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ABSTRACT

Spectral graph neural networks (GNNs) have achieved remarkable success across
various applications, yet their generalization properties remain poorly understood.
This paper bridges this gap by analyzing the impact of graph homophily and ar-
chitectural choices on the generalization of spectral GNNs. We derive a general
form of uniform transductive stability for spectral GNNs and provide an explicit
stability analysis for graphs with two node classes, providing a comprehensive
framework to understand their generalization. Based on this stability analysis, we
establish a generalization error bound, demonstrating that better stability leads
to improved generalization. Our theoretical findings reveal that spectral GNNs
generalize well on graphs with strong homophily or heterophily but struggle on
graphs with weaker structural properties. We also identify conditions under which
increasing the polynomial order in spectral GNN architectures may degrade gener-
alization. Empirical results on synthetic and real-world benchmark datasets align
closely with our theoretical findings.

1 INTRODUCTION

Generalization is a fundamental challenge in machine learning, crucial for understanding both the
theoretical limits and practical performance of algorithms. Researchers have developed various
measures to study generalization, including Vapnik–Chervonenkis (VC) dimension (Cherkassky
et al., 1999), PAC-Bayes bound (McAllester, 1998), Rademacher complexity (Bartlett & Mendelson,
2002), and the stability of learning algorithms (Bousquet & Elisseeff, 2002). These measures provide
insights into a model’s ability to generalize beyond its training data. Graph neural networks (GNNs)
have achieved remarkable success across various practical applications (Zhou et al., 2020), yet their
generalization capabilities remain poorly understood. Unlike traditional machine learning models
that operate on independent and identically distributed (i.i.d.) data, GNNs work on interdependent
data where the graph topology and node/edge features are inherently linked. This interconnected
structure makes it difficult to evaluate how well a GNN trained on one graph or a set of graphs can
generalize to unseen graphs.

Research on GNN generalization primarily focuses on two tasks: graph classification and node
classification. In graph classification, where graphs are typically i.i.d., generalization has been
studied through connections with WL algorithms (Morris et al., 2023; D’Inverno et al., 2024; Franks
et al., 2024) and data-dependent PAC-Bayes bounds (Liao et al., 2021; Ju et al., 2023). In node
classification, which involves transductive learning where node features are known during training,
approaches like Transductive Rademacher complexity and uniform transductive stability are more
common. These methods explore the impact of factors such as graph matrix representations and GNN
depth on generalization (Oono & Suzuki, 2020; El-Yaniv & Pechyony, 2007; Tang & Liu, 2023b;
Zhou & Wang, 2021; Cong et al., 2021).

In this work, we focus on the generalization of GNNs for node classification. Unlike graph
classification, node classification performance is influenced by the distribution of node classes,
which is closely tied to graph homophily. In homophilic graphs, connected nodes tend to belong
to the same class, whereas in heterophilic graphs, connected nodes are often from different classes.
Empirical evidence shows that the edge homophilic ratio (Zhu et al., 2020) significantly affects GNN
performance. For example, models like GCN and GAT excel on homophilic graphs but underperform
on heterophilic graphs (Kipf & Welling, 2017; Velickovic et al., 2018). This motivates us to explore
the relationship between graph homophily and the generalization of GNNs in node classification tasks,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

raising the question: how does GNN generalization depend on node class distributions? Notably, this
question has remained largely unexplored in previous research.

We examine the generalization of GNNs through a spectral perspective, as spectral GNNs have
demonstrated strong performance on both homophilic and heterophilic graphs. Spectral GNNs
operate in the spectral domain, applying frequency-domain convolutions to extract structural informa-
tion (Balcilar et al., 2021). Formally, a spectral GNN is defined as:

Ψ(M,X) = σ(gΘ(M)fW (X)), (1)

whereM ∈ Rn×n is a graph matrix (e.g., Laplacian or adjacency matrix), gΘ(M) =
∑K

k=0 θkTk(M)
represents graph convolution using Θ = {θk}Kk=0 and the k-th polynomial basis Tk(·), fW (X) is a
feature transformation function parameterized by W , and σ is a non-linear function such as softmax.

One notable observation about spectral GNNs is that, although the frequency response function
can theoretically be approximated by a sum of polynomial basis with negligible error as the order K
increases (Powell, 1981), empirical results show that higher polynomial orders do not consistently lead
to better performance. This discrepancy raises the question: is the gap between theoretical study and
empirical performance, particularly with respect to polynomial order K, related to the generalization
of spectral GNNs? To date, no work has provided a clear explanation for this phenomenon.

We address the aforementioned questions by focusing on the generalization of spectral GNNs.
In transductive learning, the relationships between labeled and unlabeled nodes are critical for gen-
eralization. To measure this, we employ uniform transductive stability (El-Yaniv & Pechyony, 2006),
which evaluates the stability of spectral GNNs under perturbations to individual training samples.

To study the interplay between graph structure and GNN performance, we use the contextual
stochastic block model (cSBM) (Baranwal et al., 2023; Deshpande et al., 2018), a widely used
generative model that captures both homophilic and heterophilic graph structures in a controlled
and analytically tractable manner. Previous studies have demonstrated that cSBM models real-world
datasets such as Citeseer, Cora, and Polblogs, which are frequently used in GNN research (Deshpande
et al., 2018; LEI, 2016; Dreveton et al., 2023; Kipf & Welling, 2017; Zhang et al., 2021). Specifically,
cSBM generates graphs with well-defined block structures, where nodes within the same block
are more likely to be connected (homophilic graphs) or nodes between blocks have a higher
connection probability (heterophilic graphs). Leveraging cSBM allows us to systematically vary
graph homophily and examine its impact on GNN generalization properties.

Contributions. Our main contributions are summarized as follows:

• We analyze the γ-uniform transductive stability of spectral GNNs by decomposing it into
two factors: the Lipschitz continuity and smoothness of the loss function and the spectral
GNN, and the gradient norm bound (Theorem 6). This enables us to study the effects
of node class distribution and spectral GNN architecture on training gradients through an
explicit gradient norm bound (Theorem 8).

• We establish the generalization error bound of spectral GNNs based on their stability, where
good stability indicates strong generalization capability (Theorem 9). To further explicitly
analyze the effects of graph homophily and polynomial order on generalization, we derive
an explicit form of the gradient norm bound for two node classes (Theorem 13).

• We prove that spectral GNNs generalize well on graphs that are strong homophilic or het-
erophilic, but perform poorly on graphs that are moderately homophilic or heterophilic. We
identify conditions under which increasing the polynomial order in spectral GNN architec-
tures may degrade generalization, providing insights into architectural design (Theorems 14
and 15; Proposition 16).

To validate our theoretical findings, we conduct experiments on nine synthetic datasets and nine
real-world benchmark datasets for node classification. The experimental results align closely with
our theoretical analysis.

2 RELATED WORKS

Previous work. We review prior studies on GNN generalization, typically categorized into graph
classification and node classification, with a primary focus on the latter.
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Generalization Bound Methods Analysis Key factors in Bounds
Lipschitz Gradient Graph Matrix Tsize Depth Hom Poly

VC bound (Scarselli et al., 2018) – n/a n
√

– – –

RC bound (Esser et al., 2021)
√

n/a ∥M∥∞, ∥MX∥2→∞
√ √

– –
(transductive) (Tang & Liu, 2023b)

√
n/a ∥M∥∞

√ √
– –

(Oono & Suzuki, 2020)
√

n/a ∥MX∥F
√ √

– –

US bound (Verma & Zhang, 2019) –
√

∥M∥2
√

– – –
(Inductive) (Zhou & Wang, 2021) –

√
∥M∥2, ∥MX∥2

√ √
– –

US bound (Cong et al., 2021)
√ √

dmax
√ √

– –
(transductive) Our work

√ √
Mij

√
–

√ √

Table 1: Comparison of generalization bounds for GNNs on node classification. Here, ∥ · ∥2, ∥ · ∥F ,
∥ · ∥∞,∥ · ∥2→∞ denote the spectral norm, Frobenius norm, infinity norm and maximum column
ℓ2-norm. n is graph node number. dmax denotes the maximum node degree. The other factors Tsize,
Depth, Hom, and Poly refer to training sample size, model depth, graph homophily, and polynomial
order, respectively.

√
indicates “discussed”, while – indicates “not discussed”.

Graph classification is typically considered as an inductive learning task. One prominent method
is the Vapnik–Chervonenkis (VC) bound, which relates the VC dimension of a GNN to the number
of colors generated by the 1-WL algorithm, reflecting the number of graphs the 1-WL algorithm
can distinguish (Morris et al., 2023). The PAC-Bayes bound is another approach. Liao et al. (2021)
connects generalization bound to factors like maximum node degree and GNN depth, while Ju et al.
(2023) refines this by tying the bound to the largest singular value of the graph matrix. Behboodi et al.
(2022) further extends the PAC-Bayes framework to equivariant networks, highlighting the influence
of group properties on generalization. Rademacher complexity and uniform convergence have also
been explored. Garg et al. (2020) shows that a GNN’s computational tree complexity bounds its
overall complexity, and Maskey et al. (2022) shows that generalization bound increases with model
complexity but decreases with higher average node degrees.

Generalization analysis for node classification is more challenging than for graph classification
due to its transductive nature (Tang & Liu, 2023b). Recent studies focus on how graph matrices
and GNN depth influence generalization. Rademacher complexity (RC) is commonly used for node
classification tasks due to its strong theoretical foundation in transductive learning (El-Yaniv &
Pechyony, 2007). It has been shown that the transductive RC of a GNN is proportional to the infinity
norm of its graph matrix, with generalization bounds provided for several classic GNNs (Tang &
Liu, 2023b). Esser et al. (2021) uses a planted model to illustrate the relationship between GNN
generalization and graph matrix compatibility. Oono & Suzuki (2020) shows that gradient boosting
reduces RC in multi-scale GNNs. Uniform stability (US) offers another key approach for analyzing
generalization. Verma & Zhang (2019) relates the generalization error bound of single-layer GCNs
to the largest absolute eigenvalue of the graph matrix, while Cong et al. (2021) demonstrates that
increasing GNN depth improves stability and lowers generalization error bounds. Other works deviate
from transductive assumptions, addressing non-i.i.d. settings. For example, Ma et al. (2021) derives
PAC-Bayesian bounds by assuming i.i.d. node classes given fixed node features.

Our work. In this work, we focus on node classification tasks, investigating how node class
distribution and the architecture of spectral GNNs influence generalization. While prior studies have
examined factors like graph size, training set size, graph matrix norms, and node features, they have
largely overlooked the role of graph homophily in generalization and the impact of increasing the
polynomial order of spectral GNNs. To our knowledge, this is the first study to analyze the effects of
graph homophily and polynomial order on the generalization of spectral GNNs.

Table 1 compares our work with other methods for node classification, highlighting several key
aspects: (1) Analysis settings (inductive or transductive): The VC bound (Scarselli et al., 2018)
is data-independent and thus agnostic to inductive or transductive settings. While Verma & Zhang
(2019); Zhou & Wang (2021) derive bounds for GNNs in inductive settings, others (Esser et al.,
2021; Tang & Liu, 2023b; Oono & Suzuki, 2020; Cong et al., 2021) and our work address the
more complex transductive setting. (2) Analysis frameworks: Rademacher complexity estimates a
model’s capacity to fit noise based on graph structure and node features but does not account for node
labels. As a result, methods such as (Esser et al., 2021; Tang & Liu, 2023b; Oono & Suzuki, 2020)
are unable to analyze the effect of graph homophily, which depends on both graph structure and node
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labels. In contrast, uniform stability enables analysis of the relationship between generalization and
graph homophily using gradient-based analysis. It is worth noting that while (Cong et al., 2021)
employs uniform transductive stability, their analysis focuses solely on how GNN depth impacts
Lipschitz continuity and gradient. (3) Key factors in bounds: Training sample size is a critical factor
in all bounds except the VC bound (Scarselli et al., 2018). Model depth (number of GNN layers)
is addressed in (Esser et al., 2021; Tang & Liu, 2023b; Zhou & Wang, 2021; Cong et al., 2021).
Our work examines spectral GNNs, where the architecture comprises only one layer of K-order
polynomials. Unlike prior studies that focus on various graph matrix norms, our analysis takes a
finer-grained approach by considering the expectation of individual graph matrix elements. Moreover,
we explore the effects of graph homophily and the polynomial order on the generalization of spectral
GNNs, aspects not previously investigated.

3 PROBLEM SETUP

An undirected, unweighted graph is denoted as G = (V,E), where V is the set of nodes, E is the
set of edges, and |V | = n. In this work, we model graphs with controlled properties using the
generalized multi-class contextual stochastic block model (cSBM) (Baranwal et al., 2023). A graph
G ∼ cSBM(n, f,Π, Q) consists of n nodes, partitioned into C distinct classes. Here, f is the
dimension of node features, Π = {Πi}i∈[C] is a set of C continuous distributions, where πi ∈ Rf

and Σi ∈ Rf×f are the mean and variance of Πi respectively, and Q ∈ RC×C is a symmetric
edge-probability matrix. Each node vi is assigned a class yi sampled uniformly from a set of C
classes, and its feature vector xi ∈ Rf is drawn from the distribution Πyi

. This generates the node
feature matrixX ∈ Rn×f . For the adjacency matrixA ∈ Rn×n, an edge between node vi and vj (i.e.,
Aij = 1) is generated according to the edge-probability matrix Q based on the following probability:

P (Aij = 1 | yi, yj) = Qyiyj
,

where Qyiyj
gives the edge formation probability between class yi and class yj .

For a spectral GNN Ψ, following (Wang & Zhang, 2022; Lu et al., 2024), we first consider
fW (X) = XW , and then discuss the effect of non-linear feature transformation. Here W ∈ Rf×C .
Let Sm = (X, {yi}mi=1) be a training set containing m labelled nodes, randomly sampled form the
graph G, and Du = (X, {yi}ni=m+1) be the testing set containing the other nodes in the graph G. We
define a loss function ℓ(yi, ŷi|Θ,W ) to measure the discrepancy between the truth class yi and the
prediction ŷi when a spectral GNN is parameterized by Θ,W . The empirical loss LSm

(Θ,W ) and
the expected loss LDu

(Θ,W ) are defined as:

LSm(Θ,W ) =
1

m

m∑
i=1

ℓ(yi, ŷi|Θ,W ), LDu(Θ,W ) =
1

n−m

n∑
i=m+1

ℓ(yi, ŷi|Θ,W ).

Following (El-Yaniv & Pechyony, 2006), testing datasets are randomly sampled from real data and
we treat the loss on these testing datasets as the expected loss. Given that the optimal parameters
Θ∗,W ∗ minimize the empirical loss LSm

(Θ∗,W ∗), our goal is to bound the generalization error:

LDU
(Θ∗,W ∗)− LSm(Θ∗,W ∗).

A small generalization error bound indicates that spectral GNNs can perform well on testing data.

3.1 ASSUMPTIONS

We first introduce assumptions used in the generalization analysis of spectral GNNs.
Assumption 1 (Lipschitz Continuity and Smoothness). The loss function ℓ and the spectral GNN Ψ
are both Lipschitz continuous and smooth.

Assumption 1 is commonly used in the analysis of neural networks trained with gradient de-
scent (Ghadimi & Lan, 2013). They are necessary conditions ensuring that the neural network training
converges (Arfken et al., 2011; Liao et al., 2021). We use Lip(•) and Smt(•) to denote the Lipschitz
constant and smoothness of a function, respectively, and ∥ • ∥F denotes the Frobenius norm.
Assumption 2 (Bounded Gradients). The gradients of both the spectral GNN and the loss function
ℓ(yi, ŷi) w.r.t. any parameters Θ,W , and for any node vi with class yi and prediction ŷi, are bounded:

∥∇Θŷi∥2F + ∥∇W ŷi∥2F ≤ β2
2 ; ∥∇ŷiℓ(yi, ŷi)∥F ≤ β1. (2)
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Here, ∇Θŷi and ∇W ŷi represent the gradients of ŷi with respect to the parameters Θ and W ,
respectively. ∇ŷi

ℓ(yi, ŷi) refers to the gradient of the loss function with respect to ŷi.
Remark. The loss surface of neural networks often contains many local minima (Dinh et al., 2017).
The bounded gradient assumption ensures convergence during optimization (Li & Liu, 2021).

Unlike margin loss, the cross-entropy loss function is unbounded. For theoretical analysis, it is
typically assumed that the sample loss is bounded.
Assumption 3 (Bounded Sample Loss). For any sample (xi, yi), the maximum loss between the
ground truth class yi and the prediction ŷi satisfies ℓ(ŷi, yi) ≤ Bℓ.

Following the previous work (Zhang et al., 2019; Kuzborskij & Lampert, 2018), we assume that
parameter norms are bounded during training.
Assumption 4 (Bounded Parameters). Each parameter θk ∈ Θ and the parameter matrix W in a
spectral GNN are bounded, i.e., |θk| ≤ BΘ and ∥W∥F ≤ BW .

4 GENERAL RESULTS

In this section, we examine the generalization of spectral GNNs through uniform transductive
stability (El-Yaniv & Pechyony, 2006). We define γ-uniform transductive stability for spectral GNNs,
analyze the key factors influencing γ by deriving the gradient norm bound, and use these insights to
establish the generalization error bound.
Definition 5 (γ-Uniform Transductive Stability). Let Sij

m = (X, {yt}mt=1,t̸=i ∪ {yj}) be a perturbed
dataset obtained by replacing the i-th sample in Sm with the j-th sample from Du. Let {Θ∗,W ∗}
and {Θ′,W ′} be the optimal parameters of a spectral GNN Ψ trained on Sm and Sij

m, respectively.
Denote the predictions for node vi by ŷi|Θ∗,W∗ and ŷi|Θ′,W ′ . The spectral GNN Ψ is γ-uniform
transductive stable if for any i ∈ [n]:

max
1≤i≤n

|ℓ(yi, ŷi|Θ∗,W∗)− ℓ(yi, ŷi|Θ′,W ′)| ≤ γ.

A larger γ indicates worse stability of spectral GNNs. Below, we decompose γ into two terms: r
and β. Here, r accounts for the Lipschitz continuity and smoothness of the loss function and spectral
GNNs, while β bounds the gradient norm during training.
Theorem 6 (Stability and Gradient Norm). Let Ψ be a spectral GNN trained using gradient descent
for T iterations with a learning rate η on a training dataset Sm, and evaluated on a testing set Du.
Under Assumption 1, for all iterations t ∈ [1, T ] and any sample (xi, yi) in Sm or Du, if the gradient
norm satisfies ∥∇ℓ(yi, ŷi|Θt,W t)∥F ≤ β, where {Θt,W t} are the parameters at the t-th iteration,
then Ψ satisfies γ-uniform transductive stability with:

γ = rβ, r =
2ηα1

m

T∑
t=1

(1 + ηα2)
t−1,

where α1 = Lip(ℓ) · Lip(Ψ) and α2 = Smt(Ψ)β1 + Smt(ℓ)Lip(Ψ)β2.
Remark. α1 and α2 represent the Lipschitz constant and smoothness of the loss function ℓ and the
spectral GNN Ψ, respectively. They determine how parameter updates Θt and W t during training
affect the loss of a sample (xi, yi) through the term r. As described in Eq. (2), β1 and β2 are the
bounds for the loss and its gradient, respectively. The proof is provided in Appendix A.2.

Unlike previous work (Cong et al., 2021), which assumes a fixed gradient norm β, we explicitly
derive β to analyze how graph homophily and the polynomial order of spectral GNNs influence the
gradient norm and, in turn, stability. To begin, we introduce the concept of a walk on a graph and its
expectation, both critical for analyzing the stability of spectral GNNs. A k-length walk on a graph
G is defined as a sequence of k edges {e1, e2, . . . , ek}, where ei ∈ E, and the endpoint of ei is the
starting point of ei+1 for i ∈ {1, . . . , k− 1}. The expectation of k-length walks is defined as follows.

Definition 7 (E
[
Ak

ij

]
). For a graph G ∼ cSBM(n, f,Π, Q) with adjacency matrix A, the expecta-

tion of the element Ak
ij in the k-th power of A is:

E[Ak
ij ] =

∑
p∈Pk

ij

∏
(v,v′)∈p

Qyy′ ,

5
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where P k
ij is the set of all k-length walks between vi and vj , and Qyy′ is the transition probability

between the classes y of v and y′ of v′.
Remark. Intuitively, Ak

ij represents the number of k-length walks between nodes vi and vj . The
first moment E[Ak

ij ] gives the expected number of such walks in the random graph generated by the
cSBM. Since Qyy′ represents the probability of an edge between nodes of classes y and y′, a larger
Qyy′ increases the likelihood of edges in walks involving transitions between these classes, resulting
in higher expected counts of such walks.

