PA, USA, June 22-25, 2006. Proceedings
19, pp. 35–49. Springer, 2006.

11

https://api.semanticscholar.org/CorpusID:253097790
https://api.semanticscholar.org/CorpusID:253097790
https://api.semanticscholar.org/CorpusID:264824545
https://api.semanticscholar.org/CorpusID:267095159
https://api.semanticscholar.org/CorpusID:267095159

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ran El-Yaniv and Dmitry Pechyony. Transductive rademacher complexity and its applica-
tions. In Annual Conference Computational Learning Theory, 2007. URL https://api.
semanticscholar.org/CorpusID:6444242.

Pascal Esser, Leena Chennuru Vankadara, and Debarghya Ghoshdastidar. Learning theory can
(sometimes) explain generalisation in graph neural networks. Advances in Neural Information
Processing Systems, 34:27043–27056, 2021.

Michael J Evans and Jeffrey S Rosenthal. Probability and statistics: The science of uncertainty.
Macmillan, 2004.

Billy J Franks, Christopher Morris, Ameya Velingker, and Floris Geerts. Weisfeiler-leman at the
margin: When more expressivity matters. arXiv preprint arXiv:2402.07568, 2024.

Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of
graph neural networks. In International Conference on Machine Learning, pp. 3419–3430. PMLR,
2020.

Saeed Ghadimi and Guanghui Lan. Stochastic first- and zeroth-order methods for noncon-
vex stochastic programming. SIAM J. Optim., 23:2341–2368, 2013. URL https://api.
semanticscholar.org/CorpusID:14112046.

Mingguo He, Zhewei Wei, Zengfeng Huang, and Hongteng Xu. Bernnet: Learning arbitrary graph
spectral filters via bernstein approximation. In Advances in Neural Information Processing Systems
(NeurIPS), 2021.

Mingguo He, Zhewei Wei, and Ji rong Wen. Convolutional neural networks on graphs with
chebyshev approximation, revisited. ArXiv, abs/2202.03580, 2022a. URL https://api.
semanticscholar.org/CorpusID:246652363.

Mingguo He, Zhewei Wei, and Ji rong Wen. Convolutional neural networks on graphs with
chebyshev approximation, revisited. ArXiv, abs/2202.03580, 2022b. URL https://api.
semanticscholar.org/CorpusID:246652363.

Haotian Ju, Dongyue Li, Aneesh Sharma, and Hongyang R Zhang. Generalization in graph neural
networks: Improved pac-bayesian bounds on graph diffusion. In International Conference on
Artificial Intelligence and Statistics, 2023.

Thomas Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2017.

Ilja Kuzborskij and Christoph Lampert. Data-dependent stability of stochastic gradient descent. In
International Conference on Machine Learning, pp. 2815–2824. PMLR, 2018.

JING LEI. A goodness-of-fit test for stochastic block models. The Annals of Statistics, 44(1):401–424,
2016.

Shaojie Li and Yong Liu. Improved learning rates for stochastic optimization: Two theoretical
viewpoints. ArXiv, abs/2107.08686, 2021. URL https://api.semanticscholar.org/
CorpusID:236087657.

Renjie Liao, Raquel Urtasun, and Richard Zemel. A pac-bayesian approach to generalization bounds
for graph neural networks. In International Conference on Learning Representations, 2021.

Kangkang Lu, Yanhua Yu, Hao Fei, Xuan Li, Zixuan Yang, Zirui Guo, Meiyu Liang, Mengran Yin,
and Tat-Seng Chua. Improving expressive power of spectral graph neural networks with eigenvalue
correction. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
14158–14166, 2024.

Jiaqi Ma, Junwei Deng, and Qiaozhu Mei. Subgroup generalization and fairness of graph
neural networks. In Neural Information Processing Systems, 2021. URL https://api.
semanticscholar.org/CorpusID:235669723.

12

https://api.semanticscholar.org/CorpusID:6444242
https://api.semanticscholar.org/CorpusID:6444242
https://api.semanticscholar.org/CorpusID:14112046
https://api.semanticscholar.org/CorpusID:14112046
https://api.semanticscholar.org/CorpusID:246652363
https://api.semanticscholar.org/CorpusID:246652363
https://api.semanticscholar.org/CorpusID:246652363
https://api.semanticscholar.org/CorpusID:246652363
https://api.semanticscholar.org/CorpusID:236087657
https://api.semanticscholar.org/CorpusID:236087657
https://api.semanticscholar.org/CorpusID:235669723
https://api.semanticscholar.org/CorpusID:235669723

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
networks? In 10th International Conference on Learning Representations, ICLR 2022, 2022.

Sohir Maskey, Ron Levie, Yunseok Lee, and Gitta Kutyniok. Generalization analysis of message
passing neural networks on large random graphs. Advances in neural information processing
systems, 35:4805–4817, 2022.

David A. McAllester. Some pac-bayesian theorems. Machine Learning, 37:355–363, 1998. URL
https://api.semanticscholar.org/CorpusID:11417123.

Christopher Morris, Floris Geerts, Jan Tönshoff, and Martin Grohe. Wl meet vc. In International
Conference on Machine Learning, pp. 25275–25302. PMLR, 2023.

Kenta Oono and Taiji Suzuki. Optimization and generalization analysis of transduction through
gradient boosting and application to multi-scale graph neural networks. Advances in Neural
Information Processing Systems, 33:18917–18930, 2020.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A
critical look at the evaluation of gnns under heterophily: Are we really making progress? arXiv
preprint arXiv:2302.11640, 2023.

Michael James David Powell. Approximation theory and methods. Cambridge university press, 1981.

Franco Scarselli, Ah Chung Tsoi, and Markus Hagenbuchner. The vapnik–chervonenkis dimension
of graph and recursive neural networks. Neural Networks, 108:248–259, 2018.

Huayi Tang and Y. Liu. Towards understanding the generalization of graph neural networks.
ArXiv, abs/2305.08048, 2023a. URL https://api.semanticscholar.org/CorpusID:
258685824.

Huayi Tang and Yong Liu. Towards understanding the generalization of graph neural networks. In
International Conference on Machine Learning, 2023b.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio’, and Yoshua
Bengio. Graph attention networks. ArXiv, abs/1710.10903, 2018.

Saurabh Verma and Zhi-Li Zhang. Stability and generalization of graph convolutional neural networks.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 1539–1548, 2019.

Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks. ArXiv,
abs/2205.11172, 2022.

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. arXiv preprint arXiv:1905.11881, 2019.

Yingxue Zhang, Florence Regol, Soumyasundar Pal, Sakif Khan, Liheng Ma, and Mark Coates.
Detection and defense of topological adversarial attacks on graphs. In International Conference on
Artificial Intelligence and Statistics, pp. 2989–2997, 2021.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
AI open, 1:57–81, 2020.

Xianchen Zhou and Hongxia Wang. The generalization error of graph convolutional networks may
enlarge with more layers. Neurocomputing, 424:97–106, 2021.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in neural
information processing systems, 33:7793–7804, 2020.

13

https://api.semanticscholar.org/CorpusID:11417123
https://api.semanticscholar.org/CorpusID:258685824
https://api.semanticscholar.org/CorpusID:258685824

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

CONTENTS (APPENDIX)

A Stability and Gradient 14
A.1 Lemmas for Theorem 6 . 14
A.2 Proof of Theorem 6 . 15

B Stability on General Multi-Class cSBM 17
B.1 Lemmas for Theorem 8 . 17
B.2 Proof of Theorem 8 . 19

C Generalization Error Bound of Spectral GNNs 25
C.1 Proof of Theorem 9 . 25
C.2 Proof of Lemma 10 . 26

D Stability on Specialized cSBM 29
D.1 Lemmas for Theorem 13 . 29
D.2 Expectation and Variance of Ak

ij and (ÃkXW)ij 32
D.3 Proof of Theorem 13 . 39

E Analysis of Properties 44
E.1 Proof of Proposition 12 . 44
E.2 Proof of Theorem 14 . 45
E.3 Proof of Theorem 15 . 47
E.4 Proof of Proposition 16 . 48

F Details of Experiments 49
F.1 Datasets . 49
F.2 Spectral GNNs . 49
F.3 Hyper-parameter Settings . 51
F.4 Detailed Experimental Results . 51

A STABILITY AND GRADIENT

A.1 LEMMAS FOR THEOREM 6

We start by establishing the maximum variation in the sample loss and the maximum change in the
gradient of the loss function with respect to the parameters {Θ,W} of spectral GNNs, as defined
in Eq. (1). These two properties play a crucial role in the subsequent analysis.

Based on Assumption 1, we derive the following lemmas.

Lemma 17 (Bound of Loss function to Parameters). Under Assumption 1, given a loss function ℓ
and a spectral GNN, for parameters Θ̄, W̄ ,Θ′,W ′ and any node vi with truth class yi we have

∥ℓ(yi, ŷi|Θ=Θ̄,W=W̄)− ℓ(yi, ŷi|Θ′,W ′)∥F ≤ α1

√
∥Θ̄−Θ′∥2F + ∥W̄ −W ′∥2F

where α1 = Lip(ℓ)Lip(Ψ).

Proof. Under Assumption 1, we have:

∥ℓ(yi, ŷi|τ=τ̄)− ℓ(yi, ŷi|τ=τ ′)∥ ≤ Lip(ℓ)∥ŷi|τ=τ̄ − ŷi|τ=τ ′∥F ;

∥Lip(ℓ)∥ŷi|τ=τ̄ − ŷi|τ=τ ′∥F ≤ Lip(Ψ)∥τ̄ − τ ′∥F .

By combining the two inequalities above, we arrive at:

∥ℓ(yi, ŷi|τ=τ̄)− ℓ(yi, ŷi|τ=τ ′)∥ ≤ Lip(ℓ)Lip(Ψ)∥τ̄ − τ ′∥F .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Lemma 18 (Bound of Gradient to Parameters). Under Assumption 1, Assumption 2, for parameters
Θ̄, W̄ ,Θ′,W ′ of a spectral GNN, the following holds for any node vi with truth class yi

∥∇ℓ(yi, ŷi|Θ=Θ̄,W=W̄)−∇ℓ(yi, ŷi|Θ′,W ′)∥F ≤ α2

√
∥Θ̄−Θ′∥2F + ∥W̄ −W ′∥2F

where α2 = (Smt(Ψ)β1 + Smt(ℓ)Lip(Ψ)β2) .

Proof. Since we have
∇ℓ(yi, ŷi|τ=τ̄) = ∇ŷi

ℓ(y, ŷi)|τ=τ̄ · ∇ŷi|τ=τ̄ ;

∇ℓ(yi, ŷi|τ=τ ′) = ∇ŷiℓ(y, ŷi)|τ=τ ′ · ∇ŷi|τ=τ ′ ,

this leads to

∇ℓ(yi, ŷi|τ=τ̄)−∇ℓ(yi, ŷi|τ=τ ′) = ∇ŷi
ℓ(y, ŷi)|τ=τ̄ (∇ŷi|τ=τ̄ −∇ŷi|τ=τ ′)

+ (∇ŷi
ℓ(y, ŷi)|τ=τ̄ −∇ŷi

ℓ(y, ŷi)|τ=τ ′)∇ŷi|τ=τ ′ .

Hence, we obtain the following

∥∇ℓ(yi, ŷi|τ=τ̄)−∇ℓ(yi, ŷi|τ=τ ′)∥F ≤ ∥∇ŷi
ℓ(y, ŷi)|τ=τ̄∥F · ∥∇ŷi|τ=τ̄ −∇ŷi|τ=τ ′∥F

+ ∥∇ŷi
ℓ(y, ŷi)|τ=τ̄ −∇ŷi

ℓ(y, ŷi)|τ=τ ′∥F · ∥∇ŷi|τ=τ ′∥F .
(5)

Under Assumption 1 and Assumption 2, we have:

∥∇ŷi|τ=τ̄ −∇ŷi|τ=τ ′∥F ≤ Smt(Ψ)∥τ̄ − τ ′∥F
∥∇ŷi

ℓ(y, ŷi)|τ=τ̄∥F ≤ β1.
(6)

Under Assumption 1, we have:

∥∇ŷi
ℓ(y, ŷi)|τ=τ̄ −∇ŷi

ℓ(y, ŷi)|τ=τ ′∥F ≤ Smt(ℓ)∥ŷi|τ=τ̄ − ŷi|τ=τ ′∥F
≤ Smt(ℓ)Lip(Ψ)∥τ̄ − τ ′∥F .

(7)

Under Assumption 2, we have:
∥∇ŷi|τ=τ ′∥F ≤ β2. (8)

Substitute Eq. (6), Eq. (7), and Eq. (8) into Eq. (5), we have

∥∇ℓ(yi, ŷi|τ=τ̄)−∇ℓ(yi, ŷi|τ=τ ′)∥F ≤ Smt(Ψ)∥τ̄ − τ ′∥F · β1 + Smt(ℓ)Lip(Ψ)∥τ̄ − τ ′∥F · β2
= (Smt(Ψ)β1 + Smt(ℓ)Lip(Ψ)β2) ∥τ̄ − τ ′∥F .

A.2 PROOF OF THEOREM 6

Theorem 6 (Stability and Gradient Norm). Let Ψ be a spectral GNN trained using gradient descent
for T iterations with a learning rate η on a training dataset Sm, and evaluated on a testing set Du.
Under Assumption 1, for all iterations t ∈ [1, T] and any sample (xi, yi) in Sm or Du, if the gradient
norm satisfies ∥∇ℓ(yi, ŷi|Θt,W t)∥F ≤ β, where {Θt,W t} are the parameters at the t-th iteration,
then Ψ satisfies γ-uniform transductive stability with:

γ = rβ, r =
2ηα1

m

T∑
t=1

(1 + ηα2)
t−1,

where α1 = Lip(ℓ) · Lip(Ψ) and α2 = Smt(Ψ)β1 + Smt(ℓ)Lip(Ψ)β2.

Proof. We define τ = [Θ;W] as the concatenation of the parameters Θ and W . From Lemma 17
and Lemma 18, we derive:

∥ℓ(yi, ŷi|τ)− ℓ(yi, ŷi|τ ′)∥F ≤ α1∥τ − τ ′∥F ;

∥∇ℓ(yi, ŷi|τ)−∇ℓ(yi, ŷi|τ ′)∥F ≤ α2∥τ − τ ′∥F ,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

where α1 = Lip(ℓ)Lip(Ψ) and α2 = (Smt(Ψ)β1 + Smt(ℓ)Lip(Ψ)β2). The updating rule for
gradient descent is given by:

τ t+1 = τ t − η∇LSm
(τ t);

τ t+1
ij = τ tij − η∇LSij

m
(τ tij),

where

LSm(τ t) =
1

m

m∑
r=1

ℓ(yr, ŷr|τt) and LSij
m
(τ tij) =

1

m

m∑
r=1

ℓ(yr, ŷr|τt
ij
).

represent the empirical loss on the training dataset Sm and Sij
m, respectively. The difference between

the empirical losses is given by:

LSij
m
(τ tij)−LSm(τ t) =

1

m

 m∑
r=1,r ̸=i,j

(
ℓ(yr, ŷr|τt

ij
)− ℓ(yr, ŷr|τt)

)
+ ℓ(yj , ŷj |τt

it
)− ℓ(yi, ŷi|τt)

 .
We derive the parameter difference:

∥τ t+1
ij − τ t+1∥F =

∥∥∥τ tij − η∇LSij
m
(τ tij)− τ t + η∇LSm

(τ t)
∥∥∥
F

≤ ∥τ tij − τ t∥F + η∥∇(LSm
(τ t)− LSij

m
(τ tij))∥F

= ∥τ tij − τ t∥F +
η

m

∥∥∥∥∥∥∥∇
 m∑

r=1
r ̸=i,j

(
ℓ(yr, ŷr|τt

ij
)− ℓ(yr, ŷr|τt)

)
+ ℓ(yj , ŷj |τt

ij
)− ℓ(yi, ŷi|τt)


∥∥∥∥∥∥∥
F

≤ ∥τ tij − τ t∥F +
η

m

∥∥∥∥∥∥∥
m∑
r=1
r ̸=i,j

α2∥τ tij − τ t∥F +∇
[
ℓ(yj , ŷj |τt

ij
)− ℓ(yi, ŷi|τt)

]∥∥∥∥∥∥∥
F

(Assumption 1)

≤ ∥τ tij − τ t∥F +
η

m
(m− 1)α2∥τ tij − τ t∥F +

η

m

∥∥∥∇ [ℓ(yj , ŷj |τt
ij
)− ℓ(yi, ŷi|τt)

]∥∥∥
F

≤ ∥τ tij − τ t∥F +
η

m
(m− 1)α2∥τ tij − τ t∥F +

2ηβ

m
(Theorem 13)

=

(
1 +

m− 1

m
ηα2

)
∥τ tij − τ t∥F +

2ηβ

m

≤ (1 + ηα2)∥τ tij − τ t∥F +
2ηβ

m
.