The following theorem reveals how the gradient norm bound β depends on the expectation of
k-length walks and their node class distributions within the graph.
Theorem 8. Consider a spectral GNN Ψ with polynomial order K trained using full-batch gradient
descent for T iterations with a learning rate η on a training dataset Sm sampled from a graph
G ∼ cSBM(n, f,Π, Q) with average node degree d ≪ n. When n → ∞ and K ≪ n, under
Assumptions 1, 2, and 4, for any node vi, i ∈ [n], and for a constant ϵ ∈ (0, 1), with probability at
least 1− ϵ, Ψ satisfies γ-uniform transductive stability, where γ = rβ and

β =
1

ϵ

[
O
(
E
[
∥ŷi − yi∥2F

])
+O

(
∥π⊤

yi
πyi +Σyi∥F

)
+O

 K∑
k=1

n∑
j=1

E[Ak
ij ]

∥∥∥∥∥
n∑

t=1

E[Ak
it]π

⊤
yj
πyt

+ E[Ak
ij ]Σyj

∥∥∥∥∥
F

].
Proof sketch. The main idea is to first derive the gradient of a sample loss and the expected gradient
norm E [∥∇ℓ(yi, ŷi|Θt,W t)∥F ] for node (xi, yi) with fixed parameters (n, f,Π, Q). Then the gradient
norm bound β is derived using Markov’s Inequality (Evans & Rosenthal, 2004). When parameters
Θ,W are bounded (Assumption 4), the main factors in E [∥∇ℓ(yi, ŷi|Θt,W t)∥F ] are ∥ŷi − yi∥2F
and moments of AkX . When graph structure and node features are independent given node labels,
we have E

[
AkX

]
= E

[
Ak
]
E [X]. While Ak depends on the graph structure, governed by the

parameter Q, node feature X is controlled by parameter Π, shown as the mean πyi
and variance Σyi

of nodes belong to class yi. The full proof is provided in Appendix B.2.

Remark. Theorem 8 shows that the gradient norm bound β is primarily influenced by two factors:

(1) Expected prediction error E[∥ŷi − yi∥2F ] quantifies the difference between the truth node
class yi and the predicted label ŷi for a node vi by a spectral GNN. A well-performing
spectral GNN is characterized by a low expected prediction error.

(2) Expectation of k-length walks E[Ak
ij ] measures the interaction between nodes vi and vj

through k-length walks. The existence of these walks depends on the labels of all nodes
along the walk, with edge probabilities in k-length walks determined by Q in cSBM.

When a γ-transductive learning algorithm is trained on two nearly identical training sets, differing
by just one sample, the expected generalization error equals the expected increase in sample loss (El-
Yaniv & Pechyony, 2006). Based on this known result, Theorem 6, and β obtained from Theorem 8,
we have the following generalization error bound for spectral GNNs.

Theorem 9 (Generalization Error Bound). Let H2(n) ≜
∑n

i=1
1
i2 and Ω(m,n − m) ≜

(n−m)
2
(H2(n)−H2(n−m)). For ϵ ∈ (0, 1), if a spectral GNN is γ-uniform transductive

stability with probability 1 − ϵ, then under Assumption 3, for δ ∈ (0, 1), with probability at least
(1− δ)(1− ϵ), the generalization error LDu

(Θ,W )− LSm
(Θ,W ) is upper-bounded by:

γ +

(
2γ +

(
1

n−m
+

1

m

)
(Bℓ − γ)

)√
2Ω(m,n−m) log

1

δ
. (3)

Remark. The generalization error bound of a spectral GNN is closely related to its uniform trans-
ductive stability γ, the number of training samples m, and the total number of nodes n in the graph.
A smaller γ indicates stronger stability, which in turn suggests better generalization performance.
Factors such as graph homophily and the polynomial order of a spectral GNN affect γ, thereby
impacting the generalization error. From Theorem 6, we observe that γ = O(1/m). When n is
sufficiently large, the term 1/(n−m) becomes negligible, and Ω(m,n−m) increases as O(m1/2).
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The following lemma shows that increasing the number of training samples m improves the
generalization. The proof is provided in Appendix C.2.
Lemma 10. Consider a spectral GNN trained with m samples as n → ∞. As the sample size m
increases, the generalization error bound decreases at the rate O(1/m) +O

(√
2 log(1/δ)/m

)
.

Thus far, we have considered only linear feature transformation functions fW in spectral GNNs.
We now establish a result on how a non-linear fW influences uniform transductive stability.
Proposition 11. For a spectral GNN Ψσ̃ with a non-linear feature transformation function fW (X) =
σ̃(XW ), assume the gradient norm bound β in Theorem 9 is the same for Ψ and Ψσ̃ . If Lip(σ̃) ≤ 1
and Smt(σ̃) ≤ 1, then γσ̃ ≤ γ, where γσ̃ is the stability of Ψσ̃ .
Remark. The γσ̃-uniform transductive stability of spectral GNNs Ψσ̃ with a non-linear transformation
is bounded by the stability of its linear counterpart Ψ, provided that the activation function satisfies
Lip(σ̃) ≤ 1 and Smt(σ̃) ≤ 1. These conditions ensure that the non-linear transformation does not
excessively amplify inputs or gradients, thus maintaining stability. Common activation functions like
ReLU, Sigmoid, and Tanh satisfy these criteria, indicating that they may contribute to stabilizing the
training of spectral GNNs by preventing large output fluctuations in response to small input changes.
The proof is provided in Appendix C.2.

5 FURTHER ANALYSIS

In this section, we analyze the impact of node class distribution and spectral GNN architecture
on the generalization error bound. To derive an explicit form for property analysis, we consider
cSBM(n, f, µ, u, λ, d), a well-studied specialization of the general multi-class cSBM (Deshpande
et al., 2018), widely used in prior studies on graph analysis (Esser et al., 2021; Ma et al., 2022;
Baranwal et al., 2021; Baranwal et al.). Specifically, for a node vi with label yi ∈ {±1}, its feature
is sampled from a Gaussian distribution:

xi ∼ N (yi
√
µ/nu, If/f).

Two nodes of the same class are connected with probability cin = d+ λ
√
d, while nodes of different

classes are connected with probability cout = d − λ
√
d. In this simplified 2-class cSBM, the

distribution Π reduces to {Π±}, and the edge-probability matrix simplifies to a 2× 2 matrix with
diagonal elements cin/n and off-diagonal elements cout/n.

By adjusting the parameter λ in cSBM, we can generate graphs with varying node class distribu-
tions. One way to quantify the node class distribution is the edge homophilic ratio (Zhu et al., 2020),

Hedge =
|{eij | vi, vj ∈ V, eij ∈ E, yi = yj}|

|E|
.

The relationship between the parameters d, λ in cSBM and the edge homophilic ratio is as follows.
Proposition 12. For a graph G ∼ cSBM(n, µ, u, λ, d), the expected edge homophily ratio is:

E[Hedge] =
d+ λ

√
d

2d
; E[Hedge] =

cin
cin + cout

. (4)

When λ > 0, the graph tends to be homophilic as E[Hedge] > 0.5. Conversely, when λ < 0, the
graph tends to be heterophilic. The proof is provided in Appendix E.1.

5.1 UNIFORM TRANSDUCTIVE STABILITY

We now establish stability for graphs with two node classes and Gaussian-distributed node features.
Theorem 13. Consider a spectral GNN Ψ parameterized by Θ,W trained using full-batch gradient
descent for T iterations with a learning rate η on a training dataset containing m samples drawn
from nodes on a graph G ∼ cSBM(n, f, µ, u, λ, d). When n → ∞, k ≪ n, and d ≪ n, under
Assumptions 1, 2, and 4, for any node vi on the graph, with probability at least 1− ϵ for a constant
ϵ ∈ (0, 1), Ψ satisfies γ-uniform transductive stability, where γ = rβ and

β =
1

ϵ

[
O
(
E
[
∥ŷi − yi∥2F

])
+O

(
K∑

k=2

(
E
[(
Ak

ij | yi = yj
)2]

+ E
[(
Ak

ij | yi ̸= yj
)2]))]

.
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Proof sketch. The proof follows the same structure as Theorem 8. The gradient norm bound β can
be explicitly expressed as the expected prediction error E

[
∥ŷi − yi∥2F

]
and the homophily-aware

walk variance ζk = E
[
(Ak

ij | yi = yj)
2
]
+ E

[
(Ak

ij | yi ̸= yj)
2
]
. The connection between ζk and

Hedge can be analyzed in a tractable manner. The full proof is provided in Appendix D.3.

Remark. The theorem derives the explicit form of k-length walks Ak
ij . Notably, (Ak

ij |yi = yj) and
(Ak

ij |yi ̸= yj) follow distinct distributions based on whether nodes vi and vj share the same label.
When k = 1, Ak

ij follows a Bernoulli distribution. For n → ∞ with d ≪ n and 2 ≤ k ≪ n, Ak
ij

follows a Poisson distribution. The term ζk = E[(Ak
ij |yi = yj)

2] + E[(Ak
ij |yi ̸= yj)

2] captures
the homophily-aware walk variance, reflecting the variance in k-length walks between same-class
or different-class nodes. This depends on the edge probabilities cin and cout: (1) cin = cout: the
graph is essentially an Erdős-Rényi graph, lacking clusters or multipartite structure, leading to higher
variance in k-length walks. (2) cin > cout: the graph is homophilic with cluster patterns, and walks
are concentrated within clusters, reducing variance. (3) cin < cout: the graph is heterophilic with
multipartite patterns, and walks are concentrated along edges connecting different classes, affecting
the variance. In general, the absence of clear cluster or multipartite structures increases randomness
in k-length walks, resulting in higher ζk.

5.2 MAIN FACTORS IN STABILITY

We first analyze how exactly the expected prediction error E[∥ŷi − yi∥2F ] and the homophily-aware
walk variance ζk vary with the parameters λ and K, and then examine the combined effects of λ and
K on the stability and generalization of spectral GNNs.
Theorem 14 (E

[
∥ŷi − yi∥2F

]
and λ,K). Given a graph G ∼ cSBM(n, µ, u, λ, d) and a spectral

GNN of orderK, E[∥ŷi−yi∥2F ] for any node vi satisfies the following: it increases with λ ∈ [−
√
d, 0],

decreases with λ ∈ [0,
√
d], and reaches its maximum at λ = 0; it increases withK if

∑K
k=2 θk

(k−1)!
2k−1

grows more slowly than
∑K

k=2 θ
2
k
(k−1)!

2k
as K increases.

Remark. When λ = 0, the graph is neither homophilic nor heterophilic, resulting in the maximum
expected error. When λ = ±

√
d, the expected error is minimized. This implies that spectral GNNs

perform well on strong homophilic or heterophilic graphs but poorly on graphs that are neither. The
relationship between the expected norm E[∥ŷi − yi∥2F ] and the order K is nonetheless intricate,
depending on Θ = {θk}Kk=0. The proof is provided in Appendix E.2.

We observe that ζk exhibits the same trend as E[∥ŷi−yi∥2F ] with respect to changes in λ; however,
their behavior diverges with respect to K, as characterized in the following theorem.
Theorem 15 (ζk and λ,K). Given a graph G ∼ cSBM(n, µ, u, λ, d) and a spectral GNN of order
K, ζk has the following properties: (1) it increases with λ ∈ [−

√
d, 0], decreases with λ ∈ [0,

√
d],

and achieves its maximum value at λ = 0; (2) it increases with k as k grows, for k ∈ [0,K].

Remark. When d is fixed, λ→
√
d, nodes with the same class form clusters, and when λ→ −

√
d,

they form a bipartite structure. In both cases, the graph structure exhibits clear patterns, leading to
a small variance V

[
Ak

ij

]
= E

[
(Ak

ij)
2
]
− (E

[
Ak

ij

]
)2 and, consequently, a small ζk. When λ → 0,

the graph lacks simple patterns, resulting in a large variance and a correspondingly large ζk. When
k ∈ [0,K] increases, more walks between two nodes exist and thus the variance V

[
Ak

ij

]
increases.

Larger variance corresponds to a larger ζk. The proof is provided in Appendix E.3.

Based on Theorems 14 and 15, the following proposition summarizes how λ and K influence the
γ-uniform transductive stability of spectral GNNs. The proof is provided in Appendix E.4.
Proposition 16. For a fixed K, γ-uniform transductive stability and generalization error bound
strictly increase as λ moves from −

√
d to 0, and decreases as λ moves from 0 to

√
d. For a fixed λ, if∑K

k=2 θk
(k−1)!
2k−1 grows more slowly than

∑K
k=2 θ

2
k
(k−1)!

2k
asK increases, then γ-uniform transductive

stability and generalization error bound increase with K.

5.3 PRACTICAL IMPLICATIONS

We discuss two practical implications of our theoretical findings.
Rewiring graphs: Our analysis establishes a strong connection between graph homophily and the
generalization error bound, offering practical insights for rewiring graphs to enhance the performance
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Figure 1: Testing accuracy, accuracy gap, and loss gap of five spectral GNNs on synthetic and
real-world datasets: (a)-(c) Syn-Varying-Hedge: synthetic datasets with varying Hedge ∈ [0.1, 0.9]
(step 0.1) and m = 3, 000; (d)-(f) Syn-Varying-m: synthetic datasets with varying training sample
sizes m ∈ [500, 4500] (step 500) of fixed Hedge; (g)-(i) Real-m-100: real-world datasets with varying
Hedge (shown on the right) and m = 100.

of spectral GNNs. Graphs with strong homophilic or heterophilic structures exhibit low variance in
k-length walks, which reveals clearer structural patterns. This reduction in variance decreases the
gradient norm bound β (Theorems 8 and 13), leading to improved γ-uniform transductive stability
(Theorem 6). Enhanced stability, in turn, reduces the generalization error bound (Theorem 9).

Constrained graph convolution: Our theoretical results indicate that constraining the graph con-
volution parameters 0 ≤ θk ≤ 1 prevents the generalization error bound from increasing with the
polynomial orderK. This is because the constraint ensures that the condition in Proposition 16, where∑K

k=2 θk
(k−1)!
2k−1 increases slower than

∑K
k=2 θ

2
k
(k−1)!

2k
, is violated, as θk ≥ θ2k. Previous work (He

et al., 2021) reports that constraining θk to non-negative values with Bernstein polynomial basis leads
to valid polynomial filters. Our analysis further suggests adding the constraint θk ≤ 1 to maintain
stable generalization error as K increases.

6 EXPERIMENTS

Synthetic and real-wrold datasets. We use the following datasets: (1) Synthetic datasets consist
of nine graphs generated using G ∼ cSBM(n, f, µ, u, λ, d) following (Chien et al., 2021). Each
graph contains 5,000 nodes with 2,000-dimensional features and an average degree of 5. The edge
homophily ratios (Hedge) range from 0.1 to 0.9 in steps of 0.1. (2) Real-world datasets consist of
ten benchmark node classification datasets (Texas, Wisconsin, Actor, Chameleon, Squirrel, Citeseer,
Pubmed, Cora, Ogbn-Arxiv, Ogbn-Products) with Hedge varying between 0.11 and 0.81. Following
previous work (He et al., 2021; 2022a; Chien et al., 2021), we randomly split each dataset into 60%
for training, 20% for validation, and 20% for testing.
Spectral GNNs. We select five widely recognized spectral GNNs for our experiments: ChebNet (Def-
ferrard et al., 2016), GPRGNN (Chien et al., 2021), BernNet (He et al., 2021), JacobiConv (Wang &
Zhang, 2022), and ChebNetII (He et al., 2022a). For consistency with Eq. (1), we use a single-layer
ChebNet rather than the typical two-layer version.

Further details about the dataset statistics, spectral GNNs, hyper-parameter settings used in our
experiments and additional experimental results are provided in Appendix F. Below, we discuss the
effects of node class distribution and polynomial order on the accuracy and loss gaps of spectral GNNs.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 2: Accuracy gap and loss gap of JacobiConv and BernNet when the polynomial order K
increases, where ρ1 =

∑K
k=2 θk

(k−1)!
2k−1 and ρ2 =

∑K
k=2 θ

2
k
(k−1)!

2k
: (a-b),(e-f) show the results on a

synthetic dataset ofHedge = 0.2; (c-d),(g-h) show the results on Chameleon dataset ofHedge = 0.24.

Figure 1(a)-(c) illustrates that as Hedge of synthetic datasets varies from 0.1 to 0.9, accuracy and
loss gaps increase monotonically for Hedge ∈ [0.1, 0.5] and decrease for Hedge ∈ [0.5, 0.9], reaching
their maximum at Hedge = 0.5 across all spectral GNNs. This aligns with our theoretical analysis
in Proposition 16, which states that the generalization error bound increases as Hedge moves from
0 to 0.5 and decreases as Hedge moves from 0.5 to 1. In Figure 1(d)-(f), when the training sample
number m increases from 500 to 4, 500 on synthetic datasets, both accuracy and loss gaps decrease
consistently. This is consistent with Lemma 10, which shows that the generalization error bound
decreases with increasing m. Figure 1(g)-(i) shows that when training all real-world datasets with the
same sample size m = 100, spectral GNNs exhibit a similar trend to synthetic datasets. Loss gaps
are small at the extreme ends of the Hedge range but increase as Hedge transitions from Texas (0.11)
to Ogbn-Products (0.81). These results align with Proposition 16.

Figure 2 shows that when the slope of ρ1 is smaller than that of ρ2, accuracy and loss gaps increase.
Conversely, gaps decrease when ρ1 grows faster than ρ2, aligning with Proposition 16. Intuitively,
this condition can be understood as follows: (1). Non-negative θk: Spectral GNNs constrained to
0 ≤ θk ≤ 1 demonstrate strong generalization. In this case, θk ≥ θ2k, ensuring ρ1 grows faster than
ρ2, violating the condition of Proposition 16, and preventing the generalization error bound from
increasing with K. For instance, BernNet enforces non-negative θk, and as shown in Figure 2(e-h),
its accuracy and loss gaps remain stable with increasing K. (2). Unrestricted θk: Spectral GNNs
allowing both positive and negative θk may exhibit poor generalization. If θk < 0, ρ1 ≤ ρ2. When
θk1 ≤ 0 and θk2 ≥ 0, ρ1 typically grows slower than ρ2, satisfying the condition of Proposition 16
and leading to increasing generalization error bounds with K. For example, JacobiConv does not
restrict the sign of θk, and its accuracy and loss gaps increase with K in Figure 2(a-b).

7 CONCLUSION, LIMITATIONS, AND FUTURE WORK

This work investigates how node class distribution and architectural choices impact the generalization
of spectral GNNs. Our findings show that spectral GNNs generalize well on graphs with strong
homophilic or heterophilic structures, where node class distributions exhibit clear patterns, and the
generalization error of spectral GNNs increases with polynomial order under certain conditions.

We derive the uniform transductive stability of spectral GNNs on graphs generated by the general
multi-class cSBM, providing insights into the relationships between graph homophily, polynomial
order, and generalization error bounds. However, this analysis is limited to a specialized cSBM,
leaving room for further exploration of more diverse graph generation models. Another limitation
lies in architectural choices. While these choices, such as the selection of the graph matrix (e.g.,
Laplacian vs. adjacency matrix) and polynomial basis (e.g., Chebyshev vs. Bernstein), are critical
to generalization performance, we do not explore their specific impacts on generalization bounds.
Future work could investigate how these design decisions influence the theoretical and practical
performance of spectral GNNs. Finally, our theoretical analysis assumes training with gradient
descent, whereas Adam is the optimizer most commonly used in practice. This discrepancy between
theoretical assumptions and practical applications highlights an important direction for future research
to bridge the gap and improve the relevance of theoretical findings to real-world scenarios.
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Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of Machine Learning
Research, 2:499–526, 2002.

Vladimir Cherkassky, Xuhui Shao, Filip M Mulier, and Vladimir N Vapnik. Model complexity
control for regression using vc generalization bounds. IEEE transactions on Neural Networks, 10
(5):1075–1089, 1999.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. arXiv: Learning, 2021.

Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. On provable benefits of depth in training
graph convolutional networks. Advances in Neural Information Processing Systems, 34:9936–9949,
2021.
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A STABILITY AND GRADIENT

A.1 LEMMAS FOR THEOREM 6

We start by establishing the maximum variation in the sample loss and the maximum change in the
gradient of the loss function with respect to the parameters {Θ,W} of spectral GNNs, as defined
in Eq. (1). These two properties play a crucial role in the subsequent analysis.

Based on Assumption 1, we derive the following lemmas.

Lemma 17 (Bound of Loss function to Parameters). Under Assumption 1, given a loss function ℓ
and a spectral GNN, for parameters Θ̄, W̄ ,Θ′,W ′ and any node vi with truth class yi we have

∥ℓ(yi, ŷi|Θ=Θ̄,W=W̄ )− ℓ(yi, ŷi|Θ′,W ′)∥F ≤ α1

√
∥Θ̄−Θ′∥2F + ∥W̄ −W ′∥2F

where α1 = Lip(ℓ)Lip(Ψ).

Proof. Under Assumption 1, we have:

∥ℓ(yi, ŷi|τ=τ̄ )− ℓ(yi, ŷi|τ=τ ′)∥ ≤ Lip(ℓ)∥ŷi|τ=τ̄ − ŷi|τ=τ ′∥F ;

∥Lip(ℓ)∥ŷi|τ=τ̄ − ŷi|τ=τ ′∥F ≤ Lip(Ψ)∥τ̄ − τ ′∥F .

By combining the two inequalities above, we arrive at:

∥ℓ(yi, ŷi|τ=τ̄ )− ℓ(yi, ŷi|τ=τ ′)∥ ≤ Lip(ℓ)Lip(Ψ)∥τ̄ − τ ′∥F .

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Lemma 18 (Bound of Gradient to Parameters). Under Assumption 1, Assumption 2, for parameters
Θ̄, W̄ ,Θ′,W ′ of a spectral GNN, the following holds for any node vi with truth class yi

∥∇ℓ(yi, ŷi|Θ=Θ̄,W=W̄ )−∇ℓ(yi, ŷi|Θ′,W ′)∥F ≤ α2

√
∥Θ̄−Θ′∥2F + ∥W̄ −W ′∥2F

where α2 = (Smt(Ψ)β1 + Smt(ℓ)Lip(Ψ)β2) .

Proof. Since we have
∇ℓ(yi, ŷi|τ=τ̄ ) = ∇ŷi

ℓ(y, ŷi)|τ=τ̄ · ∇ŷi|τ=τ̄ ;

∇ℓ(yi, ŷi|τ=τ ′) = ∇ŷiℓ(y, ŷi)|τ=τ ′ · ∇ŷi|τ=τ ′ ,

this leads to

∇ℓ(yi, ŷi|τ=τ̄ )−∇ℓ(yi, ŷi|τ=τ ′) = ∇ŷi
ℓ(y, ŷi)|τ=τ̄ (∇ŷi|τ=τ̄ −∇ŷi|τ=τ ′)

+ (∇ŷi
ℓ(y, ŷi)|τ=τ̄ −∇ŷi

ℓ(y, ŷi)|τ=τ ′)∇ŷi|τ=τ ′ .

Hence, we obtain the following

∥∇ℓ(yi, ŷi|τ=τ̄ )−∇ℓ(yi, ŷi|τ=τ ′)∥F ≤ ∥∇ŷi
ℓ(y, ŷi)|τ=τ̄∥F · ∥∇ŷi|τ=τ̄ −∇ŷi|τ=τ ′∥F

+ ∥∇ŷi
ℓ(y, ŷi)|τ=τ̄ −∇ŷi

ℓ(y, ŷi)|τ=τ ′∥F · ∥∇ŷi|τ=τ ′∥F .
(5)

Under Assumption 1 and Assumption 2, we have:

∥∇ŷi|τ=τ̄ −∇ŷi|τ=τ ′∥F ≤ Smt(Ψ)∥τ̄ − τ ′∥F
∥∇ŷi

ℓ(y, ŷi)|τ=τ̄∥F ≤ β1.
(6)

Under Assumption 1, we have:

∥∇ŷi
ℓ(y, ŷi)|τ=τ̄ −∇ŷi

ℓ(y, ŷi)|τ=τ ′∥F ≤ Smt(ℓ)∥ŷi|τ=τ̄ − ŷi|τ=τ ′∥F
≤ Smt(ℓ)Lip(Ψ)∥τ̄ − τ ′∥F .

(7)

Under Assumption 2, we have:
∥∇ŷi|τ=τ ′∥F ≤ β2. (8)

Substitute Eq. (6), Eq. (7), and Eq. (8) into Eq. (5), we have

∥∇ℓ(yi, ŷi|τ=τ̄ )−∇ℓ(yi, ŷi|τ=τ ′)∥F ≤ Smt(Ψ)∥τ̄ − τ ′∥F · β1 + Smt(ℓ)Lip(Ψ)∥τ̄ − τ ′∥F · β2
= (Smt(Ψ)β1 + Smt(ℓ)Lip(Ψ)β2) ∥τ̄ − τ ′∥F .

A.2 PROOF OF THEOREM 6

Theorem 6 (Stability and Gradient Norm). Let Ψ be a spectral GNN trained using gradient descent
for T iterations with a learning rate η on a training dataset Sm, and evaluated on a testing set Du.
Under Assumption 1, for all iterations t ∈ [1, T ] and any sample (xi, yi) in Sm or Du, if the gradient
norm satisfies ∥∇ℓ(yi, ŷi|Θt,W t)∥F ≤ β, where {Θt,W t} are the parameters at the t-th iteration,
then Ψ satisfies γ-uniform transductive stability with:

γ = rβ, r =
2ηα1

m

T∑
t=1

(1 + ηα2)
t−1,

where α1 = Lip(ℓ) · Lip(Ψ) and α2 = Smt(Ψ)β1 + Smt(ℓ)Lip(Ψ)β2.

Proof. We define τ = [Θ;W ] as the concatenation of the parameters Θ and W . From Lemma 17
and Lemma 18, we derive:

∥ℓ(yi, ŷi|τ )− ℓ(yi, ŷi|τ ′)∥F ≤ α1∥τ − τ ′∥F ;

∥∇ℓ(yi, ŷi|τ )−∇ℓ(yi, ŷi|τ ′)∥F ≤ α2∥τ − τ ′∥F ,
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where α1 = Lip(ℓ)Lip(Ψ) and α2 = (Smt(Ψ)β1 + Smt(ℓ)Lip(Ψ)β2). The updating rule for
gradient descent is given by:

τ t+1 = τ t − η∇LSm
(τ t);

τ t+1
ij = τ tij − η∇LSij

m
(τ tij),

where

LSm(τ t) =
1

m

m∑
r=1

ℓ(yr, ŷr|τt) and LSij
m
(τ tij) =

1

m

m∑
r=1

ℓ(yr, ŷr|τt
ij
).

represent the empirical loss on the training dataset Sm and Sij
m, respectively. The difference between

the empirical losses is given by:

LSij
m
(τ tij)−LSm(τ t) =

1

m

 m∑
r=1,r ̸=i,j

(
ℓ(yr, ŷr|τt

ij
)− ℓ(yr, ŷr|τt)

)
+ ℓ(yj , ŷj |τt

it
)− ℓ(yi, ŷi|τt)

 .
We derive the parameter difference:

∥τ t+1
ij − τ t+1∥F =

∥∥∥τ tij − η∇LSij
m
(τ tij)− τ t + η∇LSm

(τ t)
∥∥∥
F

≤ ∥τ tij − τ t∥F + η∥∇(LSm
(τ t)− LSij

m
(τ tij))∥F

= ∥τ tij − τ t∥F +
η

m

∥∥∥∥∥∥∥∇
 m∑

r=1
r ̸=i,j

(
ℓ(yr, ŷr|τt

ij
)− ℓ(yr, ŷr|τt)

)
+ ℓ(yj , ŷj |τt

ij
)− ℓ(yi, ŷi|τt)


∥∥∥∥∥∥∥
F

≤ ∥τ tij − τ t∥F +
η

m

∥∥∥∥∥∥∥
m∑
r=1
r ̸=i,j

α2∥τ tij − τ t∥F +∇
[
ℓ(yj , ŷj |τt

ij
)− ℓ(yi, ŷi|τt)

]∥∥∥∥∥∥∥
F

(Assumption 1)

≤ ∥τ tij − τ t∥F +
η

m
(m− 1)α2∥τ tij − τ t∥F +

η

m

∥∥∥∇ [ℓ(yj , ŷj |τt
ij
)− ℓ(yi, ŷi|τt)

]∥∥∥
F

≤ ∥τ tij − τ t∥F +
η

m
(m− 1)α2∥τ tij − τ t∥F +

2ηβ

m
(Theorem 13)

=

(
1 +

m− 1

m
ηα2

)
∥τ tij − τ t∥F +

2ηβ

m

≤ (1 + ηα2)∥τ tij − τ t∥F +
2ηβ

m
.

After T iterations, we obtain∥∥τTij − τT
∥∥
F
≤ (1 + ηα2)

∥∥τT−1
ij − τT−1

∥∥
F
+

2ηβ

m

≤ (1 + ηα2)[(1 + ηα2)
∥∥τT−2

ij − τT−2
∥∥
F
+

2ηβ

m
]

≤ (1 + ηα2)
T
∥∥τ0ij − τ0

∥∥
F
+

T∑
t=1

(1 + ηα2)
t−1 2ηβ

m

=

T∑
t=1

(1 + ηα2)
t−1 2ηβ

m
.

Since the loss function ℓ is α1-Lipschitz continuous, for any sample (xi, yi) with parameters
τT = [ΘT ;WT ] and τTij = [ΘT

ij ;W
T
ij ], we have:∣∣ℓ(ŷi, yi; τT )− ℓ(ŷi, yi; τ

T
ij )
∣∣ ≤ α1

∣∣τT − τTij
∣∣

≤ α1

T∑
t=1

(1 + ηα2)
t−1 2ηβ

m
.

The proof is completed.
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B STABILITY ON GENERAL MULTI-CLASS CSBM

We derive the uniform transductive stability of spectral GNNs defined in Eq. (1) on graphs generated
by G ∼ cSBM(n, f,Π, Q). Then we discuss how the non-linear feature transformation function
affect the stability.

We first give a brief introduction to inequalities and lemmas used in this proof.

B.1 LEMMAS FOR THEOREM 8

Lemma 19 (Jensen’s Inequality). Let X be an arbitrary random variable, and let f : R1 → R1 be a
convex function such that E [f(X)] is finite. Then f(E [f(X)]) ≤ E [f(X)].

Lemma 20 (Markov’s Inequality). If X is a non-negative random variable, then for all a > 0,

P (X ≥ a) ≤ E [X]

a
.

That is, the probability that X exceeds any given value a is no more than the expectation of X
divided by a.

Remark. Lemma 19, Lemma 20 are important inequalities about a variable and its expectation.
Details can be found in (Evans & Rosenthal, 2004).

Lemma 21 (Cauchy-Schwarz Inequality (Arfken et al., 2011)).

(

n∑
k=1

akbk)
2 ≤ (

n∑
k=1

a2k)(

n∑
k=1

b2k).

The square of the ℓ2-norm of the product of two vectors is less than or equal to the product of the
squares of the ℓ2-norms of the individual vectors.

Lemma 22 (Trace and Frobenius Norm). For any matrix A ∈ Rn×n, the relation between its trance
and its Frobenius norm is

Tr(A) ≤
√
n · ∥A∥F .

Proof. The trace of A is defined as:

Tr(A) =

n∑
i=1

aii.

Applying the absolute value, we have:

Tr(A) ≤
n∑

i=1

|aii|.

Using the Cauchy-Schwarz inequality (Lemma 21), this becomes:

n∑
i=1

|aii| ≤
√
n ·

√√√√ n∑
i=1

|aii|2.

Since |aii|2 = a2ii, we can write: √√√√ n∑
i=1

|aii|2 =

√√√√ n∑
i=1

a2ii.

Thus:

Tr(A) ≤
√
n ·

√√√√ n∑
i=1

a2ii =
√
n · ∥A∥F .
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Lemma 23 (Partial Derivatives). For spectral graph neural networks defined as Ŷ =

softmax
(∑K

k=0 θkÃ
kXW

)
, with node feature matrix X ∈ Rn×f and ground truth node label

matrix Y ∈ Rn×C , the cross-entropy loss for a single sample (xi, yi) is given by:

ℓ(ŷi, yi; Θ,W ) = −
C∑

c=1

Yic log
(
Ŷic

)
.

The partial derivatives of ℓ(ŷi, yi; Θ,W ) with respect to θk and Wpq are:

∂ℓ(ŷi, yi; Θ,W )

∂θk
=

C∑
c=1

(
Ŷic − Yic

)(
ÃkXW

)
ic
,

∂ℓ(ŷi, yi; Θ,W )

∂Wpq
=
(
Ŷiq − Yiq

)( K∑
k=0

θkÃ
kX

)
ip

.

Proof. We begin with the following definitions:

Z =

K∑
k=0

θkÃ
kXW, Ŷic =

eZic∑C
c′=1 e

Zic′
, ℓ(ŷi, yi; Θ,W ) = −

C∑
c=1

Yic log(Ŷic),

where Z ∈ Rn×C represents the feature matrix after aggregation, Ŷic is the softmax output for class
c, and ℓ(ŷi, yi; Θ,W ) is the cross-entropy loss for sample (xi, yi). We then compute the following
partial derivatives:

∂ℓ(ŷi, yi; Θ,W )

∂Ŷic
= −Yic

Ŷic
,

∂Ŷic
∂Zic′

= Ŷic(δcc′ − Ŷic′),

where δcc′ is the Kronecker delta, which equals 1 if c = c′ and 0 otherwise.

(1) Gradient w.r.t. θk: We have:
∂Zic

∂θk
= (ÃkXW )ic.

By the chain rule of gradient, we have:

∂ℓ(ŷi, yi; Θ,W )

∂θk
= −

C∑
c=1

ℓ(ŷi, yi; Θ,W )

∂Ŷic
·

(
C∑

c′=1

∂Ŷic
∂Zic′

· ∂Zic′

∂θk

)

= −
C∑

c=1

Yic

Ŷic
·

(
C∑

c′=1

Ŷic

(
δcc′ − Ŷic′

)
·
(
ÃkXW

)
ic′

)

= −
C∑

c=1

Yic ·

(
C∑

c′=1

(
δcc′ − Ŷic′

)
·
(
ÃkXW

)
ic′

)

= −
C∑

c=1

Yic ·

((
ÃkXW

)
ic
−

C∑
c′=1

Ŷic′
(
ÃkXW

)
ic′

)

= −
C∑

c=1

Yic

(
ÃkXW

)
ic
+

C∑
c′=1

Ŷic′
(
ÃkXW

)
ic′

=

C∑
c=1

(
Ŷic − Yic

)(
ÃkXW

)
ic
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(2) Gradient w.r.t. W : Based on the following

Zic =

K∑
k=0

θk

n∑
j=1

(Ãk)ij

f∑
r=1

XjrWrc,

we have
∂Zic

∂Wpq
=

K∑
k=0

θk

n∑
j=1

(Ãk)ijXjpδcq = δcq

K∑
k=0

θk

(
ÃkX

)
ip
,

where δcq is the Kronecker delta, which is 1 if c = q and 0 otherwise. Then, by the chain
rule of gradient, we have:

∂ℓ(ŷi, yi; Θ,W )

∂Wpq
= −

C∑
c=1

ℓ(ŷi, yi; Θ,W )

∂Ŷic
·

(
C∑

c′=1

∂Ŷic
∂Zic′

· ∂Zic′

∂Wpq

)

= −
C∑

c=1

Yic

Ŷic
·

(
C∑

c′=1

Ŷic

(
δcc′ − Ŷic′

)
·

(
δc′q

K∑
k=0

θk

(
ÃkX

)
ip

))

= −
C∑

c=1

Yic ·

(
C∑

c′=1

(
δcc′ − Ŷic′

)
·

(
δc′q

K∑
k=0

θk

(
ÃkX

)
ip

))

= −
C∑

c=1

Yic ·

((
δcq

K∑
k=0

θk

(
ÃkX

)
ip

)
−

C∑
c′=1

Ŷic′

(
δc′q

K∑
k=0

θk

(
ÃkX

)
ip

))

= −
C∑

c=1

Yic

(
δcq

K∑
k=0

θk

(
ÃkX

)
ip

)
+

C∑
c′=1

Ŷic′

(
δc′q

K∑
k=0

θk

(
ÃkX

)
ip

)

=

C∑
c=1

(
Ŷic − Yic

)(
δcq

K∑
k=0

θk

(
ÃkX

)
ip

)

=

C∑
c=1

K∑
k=0

θkδcq

(
Ŷic − Yic

)(
ÃkX

)
ip

=
(
Ŷiq − Yiq

)( K∑
k=0

θkÃ
kX

)
ip

.

B.2 PROOF OF THEOREM 8

Theorem 8. Consider a spectral GNN Ψ with polynomial order K trained using full-batch gradient
descent for T iterations with a learning rate η on a training dataset Sm sampled from a graph
G ∼ cSBM(n, f,Π, Q) with average node degree d ≪ n. When n → ∞ and K ≪ n, under
Assumptions 1, 2, and 4, for any node vi, i ∈ [n], and for a constant ϵ ∈ (0, 1), with probability at
least 1− ϵ, Ψ satisfies γ-uniform transductive stability, where γ = rβ and

β =
1

ϵ

[
O
(
E
[
∥ŷi − yi∥2F

])
+O

(
∥π⊤

yi
πyi +Σyi∥F

)
+O

 K∑
k=1

n∑
j=1

E[Ak
ij ]

∥∥∥∥∥
n∑

t=1

E[Ak
it]π

⊤
yj
πyt

+ E[Ak
ij ]Σyj

∥∥∥∥∥
F

].
Proof. Any spectral GNN described in Eq. (1) with a linear feature transformation function and a
polynomial basis expanded on a normalized graph matrix can be expressed in the following form:

Ŷ = softmax

(
K∑

k=0

θkÃ
kXW

)
, (9)
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where Ã = D− 1
2AD− 1

2 is the normalized graph adjacency matrix, and D is the diagonal degree
matrix. Here, Y ∈ Rn×C denotes the ground truth node label matrix.

(1) Walk counting: According to Definition 7, we have

E[Ak
ij ] =

∑
p∈Pk

ij

∏
(v,v′)∈p

Qyy′

(2) Feature expectation: Since we have G ∼ cSBM(n, f,Π, Q), node classes have a uniform
prior yi ∼ U(1, C). Thus,

E [XW ]ij =
1

n

n∑
u=1

(πyu
W )j

=
1

n

n∑
u=1

C∑
c=1

p(yu = c)(πcW )j

=
1

n

n∑
u=1

C∑
c=1

1

C
(πcW )j

=
1

C

C∑
c=1

(πcW )j .

(10)

– When k ≥ 1, we have

E[(ÃkXW )ij ] = E
[
Ãk

i:

]
E [(XW ):j ]

=

n∑
s=1

E
[
Ãk

is

]
E [(XW )sj ]

=

n∑
s=1

E
[
Ãk

is

]
· 1

C

C∑
c=1

(πcW )j .

– When k = 0, we have

E[(IXW )ij ] = E [(XW )ij ]

=
1

C

C∑
c=1

(πcW )j .

Thus,

E[(ÃkXW )ij ] =

{
1
C

∑C
c=1(πcW )j , k = 0∑n

s=1 E
[
Ãk

is

]
· 1
C

∑C
c=1(πcW )j , k ≥ 1

(11)

(3) Gradient Norm: The gradient norm can be relaxed as:

E [∥∇ℓ(ŷi, yi; Θ,W )∥F ] ≤ E [∥∇ℓ(ŷi, yi; Θ,W )∥ℓ1 ]

=

K∑
k=0

E
[
∥∂ℓ(ŷi, yi; Θ,W )

∂θk
∥ℓ1
]
+ E

[
∥∂ℓ(ŷi, yi; Θ,W )

∂W
∥ℓ1
]
.