After T iterations, we obtain∥∥τTij − τT
∥∥
F
≤ (1 + ηα2)

∥∥τT−1
ij − τT−1

∥∥
F
+

2ηβ

m

≤ (1 + ηα2)[(1 + ηα2)
∥∥τT−2

ij − τT−2
∥∥
F
+

2ηβ

m
]

≤ (1 + ηα2)
T
∥∥τ0ij − τ0

∥∥
F
+

T∑
t=1

(1 + ηα2)
t−1 2ηβ

m

=

T∑
t=1

(1 + ηα2)
t−1 2ηβ

m
.

Since the loss function ℓ is α1-Lipschitz continuous, for any sample (xi, yi) with parameters
τT = [ΘT ;WT] and τTij = [ΘT

ij ;W
T
ij], we have:∣∣ℓ(ŷi, yi; τT)− ℓ(ŷi, yi; τ

T
ij)
∣∣ ≤ α1

∣∣τT − τTij
∣∣

≤ α1

T∑
t=1

(1 + ηα2)
t−1 2ηβ

m
.

The proof is completed.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B STABILITY ON GENERAL MULTI-CLASS CSBM

We derive the uniform transductive stability of spectral GNNs defined in Eq. (1) on graphs generated
by G ∼ cSBM(n, f,Π, Q). Then we discuss how the non-linear feature transformation function
affect the stability.

We first give a brief introduction to inequalities and lemmas used in this proof.

B.1 LEMMAS FOR THEOREM 8

Lemma 19 (Jensen’s Inequality). Let X be an arbitrary random variable, and let f : R1 → R1 be a
convex function such that E [f(X)] is finite. Then f(E [f(X)]) ≤ E [f(X)].

Lemma 20 (Markov’s Inequality). If X is a non-negative random variable, then for all a > 0,

P (X ≥ a) ≤ E [X]

a
.

That is, the probability that X exceeds any given value a is no more than the expectation of X
divided by a.

Remark. Lemma 19, Lemma 20 are important inequalities about a variable and its expectation.
Details can be found in (Evans & Rosenthal, 2004).

Lemma 21 (Cauchy-Schwarz Inequality (Arfken et al., 2011)).

(

n∑
k=1

akbk)
2 ≤ (

n∑
k=1

a2k)(

n∑
k=1

b2k).

The square of the ℓ2-norm of the product of two vectors is less than or equal to the product of the
squares of the ℓ2-norms of the individual vectors.

Lemma 22 (Trace and Frobenius Norm). For any matrix A ∈ Rn×n, the relation between its trance
and its Frobenius norm is

Tr(A) ≤
√
n · ∥A∥F .

Proof. The trace of A is defined as:

Tr(A) =

n∑
i=1

aii.

Applying the absolute value, we have:

Tr(A) ≤
n∑

i=1

|aii|.

Using the Cauchy-Schwarz inequality (Lemma 21), this becomes:

n∑
i=1

|aii| ≤
√
n ·

√√√√ n∑
i=1

|aii|2.

Since |aii|2 = a2ii, we can write: √√√√ n∑
i=1

|aii|2 =

√√√√ n∑
i=1

a2ii.

Thus:

Tr(A) ≤
√
n ·

√√√√ n∑
i=1

a2ii =
√
n · ∥A∥F .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Lemma 23 (Partial Derivatives). For spectral graph neural networks defined as Ŷ =

softmax
(∑K

k=0 θkÃ
kXW

)
, with node feature matrix X ∈ Rn×f and ground truth node label

matrix Y ∈ Rn×C , the cross-entropy loss for a single sample (xi, yi) is given by:

ℓ(ŷi, yi; Θ,W) = −
C∑

c=1

Yic log
(
Ŷic

)
.

The partial derivatives of ℓ(ŷi, yi; Θ,W) with respect to θk and Wpq are:

∂ℓ(ŷi, yi; Θ,W)

∂θk
=

C∑
c=1

(
Ŷic − Yic

)(
ÃkXW

)
ic
,

∂ℓ(ŷi, yi; Θ,W)

∂Wpq
=
(
Ŷiq − Yiq

)(K∑
k=0

θkÃ
kX

)
ip

.

Proof. We begin with the following definitions:

Z =

K∑
k=0

θkÃ
kXW, Ŷic =

eZic∑C
c′=1 e

Zic′
, ℓ(ŷi, yi; Θ,W) = −

C∑
c=1

Yic log(Ŷic),

where Z ∈ Rn×C represents the feature matrix after aggregation, Ŷic is the softmax output for class
c, and ℓ(ŷi, yi; Θ,W) is the cross-entropy loss for sample (xi, yi). We then compute the following
partial derivatives:

∂ℓ(ŷi, yi; Θ,W)

∂Ŷic
= −Yic

Ŷic
,

∂Ŷic
∂Zic′

= Ŷic(δcc′ − Ŷic′),

where δcc′ is the Kronecker delta, which equals 1 if c = c′ and 0 otherwise.

(1) Gradient w.r.t. θk: We have:
∂Zic

∂θk
= (ÃkXW)ic.

By the chain rule of gradient, we have:

∂ℓ(ŷi, yi; Θ,W)

∂θk
= −

C∑
c=1

ℓ(ŷi, yi; Θ,W)

∂Ŷic
·

(
C∑

c′=1

∂Ŷic
∂Zic′

· ∂Zic′

∂θk

)

= −
C∑

c=1

Yic

Ŷic
·

(
C∑

c′=1

Ŷic

(
δcc′ − Ŷic′

)
·
(
ÃkXW

)
ic′

)

= −
C∑

c=1

Yic ·

(
C∑

c′=1

(
δcc′ − Ŷic′

)
·
(
ÃkXW

)
ic′

)

= −
C∑

c=1

Yic ·

((
ÃkXW

)
ic
−

C∑
c′=1

Ŷic′
(
ÃkXW

)
ic′

)

= −
C∑

c=1

Yic

(
ÃkXW

)
ic
+

C∑
c′=1

Ŷic′
(
ÃkXW

)
ic′

=

C∑
c=1

(
Ŷic − Yic

)(
ÃkXW

)
ic

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(2) Gradient w.r.t. W : Based on the following

Zic =

K∑
k=0

θk

n∑
j=1

(Ãk)ij

f∑
r=1

XjrWrc,

we have
∂Zic

∂Wpq
=

K∑
k=0

θk

n∑
j=1

(Ãk)ijXjpδcq = δcq

K∑
k=0

θk

(
ÃkX

)
ip
,

where δcq is the Kronecker delta, which is 1 if c = q and 0 otherwise. Then, by the chain
rule of gradient, we have:

∂ℓ(ŷi, yi; Θ,W)

∂Wpq
= −

C∑
c=1

ℓ(ŷi, yi; Θ,W)

∂Ŷic
·

(
C∑

c′=1

∂Ŷic
∂Zic′

· ∂Zic′

∂Wpq

)

= −
C∑

c=1

Yic

Ŷic
·

(
C∑

c′=1

Ŷic

(
δcc′ − Ŷic′

)
·

(
δc′q

K∑
k=0

θk

(
ÃkX

)
ip

))

= −
C∑

c=1

Yic ·

(
C∑

c′=1

(
δcc′ − Ŷic′

)
·

(
δc′q

K∑
k=0

θk

(
ÃkX

)
ip

))

= −
C∑

c=1

Yic ·

((
δcq

K∑
k=0

θk

(
ÃkX

)
ip

)
−

C∑
c′=1

Ŷic′

(
δc′q

K∑
k=0

θk

(
ÃkX

)
ip

))

= −
C∑

c=1

Yic

(
δcq

K∑
k=0

θk

(
ÃkX

)
ip

)
+

C∑
c′=1

Ŷic′

(
δc′q

K∑
k=0

θk

(
ÃkX

)
ip

)

=

C∑
c=1

(
Ŷic − Yic

)(
δcq

K∑
k=0

θk

(
ÃkX

)
ip

)

=

C∑
c=1

K∑
k=0

θkδcq

(
Ŷic − Yic

)(
ÃkX

)
ip

=
(
Ŷiq − Yiq

)(K∑
k=0

θkÃ
kX

)
ip

.

B.2 PROOF OF THEOREM 8

Theorem 8. Consider a spectral GNN Ψ with polynomial order K trained using full-batch gradient
descent for T iterations with a learning rate η on a training dataset Sm sampled from a graph
G ∼ cSBM(n, f,Π, Q) with average node degree d ≪ n. When n → ∞ and K ≪ n, under
Assumptions 1, 2, and 4, for any node vi, i ∈ [n], and for a constant ϵ ∈ (0, 1), with probability at
least 1− ϵ, Ψ satisfies γ-uniform transductive stability, where γ = rβ and

β =
1

ϵ

[
O
(
E
[
∥ŷi − yi∥2F

])
+O

(
∥π⊤

yi
πyi +Σyi∥F

)
+O

 K∑
k=1

n∑
j=1

E[Ak
ij]

∥∥∥∥∥
n∑

t=1

E[Ak
it]π

⊤
yj
πyt

+ E[Ak
ij]Σyj

∥∥∥∥∥
F

].
Proof. Any spectral GNN described in Eq. (1) with a linear feature transformation function and a
polynomial basis expanded on a normalized graph matrix can be expressed in the following form:

Ŷ = softmax

(
K∑

k=0

θkÃ
kXW

)
, (9)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where Ã = D− 1
2AD− 1

2 is the normalized graph adjacency matrix, and D is the diagonal degree
matrix. Here, Y ∈ Rn×C denotes the ground truth node label matrix.

(1) Walk counting: According to Definition 7, we have

E[Ak
ij] =

∑
p∈Pk

ij

∏
(v,v′)∈p

Qyy′

(2) Feature expectation: Since we have G ∼ cSBM(n, f,Π, Q), node classes have a uniform
prior yi ∼ U(1, C). Thus,

E [XW]ij =
1

n

n∑
u=1

(πyu
W)j

=
1

n

n∑
u=1

C∑
c=1

p(yu = c)(πcW)j

=
1

n

n∑
u=1

C∑
c=1

1

C
(πcW)j

=
1

C

C∑
c=1

(πcW)j .

(10)

– When k ≥ 1, we have

E[(ÃkXW)ij] = E
[
Ãk

i:

]
E [(XW):j]

=

n∑
s=1

E
[
Ãk

is

]
E [(XW)sj]

=

n∑
s=1

E
[
Ãk

is

]
· 1

C

C∑
c=1

(πcW)j .

– When k = 0, we have

E[(IXW)ij] = E [(XW)ij]

=
1

C

C∑
c=1

(πcW)j .

Thus,

E[(ÃkXW)ij] =

{
1
C

∑C
c=1(πcW)j , k = 0∑n

s=1 E
[
Ãk

is

]
· 1
C

∑C
c=1(πcW)j , k ≥ 1

(11)

(3) Gradient Norm: The gradient norm can be relaxed as:

E [∥∇ℓ(ŷi, yi; Θ,W)∥F] ≤ E [∥∇ℓ(ŷi, yi; Θ,W)∥ℓ1]

=

K∑
k=0

E
[
∥∂ℓ(ŷi, yi; Θ,W)

∂θk
∥ℓ1
]
+ E

[
∥∂ℓ(ŷi, yi; Θ,W)

∂W
∥ℓ1
]
.

(12)

According to Eq. (9) and Lemma 23, we get the partial derivatives ∂ℓ(ŷi,yi;Θ,W)
∂θk

and
∂ℓ(ŷi,yi;Θ,W)

∂Wpq
. Specially, when m = 1, we get the partial derivatives of empirical loss on

training sample (xi, yi):

∂ℓ(ŷi, yi; Θ,W)

∂θk
=

C∑
c=1

(
Ŷic − Yic

)(
ÃkXW

)
ic

(13)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

∂ℓ(ŷi, yi; Θ,W)

∂Wpq
=
(
Ŷiq − Yiq

)(K∑
k=0

θkÃ
kX

)
ip

(14)

Thus, we have:

E
[
∥∂ℓ(ŷi, yi; Θ,W)

∂θk
∥ℓ1
]
= E

[
|

C∑
c=1

(
Ŷic − Yic

)(
ÃkXW

)
ic
|

]

≤
C∑

c=1

E
[
|
(
Ŷic − Yic

)(
ÃkXW

)
ic
|
]

=

C∑
c=1

E
[
|
(
Ŷic − Yic

)
| · |
(
ÃkXW

)
ic
|
]

≤
C∑

c=1

1

2

(
E
[(
Ŷic − Yic

)2]
+ E

[(
ÃkXW

)2
ic

])
(Lemma 28)

=
1

2

(
E
[
∥ŷi − yi∥2F

]
+ E

[
∥Ãk

i:XW∥2F
])

;

(15)

E
[
∥∂ℓ(ŷi, yi; Θ,W)

∂W
∥ℓ1
]
=

f∑
p=1

C∑
q=1

E
[
∥∂ℓ(ŷi, yi; Θ,W)

∂Wpq
∥ℓ1
]

=

f∑
p=1

C∑
q=1

E

|(Ŷiq − Yiq

)(K∑
k=0

θkÃ
kX

)
ip

|


≤

f∑
p=1

K∑
k=0

|θk|

(
C∑

q=1

E
[
|
(
Ŷiq − Yiq

)
| · |
(
ÃkX

)
ip
|
])

≤
f∑

p=1

K∑
k=0

|θk|

(
E

[
C∑

q=1

(
Ŷiq − Yiq

)2]
+ E

[
C∑

q=1

(
ÃkX

)2
ip

])
(Lemma 28)

=

f∑
p=1

K∑
k=0

|θk|
(
E
[
∥ŷi − yi∥2F

]
+ CE

[(
ÃkX

)2
ip

])

=

K∑
k=0

|θk|
(
f · E

[
∥ŷi − yi∥2F

]
+ CE

[
∥Ãk

i:X∥2F
])
.

(16)

(4) Expectation E
[
∥Ãk

i:XW∥2F
]

and E
[
∥Ãk

i:X∥2F
]
: For sparse graphs G with adjacency

matrix A, when d ≪ n (average degree much smaller than the number of nodes) and
k ≪ n (walk length much smaller than the number of nodes), Ak

ia and Ak
ib can be treated

as independent variables due to the following reasons: (a). The overlap between walks of
different lengths is limited due to the sparsity of the graph. (b). The existence of a k-length
walk between two nodes is a rare event when k ≪ n, and the joint occurrences of two rare
events can be neglected. (c). When d ≪ n, the variance of Ak

ij is negligible compared to

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(
E[Ak

ij]
)2

. Thus, by Eq. (11), we derive the following for the case k ≥ 1:

E[∥Ãk
i:XW∥2F] = E

 C∑
c=1

(
n∑

s=1

Ãk
is (XW)sc

)2


= E

[
C∑

c=1

n∑
s=1

n∑
t=1

Ãk
isÃ

k
it (XW)sc (XW)tc

]

=

C∑
c=1

n∑
s,t=1

E
[
Ãk

isÃ
k
it (XW)sc (XW)tc

]

=

C∑
c=1

n∑
s,t=1

E
[
Ãk

is

]
· E
[
Ãk

it

]
· E [(XW)sc (XW)tc]

=

C∑
c=1

n∑
s=1

E
[
Ãk

is

] [∑
t=1,t̸=s

E
[
Ãk

it

]
· E [(XW)sc (XW)tc]

+ E
[
Ãk

is

]
· E
[
(XW)

2
sc

]]
=

1

d2k

C∑
c=1

n∑
s=1

E
[
Ãk

is

] [n∑
t=1,t̸=s

E
[
Ãk

it

]
· (πys

W)c · (πyt
W)c

+ E
[
Ãk

is

]
·W⊤

:c

(
π⊤
ys
πys

+Σys

)
W:c

]
.

When k = 0, we have:

E
[
∥Ãk

i:XW∥2F
]
= E

[
∥Xi:W∥2F

]
= E

[
C∑

c=1

(XW)
2
ic

]

=

C∑
c=1

W⊤
:c

(
π⊤
yi
πyi

+Σyi

)
W:c.

Thus, we obtain

E
[
∥Ãk

i:XW∥2F
]
=



∑C
c=1W

⊤
:c

(
π⊤
yi
πyk

+Σyi

)
W:c, k = 0

1
d2k

∑C
c=1

∑n
s=1 E

[
Ãk

is

] [∑n
t=1,t̸=s E

[
Ãk

it

]
· (πys

W)c · (πyt
W)c

+E
[
Ãk

is

]
·W⊤

:c

(
π⊤
ys
πys

+Σys

)
W:c

]
, k ≥ 1

(17)
Similarly, by Eq. (10), we have

E
[
∥Ãk

i:X∥2F
]
=



∑C
c=1 I

⊤
:c

(
π⊤
yi
πyk

+Σyi

)
I:c, k = 0

1
d2k

∑f
q=1

∑n
s=1 E

[
Ãk

is

] [∑n
t=1,t̸=s E

[
Ãk

it

]
· πys,q · πyt,q

+E
[
Ãk

is

]
· I⊤:q

(
π⊤
ys
πys +Σys

)
I:q

]
, k ≥ 1

(18)

By substituting Eq. (17) into Eq. (15), Eq. (18) into Eq. (16), and combining Eq. (15)
and Eq. (16) into Eq. (12), we obtain:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

E [∥∇ℓ(ŷi, yi; Θ,W)∥F]

≤ 1

2

(
E
[
∥ŷi − yi∥2F

]
+

C∑
c=1

W⊤
:c

(
π⊤
yi
πyi

+Σyi

)
W:c

)

+

K∑
k=1

1

2

[
E
[
∥ŷi − yi∥2F

]
+

1

d2k

C∑
c=1

n∑
s=1

E
[
Ãk

is

]
·
[n∑
t=1,t̸=s

E
[
Ãk

it

]
· (πys

W)c · (πyt
W)c + E

[
Ãk

is

]
·W⊤

:c

(
π⊤
ys
πys

+Σys

)
W:c

]]

+ |θ0|

(
f · E

[
∥ŷi − yi∥2F

]
+ C

f∑
c=q

I⊤:q
(
π⊤
yi
πyi +Σyi

)
I:q

)

+
K∑

k=1

|θk|
[
f · E

[
∥ŷi − yi∥2F

]
+ C

1

d2k

C∑
c=1

n∑
s=1

E
[
Ãk

is

]
·
[n∑
t=1,t̸=s

E
[
Ãk

it

]
· πys,q · πyt,q + E

[
Ãk

is

]
· I⊤:q

(
π⊤
ys
πys +Σys

)
I:q

]]

=

(
K + 1

2
+ f

K∑
k=0

|θk|

)
E
[
∥ŷi − yi∥2F

]
+

1

2

C∑
c=1

W⊤
:c

(
π⊤
yi
πyi

+Σyi

)
W:c + |θ0|C

C∑
c=1

I⊤:c
(
π⊤
yi
πyi

+Σyi

)
I:c

+

K∑
k=1

1

d2k

C∑
c=1

n∑
s=1

E
[
Ãk

is

]
·
[n∑
t=1,t̸=s

E
[
Ãk

it

]
· (πys

W)c · (πyt
W)c + E

[
Ãk

is

]
·W⊤

:c

(
π⊤
ys
πys

+Σys

)
W:c

]

+

K∑
k=1

C

d2k
|θk|

f∑
q=1

n∑
s=1

E
[
Ãk

is

]
·
[n∑
t=1,t̸=s

E
[
Ãk

it

]
· πys,q · πyt,q + E

[
Ãk

is

]
· I⊤:q

(
π⊤
ys
πys

+Σys

)
I:q

]

=

(
K + 1

2
+ f

K∑
k=0

|θk|

)
E
[
∥ŷi − yi∥2F

]
+

1

2

C∑
c=1

W⊤
:c

(
π⊤
yi
πyi +Σyi

)
W:c + |θ0|C

C∑
c=1

I⊤:c
(
π⊤
yi
πyi +Σyi

)
I:c

+

K∑
k=1

1

d2k

C∑
c=1

n∑
s=1

E
[
Ãk

is

]W⊤
:c

 n∑
t=1
t̸=s

E
[
Ãk

it

]
π⊤
ys
πyt + E

[
Ãk

is

]
(π⊤

ys
πys +Σys)

W:c


+

K∑
k=1

C|θk|
d2k

f∑
q=1

n∑
s=1

E
[
Ãk

is

] n∑
t=1
t̸=s

E
[
Ãk

it

]
πys,qπyt,q + E

[
Ãk

is

]
I⊤:q
(
(π⊤

ys
πys +Σys)

)
I:q

 .
Under Assumption 4, we can further simplify and relax the expression to:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

E [∥∇ℓ(ŷi, yi; Θ,W)∥F]

≤

(
K + 1

2
+ f

K∑
k=0

BΘ

)
E
[
∥ŷi − yi∥2F

]
+

1

2
Tr
(
WT

(
π⊤
yi
πyi +Σyi

)
W
)
+BΘCTr

(
π⊤
yi
πyi +Σyi

)
+

K∑
k=1

1

d2k

n∑
s=1

E
[
Ãk

is

]
Tr

 n∑
t=1
t ̸=s

E
[
Ãk

it

]
π⊤
ys
πyt

+ E
[
Ãk

is

]
(π⊤

ys
πys

+Σys
)


+

K∑
k=1

CBΘ

d2k

n∑
s=1

E
[
Ãk

is

] n∑
t=1
t ̸=s

E
[
Ãk

it

]
Tr
(
π⊤
ys
πyt

)
+ E

[
Ãk

is

]
Tr
(
(π⊤

ys
πys

+Σys
)
)

≤
(
K + 1

2
+ fBΘ(K + 1)

)
E
[
∥ŷi − yi∥2F

]
+

(
B2

W

2
+BΘC

)
Tr
(
π⊤
yi
πyi +Σyi

)
+

K∑
k=1

1 + CBΘ

d2k

n∑
j=1

E
[
Ak

ij

]
Tr

 n∑
t=1
t ̸=j

E
[
Ak

it

]
π⊤
yj
πyt + E

[
Ak

ij

] (
π⊤
yj
πyj +Σyj

) .

(19)

With Lemma 22, we rewrite it as

E [∥∇ℓ(ŷi, yi; Θ,W)∥F] ≤ O
(
E
[
∥ŷi − yi∥2F

])
+O

(
∥π⊤

yi
πyi +Σyi∥F

)
+O

 K∑
k=1

n∑
j=1

E
[
Ak

ij

]
∥

n∑
t=1

E
[
Ak

it

]
π⊤
yj
πyt

+ E
[
Ak

ij

]
Σyj

∥F

 .

(20)

(5) Concentration Bound: By Jensen’s inequality (Lemma 19), we have:

E[∥∇ℓ(ŷi, yi; Θ,W)∥F]2 ≤ E[∥∇ℓ(ŷi, yi; Θ,W)∥2F],

which implies:

E[∥∇ℓ(ŷi, yi; Θ,W)∥F] ≤
√

E[∥∇ℓ(ŷi, yi; Θ,W)∥2F]. (21)

Using Markov’s inequality (Lemma 20), for a positive constant a, we have:

P(∥∇ℓ(ŷi, yi; Θ,W)∥F ≥ a) ≤ E[∥∇ℓ(ŷi, yi; Θ,W)∥F]
a

= ϵ. (22)

Solving for a, we obtain:

a =
E[∥∇ℓ(ŷi, yi; Θ,W)∥F]

ϵ
. (23)

Therefore, combining Eq. (20), Eq. (21), Eq. (22), and Eq. (23), with probability at least
1− ϵ, we have:

∥∇ℓ(ŷi, yi; Θ,W)∥F ≤ β =
1

ϵ
E[∥∇ℓ(ŷi, yi; Θ,W)∥F].

When ∥∇ℓ(ŷi, yi; Θ,W)∥F ≤ β, according to Theorem 6, spectral GNNs on graphs G ∼
cSBM(n, f,Π, Q) have γ-uniform transductive stability. We rewrite this in Big-O notation

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

as:

γ = r · β, β =
1

ϵ

[
O
(
E
[
∥ŷi − yi∥2F

])
+O

(
∥π⊤

yi
πyi +Σyi∥F

)
+O

 K∑
k=1

n∑
j=1

E[Ak
ij]

∥∥∥∥∥
n∑

t=1

E[Ak
it]π

⊤
yj
πyt

+ E[Ak
ij]Σyj

∥∥∥∥∥
F

],
where r is the same constant as in Theorem 6.

C GENERALIZATION ERROR BOUND OF SPECTRAL GNNS

We derive the generalization error bound of spectral GNNs based on their uniform transductive
stability. Subsequently, we analyze how the number of training samples affects the generalization
error bound.

We begin by introducing two lemmas for this proof.
Lemma 24 (Inequality for permutation (El-Yaniv & Pechyony, 2006)). Let Z be a random permuta-
tion vector. Let f(Z) be an (m, q)-symmetric permutation function satisfying ∥f(Z)− f(Zij)∥ ≤ β

for all i ∈ Im1 and j ∈ Im+q
m+1 . Define H2(n) ≜

∑n
i=1

1
i2 and Ω(m, q) ≜ q2 (H2(m+ q)−H2(q)).

Then

P (f(Z)− E[f(Z)] ≥ ϵ) ≤ exp

(
− ϵ2

2β2Ω(m, q)

)
.

Lemma 25 (Risk and uniform stability (El-Yaniv & Pechyony, 2006)). Given any training set Sm

and test set Du, the following holds:

E [LDu
(Θ,W)− LSm

(Θ,W)] = E [∆(i, j, i, i)] , i ∈ Im1 , j ∈ Im+q
m+1 ,

where ∆(i, j, i, i) denotes the change in the loss of sample (xi, yi) when the model is trained on two
datasets: one with (xi, yi) in the training set and another with (xj , yj) from the test set exchanged
with (xi, yi).

C.1 PROOF OF THEOREM 9

Theorem 9 (Generalization Error Bound). Let H2(n) ≜
∑n

i=1
1
i2 and Ω(m,n − m) ≜

(n−m)
2
(H2(n)−H2(n−m)). For ϵ ∈ (0, 1), if a spectral GNN is γ-uniform transductive

stability with probability 1 − ϵ, then under Assumption 3, for δ ∈ (0, 1), with probability at least
(1− δ)(1− ϵ), the generalization error LDu

(Θ,W)− LSm
(Θ,W) is upper-bounded by:

γ +

(
2γ +

(
1

n−m
+

1

m

)
(Bℓ − γ)

)√
2Ω(m,n−m) log

1

δ
. (3)

Proof. Let ∆(i, j, s, t) ≜ ℓ(ŷt, yt; Θ
T
ij ,W

T
ij) − ℓ(ŷs, ys; Θ

T ,WT), where ΘT
ij ,W

T
ij are model pa-

rameters trained on dataset Sij
m for T iterations and ΘT ,WT are model parameters trained on

dataset Sm. We first derive a bound on the permutation stability of the function f(Sm,Du) ≜
LDu(Θ,W)− LSm(Θ,W), where q = n−m. The bound is given as:∥∥(LDu

(Θ,W)− LSm
(Θ,W))−

(
LDu

(Θij ,W ij)− LSm
(Θij ,W ij)

)∥∥ ≤

1

q

m+q∑
r=m+1,r ̸=j

∥∆(i, j, r, r)∥+ 1

q
∥∆(i, j, i, j)∥+ 1

m

m∑
r=1,r ̸=i

∥∆(i, j, r, r)∥+ 1

m
∥∆(i, j, j, i)∥.

(24)

According to Definition 5, Assumption 3 and Theorem 6, we have

max
1≤r≤m+q

∥∆(i, j, r, r)∥ ≤ γ = α1

T∑
t=1

(1 + ηα2)
t−1 2ηβ

m

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Thus, Eq. (24) is bounded:

∥ (LDu
(Θ,W)− LSm

(Θ,W))−
(
LDu

(Θij ,W ij)− LSm
(Θij ,W ij)

)
∥

≤ q − 1

q
γ +

1

q
Bℓ +

m− 1

m
γ +

1

m
Bℓ

=

(
q − 1

q
+
m− 1

m

)
γ +

(
1

q
+

1

m

)
Bℓ

Let β̃ =
(

q−1
q + m−1

m

)
γ +

(
1
q + 1

m

)
Bℓ. Then, the function f(Sm,Du) = LDu(Θ,W) −

LSm
(Θ,W) has transductive stability β̃. Apply Lemma 24 to f(Sm,Du), equating the bound to δ

exp

(
− ϵ2

2β̃2Ω(m, q)

)
= δ,

we get

ϵ = β̃

√
2Ω(m, q) log

1

δ

Therefore, we obtain that the probability at least 1− δ that

LDu(Θ,W)− LSm(Θ,W)− E
[
LDu(Θ

ij ,W ij)− LSm(Θij ,W ij)
]
≤ β̃

√
2Ω(m, q) log

1

δ
(25)

According to Lemma 25 and Theorem 6, for 1 ≤ i ≤ m,m+ 1 ≤ j ≤ n, we have

E
[
LDu

(Θij ,W ij)− LSm
(Θij ,W ij)

]
= E [∆(i, j, i, i)] ≤ γ (26)

Substitute Eq. (26) into Eq. (25), we get:

LDu
(Θ,W) ≤ LSm

(Θ,W) + γ + β̃

√
2Ω(m, q) log

1

δ

It is rewritten as:

LDu
(Θ,W)− LSm

(Θ,W) ≤ γ +

(
2γ +

(
1

n−m
+

1

m

)
(Bℓ − γ)

)√
2Ω(m,n−m) log

1

δ

C.2 PROOF OF LEMMA 10

Lemma 10. Consider a spectral GNN trained with m samples as n → ∞. As the sample size m
increases, the generalization error bound decreases at the rate O(1/m) +O

(√
2 log(1/δ)/m

)
.

Proof. The proof is proceeded in three steps:

(1) 1
n−m is neglectable compared with 1

m : As m < n, we have m = o(n).
m

n−m = m
n · 1

1−m
n

when n→ ∞, we have m
n → 0 and 1

1−m
n

→ 1 as m = o(n). Therefore,

lim
n→∞

m

n−m
= 0, lim

n→∞

1
n−m

1
m

= 0;

which indicates
1

n−m
= o(

1

m
)

(2) Ω(m,n−m) increase with m: As H2(k) =
∑k

i=1
1
i2 , we have:

H2(n)−H2(n−m) =

n∑
i=n−m+1

1

i2

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

As

m · 1

n2
≤

n∑
i=n−m+1

1

i2
≤ m · 1

(n−m)2
,

we have

m · 1

n2
≤ H2(n)−H2(n−m) ≤ m · 1

(n−m)2
.

Multiple two sides with (n−m)2, we have:

(n−m)2 ·m · 1

n2
≤ (n−m)2 · (H2(n)−H2(n−m)) ≤ (n−m)2 ·m · 1

(n−m)2
,

As Ω(m,n−m) = (n−m)2 (H2(n)−H2(n−m)), we have:

m(n−m)2

n2
≤ Ω(m,n−m) ≤ m

i.e.,

Ω(m,n−m) = O(m)

(3) Generalization error bound: From Theorem 6, we have γ = O(1
m). Therefore:

γ +

(
2γ +

(
1

n−m
+

1

m

)
(Bℓ − γ)

)√
2Ω(m,n−m) log

1

δ

= O(
1

m
) +

(
O(

1

m
) +

(
o(

1

m
) +

1

m

)(
Bℓ −O(

1

m
)

))√
2O(m) log

1

δ

= O(
1

m
) +BℓO(

1

m
)O(m1/2)

√
2 log

1

δ

= O

 1

m
+Bℓ

√
2 log(1δ)

m



In summary, the decay rate of generalization error bound is O
(

1
m +O(

√
2 log(1

δ)

m

)
.

Proposition 11. For a spectral GNN Ψσ̃ with a non-linear feature transformation function fW (X) =
σ̃(XW), assume the gradient norm bound β in Theorem 9 is the same for Ψ and Ψσ̃ . If Lip(σ̃) ≤ 1
and Smt(σ̃) ≤ 1, then γσ̃ ≤ γ, where γσ̃ is the stability of Ψσ̃ .