(12)

According to Eq. (9) and Lemma 23, we get the partial derivatives ∂ℓ(ŷi,yi;Θ,W )
∂θk

and
∂ℓ(ŷi,yi;Θ,W )

∂Wpq
. Specially, when m = 1, we get the partial derivatives of empirical loss on

training sample (xi, yi):

∂ℓ(ŷi, yi; Θ,W )

∂θk
=

C∑
c=1

(
Ŷic − Yic

)(
ÃkXW

)
ic

(13)
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∂ℓ(ŷi, yi; Θ,W )

∂Wpq
=
(
Ŷiq − Yiq

)( K∑
k=0

θkÃ
kX

)
ip

(14)

Thus, we have:

E
[
∥∂ℓ(ŷi, yi; Θ,W )

∂θk
∥ℓ1
]
= E

[
|

C∑
c=1

(
Ŷic − Yic

)(
ÃkXW

)
ic
|

]

≤
C∑

c=1

E
[
|
(
Ŷic − Yic

)(
ÃkXW

)
ic
|
]

=

C∑
c=1

E
[
|
(
Ŷic − Yic

)
| · |
(
ÃkXW

)
ic
|
]

≤
C∑

c=1

1

2

(
E
[(
Ŷic − Yic

)2]
+ E

[(
ÃkXW

)2
ic

])
(Lemma 28)

=
1

2

(
E
[
∥ŷi − yi∥2F

]
+ E

[
∥Ãk

i:XW∥2F
])

;

(15)

E
[
∥∂ℓ(ŷi, yi; Θ,W )

∂W
∥ℓ1
]
=

f∑
p=1

C∑
q=1

E
[
∥∂ℓ(ŷi, yi; Θ,W )

∂Wpq
∥ℓ1
]

=

f∑
p=1

C∑
q=1

E

|(Ŷiq − Yiq

)( K∑
k=0

θkÃ
kX

)
ip

|


≤

f∑
p=1

K∑
k=0

|θk|

(
C∑

q=1

E
[
|
(
Ŷiq − Yiq

)
| · |
(
ÃkX

)
ip
|
])

≤
f∑

p=1

K∑
k=0

|θk|

(
E

[
C∑

q=1

(
Ŷiq − Yiq

)2]
+ E

[
C∑

q=1

(
ÃkX

)2
ip

])
(Lemma 28)

=

f∑
p=1

K∑
k=0

|θk|
(
E
[
∥ŷi − yi∥2F

]
+ CE

[(
ÃkX

)2
ip

])

=

K∑
k=0

|θk|
(
f · E

[
∥ŷi − yi∥2F

]
+ CE

[
∥Ãk

i:X∥2F
])
.

(16)

(4) Expectation E
[
∥Ãk

i:XW∥2F
]

and E
[
∥Ãk

i:X∥2F
]
: For sparse graphs G with adjacency

matrix A, when d ≪ n (average degree much smaller than the number of nodes) and
k ≪ n (walk length much smaller than the number of nodes), Ak

ia and Ak
ib can be treated

as independent variables due to the following reasons: (a). The overlap between walks of
different lengths is limited due to the sparsity of the graph. (b). The existence of a k-length
walk between two nodes is a rare event when k ≪ n, and the joint occurrences of two rare
events can be neglected. (c). When d ≪ n, the variance of Ak

ij is negligible compared to
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(
E[Ak

ij ]
)2

. Thus, by Eq. (11), we derive the following for the case k ≥ 1:

E[∥Ãk
i:XW∥2F ] = E

 C∑
c=1

(
n∑

s=1

Ãk
is (XW )sc

)2


= E

[
C∑

c=1

n∑
s=1

n∑
t=1

Ãk
isÃ

k
it (XW )sc (XW )tc

]

=

C∑
c=1

n∑
s,t=1

E
[
Ãk

isÃ
k
it (XW )sc (XW )tc

]

=

C∑
c=1

n∑
s,t=1

E
[
Ãk

is

]
· E
[
Ãk

it

]
· E [(XW )sc (XW )tc]

=

C∑
c=1

n∑
s=1

E
[
Ãk

is

] [ ∑
t=1,t̸=s

E
[
Ãk

it

]
· E [(XW )sc (XW )tc]

+ E
[
Ãk

is

]
· E
[
(XW )

2
sc

] ]
=

1

d2k

C∑
c=1

n∑
s=1

E
[
Ãk

is

] [ n∑
t=1,t̸=s

E
[
Ãk

it

]
· (πys

W )c · (πyt
W )c

+ E
[
Ãk

is

]
·W⊤

:c

(
π⊤
ys
πys

+Σys

)
W:c

]
.

When k = 0, we have:

E
[
∥Ãk

i:XW∥2F
]
= E

[
∥Xi:W∥2F

]
= E

[
C∑

c=1

(XW )
2
ic

]

=

C∑
c=1

W⊤
:c

(
π⊤
yi
πyi

+Σyi

)
W:c.

Thus, we obtain

E
[
∥Ãk

i:XW∥2F
]
=



∑C
c=1W

⊤
:c

(
π⊤
yi
πyk

+Σyi

)
W:c, k = 0

1
d2k

∑C
c=1

∑n
s=1 E

[
Ãk

is

] [∑n
t=1,t̸=s E

[
Ãk

it

]
· (πys

W )c · (πyt
W )c

+E
[
Ãk

is

]
·W⊤

:c

(
π⊤
ys
πys

+Σys

)
W:c

]
, k ≥ 1

(17)
Similarly, by Eq. (10), we have

E
[
∥Ãk

i:X∥2F
]
=



∑C
c=1 I

⊤
:c

(
π⊤
yi
πyk

+Σyi

)
I:c, k = 0

1
d2k

∑f
q=1

∑n
s=1 E

[
Ãk

is

] [∑n
t=1,t̸=s E

[
Ãk

it

]
· πys,q · πyt,q

+E
[
Ãk

is

]
· I⊤:q

(
π⊤
ys
πys +Σys

)
I:q

]
, k ≥ 1

(18)

By substituting Eq. (17) into Eq. (15), Eq. (18) into Eq. (16), and combining Eq. (15)
and Eq. (16) into Eq. (12), we obtain:
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E [∥∇ℓ(ŷi, yi; Θ,W )∥F ]

≤ 1

2

(
E
[
∥ŷi − yi∥2F

]
+

C∑
c=1

W⊤
:c

(
π⊤
yi
πyi

+Σyi

)
W:c

)

+

K∑
k=1

1

2

[
E
[
∥ŷi − yi∥2F

]
+

1

d2k

C∑
c=1

n∑
s=1

E
[
Ãk

is

]
·
[ n∑
t=1,t̸=s

E
[
Ãk

it

]
· (πys

W )c · (πyt
W )c + E

[
Ãk

is

]
·W⊤

:c

(
π⊤
ys
πys

+Σys

)
W:c

]]

+ |θ0|

(
f · E

[
∥ŷi − yi∥2F

]
+ C

f∑
c=q

I⊤:q
(
π⊤
yi
πyi +Σyi

)
I:q

)

+
K∑

k=1

|θk|
[
f · E

[
∥ŷi − yi∥2F

]
+ C

1

d2k

C∑
c=1

n∑
s=1

E
[
Ãk

is

]
·
[ n∑
t=1,t̸=s

E
[
Ãk

it

]
· πys,q · πyt,q + E

[
Ãk

is

]
· I⊤:q

(
π⊤
ys
πys +Σys

)
I:q

]]

=

(
K + 1

2
+ f

K∑
k=0

|θk|

)
E
[
∥ŷi − yi∥2F

]
+

1

2

C∑
c=1

W⊤
:c

(
π⊤
yi
πyi

+Σyi

)
W:c + |θ0|C

C∑
c=1

I⊤:c
(
π⊤
yi
πyi

+Σyi

)
I:c

+

K∑
k=1

1

d2k

C∑
c=1

n∑
s=1

E
[
Ãk

is

]
·
[ n∑
t=1,t̸=s

E
[
Ãk

it

]
· (πys

W )c · (πyt
W )c + E

[
Ãk

is

]
·W⊤

:c

(
π⊤
ys
πys

+Σys

)
W:c

]

+

K∑
k=1

C

d2k
|θk|

f∑
q=1

n∑
s=1

E
[
Ãk

is

]
·
[ n∑
t=1,t̸=s

E
[
Ãk

it

]
· πys,q · πyt,q + E

[
Ãk

is

]
· I⊤:q

(
π⊤
ys
πys

+Σys

)
I:q

]

=

(
K + 1

2
+ f

K∑
k=0

|θk|

)
E
[
∥ŷi − yi∥2F

]
+

1

2

C∑
c=1

W⊤
:c

(
π⊤
yi
πyi +Σyi

)
W:c + |θ0|C

C∑
c=1

I⊤:c
(
π⊤
yi
πyi +Σyi

)
I:c

+

K∑
k=1

1

d2k

C∑
c=1

n∑
s=1

E
[
Ãk

is

]W⊤
:c

 n∑
t=1
t̸=s

E
[
Ãk

it

]
π⊤
ys
πyt + E

[
Ãk

is

]
(π⊤

ys
πys +Σys)

W:c


+

K∑
k=1

C|θk|
d2k

f∑
q=1

n∑
s=1

E
[
Ãk

is

] n∑
t=1
t̸=s

E
[
Ãk

it

]
πys,qπyt,q + E

[
Ãk

is

]
I⊤:q
(
(π⊤

ys
πys +Σys)

)
I:q

 .
Under Assumption 4, we can further simplify and relax the expression to:
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E [∥∇ℓ(ŷi, yi; Θ,W )∥F ]

≤

(
K + 1

2
+ f

K∑
k=0

BΘ

)
E
[
∥ŷi − yi∥2F

]
+

1

2
Tr
(
WT

(
π⊤
yi
πyi +Σyi

)
W
)
+BΘCTr

(
π⊤
yi
πyi +Σyi

)
+

K∑
k=1

1

d2k

n∑
s=1

E
[
Ãk

is

]
Tr

 n∑
t=1
t ̸=s

E
[
Ãk

it

]
π⊤
ys
πyt

+ E
[
Ãk

is

]
(π⊤

ys
πys

+Σys
)


+

K∑
k=1

CBΘ

d2k

n∑
s=1

E
[
Ãk

is

] n∑
t=1
t ̸=s

E
[
Ãk

it

]
Tr
(
π⊤
ys
πyt

)
+ E

[
Ãk

is

]
Tr
(
(π⊤

ys
πys

+Σys
)
)

≤
(
K + 1

2
+ fBΘ(K + 1)

)
E
[
∥ŷi − yi∥2F

]
+

(
B2

W

2
+BΘC

)
Tr
(
π⊤
yi
πyi +Σyi

)
+

K∑
k=1

1 + CBΘ

d2k

n∑
j=1

E
[
Ak

ij

]
Tr

 n∑
t=1
t ̸=j

E
[
Ak

it

]
π⊤
yj
πyt + E

[
Ak

ij

] (
π⊤
yj
πyj +Σyj

) .

(19)

With Lemma 22, we rewrite it as

E [∥∇ℓ(ŷi, yi; Θ,W )∥F ] ≤ O
(
E
[
∥ŷi − yi∥2F

])
+O

(
∥π⊤

yi
πyi +Σyi∥F

)
+O

 K∑
k=1

n∑
j=1

E
[
Ak

ij

]
∥

n∑
t=1

E
[
Ak

it

]
π⊤
yj
πyt

+ E
[
Ak

ij

]
Σyj

∥F

 .

(20)

(5) Concentration Bound: By Jensen’s inequality (Lemma 19), we have:

E[∥∇ℓ(ŷi, yi; Θ,W )∥F ]2 ≤ E[∥∇ℓ(ŷi, yi; Θ,W )∥2F ],

which implies:

E[∥∇ℓ(ŷi, yi; Θ,W )∥F ] ≤
√

E[∥∇ℓ(ŷi, yi; Θ,W )∥2F ]. (21)

Using Markov’s inequality (Lemma 20), for a positive constant a, we have:

P(∥∇ℓ(ŷi, yi; Θ,W )∥F ≥ a) ≤ E[∥∇ℓ(ŷi, yi; Θ,W )∥F ]
a

= ϵ. (22)

Solving for a, we obtain:

a =
E[∥∇ℓ(ŷi, yi; Θ,W )∥F ]

ϵ
. (23)

Therefore, combining Eq. (20), Eq. (21), Eq. (22), and Eq. (23), with probability at least
1− ϵ, we have:

∥∇ℓ(ŷi, yi; Θ,W )∥F ≤ β =
1

ϵ
E[∥∇ℓ(ŷi, yi; Θ,W )∥F ].

When ∥∇ℓ(ŷi, yi; Θ,W )∥F ≤ β, according to Theorem 6, spectral GNNs on graphs G ∼
cSBM(n, f,Π, Q) have γ-uniform transductive stability. We rewrite this in Big-O notation
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as:

γ = r · β, β =
1

ϵ

[
O
(
E
[
∥ŷi − yi∥2F

])
+O

(
∥π⊤

yi
πyi +Σyi∥F

)
+O

 K∑
k=1

n∑
j=1

E[Ak
ij ]

∥∥∥∥∥
n∑

t=1

E[Ak
it]π

⊤
yj
πyt

+ E[Ak
ij ]Σyj

∥∥∥∥∥
F

],
where r is the same constant as in Theorem 6.

C GENERALIZATION ERROR BOUND OF SPECTRAL GNNS

We derive the generalization error bound of spectral GNNs based on their uniform transductive
stability. Subsequently, we analyze how the number of training samples affects the generalization
error bound.

We begin by introducing two lemmas for this proof.
Lemma 24 (Inequality for permutation (El-Yaniv & Pechyony, 2006)). Let Z be a random permuta-
tion vector. Let f(Z) be an (m, q)-symmetric permutation function satisfying ∥f(Z)− f(Zij)∥ ≤ β

for all i ∈ Im1 and j ∈ Im+q
m+1 . Define H2(n) ≜

∑n
i=1

1
i2 and Ω(m, q) ≜ q2 (H2(m+ q)−H2(q)).

Then

P (f(Z)− E[f(Z)] ≥ ϵ) ≤ exp

(
− ϵ2

2β2Ω(m, q)

)
.

Lemma 25 (Risk and uniform stability (El-Yaniv & Pechyony, 2006)). Given any training set Sm

and test set Du, the following holds:

E [LDu
(Θ,W )− LSm

(Θ,W )] = E [∆(i, j, i, i)] , i ∈ Im1 , j ∈ Im+q
m+1 ,

where ∆(i, j, i, i) denotes the change in the loss of sample (xi, yi) when the model is trained on two
datasets: one with (xi, yi) in the training set and another with (xj , yj) from the test set exchanged
with (xi, yi).

C.1 PROOF OF THEOREM 9

Theorem 9 (Generalization Error Bound). Let H2(n) ≜
∑n

i=1
1
i2 and Ω(m,n − m) ≜

(n−m)
2
(H2(n)−H2(n−m)). For ϵ ∈ (0, 1), if a spectral GNN is γ-uniform transductive

stability with probability 1 − ϵ, then under Assumption 3, for δ ∈ (0, 1), with probability at least
(1− δ)(1− ϵ), the generalization error LDu

(Θ,W )− LSm
(Θ,W ) is upper-bounded by:

γ +

(
2γ +

(
1

n−m
+

1

m

)
(Bℓ − γ)

)√
2Ω(m,n−m) log

1

δ
. (3)

Proof. Let ∆(i, j, s, t) ≜ ℓ(ŷt, yt; Θ
T
ij ,W

T
ij ) − ℓ(ŷs, ys; Θ

T ,WT ), where ΘT
ij ,W

T
ij are model pa-

rameters trained on dataset Sij
m for T iterations and ΘT ,WT are model parameters trained on

dataset Sm. We first derive a bound on the permutation stability of the function f(Sm,Du) ≜
LDu(Θ,W )− LSm(Θ,W ), where q = n−m. The bound is given as:∥∥(LDu

(Θ,W )− LSm
(Θ,W ))−

(
LDu

(Θij ,W ij)− LSm
(Θij ,W ij)

)∥∥ ≤

1

q

m+q∑
r=m+1,r ̸=j

∥∆(i, j, r, r)∥+ 1

q
∥∆(i, j, i, j)∥+ 1

m

m∑
r=1,r ̸=i

∥∆(i, j, r, r)∥+ 1

m
∥∆(i, j, j, i)∥.

(24)

According to Definition 5, Assumption 3 and Theorem 6, we have

max
1≤r≤m+q

∥∆(i, j, r, r)∥ ≤ γ = α1

T∑
t=1

(1 + ηα2)
t−1 2ηβ

m

25
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Thus, Eq. (24) is bounded:

∥ (LDu
(Θ,W )− LSm

(Θ,W ))−
(
LDu

(Θij ,W ij)− LSm
(Θij ,W ij)

)
∥

≤ q − 1

q
γ +

1

q
Bℓ +

m− 1

m
γ +

1

m
Bℓ

=

(
q − 1

q
+
m− 1

m

)
γ +

(
1

q
+

1

m

)
Bℓ

Let β̃ =
(

q−1
q + m−1

m

)
γ +

(
1
q + 1

m

)
Bℓ. Then, the function f(Sm,Du) = LDu(Θ,W ) −

LSm
(Θ,W ) has transductive stability β̃. Apply Lemma 24 to f(Sm,Du), equating the bound to δ

exp

(
− ϵ2

2β̃2Ω(m, q)

)
= δ,

we get

ϵ = β̃

√
2Ω(m, q) log

1

δ

Therefore, we obtain that the probability at least 1− δ that

LDu(Θ,W )− LSm(Θ,W )− E
[
LDu(Θ

ij ,W ij)− LSm(Θij ,W ij)
]
≤ β̃

√
2Ω(m, q) log

1

δ
(25)

According to Lemma 25 and Theorem 6, for 1 ≤ i ≤ m,m+ 1 ≤ j ≤ n, we have

E
[
LDu

(Θij ,W ij)− LSm
(Θij ,W ij)

]
= E [∆(i, j, i, i)] ≤ γ (26)

Substitute Eq. (26) into Eq. (25), we get:

LDu
(Θ,W ) ≤ LSm

(Θ,W ) + γ + β̃

√
2Ω(m, q) log

1

δ

It is rewritten as:

LDu
(Θ,W )− LSm

(Θ,W ) ≤ γ +

(
2γ +

(
1

n−m
+

1

m

)
(Bℓ − γ)

)√
2Ω(m,n−m) log

1

δ

C.2 PROOF OF LEMMA 10

Lemma 10. Consider a spectral GNN trained with m samples as n → ∞. As the sample size m
increases, the generalization error bound decreases at the rate O(1/m) +O

(√
2 log(1/δ)/m

)
.

Proof. The proof is proceeded in three steps:

(1) 1
n−m is neglectable compared with 1

m : As m < n, we have m = o(n).
m

n−m = m
n · 1

1−m
n

when n→ ∞, we have m
n → 0 and 1

1−m
n

→ 1 as m = o(n). Therefore,

lim
n→∞

m

n−m
= 0, lim

n→∞

1
n−m

1
m

= 0;

which indicates
1

n−m
= o(

1

m
)

(2) Ω(m,n−m) increase with m: As H2(k) =
∑k

i=1
1
i2 , we have:

H2(n)−H2(n−m) =

n∑
i=n−m+1

1

i2

26
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As

m · 1

n2
≤

n∑
i=n−m+1

1

i2
≤ m · 1

(n−m)2
,

we have

m · 1

n2
≤ H2(n)−H2(n−m) ≤ m · 1

(n−m)2
.

Multiple two sides with (n−m)2, we have:

(n−m)2 ·m · 1

n2
≤ (n−m)2 · (H2(n)−H2(n−m)) ≤ (n−m)2 ·m · 1

(n−m)2
,

As Ω(m,n−m) = (n−m)2 (H2(n)−H2(n−m)), we have:

m(n−m)2

n2
≤ Ω(m,n−m) ≤ m

i.e.,

Ω(m,n−m) = O(m)

(3) Generalization error bound: From Theorem 6, we have γ = O( 1
m ). Therefore:

γ +

(
2γ +

(
1

n−m
+

1

m

)
(Bℓ − γ)

)√
2Ω(m,n−m) log

1

δ

= O(
1

m
) +

(
O(

1

m
) +

(
o(

1

m
) +

1

m

)(
Bℓ −O(

1

m
)

))√
2O(m) log

1

δ

= O(
1

m
) +BℓO(

1

m
)O(m1/2)

√
2 log

1

δ

= O

 1

m
+Bℓ

√
2 log(1δ )

m



In summary, the decay rate of generalization error bound is O
(

1
m +O(

√
2 log( 1

δ )

m

)
.

Proposition 11. For a spectral GNN Ψσ̃ with a non-linear feature transformation function fW (X) =
σ̃(XW ), assume the gradient norm bound β in Theorem 9 is the same for Ψ and Ψσ̃ . If Lip(σ̃) ≤ 1
and Smt(σ̃) ≤ 1, then γσ̃ ≤ γ, where γσ̃ is the stability of Ψσ̃ .