Proof. We consider spectral GNN Ψ:

Ψ(M,X) = σ(

K∑
k=0

ÃkXW)

and spectral GNN Ψσ̃:

Ψσ̃(M,X) = σ(

K∑
k=0

σ̃
(
ÃkXW)

)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

(1) Lipschitz Constant: For any two sets of parameters (Θ1,W1) and (Θ2,W2), we have:

∥Ψσ̃(Θ1,W1)−Ψσ̃(Θ2,W2)∥

= ∥σ(
K∑
i=0

θ1kσ̃(Ã
kXW1))− σ(

K∑
i=0

θ2kσ̃(Ã
kXW2))∥

≤ Lip(σ)∥
K∑
i=0

θ1kσ̃(Ã
kXW1)−

K∑
i=0

θ2kσ̃(Ã
kXW2)∥

≤ Lip(σ)∥
K∑
i=0

(θ1k − θ2k)σ̃(Ã
kXW1) +

K∑
i=0

θ2k(σ̃(Ã
kXW1)− σ̃(ÃkXW2))∥

≤ Lip(σ)(∥
K∑
i=0

(θ1k − θ2k)σ̃(Ã
kXW1)∥+ ∥

K∑
i=0

θ2k(σ̃(Ã
kXW1)− σ̃(ÃkXW2))∥)

≤ Lip(σ)(∥Θ1 −Θ2∥F ·max
k

∥σ̃(ÃkXW1)∥2 + ∥Θ2∥F · Lip(σ̃) ·max
k

∥ÃkX(W1 −W2)∥2)

Since Lip(σ̃) ≤ 1, we have:

∥Ψσ̃(Θ1,W1)−Ψσ̃(Θ2,W2)∥ ≤ Lip(σ)(∥Θ1−Θ2∥F ·C1+∥Θ2∥F · ∥W1−W2∥F ·C2)

where C1, C2 are constants depending on X, Ã. The right hand side is identical to the bound
we get for Ψ without the activation function. Therefore, Lip(Ψσ̃) ≤ Lip(Ψ).

(2) Smoothness Constant: We first get partial derivatives of Ψ and Ψσ̃ with respect to θk:

∂Ψ

∂θk
= ∇σ(

K∑
i=0

θiÃ
iXW) · ÃkXW

∂Ψσ̃

∂θk
= ∇σ(

K∑
i=0

θiσ̃(Ã
iXW)) · σ̃(ÃkXW)

Partial derivatives of Ψ and Ψσ̃ with respect to W are:

∂Ψ

∂W
= ∇σ(

K∑
i=0

θiÃ
iXW) ·

K∑
i=0

θiÃ
iX

∂Ψσ̃

∂W
= ∇σ(

K∑
i=0

θiσ̃(Ã
iXW)) ·

K∑
i=0

θi∇σ̃(ÃiXW) · ÃiX

The Lipschitz constant of these gradients determine the smoothness. For Ψσ̃, the ad-
ditional σ̃ and ∇σ̃ terms do not increase the Lipschitz constant of the gradient as
Lip(σ̃) ≤ 1, Smt(σ̃) ≤ 1:

– σ̃ is 1-Lipschitz, so it doesn’t increase the difference between inputs.
– ∇σ̃ is bounded by 1 (since Smt(σ̃) ≤ 1), so it doesn’t amplify the gradient.

Therefore, the Lipschitz constant of the gradient of Ψσ̃ is at most equal to that of Ψ, i.e., :

Smt(Ψσ̃) ≤ Smt(Ψ)

(3) Stability γσ̃: According to Theorem 6, we have α1 = Lip(ℓ) · Lip(Ψ) and α2 =
Smt(Ψ)β1 + Smt(ℓ)Lip(Ψ)β2. Thus, we have a smaller α1σ̃, α2σ̃ as Lip(Ψσ̃) ≤ Lip(Ψ)
and Ψσ̃) ≤ Smt(Ψ). Then, we have rσ̃ ≤ r.
As β is the same for Ψσ̃ and Ψ and γγ̃ = βrσ̃, γ = βr, we have

γσ̃ ≤ γ

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

D STABILITY ON SPECIALIZED CSBM

We establish the uniform transductive stability of spectral GNNs with the architecture described
in Eq. (1) on graphs generated by G ∼ cSBM(n, f, µ, u, λ, d). Theorem 13 is a specialized form
of Theorem 8, where the data model is specialized to nodes with binary classes and Gaussian node
features.

We present lemmas essential for calculating node features after graph convolution in Appendix D.1.
Then we derive the expectation and variance of the element Ak

ij in the adjacency matrix and the ex-
pectation and variance of node features after graph convolution in Appendix D.2. Using these results,
we derive the transductive stability of spectral GNNs on the specialized data model in Appendix D.3.

D.1 LEMMAS FOR THEOREM 13

Lemma 26 (Poisson Limit Theorem (Durrett, 2019)). For each n, let Xn,m, 1 ≤ m ≤ n, be
independent random variables with P(Xn,m = 1) = pn,m and P(Xn,m = 0) = 1− pn,m. Suppose:

1.
∑n

m=1 pn,m → λ ∈ (0,∞), and

2. max1≤m≤n pn,m → 0,

then if Sn =
∑n

m=1Xn,m, Sn converges in distribution to a Poisson random variable with mean λ,
i.e., Sn ∼ Poisson(λ).

Remark. The Poisson limit theorem, also known as the law of rare events, states that the total number
of events will follow a Poisson distribution if the probability of occurrence of an event is small in
each trial but there are a large number of trials. For more details, see (Durrett, 2019).

Lemma 27 (Binomial Coefficient Approximation). When n≫ k, the binomial coefficient
(
n
k

)
can

be approximated as: (
n

k

)
≈ nk

k!
.

Proof. The binomial coefficient is defined as:(
n

k

)
=

n!

k!(n− k)!
.

Expanding the factorial terms for n!, we have:(
n

k

)
=
n · (n− 1) · (n− 2) · . . . · (n− k + 1) · (n− k)!

k! · (n− k)!
.

Canceling the (n− k)! terms in the numerator and denominator gives:(
n

k

)
=
n · (n− 1) · (n− 2) · . . . · (n− k + 1)

k!
.

When n≫ k, the terms (n−1), (n−2), . . . , (n−k+1) are approximately equal to n. Therefore,
the product simplifies as:

n · (n− 1) · (n− 2) · . . . · (n− k + 1) ≈ nk.

Substituting this approximation, we obtain:(
n

k

)
≈ nk

k!
, for n≫ k.

Lemma 28 (Expecatations of E [AB]). For any two random variables A and B, the following
inequality holds:

E[AB] ≤ 1

2
E[A2] +

1

2
E[B2].

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Proof. Define a function f(t) for any real number t:

f(t) = E

[(
1√
2
A− t√

2
B

)2
]
.

Since f(t) is the expectation of a squared term, it is non-negative for any real t, i.e., f(t) ≥ 0.
Expanding f(t), we get:

f(t) = E
[
1

2
A2 − tAB +

t2

2
B2

]
.

Rearranging terms, this becomes:

f(t) =
1

2
E[A2]− tE[AB] +

t2

2
E[B2].

Since f(t) ≥ 0 for all t, substitute t = 1 to simplify:

f(1) =
1

2
E[A2]− E[AB] +

1

2
E[B2] ≥ 0.

Rearranging this inequality gives:

E[AB] ≤ 1

2
E[A2] +

1

2
E[B2].

Thus, the result holds.

Lemma 29 (Monotonicity of g(λ)). The function g(λ) =
((

d+ λ
√
d
)k

−
(
d− λ

√
d
)k)2

satisfies

the following properties:

• It monotonically increases on λ ∈ [0,
√
d].

• It monotonically decreases on λ ∈ [−
√
d, 0].

• It achieves its minimum value when λ = 0.

Proof. First, observe that g(λ) is an even function because:

g(−λ) =
((

d− λ
√
d
)k

−
(
d+ λ

√
d
)k)2

=

((
d+ λ

√
d
)k

−
(
d− λ

√
d
)k)2

= g(λ).

Thus, it is symmetric about λ = 0. Therefore, we only need to analyze its behavior for λ ≥ 0, and
the results for λ < 0 follow by symmetry.

Define:
A = d+ λ

√
d, B = d− λ

√
d.

Then, the function g(λ) can be rewritten as:

g(λ) = (Ak −Bk)2.

Using the chain rule:

g′(λ) = 2(Ak −Bk) · ∂
∂λ

(Ak −Bk).

The derivative of Ak −Bk with respect to λ is:

∂

∂λ
(Ak −Bk) = k

√
d(Ak−1 +Bk−1).

Thus:
g′(λ) = 2k

√
d(Ak −Bk)(Ak−1 +Bk−1).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

When λ ≥ 0, A ≥ B > 0, we have:

Ak −Bk ≥ 0, Ak−1 +Bk−1 ≥ 0.

Therefore:

g′(λ) ≥ 0 for λ ≥ 0.

This shows that g(λ) is monotonically increasing on [0,
√
d].

By the even symmetry of g(λ), we have:

g′(−λ) = −g′(λ).

Since g′(λ) ≥ 0 for λ ≥ 0, it follows that g′(λ) ≤ 0 for λ ≤ 0. Thus, g(λ) monotonically decreases
on [−

√
d, 0].

At λ = 0, A = B = d, we have:

g(0) = (dk − dk)2 = 0.

Thus, g(λ) achieves its minimum value when λ = 0.
The proof is complete.

Lemma 30 (Monotonicity of g(λ)). The function g(λ) =
∑k

s=1

(
d+ λ

√
d
)k−s (

d− λ
√
d
)s

satis-
fies the following properties:

• It monotonically decreases on λ ∈ [0,
√
d].

• It monotonically increases on λ ∈ [−
√
d, 0].

• It achieves its maximum value at λ = 0.

Proof. The function g(λ) can be rewritten as:

g(λ) = (2d)k −
(
d+ λ

√
d
)k

−
(
d− λ

√
d
)k
.

Differentiate g(λ) with respect to λ:

g′(λ) = k
√
d

[(
d− λ

√
d
)k−1

−
(
d+ λ

√
d
)k−1

]
.

• When λ > 0, we have
(
d− λ

√
d
)
<
(
d+ λ

√
d
)

. This implies
(
d− λ

√
d
)k−1

<(
d+ λ

√
d
)k−1

and g′(λ) < 0. Therefore, g(λ) is strictly decreasing on λ ∈ [0,
√
d].

• When λ < 0, we have
(
d− λ

√
d
)
>
(
d+ λ

√
d
)

. This implies
(
d− λ

√
d
)k−1

>(
d+ λ

√
d
)k−1

and g′(λ) > 0. Therefore, g(λ) is strictly increasing on λ ∈ [−
√
d, 0].

• When λ = 0, we have
(
d+ λ

√
d
)
=
(
d− λ

√
d
)
= d and g(0) = (2d)k − 2dk. This is

the maximum value of g(λ), as g′(λ) changes sign from positive to negative at λ = 0.

The proof is complete.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

D.2 EXPECTATION AND VARIANCE OF Ak
ij AND (ÃkXW)ij

Theorem 31 (Expectation and Variance of Ak
ij). Let the graph be generated by G ∼

cSBM(n, f, µ, u, λ, d). For n → ∞, d ≪ n, and 2 ≤ k ≤ k2 ≪ n, the number of k-length
walks connecting nodes vi and vj follows a Poisson distribution, Poisson(ρ′), where:

ρ′ =


ρ= = (k−1)!

n·2k−1

∑k+1
a=2O

(
min(2(a−1),2(k+1−a))∑

s=min(2,2(a−2),2(k+1−a))

ck−s
in · csout

)
, if yi = yj ,

ρ ̸= = (k−1)!
n·2k−1

∑k
a=1O

(
min(2a−1,2(k−a)+1)∑

s=1
ck−s
in · csout

)
, if yi ̸= yj .

The expectation and variance are:

E[Ak
ij] = ρ′, V

[
Ak

ij

]
= ρ′.

When k = 1, the 1-length walk (i.e., a single edge) connecting nodes vi and vj follows a Bernoulli
distribution, Ber(p), where:

p =

{
p= = cin

n , if yi = yj ,

p̸= = cout

n , if yi ̸= yj .

The expectation and variance in this case are:

E[Ak
ij] = p, V

[
Ak

ij

]
= p(1− p).

Proof. According to Definition 7, the expectation of Ak
ij , the number of k-length walks between

nodes vi and vj , is given by:
E[Ak

ij] =
∑

p∈Pk
ij

∏
(v,v′)∈p

Qyy′ ,

where Pk
ij represents the set of all k-length walks between vi and vj , and Qyy′ is the probability of

an edge between nodes v and v′, conditioned on their respective classes y and y′.
When C = 2 (binary classes), the edge probabilities Qyy′ are:

Qyy′ =

{
cin
n , if y = y′,
cout

n , if y ̸= y′,

where cin and cout are the intra-class and inter-class edge probabilities, respectively.

Case 1: yi = yj and k ≥ 2

For nodes vi and vj sharing the same class yi, we consider walks of length k that include a nodes
sharing the class yi and k + 1− a nodes with different classes. Since vi and vj both belong to class
yi, we need to choose a− 2 nodes from the same cluster and k − a+ 1 nodes from the other cluster.
The total number of ways to arrange these nodes in a walk is (k − 1)!, as there are k − 1 positions to
fill. The probability of each edge depends on whether it connects nodes of the same class or different
classes.

The number of ways to choose the nodes is as follows:

• Choose a− 2 nodes from n
2 − 2 nodes in the same cluster:

(n
2 −2
a−2

)
.

• Choose k − a+ 1 nodes from n
2 nodes in the other cluster:

(n
2

k−a+1

)
.

The number of ways to arrange these nodes is (k − 1)!. Considering the class changes in the
k-length walk, let s denote the number of walk class changes:

• If 2a ≥ k + 1, then smin = min(2, 2(k + 1− a)) and smax = 2(k + 1− a).

• If 2a ≤ k + 1, then smin = min(2, 2(a− 2)) and smax = 2(a− 1).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

The probability of a k-length walk with a nodes sharing the same class as vi is:

pak(vi, vj | yi = yj) =
(n

2 −2
a−2

)
·
(n

2
k−a+1

)
· (k − 1)! ·

(
2(k+1−a)∑

s=min(2,2(k+1−a)

(
cin
n

)k−s ·
(
cout

n

)s)
, if 2a ≥ k + 1;

(n
2 −2
a−2

)
·
(n

2
k−a+1

)
· (k − 1)! ·

(
2(a−1)∑

s=min(2,2(a−2))

(
cin
n

)k−s ·
(
cout

n

)s)
, if 2a < k + 1.

The total probability of a k-length walk connecting vi and vj when yi = yj is:

pk(vi, vj | yi = yj)

=

k+1
2∑

a=2

(n
2 − 2

a− 2

)
·
(n

2

k − a+ 1

)
· (k − 1)! ·

2(a−1)∑
s=min(2,2(a−2))

(cin
n

)k−s

·
(cout
n

)s

+

k+1∑
k+1
2

(n
2 − 2

a− 2

)
·
(n

2

k − a+ 1

)
· (k − 1)! ·

2(k+1−a)∑
s=min(2,2(k+1−a))

(cin
n

)k−s

·
(cout
n

)s
.

(27)

Using Lemma 27, the binomial coefficients simplify as:(n
2 − 2

a− 2

)
=

(
n
2 − 2

)a−2

(a− 2)!
,

(n
2

k − a+ 1

)
=

(
n
2

)k−a+1

(k − a+ 1)!
.

Thus, we have(n
2 − 2

a− 2

)
·
(n

2

k − a+ 1

)
· (k − 1)! = O

((n
2

)k−1

·
(
k − 1

a− 2

))
.

Substituting into Eq. (27), we get:

pk(vi, vj | yi = yj)

=

k+1
2∑

a=2

O

((n
2

)k−1

·
(
k − 1

a− 2

))
·

 2(a−1)∑
s=min(2,2(a−2))

(cin
n

)k−s

·
(cout
n

)s
+

k+1∑
k+1
2

O

((n
2

)k−1

·
(
k − 1

a− 2

))
·

 2(k+1−a)∑
s=min(2,2(k+1−a))

(cin
n

)k−s

·
(cout
n

)s
=

1

n · 2k−1

k+1
2∑

a=2

O

(k − 1

a− 2

)
·

 2(a−1)∑
s=min(2,2(a−2))

ck−s
in · csout


+

1

n · 2k−1

k+1∑
k+1
2

O

(k − 1

a− 2

)
·

 2(k+1−a)∑
s=min(2,2(k+1−a))

ck−s
in · csout


=

(k − 1)!

n · 2k−1

k+1∑
a=2

O

 min(2(a−1),2(k+1−a))∑
s=min(2,2(a−2),2(k+1−a))

ck−s
in · csout

 .

(28)

Case 2: yi ̸= yj and k ≥ 2

For nodes vi and vj , when they belong to different classes (yi ̸= yj), we count the walks of length
k where there are a nodes of the same class as vi and k + 1− a nodes of the class of vj . We need to
choose a − 1 nodes from the same cluster as vi and k − a nodes from the cluster of vj . The total
number of ways to arrange these nodes in a walk is (k − 2)!, as there are k − 2 positions to fill.

The number of ways to choose the nodes is:

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

• Choose a− 1 nodes from n
2 − 1 nodes in the same cluster as vi:

(n
2 −1
a−1

)
;

• Choose k − a nodes from n
2 − 1 nodes in the same cluster as vj :

(n
2 −1
k−a

)
.

The number of ways to arrange these nodes is (k − 1)!. Considering the class changes in the
k-length walk, let s denote the number of class changes. The minimum and maximum values of s
are:

• If 2a ≥ k + 1, then smin = 1 and smax = 2(k − a) + 1;

• If 2a ≤ k + 1, then smin = 1 and smax = 2a− 1.

The probability of a k-length walk with a nodes sharing the same class as vi is:

pak(vi, vj |yi ̸= yj) =
(n

2 −1
a−1

)
·
(n

2 −1
k−a

)
· (k − 1)! ·

(∑2(k−a)+1
s=1

(
cin
n

)k−s ·
(
cout

n

)s)
, if 2a ≥ k + 1(n

2 −1
a−1

)
·
(n

2 −1
k−a

)
· (k − 1)! ·

(∑2a−1
s=1

(
cin
n

)k−s ·
(
cout

n

)s)
, if 2a < k + 1

The total probability of a k-length walk connecting vi and vj when yi ̸= yj is:

pk(vi, vj |yi ̸= yj) =
k+1
2∑

a=1

(n
2 − 1

a− 1

)
·
(n

2 − 1

k − a

)
· (k − 1)! ·

(
2a−1∑
s=1

(cin
n

)k−s

·
(cout
n

)s)

+

k∑
a= k+1

2

(n
2 − 1

a− 1

)
·
(n

2 − 1

k − a

)
· (k − 1)! ·

2(k−a)+1∑
s=1

(cin
n

)k−s

·
(cout
n

)s
(29)

When k ≪ n, using Lemma 27, we have(n
2 − 1

a− 1

)
=

(n2 − 1)a−1

(a− 1)!
,

(n
2 − 1

k − a

)
=

(n2 − 1)k−a

(k − a)!
.

Then: (n
2 − 1

a− 1

)
·
(n

2 − 1

k − a

)
· (k − 1)! =

(n2 − 1)a−1

(a− 1)!
·
(n2 − 1)k−a

(k − a)!
· (k − 1)!

=
(n
2
− 1
)k−1

·
(
k − 1

a− 1

)
We simplify Eq. (29) to

pk(vi, vj |yi ̸= yj) =

k+1
2∑

a=1

(n
2
− 1
)k−1

·
(
k − 1

a− 1

)
·

(
2a−1∑
s=1

(cin
n

)k−s

·
(cout
n

)s)

+

k∑
a= k+1

2

(n
2
− 1
)k−1

·
(
k − 1

a− 1

)
·

2(k−a)+1∑
s=1

(cin
n

)k−s

·
(cout
n

)s
=

1

n · 2k−1

k+1
2∑

a=1

O

((
k − 1

a− 1

)
·

(
2a−1∑
s=1

ck−s
in · csout

))

+
1

n · 2k−1

k∑
a= k+1

2

O

(k − 1

a− 1

)
·

2(k−a)+1∑
s=1

ck−s
in · csout


=

(k − 1)!

n · 2k−1

k∑
a=1

O

min(2a−1,2(k−a)+1)∑
s=1

ck−s
in · csout

 .

(30)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Case 3: k = 1

When k = 1, we have Ak = A and

E[Aij] =

{
cin
n , if yi = yj ,
cout

n , if yi ̸= yj .

In the following, we show that when a graph is sparse and k is small, Ak
ij can be modeled using a

Poisson distribution.

• For sparse graphs with a large number of nodes (n → ∞, d ≪ n), the probability of a
potential k-length walk existing is very small.

• When k ≪ n, the dependence between two different k-length walks is negligible.

• The number of potential k-length walks is large (nk−1 as n→ ∞).

Thus, according to Lemma 26, the number of k-length walks connecting nodes vi and vj , Ak
ij ,

follows a Poisson distribution Poisson(ρ′) when k ≥ 2, where:

ρ′ =


ρ= = (k−1)!

n·2k−1

∑k+1
a=2O

(
min(2(a−1),2(k+1−a))∑

s=min(2,2(a−2),2(k+1−a))

ck−s
in · csout

)
, if yi = yj ,

ρ ̸= = (k−1)!
n·2k−1

∑k
a=1O

(
min(2a−1,2(k−a)+1)∑

s=1
ck−s
in · csout

)
, if yi ̸= yj .

When k = 1, p(vi, vj) follows a Bernoulli distribution Ber(p), where:

p =

{
cin
n , if yi = yj ,
cout

n , if yi ̸= yj .

This completes the proof.

Theorem 32 (Expectation and variance of (ÃkXW)ij). Given a graph generated by G ∼
cSBM(n, f, µ, u, λ, d). The input node feature matrix is X and the normalized adjacency ma-
trix is Ã. The k-th power matrix Ãk is applied to obtain a new feature matrix ÃkXW , then the
expectation and the variance of (ÃkXW)ij are as follows:

For k = 1:

E
[
(ÃkXW)ij

]
=

1

2d

√
µ

n
(cin − cout) yiuW:j

V
[
(ÃkXW)ij

]
=

1

2 · d2

(
d− c2in + c2out

n

)
·
(
µ

n
(uW:j)

2
+

||W:j ||22
f

)
For k ≥ 2:

E
[
(ÃkXW)ij

]
=

(k − 1)!

dk · 2k−1
O
(
ckin − ckout

)√µ

n
yiuW:j

V
[
(ÃkXW)ij

]
=

(k − 1)!

d2k · 2k

(k+1∑
a=2

O

 min(2(a−1),2(k+1−a))∑
s=min(2,2(a−2),2(k+1−a))

ck−s
in · csout


+

k∑
a=1

O

min(2a−1,2(k−a)+1)∑
s=1

ck−s
in · csout

)(µ
n
(uW:j)

2
+

||W:j ||22
f

)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Proof. Given that the node feature xi for node vi, generated by a conditional Stochastic Block Model
(cSBM) conditioned on u and node class yi, is distributed as:

xi ∼ N
(√

µ

n
yiu,

If
f

)
For a linear transformation matrix W , the transformed node feature is given by:

xiW ∼ N
(√

µ

n
yiuW,

WTW

f

)
Feature after transformation with W and propagation with Ãk is(

ÃkXW
)
ij
=

n∑
r=1

Ãk
ir(XW)rj

=

n∑
r=1

Ãk
ir

(√
µ

n
yruW:j +

ϵrW:j√
f

)

=

n∑
r=1

Ãk
ir

√
µ

n
yruW:j

and

E
[(
ÃkXW

)
ij

]
=

√
µ

n

(
n∑

r=1

E
[
Ãk

ir

]
yr

)
uW:j (31)

We now derive the expectation E[Ak
ij] of the adjacency matrix A raised to the power k.

1. Expectation E
[(
ÃkXW

)
ij

]
when k ≥ 2

Two clusters generated by cSBM are in equal size. According to Theorem 31, we have

E
[(
ÃkXW

)
ij

]
=

√
µ

n

(
n∑

r=1

E
[
Ãk

ir

]
yr

)
uW:j

=
1

dk

√
µ

n

(
n∑

r=1

(
E
[
Ak

ir|yi = yr
]
+ E

[
Ak

ir|yi ̸= yr
])
yr

)
uW:j

=
1

dk

√
µ

n

(n∑
r=1

(
(k − 1)!

n · 2k−1

k+1∑
a=2

O

 min(2(a−1),2(k+1−a))∑
s=min(2,2(a−2),2(k+1−a))

ck−s
in · csout


+

(k − 1)!

n · 2k−1

k∑
a=1

O

min(2a−1,2(k−a)+1)∑
s=1

ck−s
in · csout

)yr)uW:j

=
(k − 1)!

dk · 2k−1
O

(k+1∑
a=2

min(2(a−1),2(k+1−a))∑
s=min(2,2(a−2),2(k+1−a))

ck−s
in · csout

−
k∑

a=1

min(2a−1,2(k−a)+1)∑
s=1

ck−s
in · csout

)√
µ

n
yiuW:j

=
(k − 1)!

dk · 2k−1
O
(
ckin − ckout

)√µ

n
yiuW:j

2. Variance E
[(
ÃkXW

)
ij

]
when k ≥ 2

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

The variance of new feature X ′
ij given u, Y can be expressed as:

V
[
(ÃkXW)ij

]
= V

[
n∑

r=1

Ãk
ir(

√
µ

n
yruW:j +

ϵrW:j√
f

)

]

=

n∑
r=1

V
[
Ãk

ir(

√
µ

n
yruW:j +

ϵrW:j√
f

)

]
, feature dimension independent

=

n∑
r=1

[
E
[
(Ãk)2ir

]
E
[
(

√
µ

n
yruW:j +

ϵrW:j√
f

)2
]
−
(
E
[
Ãk

ir

])2(
E
[√

µ

n
yruW:j +

ϵrW:j√
f

])2
]

=

n∑
r=1

[
E
[
(Ãk)2ir

]((√µ

n
yruW:j

)2

+
||W:j ||22
f

)
−
(
E
[
Ãk

ir

])2
(E
[√

µ

n
yruW:j +

ϵrW:j√
f

]
)2

]

=

n∑
r=1

[
E
[
(Ãk)2ir

]((√µ

n
yruW:j

)2

+
||W:j ||22
f

)
−
(
E
[
Ãk

ir

])2(√µ

n
yruW:j

)2
]

=

n∑
r=1

[((
E
[
Ãk

ir

])2
+ V

[
Ãk

ir

])
·

((√
µ

n
yruW:j

)2

+
||W:j ||22
f

)

−
(
E
[
Ãk

ir

])2(√µ

n
yruW:j

)2]
=

1

d2k

n∑
r=1

[((
E
[
Ak

ir

])2
+ V

[
Ak

ir

])
·
(
µ

n
(uW:j)

2
+

||W:j ||22
f

)
−
(
E
[
Ak

ir

])2 µ
n
(uW:j)

2

]
=

1

d2k

n∑
r=1

[(
E
[
Ak

ir

])2 · ||W:j ||22
f

+ V
[
Ak

ir

]
·
(
µ

n
(uW:j)

2
+

||W:j ||22
f

)]
=

1

d2k
n

2

((
E
[
Ak

ir|yi = yr
])2

+
(
E
[
Ak

ir|yi ̸= yr
])2) · ||W:j ||22

f

+
1

d2k
n

2

(
V
[
Ak

ir|yi = yr
]
+ V

[
Ak

ir|yi ̸= yr
])

·
(
µ

n
(uW:j)

2
+

||W:j ||22
f

)
(32)

According to Theorem 31, when k ≥ 2, we have

(
E
[
Ak

ij |yi = yj
])2

=

 (k − 1)!

n · 2k−1

k+1∑
a=2

O

 min(2(a−1),2(k+1−a))∑
s=min(2,2(a−2),2(k+1−a))

ck−s
in · csout

2

(
E
[
Ak

ij |yi ̸= yj
])2

=

 (k − 1)!

n · 2k−1

k∑
a=1

O

min(2a−1,2(k−a)+1)∑
s=1

ck−s
in · csout

2

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Two clusters generated by cSBM are in equal size. Then, Eq. (32) is written as:

V
[
(ÃkXW)ij

]
=

1

d2k
n

2

((
E
[
Ak

ir|yi = yr
])2

+
(
E
[
Ak

ir|yi ̸= yr
])2) · ||W:j ||22

f

+
1

d2k
n

2

(
V
[
Ak

ir|yi = yr
]
+ V

[
Ak

ir|yi ̸= yr
])

·
(
µ

n
(uW:j)

2
+

||W:j ||22
f

)

=
((k − 1)!)

2

n · d2k · 22k−1
O

(k+1∑
a=2

O

 min(2(a−1),2(k+1−a))∑
s=min(2,2(a−2),2(k+1−a))

ck−s
in · csout

2

+

 k∑
a=1

O

min(2a−1,2(k−a)+1)∑
s=1

ck−s
in · csout

2)
· ||W:j ||22

f

+
(k − 1)!

d2k · 2k

(k+1∑
a=2

O

 min(2(a−1),2(k+1−a))∑
s=min(2,2(a−2),2(k+1−a))

ck−s
in · csout


+

k∑
a=1

O

min(2a−1,2(k−a)+1)∑
s=1

ck−s
in · csout

)(µ
n
(uW:j)

2
+

||W:j ||22
f

)

=
(k − 1)!

d2k · 2k

(k+1∑
a=2

O

 min(2(a−1),2(k+1−a))∑
s=min(2,2(a−2),2(k+1−a))

ck−s
in · csout


+

k∑
a=1

O

min(2a−1,2(k−a)+1)∑
s=1

ck−s
in · csout

)(µ
n
(uW:j)

2
+

||W:j ||22
f

)
, n→ ∞

3. Expectation and variance of
(
ÃkXW

)
ij

when k = 1

E
[
(ÃXW)ij

]
=

√
µ

n

(
n∑

r=1

E
[
Ãir

]
yr

)
uW:j

=
1

d

√
µ

n

(
n∑

r=1

E [Air|yi = yr] yi −
n∑

r=1

E [Air|yi ̸= yr] yi

)
uW:j

=
1

d

√
µ

n

(n
2

cin
n
yi −

n

2

cout
n
yi

)
uW:j

=
1

2d

√
µ

n
(cin − cout) yiuW:j

when k = 1, we have

(
E
[
Ak

ij |yi = yj
])2

=
(cin
n

)2
(
E
[
Ak

ij |yi ̸= yj
])2

=
(cout
n

)2
Eq. (32) is written as:

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

V
[
(ÃXW)ij

]
=

1

d2
n

2

((
E
[
Ak

ir|yi = yr
])2

+
(
E
[
Ak

ir|yi ̸= yr
])2) · ||W:j ||22

f

+
1

d2
n

2

(
V
[
Ak

ir|yi = yr
]
+ V

[
Ak

ir|yi ̸= yr
])

·
(
µ

n
(uW:j)

2
+

||W:j ||22
f

)
=

1

d2
n

2

((cin
n

)2
+
(cout
n

)2)
· ||W:j ||22

f

+
1

d2
n

2

(cin
n

(
1− cin

n

)
+
cout
n

(
1− cout

n

))
·
(
µ

n
(uW:j)

2
+

||W:j ||22
f

)
=

1

2n · d2
(
c2in + c2out

)
· ||W:j ||22

f

+
1

2 · d2

(
d− c2in + c2out

n

)
·
(
µ

n
(uW:j)

2
+

||W:j ||22
f

)
=

1

2 · d2

(
d− c2in + c2out

n

)
·
(
µ

n
(uW:j)

2
+

||W:j ||22
f

)
, n→ ∞

D.3 PROOF OF THEOREM 13

We first give a lemma about the order of E
[
Ak

ij

]
, which will be used in proof of Theorem 13.

Lemma 33 (order of E
[
Ak

ij

]
). The order of E

[
Ak

ij

]
is O

(
k!·dk

n·2k

)
.

Proof. According to Theorem 31, Ak
ij |yi = yj and Ak

ij |yi ̸= yj obeys different Poisson distributions.
As

ck−s
in · csout = O

(
dk
)
,

we have,

ρ= =
(k − 1)!

n · 2k−1

k+1∑
a=2

O

 min(2(a−1),2(k+1−a))∑
s=min(2,2(a−2),2(k+1−a))

ck−s
in · csout


=

(k − 1)!

n · 2k−1

k+1∑
a=2

O

 min(2(a−1),2(k+1−a))∑
s=min(2,2(a−2),2(k+1−a))

dk


=

(k − 1)!

n · 2k−1

k+1∑
a=2

O
(
k · dk

)
=

(k − 1)!

n · 2k−1
O
(
k2 · dk

)
= O

(
k! · dk

n · 2k

)
similarly, we have ρ ̸= = O

(
k!·dk

n·2k

)

Below, we prove Theorem 13, which is a specific case of Theorem 8 when the graph is generated
by G ∼ cSBM(n, f, µ, u, λ, d).

Theorem 13. Consider a spectral GNN Ψ parameterized by Θ,W trained using full-batch gradient
descent for T iterations with a learning rate η on a training dataset containing m samples drawn
from nodes on a graph G ∼ cSBM(n, f, µ, u, λ, d). When n → ∞, k ≪ n, and d ≪ n, under

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Assumptions 1, 2, and 4, for any node vi on the graph, with probability at least 1− ϵ for a constant
ϵ ∈ (0, 1), Ψ satisfies γ-uniform transductive stability, where γ = rβ and

β =
1

ϵ

[
O
(
E
[
∥ŷi − yi∥2F

])
+O

(
K∑

k=2

(
E
[(
Ak

ij | yi = yj
)2]

+ E
[(
Ak

ij | yi ̸= yj
)2]))]

.