Proof. We consider spectral GNN Ψ:

Ψ(M,X) = σ(

K∑
k=0

ÃkXW )

and spectral GNN Ψσ̃:

Ψσ̃(M,X) = σ(

K∑
k=0

σ̃
(
ÃkXW )

)
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(1) Lipschitz Constant: For any two sets of parameters (Θ1,W1) and (Θ2,W2), we have:

∥Ψσ̃(Θ1,W1)−Ψσ̃(Θ2,W2)∥

= ∥σ(
K∑
i=0

θ1kσ̃(Ã
kXW1))− σ(

K∑
i=0

θ2kσ̃(Ã
kXW2))∥

≤ Lip(σ)∥
K∑
i=0

θ1kσ̃(Ã
kXW1)−

K∑
i=0

θ2kσ̃(Ã
kXW2)∥

≤ Lip(σ)∥
K∑
i=0

(θ1k − θ2k)σ̃(Ã
kXW1) +

K∑
i=0

θ2k(σ̃(Ã
kXW1)− σ̃(ÃkXW2))∥

≤ Lip(σ)(∥
K∑
i=0

(θ1k − θ2k)σ̃(Ã
kXW1)∥+ ∥

K∑
i=0

θ2k(σ̃(Ã
kXW1)− σ̃(ÃkXW2))∥)

≤ Lip(σ)(∥Θ1 −Θ2∥F ·max
k

∥σ̃(ÃkXW1)∥2 + ∥Θ2∥F · Lip(σ̃) ·max
k

∥ÃkX(W1 −W2)∥2)

Since Lip(σ̃) ≤ 1, we have:

∥Ψσ̃(Θ1,W1)−Ψσ̃(Θ2,W2)∥ ≤ Lip(σ)(∥Θ1−Θ2∥F ·C1+∥Θ2∥F · ∥W1−W2∥F ·C2)

where C1, C2 are constants depending on X, Ã. The right hand side is identical to the bound
we get for Ψ without the activation function. Therefore, Lip(Ψσ̃) ≤ Lip(Ψ).

(2) Smoothness Constant: We first get partial derivatives of Ψ and Ψσ̃ with respect to θk:

∂Ψ

∂θk
= ∇σ(

K∑
i=0

θiÃ
iXW ) · ÃkXW

∂Ψσ̃

∂θk
= ∇σ(

K∑
i=0

θiσ̃(Ã
iXW )) · σ̃(ÃkXW )

Partial derivatives of Ψ and Ψσ̃ with respect to W are:

∂Ψ

∂W
= ∇σ(

K∑
i=0

θiÃ
iXW ) ·

K∑
i=0

θiÃ
iX

∂Ψσ̃

∂W
= ∇σ(

K∑
i=0

θiσ̃(Ã
iXW )) ·

K∑
i=0

θi∇σ̃(ÃiXW ) · ÃiX

The Lipschitz constant of these gradients determine the smoothness. For Ψσ̃, the ad-
ditional σ̃ and ∇σ̃ terms do not increase the Lipschitz constant of the gradient as
Lip(σ̃) ≤ 1, Smt(σ̃) ≤ 1:

– σ̃ is 1-Lipschitz, so it doesn’t increase the difference between inputs.
– ∇σ̃ is bounded by 1 (since Smt(σ̃) ≤ 1), so it doesn’t amplify the gradient.

Therefore, the Lipschitz constant of the gradient of Ψσ̃ is at most equal to that of Ψ, i.e., :

Smt(Ψσ̃) ≤ Smt(Ψ)

(3) Stability γσ̃: According to Theorem 6, we have α1 = Lip(ℓ) · Lip(Ψ) and α2 =
Smt(Ψ)β1 + Smt(ℓ)Lip(Ψ)β2. Thus, we have a smaller α1σ̃, α2σ̃ as Lip(Ψσ̃) ≤ Lip(Ψ)
and Ψσ̃) ≤ Smt(Ψ). Then, we have rσ̃ ≤ r.
As β is the same for Ψσ̃ and Ψ and γγ̃ = βrσ̃, γ = βr, we have

γσ̃ ≤ γ
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D STABILITY ON SPECIALIZED CSBM

We establish the uniform transductive stability of spectral GNNs with the architecture described
in Eq. (1) on graphs generated by G ∼ cSBM(n, f, µ, u, λ, d). Theorem 13 is a specialized form
of Theorem 8, where the data model is specialized to nodes with binary classes and Gaussian node
features.

We present lemmas essential for calculating node features after graph convolution in Appendix D.1.
Then we derive the expectation and variance of the element Ak

ij in the adjacency matrix and the ex-
pectation and variance of node features after graph convolution in Appendix D.2. Using these results,
we derive the transductive stability of spectral GNNs on the specialized data model in Appendix D.3.

D.1 LEMMAS FOR THEOREM 13

Lemma 26 (Poisson Limit Theorem (Durrett, 2019)). For each n, let Xn,m, 1 ≤ m ≤ n, be
independent random variables with P(Xn,m = 1) = pn,m and P(Xn,m = 0) = 1− pn,m. Suppose:

1.
∑n

m=1 pn,m → λ ∈ (0,∞), and

2. max1≤m≤n pn,m → 0,

then if Sn =
∑n

m=1Xn,m, Sn converges in distribution to a Poisson random variable with mean λ,
i.e., Sn ∼ Poisson(λ).

Remark. The Poisson limit theorem, also known as the law of rare events, states that the total number
of events will follow a Poisson distribution if the probability of occurrence of an event is small in
each trial but there are a large number of trials. For more details, see (Durrett, 2019).

Lemma 27 (Binomial Coefficient Approximation). When n≫ k, the binomial coefficient
(
n
k

)
can

be approximated as: (
n

k

)
≈ nk

k!
.

Proof. The binomial coefficient is defined as:(
n

k

)
=

n!

k!(n− k)!
.

Expanding the factorial terms for n!, we have:(
n

k

)
=
n · (n− 1) · (n− 2) · . . . · (n− k + 1) · (n− k)!

k! · (n− k)!
.

Canceling the (n− k)! terms in the numerator and denominator gives:(
n

k

)
=
n · (n− 1) · (n− 2) · . . . · (n− k + 1)

k!
.

When n≫ k, the terms (n−1), (n−2), . . . , (n−k+1) are approximately equal to n. Therefore,
the product simplifies as:

n · (n− 1) · (n− 2) · . . . · (n− k + 1) ≈ nk.

Substituting this approximation, we obtain:(
n

k

)
≈ nk

k!
, for n≫ k.

Lemma 28 (Expecatations of E [AB] ). For any two random variables A and B, the following
inequality holds:

E[AB] ≤ 1

2
E[A2] +

1

2
E[B2].
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Proof. Define a function f(t) for any real number t:

f(t) = E

[(
1√
2
A− t√

2
B

)2
]
.

Since f(t) is the expectation of a squared term, it is non-negative for any real t, i.e., f(t) ≥ 0.
Expanding f(t), we get:

f(t) = E
[
1

2
A2 − tAB +

t2

2
B2

]
.

Rearranging terms, this becomes:

f(t) =
1

2
E[A2]− tE[AB] +

t2

2
E[B2].

Since f(t) ≥ 0 for all t, substitute t = 1 to simplify:

f(1) =
1

2
E[A2]− E[AB] +

1

2
E[B2] ≥ 0.

Rearranging this inequality gives:

E[AB] ≤ 1

2
E[A2] +

1

2
E[B2].

Thus, the result holds.

Lemma 29 (Monotonicity of g(λ)). The function g(λ) =
((

d+ λ
√
d
)k

−
(
d− λ

√
d
)k)2

satisfies

the following properties:

• It monotonically increases on λ ∈ [0,
√
d].

• It monotonically decreases on λ ∈ [−
√
d, 0].

• It achieves its minimum value when λ = 0.

Proof. First, observe that g(λ) is an even function because:

g(−λ) =
((

d− λ
√
d
)k

−
(
d+ λ

√
d
)k)2

=

((
d+ λ

√
d
)k

−
(
d− λ

√
d
)k)2

= g(λ).

Thus, it is symmetric about λ = 0. Therefore, we only need to analyze its behavior for λ ≥ 0, and
the results for λ < 0 follow by symmetry.

Define:
A = d+ λ

√
d, B = d− λ

√
d.

Then, the function g(λ) can be rewritten as:

g(λ) = (Ak −Bk)2.

Using the chain rule:

g′(λ) = 2(Ak −Bk) · ∂
∂λ

(Ak −Bk).

The derivative of Ak −Bk with respect to λ is:

∂

∂λ
(Ak −Bk) = k

√
d(Ak−1 +Bk−1).

Thus:
g′(λ) = 2k

√
d(Ak −Bk)(Ak−1 +Bk−1).
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When λ ≥ 0, A ≥ B > 0, we have:

Ak −Bk ≥ 0, Ak−1 +Bk−1 ≥ 0.

Therefore:

g′(λ) ≥ 0 for λ ≥ 0.

This shows that g(λ) is monotonically increasing on [0,
√
d].

By the even symmetry of g(λ), we have:

g′(−λ) = −g′(λ).

Since g′(λ) ≥ 0 for λ ≥ 0, it follows that g′(λ) ≤ 0 for λ ≤ 0. Thus, g(λ) monotonically decreases
on [−

√
d, 0].

At λ = 0, A = B = d, we have:

g(0) = (dk − dk)2 = 0.

Thus, g(λ) achieves its minimum value when λ = 0.
The proof is complete.

Lemma 30 (Monotonicity of g(λ)). The function g(λ) =
∑k

s=1

(
d+ λ

√
d
)k−s (

d− λ
√
d
)s

satis-
fies the following properties:

• It monotonically decreases on λ ∈ [0,
√
d].

• It monotonically increases on λ ∈ [−
√
d, 0].

• It achieves its maximum value at λ = 0.

Proof. The function g(λ) can be rewritten as:

g(λ) = (2d)k −
(
d+ λ

√
d
)k

−
(
d− λ

√
d
)k
.

Differentiate g(λ) with respect to λ:

g′(λ) = k
√
d

[(
d− λ

√
d
)k−1

−
(
d+ λ

√
d
)k−1

]
.

• When λ > 0, we have
(
d− λ

√
d
)
<
(
d+ λ

√
d
)

. This implies
(
d− λ

√
d
)k−1

<(
d+ λ

√
d
)k−1

and g′(λ) < 0. Therefore, g(λ) is strictly decreasing on λ ∈ [0,
√
d].

• When λ < 0, we have
(
d− λ

√
d
)
>
(
d+ λ

√
d
)

. This implies
(
d− λ

√
d
)k−1

>(
d+ λ

√
d
)k−1

and g′(λ) > 0. Therefore, g(λ) is strictly increasing on λ ∈ [−
√
d, 0].

• When λ = 0, we have
(
d+ λ

√
d
)
=
(
d− λ

√
d
)
= d and g(0) = (2d)k − 2dk. This is

the maximum value of g(λ), as g′(λ) changes sign from positive to negative at λ = 0.

The proof is complete.
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D.2 EXPECTATION AND VARIANCE OF Ak
ij AND (ÃkXW )ij

Theorem 31 (Expectation and Variance of Ak
ij). Let the graph be generated by G ∼

cSBM(n, f, µ, u, λ, d). For n → ∞, d ≪ n, and 2 ≤ k ≤ k2 ≪ n, the number of k-length
walks connecting nodes vi and vj follows a Poisson distribution, Poisson(ρ′), where:

ρ′ =


ρ= = (k−1)!

n·2k−1

∑k+1
a=2O

(
min(2(a−1),2(k+1−a))∑

s=min(2,2(a−2),2(k+1−a))

ck−s
in · csout

)
, if yi = yj ,

ρ ̸= = (k−1)!
n·2k−1

∑k
a=1O

(
min(2a−1,2(k−a)+1)∑

s=1
ck−s
in · csout

)
, if yi ̸= yj .

The expectation and variance are:

E[Ak
ij ] = ρ′, V

[
Ak

ij

]
= ρ′.

When k = 1, the 1-length walk (i.e., a single edge) connecting nodes vi and vj follows a Bernoulli
distribution, Ber(p), where:

p =

{
p= = cin

n , if yi = yj ,

p̸= = cout

n , if yi ̸= yj .

The expectation and variance in this case are:

E[Ak
ij ] = p, V

[
Ak

ij

]
= p(1− p).

Proof. According to Definition 7, the expectation of Ak
ij , the number of k-length walks between

nodes vi and vj , is given by:
E[Ak

ij ] =
∑

p∈Pk
ij

∏
(v,v′)∈p

Qyy′ ,

where Pk
ij represents the set of all k-length walks between vi and vj , and Qyy′ is the probability of

an edge between nodes v and v′, conditioned on their respective classes y and y′.
When C = 2 (binary classes), the edge probabilities Qyy′ are:

Qyy′ =

{
cin
n , if y = y′,
cout

n , if y ̸= y′,

where cin and cout are the intra-class and inter-class edge probabilities, respectively.

Case 1: yi = yj and k ≥ 2

For nodes vi and vj sharing the same class yi, we consider walks of length k that include a nodes
sharing the class yi and k + 1− a nodes with different classes. Since vi and vj both belong to class
yi, we need to choose a− 2 nodes from the same cluster and k − a+ 1 nodes from the other cluster.
The total number of ways to arrange these nodes in a walk is (k − 1)!, as there are k − 1 positions to
fill. The probability of each edge depends on whether it connects nodes of the same class or different
classes.

The number of ways to choose the nodes is as follows:

• Choose a− 2 nodes from n
2 − 2 nodes in the same cluster:

(n
2 −2
a−2

)
.

• Choose k − a+ 1 nodes from n
2 nodes in the other cluster:

( n
2

k−a+1

)
.

The number of ways to arrange these nodes is (k − 1)!. Considering the class changes in the
k-length walk, let s denote the number of walk class changes:

• If 2a ≥ k + 1, then smin = min(2, 2(k + 1− a)) and smax = 2(k + 1− a).

• If 2a ≤ k + 1, then smin = min(2, 2(a− 2)) and smax = 2(a− 1).

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

The probability of a k-length walk with a nodes sharing the same class as vi is:

pak(vi, vj | yi = yj) =
(n

2 −2
a−2

)
·
( n

2
k−a+1

)
· (k − 1)! ·

(
2(k+1−a)∑

s=min(2,2(k+1−a)

(
cin
n

)k−s ·
(
cout

n

)s)
, if 2a ≥ k + 1;

(n
2 −2
a−2

)
·
( n

2
k−a+1

)
· (k − 1)! ·

(
2(a−1)∑

s=min(2,2(a−2))

(
cin
n

)k−s ·
(
cout

n

)s)
, if 2a < k + 1.

The total probability of a k-length walk connecting vi and vj when yi = yj is:

pk(vi, vj | yi = yj)

=

k+1
2∑

a=2

(n
2 − 2

a− 2

)
·
( n

2

k − a+ 1

)
· (k − 1)! ·

2(a−1)∑
s=min(2,2(a−2))

(cin
n

)k−s

·
(cout
n

)s

+

k+1∑
k+1
2

(n
2 − 2

a− 2

)
·
( n

2

k − a+ 1

)
· (k − 1)! ·

2(k+1−a)∑
s=min(2,2(k+1−a))

(cin
n

)k−s

·
(cout
n

)s
.

(27)

Using Lemma 27, the binomial coefficients simplify as:(n
2 − 2

a− 2

)
=

(
n
2 − 2

)a−2

(a− 2)!
,

( n
2

k − a+ 1

)
=

(
n
2

)k−a+1

(k − a+ 1)!
.

Thus, we have(n
2 − 2

a− 2

)
·
( n

2

k − a+ 1

)
· (k − 1)! = O

((n
2

)k−1

·
(
k − 1

a− 2

))
.

Substituting into Eq. (27), we get:

pk(vi, vj | yi = yj)

=

k+1
2∑

a=2

O

((n
2

)k−1

·
(
k − 1

a− 2

))
·

 2(a−1)∑
s=min(2,2(a−2))

(cin
n

)k−s

·
(cout
n

)s
+

k+1∑
k+1
2

O

((n
2

)k−1

·
(
k − 1

a− 2

))
·

 2(k+1−a)∑
s=min(2,2(k+1−a))

(cin
n

)k−s

·
(cout
n

)s
=

1

n · 2k−1

k+1
2∑

a=2

O

(k − 1

a− 2

)
·

 2(a−1)∑
s=min(2,2(a−2))

ck−s
in · csout


+

1

n · 2k−1

k+1∑
k+1
2

O

(k − 1

a− 2

)
·

 2(k+1−a)∑
s=min(2,2(k+1−a))

ck−s
in · csout


=

(k − 1)!

n · 2k−1

k+1∑
a=2

O

 min(2(a−1),2(k+1−a))∑
s=min(2,2(a−2),2(k+1−a))

ck−s
in · csout

 .

(28)

Case 2: yi ̸= yj and k ≥ 2

For nodes vi and vj , when they belong to different classes (yi ̸= yj), we count the walks of length
k where there are a nodes of the same class as vi and k + 1− a nodes of the class of vj . We need to
choose a − 1 nodes from the same cluster as vi and k − a nodes from the cluster of vj . The total
number of ways to arrange these nodes in a walk is (k − 2)!, as there are k − 2 positions to fill.

The number of ways to choose the nodes is:
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• Choose a− 1 nodes from n
2 − 1 nodes in the same cluster as vi:

(n
2 −1
a−1

)
;

• Choose k − a nodes from n
2 − 1 nodes in the same cluster as vj :

(n
2 −1
k−a

)
.

The number of ways to arrange these nodes is (k − 1)!. Considering the class changes in the
k-length walk, let s denote the number of class changes. The minimum and maximum values of s
are:

• If 2a ≥ k + 1, then smin = 1 and smax = 2(k − a) + 1;

• If 2a ≤ k + 1, then smin = 1 and smax = 2a− 1.

The probability of a k-length walk with a nodes sharing the same class as vi is:

pak(vi, vj |yi ̸= yj) =
(n

2 −1
a−1

)
·
(n

2 −1
k−a

)
· (k − 1)! ·

(∑2(k−a)+1
s=1

(
cin
n

)k−s ·
(
cout

n

)s)
, if 2a ≥ k + 1(n

2 −1
a−1

)
·
(n

2 −1
k−a

)
· (k − 1)! ·

(∑2a−1
s=1

(
cin
n

)k−s ·
(
cout

n

)s)
, if 2a < k + 1

The total probability of a k-length walk connecting vi and vj when yi ̸= yj is:

pk(vi, vj |yi ̸= yj) =
k+1
2∑

a=1

(n
2 − 1

a− 1

)
·
(n

2 − 1

k − a

)
· (k − 1)! ·

(
2a−1∑
s=1

(cin
n

)k−s

·
(cout
n

)s)

+

k∑
a= k+1

2

(n
2 − 1

a− 1

)
·
(n

2 − 1

k − a

)
· (k − 1)! ·

2(k−a)+1∑
s=1

(cin
n

)k−s

·
(cout
n

)s
(29)

When k ≪ n, using Lemma 27, we have(n
2 − 1

a− 1

)
=

(n2 − 1)a−1

(a− 1)!
,

(n
2 − 1

k − a

)
=

(n2 − 1)k−a

(k − a)!
.

Then: (n
2 − 1

a− 1

)
·
(n

2 − 1

k − a

)
· (k − 1)! =

(n2 − 1)a−1

(a− 1)!
·
(n2 − 1)k−a

(k − a)!
· (k − 1)!

=
(n
2
− 1
)k−1

·
(
k − 1

a− 1

)
We simplify Eq. (29) to

pk(vi, vj |yi ̸= yj) =

k+1
2∑

a=1

(n
2
− 1
)k−1

·
(
k − 1

a− 1

)
·

(
2a−1∑
s=1

(cin
n

)k−s

·
(cout
n

)s)

+

k∑
a= k+1

2

(n
2
− 1
)k−1

·
(
k − 1

a− 1

)
·

2(k−a)+1∑
s=1

(cin
n

)k−s

·
(cout
n

)s
=

1

n · 2k−1

k+1
2∑

a=1

O

((
k − 1

a− 1

)
·

(
2a−1∑
s=1

ck−s
in · csout

))

+
1

n · 2k−1

k∑
a= k+1

2

O

(k − 1

a− 1

)
·

2(k−a)+1∑
s=1

ck−s
in · csout


=

(k − 1)!

n · 2k−1

k∑
a=1

O

min(2a−1,2(k−a)+1)∑
s=1

ck−s
in · csout

 .

(30)
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Case 3: k = 1

When k = 1, we have Ak = A and

E[Aij ] =

{
cin
n , if yi = yj ,
cout

n , if yi ̸= yj .

In the following, we show that when a graph is sparse and k is small, Ak
ij can be modeled using a

Poisson distribution.

• For sparse graphs with a large number of nodes (n → ∞, d ≪ n), the probability of a
potential k-length walk existing is very small.

• When k ≪ n, the dependence between two different k-length walks is negligible.