Proof. Any spectral GNNs in Eq. (1) with linear feature transformation function, and polynomial
basis expanded on normalized graph matrix can be transformed into the format:

Ŷ = softmax(

K∑
k=0

θkÃ
kXW) (33)

where Ã = D− 1
2AD− 1

2 is the normalized graph adjacency matrix, D is the diagonal degree matrix.
We denotes Y ∈ Rn×C as the ground truth node label matrix.

When graph G ∼ cSBM(n, f, µ, u, λ, d), the node feature

xi ∼ N (yi
√
µ/nu, If/f)

Denote B = XW and S = BB⊤, then we have

Bik ∼ N (yi

√
µ

n
uW:k,

∥W:k∥2F
f

)

• when i ̸= j, Bik, Bjk are independent, then

E [Sij] =

C∑
k=1

E
[
BikB

⊤
kj

]
=

C∑
k=1

yiyj
µ

n
(uW:k)

2

= yiyj
µ

n
∥uW∥2F ;

• when i = j:

E [Sii] =
µ

n
∥uW∥2F +

∥W∥2F
f

When node number n→ ∞, we have
n∑

q=1,q ̸=j

E [Sjq] =
n

2
y2j
µ

n
∥uW∥2F +

n

2
yj(−yj)

µ

n
∥uW∥2F = 0.

Therefore,
n∑

j=1

n∑
q=1,q ̸=j

E
[
Ak

ijA
k
iq

]
E [Sjq]

=
n2

4
ρ2k=

µ

n
∥uW∥2F ; (yi = yj = yq)

+
n2

4
ρk=ρk ̸= − µ

n
∥uW∥2F ; (yi = yj ̸= yq)

+
n2

4
ρk ̸=ρk= − µ

n
∥uW∥2F ; (yi ̸= yj = yq)

+
n2

4
ρ2k ̸=

µ

n
∥uW∥2F ; (yi = yq ̸= yj)

=
n2

4
· µ
n
∥uW∥2F ·

(
ρ2k= − 2ρk ̸=ρk= + ρ2k ̸=

)
=
n2

4
· µ
n
∥uW∥2F · (ρk= − ρk ̸=)

2

(34)

According to Theorem 31,

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

• when k ≥ 2, Ak
ij ∼ Poisson(ρ′k), then

E
[
∥Ãk

i:XW∥2F
]
= E

[
Ãk

i:XW (XW)
⊤
(
Ãk

i:

)⊤]
= E

[
Ãk

i:S
(
Ãk

i:

)⊤]

= E

 n∑
q=1

n∑
j=1

(
Ãk

ijÃ
k
iqSjq

)
=

1

d2k
E

 n∑
q=1

n∑
j=1

(
Ak

ijA
k
iqSjq

)
=

1

d2k

n∑
q=1

n∑
j=1

E
[
Ak

ijA
k
iq

]
E [Sjq]

=
1

d2k

n∑
j=1

E
[(
Ak

ij

)2]E [Sjj] +
1

d2k

n∑
j=1

n∑
q=1,q ̸=j

E
[
Ak

ijA
k
iq

]
E [Sjq]

=
1

d2k
n

2
E
[(
Ak

ij

)2 | yi = yj

]
E [Sjj] +

1

d2k
n

2
E
[(
Ak

ij

)2 | yi ̸= yj

]
E [Sjj]

+
1

d2k
n2

4
· µ
n
∥uW∥2F · (ρk= − ρk ̸=)

2
(Eq. (34))

=
1

d2k
n

2

(
ρk= + ρ2k= + ρk ̸= + ρ2k ̸=

)(µ
n
∥uW∥2F +

∥W∥2F
f

)
+

1

d2k
n2

4
· µ
n
∥uW∥2F · (ρk= − ρk ̸=)

2

=
1

2d2k
ζk

(
µ∥uW∥2F +

n∥W∥2F
f

)
+

nµ

4d2k
∥uW∥2F · (ρk= − ρk ̸=)

2

where ζk = ρ2k= + ρk= + ρ2k ̸= + ρk ̸=

• when k = 1, Aij ∼ Ber(p), then

E
[
∥Ãi:XW∥2F

]
=

1

d2
n

2

(
p2= + p=(1− p=) + p2̸= + p ̸=(1− p ̸=)

)(µ
n
∥uW∥2F +

∥W∥2F
f

)
=

1

d2
n

2
(p= + p ̸=)

(
µ

n
∥uW∥2F +

∥W∥2F
f

)
=

1

d2
n

2

2d

n

(
µ

n
∥uW∥2F +

∥W∥2F
f

)
=

1

d

(
µ

n
∥uW∥2F +

∥W∥2F
f

)

Substituting E
[
∥Ãi:XW∥2F

]
into Eq. (15), we have

E
[
|∂ℓ(ŷi, yi; Θ,W)

∂θk
|
]
=

1
2

(
E
[
∥ŷi − yi∥2F

]
+
(

µ
n∥uW∥2F +

∥W∥2
F

f

))
, if k = 0

1
2

(
E
[
∥ŷi − yi∥2F

]
+ 1

d

(
µ
n∥uW∥2F +

∥W∥2
F

f

))
, if k = 1

1
2

(
E
[
∥ŷi − yi∥2F

]
+ 1

2d2k ζk

(
µ∥uW∥2F +

n∥W∥2
F

f

)
+ nµ

4d2k ∥uW∥2F · (ρk= − ρk ̸=)
2
)
, if k ≥ 2

(35)

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Similarly, we have

E
[
∥Ãk

i:X∥2F
]
=


µ
n∥u∥

2
F + 1, if k = 0

1
d

(
µ
n∥u∥

2
F + 1

)
, if k = 1

1
2d2k ζk

(
µ∥u∥2F + 1

)
+ nµ

4d2k ∥u∥2F · (ρk= − ρk ̸=)
2
, if k ≥ 2

Substituting E
[
∥Ãk

i:X∥2F
]

into Eq. (16), we have

E
[
∥∂ℓ(ŷi, yi; Θ,W)

∂W
∥ℓ1
]
= |θ0|

(
f · E

[
∥ŷi − yi∥2F

]
+ C

(µ
n
∥u∥2F + 1

))
+ |θ1|

(
f · E

[
∥ŷi − yi∥2F

]
+ C

1

d

(µ
n
∥u∥2F + 1

))
+

K∑
k=2

1

d2k
|θk|

(
f · E

[
∥ŷi − yi∥2F

]
+ C

1

2d2k
ζk
(
µ∥u∥2F + 1

)
+

nµ

4d2k
∥u∥2F · (ρk= − ρk ̸=)

2

)
(36)

Substitute Eq. (35), Eq. (36) into Eq. (12), we have

E [∥∇ℓ(ŷi, yi; Θ,W)∥F] ≤
K∑

k=0

E
[
∥∂ℓ(ŷi, yi; Θ,W)

∂θk
∥ℓ1
]
+ E

[
∥∂ℓ(ŷi, yi; Θ,W)

∂W
∥ℓ1
]

=
1

2

(
E
[
∥ŷi − yi∥2F

]
+

(
µ

n
∥uW∥2F +

∥W∥2F
f

))
+

1

2

(
E
[
∥ŷi − yi∥2F

]
+

1

d

(
µ

n
∥uW∥2F +

∥W∥2F
f

))
+

K∑
k=2

1

2

(
E
[
∥ŷi − yi∥2F

]
+

1

2d2k
ζk

(
µ∥uW∥2F +

n∥W∥2F
f

)
+

nµ

4d2k
∥uW∥2F · ζ̃2k

)
+ |θ0|

(
f · E

[
∥ŷi − yi∥2F

]
+ C

(µ
n
∥u∥2F + 1

))
+ |θ1|

(
f · E

[
∥ŷi − yi∥2F

]
+ C

1

d

(µ
n
∥u∥2F + 1

))
+

K∑
k=2

1

d2k
|θk|

(
f · E

[
∥ŷi − yi∥2F

]
+ C

1

2d2k
ζk
(
µ∥u∥2F + 1

)
+

nµ

4d2k
∥u∥2F · ζ̃2k

)

(37)

where ζk = ρ2k= + ρk= + ρ2k ̸= + ρk ̸=, ζ̃k = ρk= − ρk ̸=.

According to Lemma 33, when n→ ∞, we have

n
(
ζ̃k

)2
= n (ρ= − ρ ̸=)

2

= n

(
O

(
k! · dk

n · 2k

))2

= nO

((
k! · dk

)2
n2 · 22k

)

= O

((
k! · dk

)2
n · 22k

)
→ 0

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Thus, n
(
ζ̃k

)2
can be neglected. Thus, we rewrite Eq. (37) as

E [∥∇ℓ(ŷi, yi; Θ,W)∥F] =
K∑

k=0

E
[
∥∂ℓ(ŷi, yi; Θ,W)

∂θk
∥ℓ1
]
+ E

[
∥∂ℓ(ŷi, yi; Θ,W)

∂W
∥ℓ1
]

=
1

2

(
E
[
∥ŷi − yi∥2F

]
+

(
µ

n
∥uW∥2F +

∥W∥2F
f

))
+

1

2

(
E
[
∥ŷi − yi∥2F

]
+

1

d

(
µ

n
∥uW∥2F +

∥W∥2F
f

))
+

K∑
k=2

1

2

(
E
[
∥ŷi − yi∥2F

]
+

1

2d2k
ζk

(
µ∥uW∥2F +

n∥W∥2F
f

))
+ |θ0|

(
f · E

[
∥ŷi − yi∥2F

]
+ C

(µ
n
∥u∥2F + 1

))
+ |θ1|

(
f · E

[
∥ŷi − yi∥2F

]
+ C

1

d2k−1

(µ
n
∥u∥2F + 1

))
+

K∑
k=2

1

d2k
|θk|

(
f · E

[
∥ŷi − yi∥2F

]
+ C

1

2d2k
ζk
(
µ∥u∥2F + 1

))
≤ 1

2

(
E
[
∥ŷi − yi∥2F

]
+

(
µ

n
∥u∥2FB2

W +
B2

W

f

))
+

1

2

(
E
[
∥ŷi − yi∥2F

]
+

1

d

(
µ

n
∥u∥2FB2

W +
B2

W

f

))
+

K∑
k=2

1

2

(
E
[
∥ŷi − yi∥2F

]
+

1

2d2k
ζk

(
µ∥u∥2FB2

W +
nB2

W

f

))
+BΘ

(
f · E

[
∥ŷi − yi∥2F

]
+ C

(µ
n
∥u∥2F + 1

))
+BΘ

(
f · E

[
∥ŷi − yi∥2F

]
+ C

1

d

(µ
n
∥u∥2F + 1

))
+

K∑
k=2

1

d2k
BΘ

(
f · E

[
∥ŷi − yi∥2F

]
+ C

1

2d2k
ζk
(
µ∥u∥2F + 1

))

=

(
K + 1

2
+ 2fBΘ +

K∑
k=2

f

d2k
BΘ

)
E
[
∥ŷi − yi∥2F

]
+

(
1 +

1

d

)((
B2

W

2
+ CBΘ

)
µ

n
∥u∥2F +

B2
W

2f
+ CBΘ

)
+

K∑
k=2

ζk
d2k

((
µ∥u∥2F +

n

f

)
B2

W

4
+
(
µ∥u∥2F + 1

) BΘ

d2k

)

(38)

We express the result in big-O notation:

E [∥∇ℓ(ŷi, yi; Θ,W)∥F] = O
(
E
[
∥ŷi − yi∥2F

])
+O

(
K∑

k=2

ζk

)

where ζk = E
[(
Ak

ij | yi = yj
)2]

+ E
[(
Ak

ij | yi ̸= yj
)2]

After obtaining the upper bound of the gradient norm, and applying Theorem 6, we derive the
uniform transductive stability of spectral GNNs on graphs G ∼ cSBM(n, f, µ, u, λ, d) with two
classes (C = 2) in big-O notation as:

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

γ = rβ;β =
1

ϵ

[
O
(
E
[
∥ŷi − yi∥2F

])
+O

(
K∑

k=2

(
E
[(
Ak

ij | yi = yj
)2]

+ E
[(
Ak

ij | yi ̸= yj
)2]))]

where r is the same as that in Theorem 6.

E ANALYSIS OF PROPERTIES

In this section, we first derive the relationship between the parameter λ in cSBM and the edge
homophilic ratio of the graph. We then analyze how the expected prediction error, E[∥ŷi − yi∥2F],
and ζk vary with λ and K. Finally, we examine the impact of λ and K on the uniform transductive
stability and generalization performance of spectral GNNs.

E.1 PROOF OF PROPOSITION 12

Proposition 12. For a graph G ∼ cSBM(n, µ, u, λ, d), the expected edge homophily ratio is:

E[Hedge] =
d+ λ

√
d

2d
; E[Hedge] =

cin
cin + cout

. (4)

Proof. Graphs generated with cSBM contain two clusters of equal size. Thus, there are n
2 nodes in

each cluster belonging to the same class. The expected number of edges between nodes of the same
class is given by:

E[Esame] =

(n
2

2

)
· cin
n

=
cin(n− 2)

8
,

where
(n

2
2

)
represents the number of possible edges between nodes within the same cluster, and cin

n is
the probability of an edge existing between two nodes of the same class.

The expected number of edges between nodes of different classes is given by:

E[Ediff] =
n

2
· n
2
· cout
n

· 1
2
=
coutn

8
,

where n
2 · n

2 represents the total number of possible edges between nodes in different clusters, cout

n is
the probability of an edge existing between nodes of different classes, and the factor 1

2 accounts for
double-counting edges.

The expected value of Hedge, the ratio of the expected number of edges between nodes of the
same class to the total expected number of edges, is given by:

E[Hedge] =
E[Esame]

E[Esame] + E[Ediff]

=
cin(n−2)

8
cin(n−2)

8 + coutn
8

=
(d+ λ

√
d)(n− 2)

(d+ λ
√
d)(n− 2) + (d− λ

√
d)n

=
d+ λ

√
d

2d
, as n→ ∞.

Here, d represents the average degree, and λ measures the level of separation between clusters.
As n→ ∞, the terms involving (n− 2) and n simplify, yielding the final expression for E[Hedge].

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

We also derive the relationship between the expectation of Hedge and the parameters cin and cout
as follows:

E[Hedge] =
E[Esame]

E[Esame] + E[Ediff]

=
cin(n−2)

8
cin(n−2)

8 + coutn
8

=
cin(n− 2)

cin(n− 2) + coutn

=
cin

cin + cout
, as n→ ∞.

E.2 PROOF OF THEOREM 14

Theorem 14 (E
[
∥ŷi − yi∥2F

]
and λ,K). Given a graph G ∼ cSBM(n, µ, u, λ, d) and a spectral

GNN of orderK, E[∥ŷi−yi∥2F] for any node vi satisfies the following: it increases with λ ∈ [−
√
d, 0],

decreases with λ ∈ [0,
√
d], and reaches its maximum at λ = 0; it increases withK if

∑K
k=2 θk

(k−1)!
2k−1

grows more slowly than
∑K

k=2 θ
2
k
(k−1)!

2k
as K increases.

Proof. Denote

Z =

K∑
k=0

θkÃ
kXW, Ŷ = softmax(Z).

For any node vi with true class yi, its prediction is denoted as:

ŷi = softmax(Zi:).

In the case of binary classification (C = 2), for a node with true class yi = [1, 0], the predicted
class is:

ŷi = [ŷ1, ŷ2] = softmax([Zi1, Zi2]) = [σ(Zi1 − Zi2), 1− σ(Zi1 − Zi2)],

where σ(x) = 1
1+e−x is the sigmoid function.

Let zi = Zi1 − Zi2, then:
ŷi = [σ(zi), 1− σ(zi)].

Thus, the squared Frobenius norm of the difference between ŷi and yi is:

∥ŷi − yi∥2F = (σ(zi)− 1)2 + (1− σ(zi))
2 = 2(1− σ(zi))

2.

Taking the expectation, we have:

E[∥ŷi − yi∥2F] = 2E[(1− σ(zi))
2].

As the node feature xi ∼ N (yi
√
µ/nu, If/f), any linear combination of Gaussian variables is

still Gaussian. Therefore, we have:
zi ∼ N (µzi , ω

2
zi),

where:
µzi = E[zi] = E[Zi1 − Zi2] = E[Zi1]− E[Zi2].