• The number of potential k-length walks is large (nk−1 as n→ ∞).

Thus, according to Lemma 26, the number of k-length walks connecting nodes vi and vj , Ak
ij ,

follows a Poisson distribution Poisson(ρ′) when k ≥ 2, where:

ρ′ =


ρ= = (k−1)!

n·2k−1

∑k+1
a=2O

(
min(2(a−1),2(k+1−a))∑

s=min(2,2(a−2),2(k+1−a))

ck−s
in · csout

)
, if yi = yj ,

ρ ̸= = (k−1)!
n·2k−1

∑k
a=1O

(
min(2a−1,2(k−a)+1)∑

s=1
ck−s
in · csout

)
, if yi ̸= yj .

When k = 1, p(vi, vj) follows a Bernoulli distribution Ber(p), where:

p =

{
cin
n , if yi = yj ,
cout

n , if yi ̸= yj .

This completes the proof.

Theorem 32 (Expectation and variance of (ÃkXW )ij). Given a graph generated by G ∼
cSBM(n, f, µ, u, λ, d). The input node feature matrix is X and the normalized adjacency ma-
trix is Ã. The k-th power matrix Ãk is applied to obtain a new feature matrix ÃkXW , then the
expectation and the variance of (ÃkXW )ij are as follows:

For k = 1:

E
[
(ÃkXW )ij

]
=

1

2d

√
µ

n
(cin − cout) yiuW:j

V
[
(ÃkXW )ij

]
=

1

2 · d2

(
d− c2in + c2out

n

)
·
(
µ

n
(uW:j)

2
+

||W:j ||22
f

)
For k ≥ 2:

E
[
(ÃkXW )ij

]
=

(k − 1)!

dk · 2k−1
O
(
ckin − ckout

)√µ

n
yiuW:j

V
[
(ÃkXW )ij

]
=

(k − 1)!

d2k · 2k

( k+1∑
a=2

O

 min(2(a−1),2(k+1−a))∑
s=min(2,2(a−2),2(k+1−a))

ck−s
in · csout


+

k∑
a=1

O

min(2a−1,2(k−a)+1)∑
s=1

ck−s
in · csout

)(µ
n
(uW:j)

2
+

||W:j ||22
f

)
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Proof. Given that the node feature xi for node vi, generated by a conditional Stochastic Block Model
(cSBM) conditioned on u and node class yi, is distributed as:

xi ∼ N
(√

µ

n
yiu,

If
f

)
For a linear transformation matrix W , the transformed node feature is given by:

xiW ∼ N
(√

µ

n
yiuW,

WTW

f

)
Feature after transformation with W and propagation with Ãk is(

ÃkXW
)
ij
=

n∑
r=1

Ãk
ir(XW )rj

=

n∑
r=1

Ãk
ir

(√
µ

n
yruW:j +

ϵrW:j√
f

)

=

n∑
r=1

Ãk
ir

√
µ

n
yruW:j

and

E
[(
ÃkXW

)
ij

]
=

√
µ

n

(
n∑

r=1

E
[
Ãk

ir

]
yr

)
uW:j (31)

We now derive the expectation E[Ak
ij ] of the adjacency matrix A raised to the power k.

1. Expectation E
[(
ÃkXW

)
ij

]
when k ≥ 2

Two clusters generated by cSBM are in equal size. According to Theorem 31, we have

E
[(
ÃkXW

)
ij

]
=

√
µ

n

(
n∑

r=1

E
[
Ãk

ir

]
yr

)
uW:j

=
1

dk

√
µ

n

(
n∑

r=1

(
E
[
Ak

ir|yi = yr
]
+ E

[
Ak

ir|yi ̸= yr
])
yr

)
uW:j

=
1

dk

√
µ

n

( n∑
r=1

(
(k − 1)!

n · 2k−1

k+1∑
a=2

O

 min(2(a−1),2(k+1−a))∑
s=min(2,2(a−2),2(k+1−a))

ck−s
in · csout


+

(k − 1)!

n · 2k−1

k∑
a=1

O

min(2a−1,2(k−a)+1)∑
s=1

ck−s
in · csout

)yr)uW:j

=
(k − 1)!

dk · 2k−1
O

( k+1∑
a=2

min(2(a−1),2(k+1−a))∑
s=min(2,2(a−2),2(k+1−a))

ck−s
in · csout

−
k∑

a=1

min(2a−1,2(k−a)+1)∑
s=1

ck−s
in · csout

)√
µ

n
yiuW:j

=
(k − 1)!

dk · 2k−1
O
(
ckin − ckout

)√µ

n
yiuW:j

2. Variance E
[(
ÃkXW

)
ij

]
when k ≥ 2
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The variance of new feature X ′
ij given u, Y can be expressed as:

V
[
(ÃkXW )ij

]
= V

[
n∑

r=1

Ãk
ir(

√
µ

n
yruW:j +

ϵrW:j√
f

)

]

=

n∑
r=1

V
[
Ãk

ir(

√
µ

n
yruW:j +

ϵrW:j√
f

)

]
, feature dimension independent

=

n∑
r=1

[
E
[
(Ãk)2ir

]
E
[
(

√
µ

n
yruW:j +

ϵrW:j√
f

)2
]
−
(
E
[
Ãk

ir

])2(
E
[√

µ

n
yruW:j +

ϵrW:j√
f

])2
]

=

n∑
r=1

[
E
[
(Ãk)2ir

]((√µ

n
yruW:j

)2

+
||W:j ||22
f

)
−
(
E
[
Ãk

ir

])2
(E
[√

µ

n
yruW:j +

ϵrW:j√
f

]
)2

]

=

n∑
r=1

[
E
[
(Ãk)2ir

]((√µ

n
yruW:j

)2

+
||W:j ||22
f

)
−
(
E
[
Ãk

ir

])2(√µ

n
yruW:j

)2
]

=

n∑
r=1

[((
E
[
Ãk

ir

])2
+ V

[
Ãk

ir

])
·

((√
µ

n
yruW:j

)2

+
||W:j ||22
f

)

−
(
E
[
Ãk

ir

])2(√µ

n
yruW:j

)2 ]
=

1

d2k

n∑
r=1

[((
E
[
Ak

ir

])2
+ V

[
Ak

ir

])
·
(
µ

n
(uW:j)

2
+

||W:j ||22
f

)
−
(
E
[
Ak

ir

])2 µ
n
(uW:j)

2

]
=

1

d2k

n∑
r=1

[ (
E
[
Ak

ir

])2 · ||W:j ||22
f

+ V
[
Ak

ir

]
·
(
µ

n
(uW:j)

2
+

||W:j ||22
f

)]
=

1

d2k
n

2

((
E
[
Ak

ir|yi = yr
])2

+
(
E
[
Ak

ir|yi ̸= yr
])2) · ||W:j ||22

f

+
1

d2k
n

2

(
V
[
Ak

ir|yi = yr
]
+ V

[
Ak

ir|yi ̸= yr
])

·
(
µ

n
(uW:j)

2
+

||W:j ||22
f

)
(32)

According to Theorem 31, when k ≥ 2, we have

(
E
[
Ak

ij |yi = yj
])2

=

 (k − 1)!

n · 2k−1

k+1∑
a=2

O

 min(2(a−1),2(k+1−a))∑
s=min(2,2(a−2),2(k+1−a))

ck−s
in · csout

2

(
E
[
Ak

ij |yi ̸= yj
])2

=

 (k − 1)!

n · 2k−1

k∑
a=1

O

min(2a−1,2(k−a)+1)∑
s=1

ck−s
in · csout

2
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Two clusters generated by cSBM are in equal size. Then, Eq. (32) is written as:

V
[
(ÃkXW )ij

]
=

1

d2k
n

2

((
E
[
Ak

ir|yi = yr
])2

+
(
E
[
Ak

ir|yi ̸= yr
])2) · ||W:j ||22

f

+
1

d2k
n

2

(
V
[
Ak

ir|yi = yr
]
+ V

[
Ak

ir|yi ̸= yr
])

·
(
µ

n
(uW:j)

2
+

||W:j ||22
f

)

=
((k − 1)!)

2

n · d2k · 22k−1
O

(k+1∑
a=2

O

 min(2(a−1),2(k+1−a))∑
s=min(2,2(a−2),2(k+1−a))

ck−s
in · csout

2

+

 k∑
a=1

O

min(2a−1,2(k−a)+1)∑
s=1

ck−s
in · csout

2)
· ||W:j ||22

f

+
(k − 1)!

d2k · 2k

( k+1∑
a=2

O

 min(2(a−1),2(k+1−a))∑
s=min(2,2(a−2),2(k+1−a))

ck−s
in · csout


+

k∑
a=1

O

min(2a−1,2(k−a)+1)∑
s=1

ck−s
in · csout

)(µ
n
(uW:j)

2
+

||W:j ||22
f

)

=
(k − 1)!

d2k · 2k

( k+1∑
a=2

O

 min(2(a−1),2(k+1−a))∑
s=min(2,2(a−2),2(k+1−a))

ck−s
in · csout


+

k∑
a=1

O

min(2a−1,2(k−a)+1)∑
s=1

ck−s
in · csout

)(µ
n
(uW:j)

2
+

||W:j ||22
f

)
, n→ ∞

3. Expectation and variance of
(
ÃkXW

)
ij

when k = 1

E
[
(ÃXW )ij

]
=

√
µ

n

(
n∑

r=1

E
[
Ãir

]
yr

)
uW:j

=
1

d

√
µ

n

(
n∑

r=1

E [Air|yi = yr] yi −
n∑

r=1

E [Air|yi ̸= yr] yi

)
uW:j

=
1

d

√
µ

n

(n
2

cin
n
yi −

n

2

cout
n
yi

)
uW:j

=
1

2d

√
µ

n
(cin − cout) yiuW:j

when k = 1, we have

(
E
[
Ak

ij |yi = yj
])2

=
(cin
n

)2
(
E
[
Ak

ij |yi ̸= yj
])2

=
(cout
n

)2
Eq. (32) is written as:
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V
[
(ÃXW )ij

]
=

1

d2
n

2

((
E
[
Ak

ir|yi = yr
])2

+
(
E
[
Ak

ir|yi ̸= yr
])2) · ||W:j ||22

f

+
1

d2
n

2

(
V
[
Ak

ir|yi = yr
]
+ V

[
Ak

ir|yi ̸= yr
])

·
(
µ

n
(uW:j)

2
+

||W:j ||22
f

)
=

1

d2
n

2

((cin
n

)2
+
(cout
n

)2)
· ||W:j ||22

f

+
1

d2
n

2

(cin
n

(
1− cin

n

)
+
cout
n

(
1− cout

n

))
·
(
µ

n
(uW:j)

2
+

||W:j ||22
f

)
=

1

2n · d2
(
c2in + c2out

)
· ||W:j ||22

f

+
1

2 · d2

(
d− c2in + c2out

n

)
·
(
µ

n
(uW:j)

2
+

||W:j ||22
f

)
=

1

2 · d2

(
d− c2in + c2out

n

)
·
(
µ

n
(uW:j)

2
+

||W:j ||22
f

)
, n→ ∞

D.3 PROOF OF THEOREM 13

We first give a lemma about the order of E
[
Ak

ij

]
, which will be used in proof of Theorem 13.

Lemma 33 (order of E
[
Ak

ij

]
). The order of E

[
Ak

ij

]
is O

(
k!·dk

n·2k

)
.

Proof. According to Theorem 31, Ak
ij |yi = yj and Ak

ij |yi ̸= yj obeys different Poisson distributions.
As

ck−s
in · csout = O

(
dk
)
,

we have,

ρ= =
(k − 1)!

n · 2k−1

k+1∑
a=2

O

 min(2(a−1),2(k+1−a))∑
s=min(2,2(a−2),2(k+1−a))

ck−s
in · csout


=

(k − 1)!

n · 2k−1

k+1∑
a=2

O

 min(2(a−1),2(k+1−a))∑
s=min(2,2(a−2),2(k+1−a))

dk


=

(k − 1)!

n · 2k−1

k+1∑
a=2

O
(
k · dk

)
=

(k − 1)!

n · 2k−1
O
(
k2 · dk

)
= O

(
k! · dk

n · 2k

)
similarly, we have ρ ̸= = O

(
k!·dk

n·2k

)

Below, we prove Theorem 13, which is a specific case of Theorem 8 when the graph is generated
by G ∼ cSBM(n, f, µ, u, λ, d).

Theorem 13. Consider a spectral GNN Ψ parameterized by Θ,W trained using full-batch gradient
descent for T iterations with a learning rate η on a training dataset containing m samples drawn
from nodes on a graph G ∼ cSBM(n, f, µ, u, λ, d). When n → ∞, k ≪ n, and d ≪ n, under
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Assumptions 1, 2, and 4, for any node vi on the graph, with probability at least 1− ϵ for a constant
ϵ ∈ (0, 1), Ψ satisfies γ-uniform transductive stability, where γ = rβ and

β =
1

ϵ

[
O
(
E
[
∥ŷi − yi∥2F

])
+O

(
K∑

k=2

(
E
[(
Ak

ij | yi = yj
)2]

+ E
[(
Ak

ij | yi ̸= yj
)2]))]

.

Proof. Any spectral GNNs in Eq. (1) with linear feature transformation function, and polynomial
basis expanded on normalized graph matrix can be transformed into the format:

Ŷ = softmax(

K∑
k=0

θkÃ
kXW ) (33)

where Ã = D− 1
2AD− 1

2 is the normalized graph adjacency matrix, D is the diagonal degree matrix.
We denotes Y ∈ Rn×C as the ground truth node label matrix.

When graph G ∼ cSBM(n, f, µ, u, λ, d), the node feature

xi ∼ N (yi
√
µ/nu, If/f)

Denote B = XW and S = BB⊤, then we have

Bik ∼ N (yi

√
µ

n
uW:k,

∥W:k∥2F
f

)

• when i ̸= j, Bik, Bjk are independent, then

E [Sij ] =

C∑
k=1

E
[
BikB

⊤
kj

]
=

C∑
k=1

yiyj
µ

n
(uW:k)

2

= yiyj
µ

n
∥uW∥2F ;

• when i = j:

E [Sii] =
µ

n
∥uW∥2F +

∥W∥2F
f

When node number n→ ∞, we have
n∑

q=1,q ̸=j

E [Sjq] =
n

2
y2j
µ

n
∥uW∥2F +

n

2
yj(−yj)

µ

n
∥uW∥2F = 0.

Therefore,
n∑

j=1

n∑
q=1,q ̸=j

E
[
Ak

ijA
k
iq

]
E [Sjq]

=
n2

4
ρ2k=

µ

n
∥uW∥2F ; (yi = yj = yq)

+
n2

4
ρk=ρk ̸= − µ

n
∥uW∥2F ; (yi = yj ̸= yq)

+
n2

4
ρk ̸=ρk= − µ

n
∥uW∥2F ; (yi ̸= yj = yq)

+
n2

4
ρ2k ̸=

µ

n
∥uW∥2F ; (yi = yq ̸= yj)

=
n2

4
· µ
n
∥uW∥2F ·

(
ρ2k= − 2ρk ̸=ρk= + ρ2k ̸=

)
=
n2

4
· µ
n
∥uW∥2F · (ρk= − ρk ̸=)

2

(34)

According to Theorem 31,
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• when k ≥ 2, Ak
ij ∼ Poisson(ρ′k), then

E
[
∥Ãk

i:XW∥2F
]
= E

[
Ãk

i:XW (XW )
⊤
(
Ãk

i:

)⊤]
= E

[
Ãk

i:S
(
Ãk

i:

)⊤]

= E

 n∑
q=1

n∑
j=1

(
Ãk

ijÃ
k
iqSjq

)
=

1

d2k
E

 n∑
q=1

n∑
j=1

(
Ak

ijA
k
iqSjq

)
=

1

d2k

n∑
q=1

n∑
j=1

E
[
Ak

ijA
k
iq

]
E [Sjq]

=
1

d2k

n∑
j=1

E
[(
Ak

ij

)2]E [Sjj ] +
1

d2k

n∑
j=1

n∑
q=1,q ̸=j

E
[
Ak

ijA
k
iq

]
E [Sjq]

=
1

d2k
n

2
E
[(
Ak

ij

)2 | yi = yj

]
E [Sjj ] +

1

d2k
n

2
E
[(
Ak

ij

)2 | yi ̸= yj

]
E [Sjj ]

+
1

d2k
n2

4
· µ
n
∥uW∥2F · (ρk= − ρk ̸=)

2
(Eq. (34))

=
1

d2k
n

2

(
ρk= + ρ2k= + ρk ̸= + ρ2k ̸=

)(µ
n
∥uW∥2F +

∥W∥2F
f

)
+

1

d2k
n2

4
· µ
n
∥uW∥2F · (ρk= − ρk ̸=)

2

=
1

2d2k
ζk

(
µ∥uW∥2F +

n∥W∥2F
f

)
+

nµ

4d2k
∥uW∥2F · (ρk= − ρk ̸=)

2

where ζk = ρ2k= + ρk= + ρ2k ̸= + ρk ̸=

• when k = 1, Aij ∼ Ber(p), then

E
[
∥Ãi:XW∥2F

]
=

1

d2
n

2

(
p2= + p=(1− p=) + p2̸= + p ̸=(1− p ̸=)

)(µ
n
∥uW∥2F +

∥W∥2F
f

)
=

1

d2
n

2
(p= + p ̸=)

(
µ

n
∥uW∥2F +

∥W∥2F
f

)
=

1

d2
n

2

2d

n

(
µ

n
∥uW∥2F +

∥W∥2F
f

)
=

1

d

(
µ

n
∥uW∥2F +

∥W∥2F
f

)

Substituting E
[
∥Ãi:XW∥2F

]
into Eq. (15), we have

E
[
|∂ℓ(ŷi, yi; Θ,W )

∂θk
|
]
=

1
2

(
E
[
∥ŷi − yi∥2F

]
+
(

µ
n∥uW∥2F +

∥W∥2
F

f

))
, if k = 0

1
2

(
E
[
∥ŷi − yi∥2F

]
+ 1

d

(
µ
n∥uW∥2F +

∥W∥2
F

f

))
, if k = 1

1
2

(
E
[
∥ŷi − yi∥2F

]
+ 1

2d2k ζk

(
µ∥uW∥2F +

n∥W∥2
F

f

)
+ nµ

4d2k ∥uW∥2F · (ρk= − ρk ̸=)
2
)
, if k ≥ 2

(35)
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Similarly, we have

E
[
∥Ãk

i:X∥2F
]
=


µ
n∥u∥

2
F + 1, if k = 0

1
d

(
µ
n∥u∥

2
F + 1

)
, if k = 1

1
2d2k ζk

(
µ∥u∥2F + 1

)
+ nµ

4d2k ∥u∥2F · (ρk= − ρk ̸=)
2
, if k ≥ 2

Substituting E
[
∥Ãk

i:X∥2F
]

into Eq. (16), we have

E
[
∥∂ℓ(ŷi, yi; Θ,W )

∂W
∥ℓ1
]
= |θ0|

(
f · E

[
∥ŷi − yi∥2F

]
+ C

(µ
n
∥u∥2F + 1

))
+ |θ1|

(
f · E

[
∥ŷi − yi∥2F

]
+ C

1

d

(µ
n
∥u∥2F + 1

))
+

K∑
k=2

1

d2k
|θk|

(
f · E

[
∥ŷi − yi∥2F

]
+ C

1

2d2k
ζk
(
µ∥u∥2F + 1

)
+

nµ

4d2k
∥u∥2F · (ρk= − ρk ̸=)

2

)
(36)

Substitute Eq. (35), Eq. (36) into Eq. (12), we have

E [∥∇ℓ(ŷi, yi; Θ,W )∥F ] ≤
K∑

k=0

E
[
∥∂ℓ(ŷi, yi; Θ,W )

∂θk
∥ℓ1
]
+ E

[
∥∂ℓ(ŷi, yi; Θ,W )

∂W
∥ℓ1
]

=
1

2

(
E
[
∥ŷi − yi∥2F

]
+

(
µ

n
∥uW∥2F +

∥W∥2F
f

))
+

1

2

(
E
[
∥ŷi − yi∥2F

]
+

1

d

(
µ

n
∥uW∥2F +

∥W∥2F
f

))
+

K∑
k=2

1

2

(
E
[
∥ŷi − yi∥2F

]
+

1

2d2k
ζk

(
µ∥uW∥2F +

n∥W∥2F
f

)
+

nµ

4d2k
∥uW∥2F · ζ̃2k

)
+ |θ0|

(
f · E

[
∥ŷi − yi∥2F

]
+ C

(µ
n
∥u∥2F + 1

))
+ |θ1|

(
f · E

[
∥ŷi − yi∥2F

]
+ C

1

d

(µ
n
∥u∥2F + 1

))
+

K∑
k=2

1

d2k
|θk|

(
f · E

[
∥ŷi − yi∥2F

]
+ C

1

2d2k
ζk
(
µ∥u∥2F + 1

)
+

nµ

4d2k
∥u∥2F · ζ̃2k

)

(37)

where ζk = ρ2k= + ρk= + ρ2k ̸= + ρk ̸=, ζ̃k = ρk= − ρk ̸=.

According to Lemma 33, when n→ ∞, we have

n
(
ζ̃k

)2
= n (ρ= − ρ ̸=)

2

= n

(
O

(
k! · dk

n · 2k

))2

= nO

((
k! · dk

)2
n2 · 22k

)

= O

((
k! · dk

)2
n · 22k

)
→ 0
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Thus, n
(
ζ̃k

)2
can be neglected. Thus, we rewrite Eq. (37) as

E [∥∇ℓ(ŷi, yi; Θ,W )∥F ] =
K∑

k=0

E
[
∥∂ℓ(ŷi, yi; Θ,W )

∂θk
∥ℓ1
]
+ E

[
∥∂ℓ(ŷi, yi; Θ,W )

∂W
∥ℓ1
]

=
1

2

(
E
[
∥ŷi − yi∥2F

]
+

(
µ

n
∥uW∥2F +

∥W∥2F
f

))
+

1

2

(
E
[
∥ŷi − yi∥2F

]
+

1

d

(
µ

n
∥uW∥2F +

∥W∥2F
f

))
+

K∑
k=2

1

2

(
E
[
∥ŷi − yi∥2F

]
+

1

2d2k
ζk

(
µ∥uW∥2F +

n∥W∥2F
f

))
+ |θ0|

(
f · E

[
∥ŷi − yi∥2F

]
+ C

(µ
n
∥u∥2F + 1

))
+ |θ1|

(
f · E

[
∥ŷi − yi∥2F

]
+ C

1

d2k−1

(µ
n
∥u∥2F + 1

))
+

K∑
k=2

1

d2k
|θk|

(
f · E

[
∥ŷi − yi∥2F

]
+ C

1

2d2k
ζk
(
µ∥u∥2F + 1

))
≤ 1

2

(
E
[
∥ŷi − yi∥2F

]
+

(
µ

n
∥u∥2FB2

W +
B2

W

f

))
+

1

2

(
E
[
∥ŷi − yi∥2F

]
+

1

d

(
µ

n
∥u∥2FB2

W +
B2

W

f

))
+

K∑
k=2

1

2

(
E
[
∥ŷi − yi∥2F

]
+

1

2d2k
ζk

(
µ∥u∥2FB2

W +
nB2

W

f

))
+BΘ

(
f · E

[
∥ŷi − yi∥2F

]
+ C

(µ
n
∥u∥2F + 1

))
+BΘ

(
f · E

[
∥ŷi − yi∥2F

]
+ C

1

d

(µ
n
∥u∥2F + 1

))
+

K∑
k=2

1

d2k
BΘ

(
f · E

[
∥ŷi − yi∥2F

]
+ C

1

2d2k
ζk
(
µ∥u∥2F + 1

))

=

(
K + 1

2
+ 2fBΘ +

K∑
k=2

f

d2k
BΘ

)
E
[
∥ŷi − yi∥2F

]
+

(
1 +

1

d

)((
B2

W

2
+ CBΘ

)
µ

n
∥u∥2F +

B2
W

2f
+ CBΘ

)
+

K∑
k=2

ζk
d2k

((
µ∥u∥2F +

n

f

)
B2

W

4
+
(
µ∥u∥2F + 1

) BΘ

d2k

)

(38)

We express the result in big-O notation:

E [∥∇ℓ(ŷi, yi; Θ,W )∥F ] = O
(
E
[
∥ŷi − yi∥2F

])
+O

(
K∑

k=2

ζk

)

where ζk = E
[(
Ak

ij | yi = yj
)2]

+ E
[(
Ak

ij | yi ̸= yj
)2]

After obtaining the upper bound of the gradient norm, and applying Theorem 6, we derive the
uniform transductive stability of spectral GNNs on graphs G ∼ cSBM(n, f, µ, u, λ, d) with two
classes (C = 2) in big-O notation as:
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γ = rβ;β =
1

ϵ

[
O
(
E
[
∥ŷi − yi∥2F

])
+O

(
K∑

k=2

(
E
[(
Ak

ij | yi = yj
)2]

+ E
[(
Ak

ij | yi ̸= yj
)2]))]

where r is the same as that in Theorem 6.

E ANALYSIS OF PROPERTIES

In this section, we first derive the relationship between the parameter λ in cSBM and the edge
homophilic ratio of the graph. We then analyze how the expected prediction error, E[∥ŷi − yi∥2F ],
and ζk vary with λ and K. Finally, we examine the impact of λ and K on the uniform transductive
stability and generalization performance of spectral GNNs.

E.1 PROOF OF PROPOSITION 12

Proposition 12. For a graph G ∼ cSBM(n, µ, u, λ, d), the expected edge homophily ratio is:

E[Hedge] =
d+ λ

√
d

2d
; E[Hedge] =

cin
cin + cout

. (4)

Proof. Graphs generated with cSBM contain two clusters of equal size. Thus, there are n
2 nodes in

each cluster belonging to the same class. The expected number of edges between nodes of the same
class is given by:

E[Esame] =

(n
2

2

)
· cin
n

=
cin(n− 2)

8
,

where
(n

2
2

)
represents the number of possible edges between nodes within the same cluster, and cin

n is
the probability of an edge existing between two nodes of the same class.

The expected number of edges between nodes of different classes is given by:

E[Ediff] =
n

2
· n
2
· cout
n

· 1
2
=
coutn

8
,

where n
2 · n

2 represents the total number of possible edges between nodes in different clusters, cout

n is
the probability of an edge existing between nodes of different classes, and the factor 1

2 accounts for
double-counting edges.

The expected value of Hedge, the ratio of the expected number of edges between nodes of the
same class to the total expected number of edges, is given by:

E[Hedge] =
E[Esame]

E[Esame] + E[Ediff]

=
cin(n−2)

8
cin(n−2)

8 + coutn
8

=
(d+ λ

√
d)(n− 2)

(d+ λ
√
d)(n− 2) + (d− λ

√
d)n

=
d+ λ

√
d

2d
, as n→ ∞.

Here, d represents the average degree, and λ measures the level of separation between clusters.
As n→ ∞, the terms involving (n− 2) and n simplify, yielding the final expression for E[Hedge].

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

We also derive the relationship between the expectation of Hedge and the parameters cin and cout
as follows:

E[Hedge] =
E[Esame]

E[Esame] + E[Ediff]

=
cin(n−2)

8
cin(n−2)

8 + coutn
8

=
cin(n− 2)

cin(n− 2) + coutn

=
cin

cin + cout
, as n→ ∞.

E.2 PROOF OF THEOREM 14

Theorem 14 (E
[
∥ŷi − yi∥2F

]
and λ,K). Given a graph G ∼ cSBM(n, µ, u, λ, d) and a spectral

GNN of orderK, E[∥ŷi−yi∥2F ] for any node vi satisfies the following: it increases with λ ∈ [−
√
d, 0],

decreases with λ ∈ [0,
√
d], and reaches its maximum at λ = 0; it increases withK if

∑K
k=2 θk

(k−1)!
2k−1

grows more slowly than
∑K

k=2 θ
2
k
(k−1)!

2k
as K increases.

Proof. Denote

Z =

K∑
k=0

θkÃ
kXW, Ŷ = softmax(Z).

For any node vi with true class yi, its prediction is denoted as:

ŷi = softmax(Zi:).

In the case of binary classification (C = 2), for a node with true class yi = [1, 0], the predicted
class is:

ŷi = [ŷ1, ŷ2] = softmax([Zi1, Zi2]) = [σ(Zi1 − Zi2), 1− σ(Zi1 − Zi2)],

where σ(x) = 1
1+e−x is the sigmoid function.

Let zi = Zi1 − Zi2, then:
ŷi = [σ(zi), 1− σ(zi)].

Thus, the squared Frobenius norm of the difference between ŷi and yi is:

∥ŷi − yi∥2F = (σ(zi)− 1)2 + (1− σ(zi))
2 = 2(1− σ(zi))

2.

Taking the expectation, we have:

E[∥ŷi − yi∥2F ] = 2E[(1− σ(zi))
2].

As the node feature xi ∼ N (yi
√
µ/nu, If/f), any linear combination of Gaussian variables is

still Gaussian. Therefore, we have:
zi ∼ N (µzi , ω

2
zi),

where:
µzi = E[zi] = E[Zi1 − Zi2] = E[Zi1]− E[Zi2].

Given that cin = d+ λ
√
d, cout = d− λ

√
d, and λ ∈ [−

√
d,
√
d], we observe:

ckin − ckout = O(dk), ckin = O(dk), ckout = O(dk). (39)
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Assuming u ∼ N (0, If ), d≪ f , and that Θ,W are bounded (as per Assumption 4), we analyze
the dominant terms in µzi and ω2

zi . From Theorem 32, we derive the expectation of (ÃkXW )ij .
Consequently, we obtain:

µzi = E[Zi1]− E[Zi2] = θ0

√
µ

n
yiu(W:1 −W:2)

+ θ1
1

2d

√
µ

n
(cin − cout)yiu(W:1 −W:2)

+

K∑
k=2

θk
(k − 1)!

dk · 2k−1
O(ckin − ckout)

√
µ

n
yiu(W:1 −W:2)

= O

(
K∑

k=2

θk
(k − 1)!

2k−1

)
(from Eq. (39)).

(40)

Since Ãk and X are independent, and the columns of X are also independent, it follows that(∑K
k=0 θkÃ

kX
)
ij

and
(∑K

k=0 θkÃ
kX
)
it

are independent. According to Theorem 32, we compute

the variance of (ÃkXW )ij . Then, we have:

ω2
zi = Var(Zi1 − Zi2)

= Var

((
K∑

k=0

θkÃ
kX

)
i:

(W:1 −W:2)

)

= Var

 f∑
j=1

(
K∑

k=0

θkÃ
kX

)
ij

(Wj1 −Wj2)


=

f∑
j=1

(Wj1 −Wj2)
2

K∑
k=0

θ2k Var

((
ÃkX

)
ij

)
(independence)

=

f∑
j=1

(Wj1 −Wj2)
2

K∑
k=0

θ2k

[
1

2 · d2

(
d− c2in + c2out

n

)
·
(
µ

n
(uW:j)

2
+

∥W:j∥22
f

)

+
(k − 1)!

d2k · 2k

( k+1∑
a=2

O

 min(2(a−1),2(k+1−a))∑
s=min(2,2(a−2),2(k+1−a))

ck−s
in · csout


+

k∑
a=1

O

min(2a−1,2(k−a)+1)∑
s=1

ck−s
in · csout

) ·
(
µ

n
(uW:j)

2
+

∥W:j∥22
f

)]

= O

(
K∑

k=2

θ2k
(k − 1)!

2k

)
(from Eq. (39)).

(41)

(1) E[∥ŷi − yi∥2F ] and λ: According to Lemma 29 and Lemma 30, we know that:

– µzi monotonically decreases, and ω2
zi monotonically increases on λ ∈ [−

√
d, 0];

– µzi monotonically increases, and ω2
zi monotonically decreases on λ ∈ [0,

√
d];

– µzi achieves its minimum value, and ω2
zi achieves its maximum value when λ = 0.

The expectation of (1− σ(zi))
2 is given by:

E[(1− σ(zi))
2] =

∫ ∞

−∞
(1− σ(zi))

2 · 1√
2πωzi

e
−

(z−µzi
)2

2ω2
zi dzi. (42)

Since the integral decreases with µzi and increases with ω2
zi , we conclude:
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– E[(1− σ(zi))
2] increases on λ ∈ [−

√
d, 0];

– E[(1− σ(zi))
2] decreases on λ ∈ [0,

√
d];

– E[(1− σ(zi))
2] achieves its maximum value when λ = 0.

Since E[∥ŷi − yi∥2F ] has the same trend as E[(1− σ(zi))
2], we observe the same behavior

for E[∥ŷi − yi∥2F ].

(2) E[∥ŷi − yi∥2F ] and K: We rewrite z as:

z = µzi + ωziy,

where y ∼ N (0, 1). Substituting into Eq. (42), we have:

E[(1− σ(zi))
2] =

∫ ∞

−∞
(1− σ (µzi + ωziy))

2 1√
2π
e−

y2

2 dy.

(a) If µzi increases faster than ω2
zi as K increases: In this case, z is dominated by µzi , and

we have:

E[(1− σ(z))2] =

∫ ∞

−∞
(1− σ(µzi))

2 1√
2π
e−

y2

2 dy

= (1− σ(µzi))
2

≤ 0.25.

(b) If µzi increases slower than ω2
zi as K increases: In this case, z is dominated by ωziy,

and we have:

E[(1− σ(z))2] =

∫ ∞

−∞
(1− σ(ωziy))

2 1√
2π
e−

y2

2 dy

=

∫ 0

−∞
(1− 0) · 1√

2π
e−

y2

2 dy +

∫ ∞

0

(1− 1)2 · 1√
2π
e−

y2

2 dy

= 0.5.

From this analysis, we conclude:

– If µzi increases slower than ω2
zi as K increases, E[(1− σ(z))2] approaches 0.5.

– If µzi increases faster than ω2
zi as K increases, E[(1− σ(z))2] is at most 0.25.

Briefly, when µzi increases slower than ω2
zi as K increases, E[∥ŷi− yi∥2F ] increases with K.

From Eq. (40) and Eq. (41), we observe that the dominant term of µzi is
∑K

k=2 θk
(k−1)!
2k−1 ,

while the dominant term of ω2
zi is

∑K
k=2 θ

2
k
(k−1)!

2k
. Therefore, E[∥ŷi − yi∥2F ] increases with

K if
∑K

k=2 θk
(k−1)!
2k−1 grows slower than

∑K
k=2 θ

2
k
(k−1)!

2k
.

E.3 PROOF OF THEOREM 15

Theorem 15 (ζk and λ,K). Given a graph G ∼ cSBM(n, µ, u, λ, d) and a spectral GNN of order
K, ζk has the following properties: (1) it increases with λ ∈ [−

√
d, 0], decreases with λ ∈ [0,

√
d],

and achieves its maximum value at λ = 0; (2) it increases with k as k grows, for k ∈ [0,K].

Proof. As

ζk = E[(Ak
ij |yi = yj)

2] + E[(Ak
ij |yi ̸= yj)

2]

=
(
E[Ak

ij |yi = yj ]
)2

+ V
[
Ak

ij |yi = yj
]
+
(
E[Ak

ij |yi ̸= yj ]
)2

+ V
[
Ak

ij |yi ̸= yj
]
.

(43)
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According to Theorem 31, we have explicit forms of E[Ak
ij ] and Var(Ak

ij) for the cases yi = yj
and yi ̸= yj . Substituting these into Eq. (43), we get:

ζk = ρ2= + ρ= + ρ2̸= + ρ ̸=

=

 (k − 1)!

n · 2k−1

k+1∑
a=2

O

 min(2(a−1),2(k+1−a))∑
s=min(2,2(a−2),2(k+1−a))

ck−s
in · csout

2

+
(k − 1)!

n · 2k−1

k+1∑
a=2

O

 min(2(a−1),2(k+1−a))∑
s=min(2,2(a−2),2(k+1−a))

ck−s
in · csout


+

 (k − 1)!

n · 2k−1

k∑
a=1

O

min(2a−1,2(k−a)+1)∑
s=1

ck−s
in · csout

2

+
(k − 1)!

n · 2k−1

k∑
a=1

O

min(2a−1,2(k−a)+1)∑
s=1

ck−s
in · csout

 .

Given cin = d+ λ
√
d and cout = d− λ

√
d, all terms ρ2= + ρ= + ρ2̸= + ρ ̸= in ζk are in the form:

g(λ) =

k∑
s=1

(d+ λ
√
d)k−s · (d− λ

√
d)s.

According to Lemma 30, functions in this form g(λ) strictly increase on λ ∈ [−
√
d, 0] and strictly

decrease on λ ∈ [0,
√
d]. Therefore, ζk strictly increases on λ ∈ [−

√
d, 0] and strictly decreases on

λ ∈ [0,
√
d]. When k increases, ζk contains more terms, causing it to increase with k in the order of

K.

E.4 PROOF OF PROPOSITION 16

Proposition 16. For a fixed K, γ-uniform transductive stability and generalization error bound
strictly increase as λ moves from −

√
d to 0, and decreases as λ moves from 0 to

√
d. For a fixed λ, if∑K

k=2 θk
(k−1)!
2k−1 grows more slowly than

∑K
k=2 θ

2
k
(k−1)!

2k
asK increases, then γ-uniform transductive

stability and generalization error bound increase with K.

Proof. According to Theorem 6 and Theorem 13, the uniform stability of spectral GNNs depends on
the upper bound of the gradient norm β, and

β =

(
K + 1

2
+ 2fBΘ +

K∑
k=2

f

d2k
BΘ

)
E
[
∥ŷi − yi∥2F

]
+

(
1 +

1

d

)((
B2

W

2
+ CBΘ

)
µ

n
∥u∥2F +

B2
W

2f
+ CBΘ

)
+

K∑
k=2

ζk
d2k

((
µ∥u∥2F +

n

f

)
B2

W

4
+
(
µ∥u∥2F + 1

) BΘ

d2k

)
where ζk = ρ2= + ρ= + ρ2̸= + ρ ̸=, and ρ= and ρ ̸= are the parameters of distribution in Theorem 31.

Denote

ψy =

(
K + 1

2
+ 2fBΘ +

K∑
k=2

f

d2k
BΘ

)
;

ψ1 =

K∑
k=2

ζk
d2k

((
µ∥u∥2F +

n

f

)
B2

W

4
+
(
µ∥u∥2F + 1

) BΘ

d2k

)
.

We show that the terms E
[
∥ŷi − yi∥2F

]
, ψy, and ψ1 can all be affected by λ,K.
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(1) Term E
[
∥ŷi − yi∥2F

]
According to Theorem 14, the expected prediction error E

[
∥ŷi − yi∥2F

]
strictly increases

with λ ∈ [−
√
d, 0] and decreases with λ ∈ [0,

√
d]. In addition, it increases with K when∑K

k=2 θk
(k−1)!
2k−1 grows slower than

∑K
k=2 θ

2
k
(k−1)!

2k
.

(2) Term ψy

As ψy =
(

K+1
2 +

∑K
k=0 |θk|f

)
which does not contain λ, the class distribution has no

effect on ψy . It also increases with order K.

(3) Terms ψ1

According to Theorem 15, ζk strictly increases on λ ∈ [−
√
d, 0], decreases on λ ∈ [0,

√
d]

and it increases with order K.
Since all the other elements in ψ1 except ζk are positive, ψ1 and ζk has same trend when λ
and K changes.

According to Proposition 12, we have

λ ∈ [0,
√
d] ⇔ Hedge ∈ [0.5, 1] and λ ∈ [−

√
d, 0] ⇔ Hedge ∈ [0, 0.5].

According to Theorem 9, any factors affecting γ affect the generalization error bound. Thus, we
conclude the following cases:

(a) uniform transductive stability γ, generalization error bound and λ
From the above analysis, we know that ϕy is not affected by λ, and terms E

[
∥ŷi − yi∥2F

]
,

ψ1 strictly increase on λ ∈ [−
√
d, 0] and decrease on λ ∈ [0,

√
d]. According to Theorem 6

and Theorem 9, this shows that the stability decreases and the generalization error bound
increases when Hedge ∈ (0, 0.5]. The stability increases and the generalization error bound
decreases when Hedge ∈ [0, 5, 1). Spectral GNNs are stable and generalize well on strong
homophilic and heterophilic graphs.

(b) uniform transductive stability γ, generalization error bound, and K
From the above analysis, we know that terms ϕy, ψ1 increase with K. According to Theo-
rem 14, when the condition

∑K
k=2 θk

(k−1)!
2k−1 grows slower than

∑K
k=2 θ

2
k
(k−1)!

2k
is satisfied,

the expected prediction error E
[
∥ŷi − yi∥2F

]
increases with K.

Therefore, when above condition is satisfied, the gradient norm bound β increase with K.
According to Theorem 6 and Theorem 9, this indicates that the uniform transductive stability
γ and generalization error bound also increases with K.