Given that cin = d+ λ
√
d, cout = d− λ

√
d, and λ ∈ [−

√
d,
√
d], we observe:

ckin − ckout = O(dk), ckin = O(dk), ckout = O(dk). (39)

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

Assuming u ∼ N (0, If), d≪ f , and that Θ,W are bounded (as per Assumption 4), we analyze
the dominant terms in µzi and ω2

zi . From Theorem 32, we derive the expectation of (ÃkXW)ij .
Consequently, we obtain:

µzi = E[Zi1]− E[Zi2] = θ0

√
µ

n
yiu(W:1 −W:2)

+ θ1
1

2d

√
µ

n
(cin − cout)yiu(W:1 −W:2)

+

K∑
k=2

θk
(k − 1)!

dk · 2k−1
O(ckin − ckout)

√
µ

n
yiu(W:1 −W:2)

= O

(
K∑

k=2

θk
(k − 1)!

2k−1

)
(from Eq. (39)).

(40)

Since Ãk and X are independent, and the columns of X are also independent, it follows that(∑K
k=0 θkÃ

kX
)
ij

and
(∑K

k=0 θkÃ
kX
)
it

are independent. According to Theorem 32, we compute

the variance of (ÃkXW)ij . Then, we have:

ω2
zi = Var(Zi1 − Zi2)

= Var

((
K∑

k=0

θkÃ
kX

)
i:

(W:1 −W:2)

)

= Var

 f∑
j=1

(
K∑

k=0

θkÃ
kX

)
ij

(Wj1 −Wj2)


=

f∑
j=1

(Wj1 −Wj2)
2

K∑
k=0

θ2k Var

((
ÃkX

)
ij

)
(independence)

=

f∑
j=1

(Wj1 −Wj2)
2

K∑
k=0

θ2k

[
1

2 · d2

(
d− c2in + c2out

n

)
·
(
µ

n
(uW:j)

2
+

∥W:j∥22
f

)

+
(k − 1)!

d2k · 2k

(k+1∑
a=2

O

 min(2(a−1),2(k+1−a))∑
s=min(2,2(a−2),2(k+1−a))

ck−s
in · csout


+

k∑
a=1

O

min(2a−1,2(k−a)+1)∑
s=1

ck−s
in · csout

) ·
(
µ

n
(uW:j)

2
+

∥W:j∥22
f

)]

= O

(
K∑

k=2

θ2k
(k − 1)!

2k

)
(from Eq. (39)).

(41)

(1) E[∥ŷi − yi∥2F] and λ: According to Lemma 29 and Lemma 30, we know that:

– µzi monotonically decreases, and ω2
zi monotonically increases on λ ∈ [−

√
d, 0];

– µzi monotonically increases, and ω2
zi monotonically decreases on λ ∈ [0,

√
d];

– µzi achieves its minimum value, and ω2
zi achieves its maximum value when λ = 0.

The expectation of (1− σ(zi))
2 is given by:

E[(1− σ(zi))
2] =

∫ ∞

−∞
(1− σ(zi))

2 · 1√
2πωzi

e
−

(z−µzi
)2

2ω2
zi dzi. (42)

Since the integral decreases with µzi and increases with ω2
zi , we conclude:

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

– E[(1− σ(zi))
2] increases on λ ∈ [−

√
d, 0];

– E[(1− σ(zi))
2] decreases on λ ∈ [0,

√
d];

– E[(1− σ(zi))
2] achieves its maximum value when λ = 0.

Since E[∥ŷi − yi∥2F] has the same trend as E[(1− σ(zi))
2], we observe the same behavior

for E[∥ŷi − yi∥2F].

(2) E[∥ŷi − yi∥2F] and K: We rewrite z as:

z = µzi + ωziy,

where y ∼ N (0, 1). Substituting into Eq. (42), we have:

E[(1− σ(zi))
2] =

∫ ∞

−∞
(1− σ (µzi + ωziy))

2 1√
2π
e−

y2

2 dy.

(a) If µzi increases faster than ω2
zi as K increases: In this case, z is dominated by µzi , and

we have:

E[(1− σ(z))2] =

∫ ∞

−∞
(1− σ(µzi))

2 1√
2π
e−

y2

2 dy

= (1− σ(µzi))
2

≤ 0.25.

(b) If µzi increases slower than ω2
zi as K increases: In this case, z is dominated by ωziy,

and we have:

E[(1− σ(z))2] =

∫ ∞

−∞
(1− σ(ωziy))

2 1√
2π
e−

y2

2 dy

=

∫ 0

−∞
(1− 0) · 1√

2π
e−

y2

2 dy +

∫ ∞

0

(1− 1)2 · 1√
2π
e−

y2

2 dy

= 0.5.

From this analysis, we conclude:

– If µzi increases slower than ω2
zi as K increases, E[(1− σ(z))2] approaches 0.5.

– If µzi increases faster than ω2
zi as K increases, E[(1− σ(z))2] is at most 0.25.

Briefly, when µzi increases slower than ω2
zi as K increases, E[∥ŷi− yi∥2F] increases with K.

From Eq. (40) and Eq. (41), we observe that the dominant term of µzi is
∑K

k=2 θk
(k−1)!
2k−1 ,

while the dominant term of ω2
zi is

∑K
k=2 θ

2
k
(k−1)!

2k
. Therefore, E[∥ŷi − yi∥2F] increases with

K if
∑K

k=2 θk
(k−1)!
2k−1 grows slower than

∑K
k=2 θ

2
k
(k−1)!

2k
.

E.3 PROOF OF THEOREM 15

Theorem 15 (ζk and λ,K). Given a graph G ∼ cSBM(n, µ, u, λ, d) and a spectral GNN of order
K, ζk has the following properties: (1) it increases with λ ∈ [−

√
d, 0], decreases with λ ∈ [0,

√
d],

and achieves its maximum value at λ = 0; (2) it increases with k as k grows, for k ∈ [0,K].

Proof. As

ζk = E[(Ak
ij |yi = yj)

2] + E[(Ak
ij |yi ̸= yj)

2]

=
(
E[Ak

ij |yi = yj]
)2

+ V
[
Ak

ij |yi = yj
]
+
(
E[Ak

ij |yi ̸= yj]
)2

+ V
[
Ak

ij |yi ̸= yj
]
.

(43)

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

According to Theorem 31, we have explicit forms of E[Ak
ij] and Var(Ak

ij) for the cases yi = yj
and yi ̸= yj . Substituting these into Eq. (43), we get:

ζk = ρ2= + ρ= + ρ2̸= + ρ ̸=

=

 (k − 1)!

n · 2k−1

k+1∑
a=2

O

 min(2(a−1),2(k+1−a))∑
s=min(2,2(a−2),2(k+1−a))

ck−s
in · csout

2

+
(k − 1)!

n · 2k−1

k+1∑
a=2

O

 min(2(a−1),2(k+1−a))∑
s=min(2,2(a−2),2(k+1−a))

ck−s
in · csout


+

 (k − 1)!

n · 2k−1

k∑
a=1

O

min(2a−1,2(k−a)+1)∑
s=1

ck−s
in · csout

2

+
(k − 1)!

n · 2k−1

k∑
a=1

O

min(2a−1,2(k−a)+1)∑
s=1

ck−s
in · csout

 .

Given cin = d+ λ
√
d and cout = d− λ

√
d, all terms ρ2= + ρ= + ρ2̸= + ρ ̸= in ζk are in the form:

g(λ) =

k∑
s=1

(d+ λ
√
d)k−s · (d− λ

√
d)s.

According to Lemma 30, functions in this form g(λ) strictly increase on λ ∈ [−
√
d, 0] and strictly

decrease on λ ∈ [0,
√
d]. Therefore, ζk strictly increases on λ ∈ [−

√
d, 0] and strictly decreases on

λ ∈ [0,
√
d]. When k increases, ζk contains more terms, causing it to increase with k in the order of

K.

E.4 PROOF OF PROPOSITION 16

Proposition 16. For a fixed K, γ-uniform transductive stability and generalization error bound
strictly increase as λ moves from −

√
d to 0, and decreases as λ moves from 0 to

√
d. For a fixed λ, if∑K

k=2 θk
(k−1)!
2k−1 grows more slowly than

∑K
k=2 θ

2
k
(k−1)!

2k
asK increases, then γ-uniform transductive

stability and generalization error bound increase with K.

Proof. According to Theorem 6 and Theorem 13, the uniform stability of spectral GNNs depends on
the upper bound of the gradient norm β, and

β =

(
K + 1

2
+ 2fBΘ +

K∑
k=2

f

d2k
BΘ

)
E
[
∥ŷi − yi∥2F

]
+

(
1 +

1

d

)((
B2

W

2
+ CBΘ

)
µ

n
∥u∥2F +

B2
W

2f
+ CBΘ

)
+

K∑
k=2

ζk
d2k

((
µ∥u∥2F +

n

f

)
B2

W

4
+
(
µ∥u∥2F + 1

) BΘ

d2k

)
where ζk = ρ2= + ρ= + ρ2̸= + ρ ̸=, and ρ= and ρ ̸= are the parameters of distribution in Theorem 31.

Denote

ψy =

(
K + 1

2
+ 2fBΘ +

K∑
k=2

f

d2k
BΘ

)
;

ψ1 =

K∑
k=2

ζk
d2k

((
µ∥u∥2F +

n

f

)
B2

W

4
+
(
µ∥u∥2F + 1

) BΘ

d2k

)
.

We show that the terms E
[
∥ŷi − yi∥2F

]
, ψy, and ψ1 can all be affected by λ,K.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

(1) Term E
[
∥ŷi − yi∥2F

]
According to Theorem 14, the expected prediction error E

[
∥ŷi − yi∥2F

]
strictly increases

with λ ∈ [−
√
d, 0] and decreases with λ ∈ [0,

√
d]. In addition, it increases with K when∑K

k=2 θk
(k−1)!
2k−1 grows slower than

∑K
k=2 θ

2
k
(k−1)!

2k
.

(2) Term ψy

As ψy =
(

K+1
2 +

∑K
k=0 |θk|f

)
which does not contain λ, the class distribution has no

effect on ψy . It also increases with order K.

(3) Terms ψ1

According to Theorem 15, ζk strictly increases on λ ∈ [−
√
d, 0], decreases on λ ∈ [0,

√
d]

and it increases with order K.
Since all the other elements in ψ1 except ζk are positive, ψ1 and ζk has same trend when λ
and K changes.

According to Proposition 12, we have

λ ∈ [0,
√
d] ⇔ Hedge ∈ [0.5, 1] and λ ∈ [−

√
d, 0] ⇔ Hedge ∈ [0, 0.5].

According to Theorem 9, any factors affecting γ affect the generalization error bound. Thus, we
conclude the following cases:

(a) uniform transductive stability γ, generalization error bound and λ
From the above analysis, we know that ϕy is not affected by λ, and terms E

[
∥ŷi − yi∥2F

]
,

ψ1 strictly increase on λ ∈ [−
√
d, 0] and decrease on λ ∈ [0,

√
d]. According to Theorem 6

and Theorem 9, this shows that the stability decreases and the generalization error bound
increases when Hedge ∈ (0, 0.5]. The stability increases and the generalization error bound
decreases when Hedge ∈ [0, 5, 1). Spectral GNNs are stable and generalize well on strong
homophilic and heterophilic graphs.

(b) uniform transductive stability γ, generalization error bound, and K
From the above analysis, we know that terms ϕy, ψ1 increase with K. According to Theo-
rem 14, when the condition

∑K
k=2 θk

(k−1)!
2k−1 grows slower than

∑K
k=2 θ

2
k
(k−1)!

2k
is satisfied,

the expected prediction error E
[
∥ŷi − yi∥2F

]
increases with K.

Therefore, when above condition is satisfied, the gradient norm bound β increase with K.
According to Theorem 6 and Theorem 9, this indicates that the uniform transductive stability
γ and generalization error bound also increases with K.

F DETAILS OF EXPERIMENTS

F.1 DATASETS

The statistical properties of real-world datasets, including the number of nodes, edges, feature
dimensions, node classes, and edge homophily ratios, are summarized in Table 2 and Table 3. We
use the directed and cleaned versions of the Chameleon and Squirrel datasets provided by (Platonov
et al., 2023), where repeated nodes have been removed.

F.2 SPECTRAL GNNS

In the literature, there are generally two kinds of architectures for spectral GNNs:

• Early spectral GNNs architecture: It is given by Y = XL, Xl = α
(∑K

k=1M
kXl−1Hlk

)
,

where M is a graph matrix, Xl is the feature at the l-th layer, Hlk ∈ Rfl×fl−1 , fl is

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

Statistics Texas Wisconsin Cornell Actor Chameleon Squirrel Citeseer Pubmed Cora
Nodes 183 251 183 7,600 890 2,223 3,327 19,717 2,708
Edges 295 466 295 26,752 27,168 131,436 4,676 44,327 5,278

Features 1,703 1,703 1,703 932 2,325 2,089 3,703 500 1,433
Classes 5 5 5 5 5 6 5 7

Edge Homophily 0.11 0.21 0.22 0.24 0.22 0.74 0.8 0.81

Table 2: Statistics of real-world datasets.

Statistics OGBN-Arxiv OGBN-Products
Nodes 169,343 2,449,029
Edges 2,315,598 61,859,140

Features 128 100
Classes 40 47

Edge Homophily 0.65 0.81

Table 3: Statistics of OGBN datasets.

the feature dimension of the l-th layer, and α is an activation function. This describes
the architecture of earlier spectral GNNs, such as GCN (Mk = D−1/2(I + A)D−1/2)
and ChebNet (where Mk represents the Chebyshev polynomial basis expanded on the
normalized graph Laplacian matrix).

• Modern spectral GNNs architecture: Recent advances in spectral GNNs do not adhere to
this multi-layer architecture. Instead, state-of-the-art spectral GNNs employ a single-layer
structure as described in Eq. (1) of our paper:

Ψ(M,X) = σ(gΘ(M)fW (X)),

where M ∈ Rn×n is a graph matrix (e.g., Laplacian or adjacency matrix), gΘ(M) =∑K
k=0 θkTk(M) performs graph convolution using the k-th polynomial basis Tk(·) and

learnable parameters Θ = {θk}Kk=0, fW (X) is a feature transformation parameterized by
W , and σ is a non-linear activation function (e.g., softmax). Recent spectral GNNs, such as
GPRGNN, JacobiConv, BernNet, ChebBase, and ChebNetII, adopt this architecture (Chien
et al., 2021; Wang & Zhang, 2022; He et al., 2021; 2022b), and it serves as the basis for
theoretical analysis of spectral GNNs (Wang & Zhang, 2022; Balcilar et al., 2021).

We study spectral GNNs with modern architecture. We detail the spectral GNNs used in our
experiments below. For a graph with adjacency matrix A, degree matrix D, and identity matrix
I , we define the following matrices: the normalized Laplacian matrix L̂ = I − D−1/2AD−1/2,
the shifted normalized Laplacian matrix L̃ = −D−1/2AD−1/2, the normalized adjacency matrix
Ã = D−1/2AD−1/2, and the normalized adjacency matrix with self-loops Ã′ = (D + I)−1/2(A+
I)(D + I)−1/2.

ChebNet (Defferrard et al., 2016): This model uses the Chebyshev basis to approximate a spectral
filter:

Ŷ =

K∑
k=0

θkTk(L̃)fW (X)

where X is the raw feature matrix, Θ = [θ0, θ1, . . . , θK] is the graph convolution parameter, W is the
feature transformation parameter and fW (X) is usually a 2-layer MLP. Tk(L̃) is the k-th Chebyshev
basis expanded on the shifted normalized graph Laplacian matrix L̃ and is recursively calculated:

T0(L̃) = I

T1(L̃) = L̃

Tk(L̃) = 2L̃Tk−1(L̃)− Tk−2(L̃)

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

ChebNetII (He et al., 2022a): The model is formulated as

Ŷ =
2

K + 2

K∑
k=0

K∑
j=0

θjTk(xj)Tk(L̃)fW (X),

where X is the input feature matrix, W is the feature transformation parameter, fW (X) is usually a
2-layer MLP, Tk(·) is the k-th Chebyshev basis expanded on ·, xj = cos ((j + 1/2)π/ (K + 1)) is
the j-th Chebyshev node, which is the root of the Chebyshev polynomials of the first kind with degree
K + 1, and θj is a learnable parameter. Graph convolution parameter in ChebNet is reparameterized
with Chebyshev nodes and learnable parameters θj .