F DETAILS OF EXPERIMENTS

F.1 DATASETS

The statistical properties of real-world datasets, including the number of nodes, edges, feature
dimensions, node classes, and edge homophily ratios, are summarized in Table 2 and Table 3. We
use the directed and cleaned versions of the Chameleon and Squirrel datasets provided by (Platonov
et al., 2023), where repeated nodes have been removed.

F.2 SPECTRAL GNNS

In the literature, there are generally two kinds of architectures for spectral GNNs:

• Early spectral GNNs architecture: It is given by Y = XL, Xl = α
(∑K

k=1M
kXl−1Hlk

)
,

where M is a graph matrix, Xl is the feature at the l-th layer, Hlk ∈ Rfl×fl−1 , fl is
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Statistics Texas Wisconsin Cornell Actor Chameleon Squirrel Citeseer Pubmed Cora
# Nodes 183 251 183 7,600 890 2,223 3,327 19,717 2,708
# Edges 295 466 295 26,752 27,168 131,436 4,676 44,327 5,278

# Features 1,703 1,703 1,703 932 2,325 2,089 3,703 500 1,433
# Classes 5 5 5 5 5 6 5 7

Edge Homophily 0.11 0.21 0.22 0.24 0.22 0.74 0.8 0.81

Table 2: Statistics of real-world datasets.

Statistics OGBN-Arxiv OGBN-Products
# Nodes 169,343 2,449,029
# Edges 2,315,598 61,859,140

# Features 128 100
# Classes 40 47

Edge Homophily 0.65 0.81

Table 3: Statistics of OGBN datasets.

the feature dimension of the l-th layer, and α is an activation function. This describes
the architecture of earlier spectral GNNs, such as GCN (Mk = D−1/2(I + A)D−1/2)
and ChebNet (where Mk represents the Chebyshev polynomial basis expanded on the
normalized graph Laplacian matrix).

• Modern spectral GNNs architecture: Recent advances in spectral GNNs do not adhere to
this multi-layer architecture. Instead, state-of-the-art spectral GNNs employ a single-layer
structure as described in Eq. (1) of our paper:

Ψ(M,X) = σ(gΘ(M)fW (X)),

where M ∈ Rn×n is a graph matrix (e.g., Laplacian or adjacency matrix), gΘ(M) =∑K
k=0 θkTk(M) performs graph convolution using the k-th polynomial basis Tk(·) and

learnable parameters Θ = {θk}Kk=0, fW (X) is a feature transformation parameterized by
W , and σ is a non-linear activation function (e.g., softmax). Recent spectral GNNs, such as
GPRGNN, JacobiConv, BernNet, ChebBase, and ChebNetII, adopt this architecture (Chien
et al., 2021; Wang & Zhang, 2022; He et al., 2021; 2022b), and it serves as the basis for
theoretical analysis of spectral GNNs (Wang & Zhang, 2022; Balcilar et al., 2021).

We study spectral GNNs with modern architecture. We detail the spectral GNNs used in our
experiments below. For a graph with adjacency matrix A, degree matrix D, and identity matrix
I , we define the following matrices: the normalized Laplacian matrix L̂ = I − D−1/2AD−1/2,
the shifted normalized Laplacian matrix L̃ = −D−1/2AD−1/2, the normalized adjacency matrix
Ã = D−1/2AD−1/2, and the normalized adjacency matrix with self-loops Ã′ = (D + I)−1/2(A+
I)(D + I)−1/2.

ChebNet (Defferrard et al., 2016): This model uses the Chebyshev basis to approximate a spectral
filter:

Ŷ =

K∑
k=0

θkTk(L̃)fW (X)

where X is the raw feature matrix, Θ = [θ0, θ1, . . . , θK ] is the graph convolution parameter, W is the
feature transformation parameter and fW (X) is usually a 2-layer MLP. Tk(L̃) is the k-th Chebyshev
basis expanded on the shifted normalized graph Laplacian matrix L̃ and is recursively calculated:

T0(L̃) = I

T1(L̃) = L̃

Tk(L̃) = 2L̃Tk−1(L̃)− Tk−2(L̃)
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ChebNetII (He et al., 2022a): The model is formulated as

Ŷ =
2

K + 2

K∑
k=0

K∑
j=0

θjTk(xj)Tk(L̃)fW (X),

where X is the input feature matrix, W is the feature transformation parameter, fW (X) is usually a
2-layer MLP, Tk(·) is the k-th Chebyshev basis expanded on ·, xj = cos ((j + 1/2)π/ (K + 1)) is
the j-th Chebyshev node, which is the root of the Chebyshev polynomials of the first kind with degree
K + 1, and θj is a learnable parameter. Graph convolution parameter in ChebNet is reparameterized
with Chebyshev nodes and learnable parameters θj .

JacobiConv (Wang & Zhang, 2022): This model uses the Jacobi basis to approximate a filter as:

Ŷ =

K∑
k=0

θkT
a,b
k (Ã)fW (X),

where X is the input feature matrix, Θ = [θ0, θ1, . . . , θK ] is the graph convolution parameter, W is
the feature transformation parameter and fW (X) is usually a 2-layer MLP. T a,b

k (Ã) is the Jacobi
basis on normalized graph adjacency matrix Ã and is recursively calculated as

T a,b
k (Ã) = I

T a,b
k (Ã) =

1− b

2
I +

a+ b+ 2

2
Ã

T a,b
k (Ã) = γkÃT

a,b
k−1(Ã) + γ′kT

a,b
k−1(Ã) + γ′′kT

a,b
k−2(Ã)

where γk = (2k+a+b)(2k+a+b−1)
2k(k+a+b) , γ′k = (2k+a+b−1)(a2−b2)

2k(k+a+b)(2k+a+b−2) , γ
′′
k = (k+1−1)(k+b−1)(2k+a+b)

k(k+a+b)(2k+a+b−2) . a
and b are hyper-parameters. Usually, grid search is used to find the optimal a and b values.

GPRGNN (Chien et al., 2021): This model uses the monomial basis to approximate a filter:

Ŷ =

K∑
k=0

θkÃ
′kfW (X)

where X is the input feature matrix, Θ = [θ0, θ1, . . . , θK ] is the graph convolution parameter, W
is the feature transformation parameter and fW (X) is usually a 2-layer MLP. Ã′ is the normalized
adjacency matrix with self-loops.

BernNet (He et al., 2021): This model uses the Bernstein basis for approximation:

Ŷ =

K∑
k=0

θk
1

2K

(
K

k

)
(2I − L̂)K−kL̂kfW (X)

where X is the input feature matrix, Θ = [θ0, θ1, . . . , θK ] is the graph convolution parameter, W
is the feature transformation parameter and fW (X) is usually a 2-layer MLP. L̂ is the normalized
Laplacian matrix.

F.3 HYPER-PARAMETER SETTINGS

All experiments were conducted on an NVIDIA RTX A6000 GPU with 48GB of memory.
We employ a two-layer Multi-Layer Perceptron (MLP) with a hidden layer size of 64 for the

feature transformation function fW , using ReLU as the activation function across all spectral GNN
models.

Following (Tang & Liu, 2023a; Cong et al., 2021), the dropout rate and weight decay are set to
0.0. The Adam optimizer is used for optimization. Each experiment runs for a maximum of 300
iterations and is repeated 10 times to report the mean and variance of the results. A grid search is
conducted to determine the best learning rate from {0.05, 0.01, 0.001}.

F.4 DETAILED EXPERIMENTAL RESULTS
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Hedge 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ChebNet 94.92±0.24 86.08±0.43 81.09±0.63 75.11±0.73 72.69±0.66 74.66±0.65 79.62±0.78 86.03±0.6 94.64±0.39

Acc Gap 5.08±0.24 13.92±0.41 18.91±0.57 24.89±0.72 27.3±0.62 25.34±0.68 20.38±0.74 13.97±0.61 5.36±0.41

Loss Gap 0.64±0.07 3.15±0.14 3.72±0.2 5.42±0.24 5.88±0.5 6.01±0.27 4.62±0.3 3.04±0.18 0.98±0.06

ChebNetII 92.19±0.51 85.03±0.58 79.83±0.43 77.55±0.64 77.34±0.54 77.7±0.57 78.22±0.73 83.68±0.41 91.43±0.48

Acc Gap 7.81±0.47 14.97±0.58 20.17±0.41 22.45±0.66 22.66±0.49 22.3±0.57 21.77±0.71 16.32±0.44 8.57±0.47

Loss Gap 0.66±0.07 1.84±0.11 3.55±0.21 4.77±0.26 4.86±0.13 4.64±0.21 4.23±0.33 2.14±0.17 0.72±0.05

JacobiConv 89.25±3.35 77.23±4.51 77.19±0.66 77.0±0.55 79.06±0.61 80.2±0.57 84.64±0.39 90.48±0.24 96.91±0.24

Acc Gap 10.71±2.86 22.73±4.36 22.8±0.67 23.0±0.54 20.94±0.61 19.8±0.6 15.36±0.41 9.51±0.24 3.09±0.25

Loss Gap 0.69±0.26 1.58±0.45 4.08±0.21 4.33±0.14 5.36±0.33 1.95±0.13 1.58±0.13 0.99±0.06 0.16±0.01

GPRGNN 90.33±0.57 87.06±0.64 81.71±0.41 77.03±0.47 77.23±0.65 79.52±0.59 82.72±0.52 89.25±0.5 96.45±0.18

Acc Gap 9.66±0.54 12.94±0.67 18.29±0.42 22.96±0.49 22.77±0.64 20.48±0.6 17.27±0.52 10.75±0.54 3.55±0.2

Loss Gap 1.42±0.08 2.21±0.14 3.27±0.2 4.72±0.19 5.17±0.13 4.7±0.25 3.7±0.47 2.4±0.32 1.05±0.11

BernNet 87.44±0.5 82.92±0.67 79.3±0.44 77.69±0.53 77.97±0.54 77.49±0.72 76.58±0.79 79.73±1.3 85.68±1.05

Acc Gap 12.55±0.5 17.08±0.76 20.7±0.44 22.31±0.54 22.03±0.55 22.51±0.64 23.41±0.8 20.27±1.39 14.32±1.06

Loss Gap 1.2±0.06 2.45±0.21 3.69±0.16 4.77±0.24 4.72±0.15 4.7±0.17 4.35±0.35 2.92±0.31 1.36±0.14

Table 4: Testing accuracy, accuracy gap, loss gap of spectral GNNs on synthetic datasets with
edge homophilic ratio Hedge ∈ [0.1, 0.9]. Small accuracy and loss gaps imply good generalization
capability.

Datasets Texas Wisconsin Actor Squirrel Chameleon Cornell Citeseer Pubmed Cora

ChebNet 40.82±7.25 52.23±3.77 26.63±0.53 30.08±1.14 33.94±1.58 44.88±6.19 64.16±0.82 84.74±0.37 74.95±0.96

Acc Gap 59.18±6.94 47.77±3.92 73.26±0.54 69.92±1.28 66.06±1.52 55.12±5.95 35.82±0.75 15.25±0.37 25.05±0.92

Loss Gap 5.91±0.66 5.77±0.87 21.64±0.8 35.68±2.33 36.17±3.04 6.57±0.82 4.68±0.22 1.44±0.06 3.9±0.29

ChebNetII 77.55±5.71 74.38±3.08 27.94±0.36 28.1±1.82 38.45±1.63 73.69±5.12 65.85±0.52 84.7±0.3 74.0±0.8

Acc Gap 22.45±5.2 25.62±3.31 71.94±0.33 71.83±1.77 61.47±1.53 26.31±5.0 34.12±0.48 15.16±0.28 26.0±0.75

Loss Gap 1.1±0.27 1.39±0.32 20.16±0.76 27.56±2.88 19.33±1.68 1.7±0.3 2.66±0.09 1.13±0.09 2.14±0.09

JacobiConv 78.06±5.31 77.62±2.92 27.89±0.63 26.78±1.28 32.2±2.08 80.41±3.98 73.56±0.64 86.33±0.47 84.31±0.49

Acc Gap 21.94±5.41 22.38±2.85 71.97±0.66 50.85±11.88 63.82±9.46 19.59±4.18 26.41±0.65 10.87±1.45 15.69±0.5

Loss Gap 0.94±0.26 1.19±0.22 31.67±0.86 32.75±11.57 38.77±7.16 0.91±0.16 2.16±0.06 0.51±0.14 1.28±0.09

GPRGNN 46.84±6.22 72.08±3.23 26.29±0.65 29.91±1.19 34.28±1.58 61.33±6.12 72.89±0.62 85.42±0.4 84.37±0.51

Acc Gap 53.16±6.12 27.92±2.92 71.52±4.82 70.09±1.09 65.72±1.69 38.67±6.43 27.08±0.67 14.58±0.37 15.63±0.54

Loss Gap 3.35±0.83 1.6±0.31 29.22±2.69 35.34±5.58 29.88±2.22 2.2±0.53 3.32±0.16 1.24±0.09 1.54±0.1

BernNet 75.92±5.31 81.85±2.23 27.28±0.76 33.42±1.14 33.72±1.38 81.43±3.46 67.17±0.59 84.82±0.25 73.39±0.87

Acc Gap 24.08±5.41 18.15±2.16 72.61±0.71 66.58±1.11 66.28±1.33 18.57±3.57 32.8±0.57 14.95±0.45 26.61±0.87

Loss Gap 1.24±0.31 0.87±0.26 24.68±0.71 28.17±1.47 27.83±1.75 1.06±0.18 2.66±0.09 1.13±0.13 2.18±0.08

Table 5: Testing accuracy, accuracy gap, loss gap of spectral GNNs on real world datasets with edge
homophilic ratio Hedge ∈ [0.11, 0.81]. Small accuracy and loss gaps imply good generalization
capability.
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Order K 1 2 3 4 5 6 7 8 9 10
ChebNet 87.31±0.3 89.11±0.31 88.48±0.49 84.19±0.9 71.3±3.0 79.58±0.52 80.77±0.62 76.21±0.51 82.94±0.48 86.08±0.41

Acc Gap 12.7±0.32 10.89±0.31 11.52±0.5 15.8±0.92 28.7±3.54 20.42±0.51 19.23±0.57 23.79±0.47 17.06±0.45 13.92±0.42

Loss Gap 2.2±0.09 1.76±0.07 1.9±0.14 2.84±0.27 7.2±1.45 3.88±0.2 3.08±0.21 3.79±0.26 3.8±0.11 3.15±0.14

ChebNetII 85.92±0.56 80.1±0.99 82.65±0.7 85.56±0.45 84.64±0.8 84.62±0.59 85.27±0.51 86.2±0.64 86.39±0.5 85.03±0.57

Acc Gap 14.07±0.53 19.9±1.02 17.35±0.73 14.44±0.45 15.36±0.87 15.38±0.6 14.73±0.5 13.79±0.6 13.61±0.49 14.97±0.58

Loss Gap 1.94±0.08 3.23±0.31 2.62±0.14 2.06±0.14 1.94±0.21 1.95±0.17 1.99±0.15 1.75±0.14 1.83±0.11 1.84±0.11

JacobiConv 77.44±0.67 80.51±0.48 49.44±1.12 39.85±1.91 48.81±2.65 47.73±7.63 60.29±7.48 67.53±7.95 68.03±9.15 77.23±4.79

Acc Gap 22.55±0.62 19.49±0.46 50.56±1.18 60.13±1.98 51.19±2.63 52.25±7.08 39.7±7.32 32.45±7.76 31.96±9.19 22.73±4.82

Loss Gap 5.72±0.19 5.8±0.26 8.81±0.79 12.63±1.22 7.3±1.01 8.23±1.77 4.98±1.23 3.42±1.39 3.33±1.32 1.58±0.48

GPRGNN 83.61±0.66 86.14±0.29 79.44±1.05 88.36±0.28 87.25±0.5 88.0±0.39 87.57±0.47 87.5±0.3 87.17±0.3 87.06±0.59

Acc Gap 16.39±0.69 13.86±0.29 20.56±1.06 11.63±0.29 12.76±0.49 12.01±0.32 12.43±0.48 12.49±0.33 12.84±0.29 12.94±0.68

Loss Gap 2.37±0.11 2.21±0.1 3.18±0.19 1.83±0.1 2.14±0.2 1.93±0.09 2.06±0.13 2.12±0.09 2.19±0.13 2.21±0.14

BernNet 82.76±0.72 81.14±0.41 81.21±0.57 81.47±0.6 81.77±0.66 82.11±0.75 82.32±0.88 82.55±0.84 82.8±0.81 82.92±0.79

Acc Gap 17.24±0.71 18.86±0.39 18.79±0.56 18.53±0.7 18.23±0.62 17.89±0.85 17.68±0.84 17.45±0.79 17.2±0.79 17.08±0.7

Loss Gap 2.45±0.17 3.02±0.11 2.95±0.21 2.84±0.2 2.75±0.21 2.65±0.21 2.59±0.22 2.54±0.2 2.49±0.21 2.45±0.21

Table 6: Testing accuracy, accuracy gap, loss gap of spectral GNNs on synthetic dataset of edge
homophilic ratio Hedge = 0.2 when K ∈ [1, 10]. Small accuracy and loss gaps imply good
generalization capability.

Order K 1 2 3 4 5 6 7 8 9 10
ChebNet 83.78±2.45 80.61±4.59 80.51±3.47 61.73±5.0 63.37±8.57 36.33±5.72 44.18±5.0 24.39±2.14 30.2±4.8 40.82±7.35

Acc Gap 16.22±2.45 19.39±4.8 19.49±3.78 38.27±5.0 36.63±7.86 63.67±6.12 55.82±5.0 75.61±2.24 69.8±5.0 59.18±7.15

Loss Gap 1.49±0.44 1.26±0.44 1.48±0.31 2.77±0.53 3.08±0.59 8.98±0.68 6.09±0.72 7.99±0.93 9.0±1.03 5.91±0.69

ChebNetII 80.41±3.98 75.41±5.72 76.53±4.29 76.53±4.59 76.94±5.0 78.78±5.61 78.88±5.2 77.45±4.9 76.94±5.72 77.55±5.51

Acc Gap 19.59±3.78 24.59±5.2 23.47±4.59 23.47±4.49 23.06±4.8 21.22±5.61 21.12±5.82 22.55±4.49 23.06±5.61 22.45±5.31

Loss Gap 0.74±0.14 1.2±0.44 1.15±0.29 1.28±0.3 1.23±0.33 1.11±0.29 1.16±0.26 1.21±0.29 1.24±0.27 1.1±0.27

JacobiConv 52.24±5.41 80.92±3.78 75.31±5.31 74.39±3.78 79.08±3.67 78.67±4.08 80.0±3.06 73.67±6.33 77.65±5.41 78.06±5.61

Acc Gap 47.76±5.31 19.08±3.98 24.69±5.0 25.61±3.67 20.92±3.47 21.33±3.67 20.0±3.06 26.33±6.84 22.35±5.1 21.94±5.41

Loss Gap 2.54±0.42 0.89±0.2 1.1±0.25 1.18±0.27 0.9±0.17 0.97±0.16 0.93±0.13 1.22±0.39 0.97±0.26 0.94±0.24

GPRGNN 53.88±4.8 49.18±5.1 46.73±5.82 45.82±6.64 46.12±5.41 45.61±5.2 46.43±4.59 46.12±5.0 47.55±4.8 46.84±6.22

Acc Gap 46.12±4.9 50.82±5.31 53.27±5.61 54.18±6.63 53.88±5.72 54.39±5.2 53.57±4.9 53.88±4.9 52.45±5.1 53.16±6.43

Loss Gap 2.6±0.44 3.21±0.53 3.5±0.67 3.6±0.63 3.58±0.63 3.51±0.64 3.47±0.48 3.44±0.61 3.22±0.73 3.35±0.83

BernNet 76.73±3.67 75.92±2.45 75.61±3.67 77.04±3.88 77.14±4.39 75.2±4.7 74.9±5.72 75.2±5.2 74.8±5.92 75.71±5.71

Acc Gap 23.27±3.67 24.08±2.65 24.39±3.57 22.96±3.98 22.86±4.29 24.8±4.69 25.1±5.2 24.8±5.61 25.2±6.02 24.29±5.61

Loss Gap 0.96±0.22 0.95±0.18 1.01±0.17 1.02±0.21 1.06±0.21 1.13±0.25 1.19±0.31 1.18±0.26 1.27±0.34 1.25±0.31

Table 7: Testing accuracy, accuracy gap, loss gap of spectral GNNs on Texas dataset of edge
homophilic ratio Hedge = 0.11 when K ∈ [1, 10]. Small accuracy and loss gaps imply good
generalization capability.
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