JacobiConv (Wang & Zhang, 2022): This model uses the Jacobi basis to approximate a filter as:

Ŷ =

K∑
k=0

θkT
a,b
k (Ã)fW (X),

where X is the input feature matrix, Θ = [θ0, θ1, . . . , θK] is the graph convolution parameter, W is
the feature transformation parameter and fW (X) is usually a 2-layer MLP. T a,b

k (Ã) is the Jacobi
basis on normalized graph adjacency matrix Ã and is recursively calculated as

T a,b
k (Ã) = I

T a,b
k (Ã) =

1− b

2
I +

a+ b+ 2

2
Ã

T a,b
k (Ã) = γkÃT

a,b
k−1(Ã) + γ′kT

a,b
k−1(Ã) + γ′′kT

a,b
k−2(Ã)

where γk = (2k+a+b)(2k+a+b−1)
2k(k+a+b) , γ′k = (2k+a+b−1)(a2−b2)

2k(k+a+b)(2k+a+b−2) , γ
′′
k = (k+1−1)(k+b−1)(2k+a+b)

k(k+a+b)(2k+a+b−2) . a
and b are hyper-parameters. Usually, grid search is used to find the optimal a and b values.

GPRGNN (Chien et al., 2021): This model uses the monomial basis to approximate a filter:

Ŷ =

K∑
k=0

θkÃ
′kfW (X)

where X is the input feature matrix, Θ = [θ0, θ1, . . . , θK] is the graph convolution parameter, W
is the feature transformation parameter and fW (X) is usually a 2-layer MLP. Ã′ is the normalized
adjacency matrix with self-loops.

BernNet (He et al., 2021): This model uses the Bernstein basis for approximation:

Ŷ =

K∑
k=0

θk
1

2K

(
K

k

)
(2I − L̂)K−kL̂kfW (X)

where X is the input feature matrix, Θ = [θ0, θ1, . . . , θK] is the graph convolution parameter, W
is the feature transformation parameter and fW (X) is usually a 2-layer MLP. L̂ is the normalized
Laplacian matrix.

F.3 HYPER-PARAMETER SETTINGS

All experiments were conducted on an NVIDIA RTX A6000 GPU with 48GB of memory.
We employ a two-layer Multi-Layer Perceptron (MLP) with a hidden layer size of 64 for the

feature transformation function fW , using ReLU as the activation function across all spectral GNN
models.

Following (Tang & Liu, 2023a; Cong et al., 2021), the dropout rate and weight decay are set to
0.0. The Adam optimizer is used for optimization. Each experiment runs for a maximum of 300
iterations and is repeated 10 times to report the mean and variance of the results. A grid search is
conducted to determine the best learning rate from {0.05, 0.01, 0.001}.

F.4 DETAILED EXPERIMENTAL RESULTS

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

Hedge 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ChebNet 94.92±0.24 86.08±0.43 81.09±0.63 75.11±0.73 72.69±0.66 74.66±0.65 79.62±0.78 86.03±0.6 94.64±0.39

Acc Gap 5.08±0.24 13.92±0.41 18.91±0.57 24.89±0.72 27.3±0.62 25.34±0.68 20.38±0.74 13.97±0.61 5.36±0.41

Loss Gap 0.64±0.07 3.15±0.14 3.72±0.2 5.42±0.24 5.88±0.5 6.01±0.27 4.62±0.3 3.04±0.18 0.98±0.06

ChebNetII 92.19±0.51 85.03±0.58 79.83±0.43 77.55±0.64 77.34±0.54 77.7±0.57 78.22±0.73 83.68±0.41 91.43±0.48

Acc Gap 7.81±0.47 14.97±0.58 20.17±0.41 22.45±0.66 22.66±0.49 22.3±0.57 21.77±0.71 16.32±0.44 8.57±0.47

Loss Gap 0.66±0.07 1.84±0.11 3.55±0.21 4.77±0.26 4.86±0.13 4.64±0.21 4.23±0.33 2.14±0.17 0.72±0.05

JacobiConv 89.25±3.35 77.23±4.51 77.19±0.66 77.0±0.55 79.06±0.61 80.2±0.57 84.64±0.39 90.48±0.24 96.91±0.24

Acc Gap 10.71±2.86 22.73±4.36 22.8±0.67 23.0±0.54 20.94±0.61 19.8±0.6 15.36±0.41 9.51±0.24 3.09±0.25

Loss Gap 0.69±0.26 1.58±0.45 4.08±0.21 4.33±0.14 5.36±0.33 1.95±0.13 1.58±0.13 0.99±0.06 0.16±0.01

GPRGNN 90.33±0.57 87.06±0.64 81.71±0.41 77.03±0.47 77.23±0.65 79.52±0.59 82.72±0.52 89.25±0.5 96.45±0.18

Acc Gap 9.66±0.54 12.94±0.67 18.29±0.42 22.96±0.49 22.77±0.64 20.48±0.6 17.27±0.52 10.75±0.54 3.55±0.2

Loss Gap 1.42±0.08 2.21±0.14 3.27±0.2 4.72±0.19 5.17±0.13 4.7±0.25 3.7±0.47 2.4±0.32 1.05±0.11

BernNet 87.44±0.5 82.92±0.67 79.3±0.44 77.69±0.53 77.97±0.54 77.49±0.72 76.58±0.79 79.73±1.3 85.68±1.05

Acc Gap 12.55±0.5 17.08±0.76 20.7±0.44 22.31±0.54 22.03±0.55 22.51±0.64 23.41±0.8 20.27±1.39 14.32±1.06

Loss Gap 1.2±0.06 2.45±0.21 3.69±0.16 4.77±0.24 4.72±0.15 4.7±0.17 4.35±0.35 2.92±0.31 1.36±0.14

Table 4: Testing accuracy, accuracy gap, loss gap of spectral GNNs on synthetic datasets with
edge homophilic ratio Hedge ∈ [0.1, 0.9]. Small accuracy and loss gaps imply good generalization
capability.

Datasets Texas Wisconsin Actor Squirrel Chameleon Cornell Citeseer Pubmed Cora

ChebNet 40.82±7.25 52.23±3.77 26.63±0.53 30.08±1.14 33.94±1.58 44.88±6.19 64.16±0.82 84.74±0.37 74.95±0.96

Acc Gap 59.18±6.94 47.77±3.92 73.26±0.54 69.92±1.28 66.06±1.52 55.12±5.95 35.82±0.75 15.25±0.37 25.05±0.92

Loss Gap 5.91±0.66 5.77±0.87 21.64±0.8 35.68±2.33 36.17±3.04 6.57±0.82 4.68±0.22 1.44±0.06 3.9±0.29

ChebNetII 77.55±5.71 74.38±3.08 27.94±0.36 28.1±1.82 38.45±1.63 73.69±5.12 65.85±0.52 84.7±0.3 74.0±0.8

Acc Gap 22.45±5.2 25.62±3.31 71.94±0.33 71.83±1.77 61.47±1.53 26.31±5.0 34.12±0.48 15.16±0.28 26.0±0.75

Loss Gap 1.1±0.27 1.39±0.32 20.16±0.76 27.56±2.88 19.33±1.68 1.7±0.3 2.66±0.09 1.13±0.09 2.14±0.09

JacobiConv 78.06±5.31 77.62±2.92 27.89±0.63 26.78±1.28 32.2±2.08 80.41±3.98 73.56±0.64 86.33±0.47 84.31±0.49

Acc Gap 21.94±5.41 22.38±2.85 71.97±0.66 50.85±11.88 63.82±9.46 19.59±4.18 26.41±0.65 10.87±1.45 15.69±0.5

Loss Gap 0.94±0.26 1.19±0.22 31.67±0.86 32.75±11.57 38.77±7.16 0.91±0.16 2.16±0.06 0.51±0.14 1.28±0.09

GPRGNN 46.84±6.22 72.08±3.23 26.29±0.65 29.91±1.19 34.28±1.58 61.33±6.12 72.89±0.62 85.42±0.4 84.37±0.51

Acc Gap 53.16±6.12 27.92±2.92 71.52±4.82 70.09±1.09 65.72±1.69 38.67±6.43 27.08±0.67 14.58±0.37 15.63±0.54

Loss Gap 3.35±0.83 1.6±0.31 29.22±2.69 35.34±5.58 29.88±2.22 2.2±0.53 3.32±0.16 1.24±0.09 1.54±0.1

BernNet 75.92±5.31 81.85±2.23 27.28±0.76 33.42±1.14 33.72±1.38 81.43±3.46 67.17±0.59 84.82±0.25 73.39±0.87

Acc Gap 24.08±5.41 18.15±2.16 72.61±0.71 66.58±1.11 66.28±1.33 18.57±3.57 32.8±0.57 14.95±0.45 26.61±0.87

Loss Gap 1.24±0.31 0.87±0.26 24.68±0.71 28.17±1.47 27.83±1.75 1.06±0.18 2.66±0.09 1.13±0.13 2.18±0.08

Table 5: Testing accuracy, accuracy gap, loss gap of spectral GNNs on real world datasets with edge
homophilic ratio Hedge ∈ [0.11, 0.81]. Small accuracy and loss gaps imply good generalization
capability.

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

Order K 1 2 3 4 5 6 7 8 9 10
ChebNet 87.31±0.3 89.11±0.31 88.48±0.49 84.19±0.9 71.3±3.0 79.58±0.52 80.77±0.62 76.21±0.51 82.94±0.48 86.08±0.41

Acc Gap 12.7±0.32 10.89±0.31 11.52±0.5 15.8±0.92 28.7±3.54 20.42±0.51 19.23±0.57 23.79±0.47 17.06±0.45 13.92±0.42

Loss Gap 2.2±0.09 1.76±0.07 1.9±0.14 2.84±0.27 7.2±1.45 3.88±0.2 3.08±0.21 3.79±0.26 3.8±0.11 3.15±0.14

ChebNetII 85.92±0.56 80.1±0.99 82.65±0.7 85.56±0.45 84.64±0.8 84.62±0.59 85.27±0.51 86.2±0.64 86.39±0.5 85.03±0.57

Acc Gap 14.07±0.53 19.9±1.02 17.35±0.73 14.44±0.45 15.36±0.87 15.38±0.6 14.73±0.5 13.79±0.6 13.61±0.49 14.97±0.58

Loss Gap 1.94±0.08 3.23±0.31 2.62±0.14 2.06±0.14 1.94±0.21 1.95±0.17 1.99±0.15 1.75±0.14 1.83±0.11 1.84±0.11

JacobiConv 77.44±0.67 80.51±0.48 49.44±1.12 39.85±1.91 48.81±2.65 47.73±7.63 60.29±7.48 67.53±7.95 68.03±9.15 77.23±4.79

Acc Gap 22.55±0.62 19.49±0.46 50.56±1.18 60.13±1.98 51.19±2.63 52.25±7.08 39.7±7.32 32.45±7.76 31.96±9.19 22.73±4.82

Loss Gap 5.72±0.19 5.8±0.26 8.81±0.79 12.63±1.22 7.3±1.01 8.23±1.77 4.98±1.23 3.42±1.39 3.33±1.32 1.58±0.48

GPRGNN 83.61±0.66 86.14±0.29 79.44±1.05 88.36±0.28 87.25±0.5 88.0±0.39 87.57±0.47 87.5±0.3 87.17±0.3 87.06±0.59

Acc Gap 16.39±0.69 13.86±0.29 20.56±1.06 11.63±0.29 12.76±0.49 12.01±0.32 12.43±0.48 12.49±0.33 12.84±0.29 12.94±0.68

Loss Gap 2.37±0.11 2.21±0.1 3.18±0.19 1.83±0.1 2.14±0.2 1.93±0.09 2.06±0.13 2.12±0.09 2.19±0.13 2.21±0.14

BernNet 82.76±0.72 81.14±0.41 81.21±0.57 81.47±0.6 81.77±0.66 82.11±0.75 82.32±0.88 82.55±0.84 82.8±0.81 82.92±0.79

Acc Gap 17.24±0.71 18.86±0.39 18.79±0.56 18.53±0.7 18.23±0.62 17.89±0.85 17.68±0.84 17.45±0.79 17.2±0.79 17.08±0.7

Loss Gap 2.45±0.17 3.02±0.11 2.95±0.21 2.84±0.2 2.75±0.21 2.65±0.21 2.59±0.22 2.54±0.2 2.49±0.21 2.45±0.21

Table 6: Testing accuracy, accuracy gap, loss gap of spectral GNNs on synthetic dataset of edge
homophilic ratio Hedge = 0.2 when K ∈ [1, 10]. Small accuracy and loss gaps imply good
generalization capability.

Order K 1 2 3 4 5 6 7 8 9 10
ChebNet 83.78±2.45 80.61±4.59 80.51±3.47 61.73±5.0 63.37±8.57 36.33±5.72 44.18±5.0 24.39±2.14 30.2±4.8 40.82±7.35

Acc Gap 16.22±2.45 19.39±4.8 19.49±3.78 38.27±5.0 36.63±7.86 63.67±6.12 55.82±5.0 75.61±2.24 69.8±5.0 59.18±7.15

Loss Gap 1.49±0.44 1.26±0.44 1.48±0.31 2.77±0.53 3.08±0.59 8.98±0.68 6.09±0.72 7.99±0.93 9.0±1.03 5.91±0.69

ChebNetII 80.41±3.98 75.41±5.72 76.53±4.29 76.53±4.59 76.94±5.0 78.78±5.61 78.88±5.2 77.45±4.9 76.94±5.72 77.55±5.51

Acc Gap 19.59±3.78 24.59±5.2 23.47±4.59 23.47±4.49 23.06±4.8 21.22±5.61 21.12±5.82 22.55±4.49 23.06±5.61 22.45±5.31

Loss Gap 0.74±0.14 1.2±0.44 1.15±0.29 1.28±0.3 1.23±0.33 1.11±0.29 1.16±0.26 1.21±0.29 1.24±0.27 1.1±0.27

JacobiConv 52.24±5.41 80.92±3.78 75.31±5.31 74.39±3.78 79.08±3.67 78.67±4.08 80.0±3.06 73.67±6.33 77.65±5.41 78.06±5.61

Acc Gap 47.76±5.31 19.08±3.98 24.69±5.0 25.61±3.67 20.92±3.47 21.33±3.67 20.0±3.06 26.33±6.84 22.35±5.1 21.94±5.41

Loss Gap 2.54±0.42 0.89±0.2 1.1±0.25 1.18±0.27 0.9±0.17 0.97±0.16 0.93±0.13 1.22±0.39 0.97±0.26 0.94±0.24

GPRGNN 53.88±4.8 49.18±5.1 46.73±5.82 45.82±6.64 46.12±5.41 45.61±5.2 46.43±4.59 46.12±5.0 47.55±4.8 46.84±6.22

Acc Gap 46.12±4.9 50.82±5.31 53.27±5.61 54.18±6.63 53.88±5.72 54.39±5.2 53.57±4.9 53.88±4.9 52.45±5.1 53.16±6.43

Loss Gap 2.6±0.44 3.21±0.53 3.5±0.67 3.6±0.63 3.58±0.63 3.51±0.64 3.47±0.48 3.44±0.61 3.22±0.73 3.35±0.83

BernNet 76.73±3.67 75.92±2.45 75.61±3.67 77.04±3.88 77.14±4.39 75.2±4.7 74.9±5.72 75.2±5.2 74.8±5.92 75.71±5.71

Acc Gap 23.27±3.67 24.08±2.65 24.39±3.57 22.96±3.98 22.86±4.29 24.8±4.69 25.1±5.2 24.8±5.61 25.2±6.02 24.29±5.61

Loss Gap 0.96±0.22 0.95±0.18 1.01±0.17 1.02±0.21 1.06±0.21 1.13±0.25 1.19±0.31 1.18±0.26 1.27±0.34 1.25±0.31

Table 7: Testing accuracy, accuracy gap, loss gap of spectral GNNs on Texas dataset of edge
homophilic ratio Hedge = 0.11 when K ∈ [1, 10]. Small accuracy and loss gaps imply good
generalization capability.

53

	Introduction
	Related Works
	Problem Setup
	Assumptions

	General Results
	Further Analysis
	Uniform Transductive Stability
	Main Factors in Stability
	Practical Implications

	Experiments
	Conclusion, Limitations, and Future Work
	Stability and Gradient
	Lemmas for thm-gnn-stability
	Proof of thm-gnn-stability

	Stability on General Multi-Class cSBM
	Lemmas for thm-gnn-stability-general
	Proof of thm-gnn-stability-general

	Generalization Error Bound of Spectral GNNs
	Proof of thm-bound-stability
	Proof of lemma-uniform-factors-m

	Stability on Specialized cSBM
	Lemmas for thm-gnn-stability-binary
	Expectation and Variance of Akij and (k XW)ij
	Proof of thm-gnn-stability-binary

	Analysis of Properties
	Proof of proposition-uniform-hedge
	Proof of thm-expect-haty
	Proof of thm-uniform-rho-para
	Proof of thm-max-gradient

	Details of Experiments
	Datasets
	Spectral GNNs
	Hyper-parameter Settings
	Detailed Experimental Results

