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ABSTRACT

Spectral graph neural networks (GNNs) have achieved remarkable success across
various applications, yet their generalization properties remain poorly understood.
This paper bridges this gap by analyzing the impact of graph homophily and ar-
chitectural choices on the generalization of spectral GNNs. We derive a general
form of uniform transductive stability for spectral GNNs and provide an explicit
stability analysis for graphs with two node classes, providing a comprehensive
framework to understand their generalization. Based on this stability analysis, we
establish a generalization error bound, demonstrating that better stability leads
to improved generalization. Our theoretical findings reveal that spectral GNNs
generalize well on graphs with strong homophily or heterophily but struggle on
graphs with weaker structural properties. We also identify conditions under which
increasing the polynomial order in spectral GNN architectures may degrade gener-
alization. Empirical results on synthetic and real-world benchmark datasets align
closely with our theoretical findings.

1 INTRODUCTION

Generalization is a fundamental challenge in machine learning, crucial for understanding both the
theoretical limits and practical performance of algorithms. Researchers have developed various
measures to study generalization, including Vapnik—Chervonenkis (VC) dimension (Cherkassky
et al., 1999), PAC-Bayes bound (McAllester, 1998), Rademacher complexity (Bartlett & Mendelson,
2002), and the stability of learning algorithms (Bousquet & Elisseeff, 2002). These measures provide
insights into a model’s ability to generalize beyond its training data. Graph neural networks (GNNs)
have achieved remarkable success across various practical applications (Zhou et al., 2020), yet their
generalization capabilities remain poorly understood. Unlike traditional machine learning models
that operate on independent and identically distributed (i.i.d.) data, GNNs work on interdependent
data where the graph topology and node/edge features are inherently linked. This interconnected
structure makes it difficult to evaluate how well a GNN trained on one graph or a set of graphs can
generalize to unseen graphs.

Research on GNN generalization primarily focuses on two tasks: graph classification and node
classification. In graph classification, where graphs are typically i.i.d., generalization has been
studied through connections with WL algorithms (Morris et al., 2023; D’Inverno et al., 2024; Franks
et al., 2024) and data-dependent PAC-Bayes bounds (Liao et al., 2021; Ju et al., 2023). In node
classification, which involves transductive learning where node features are known during training,
approaches like Transductive Rademacher complexity and uniform transductive stability are more
common. These methods explore the impact of factors such as graph matrix representations and GNN
depth on generalization (Oono & Suzuki, 2020; El-Yaniv & Pechyony, 2007; Tang & Liu, 2023b;
Zhou & Wang, 2021; Cong et al., 2021).

In this work, we focus on the generalization of GNNs for node classification. Unlike graph
classification, node classification performance is influenced by the distribution of node classes,
which is closely tied to graph homophily. In homophilic graphs, connected nodes tend to belong
to the same class, whereas in heterophilic graphs, connected nodes are often from different classes.
Empirical evidence shows that the edge homophilic ratio (Zhu et al., 2020) significantly affects GNN
performance. For example, models like GCN and GAT excel on homophilic graphs but underperform
on heterophilic graphs (Kipf & Welling, 2017; Velickovic et al., 2018). This motivates us to explore
the relationship between graph homophily and the generalization of GNNs in node classification tasks,
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raising the question: how does GNN generalization depend on node class distributions? Notably, this
question has remained largely unexplored in previous research.

We examine the generalization of GNNs through a spectral perspective, as spectral GNNs have
demonstrated strong performance on both homophilic and heterophilic graphs. Spectral GNNs
operate in the spectral domain, applying frequency-domain convolutions to extract structural informa-
tion (Balcilar et al., 2021). Formally, a spectral GNN is defined as:

\I/(MaX):U(ge(M)fW(X))7 (D

where M € R™*" is a graph matrix (e.g., Laplacian or adjacency matrix), go (M) = ZkK:o 01Ty (M)
represents graph convolution using © = {6} 5 and the k-th polynomial basis T%(-), fw (X) is a
feature transformation function parameterized by W, and o is a non-linear function such as softmax.

One notable observation about spectral GNNSs is that, although the frequency response function
can theoretically be approximated by a sum of polynomial basis with negligible error as the order K
increases (Powell, 1981), empirical results show that higher polynomial orders do not consistently lead
to better performance. This discrepancy raises the question: is the gap between theoretical study and
empirical performance, particularly with respect to polynomial order K, related to the generalization
of spectral GNNs? To date, no work has provided a clear explanation for this phenomenon.

We address the aforementioned questions by focusing on the generalization of spectral GNNS.
In transductive learning, the relationships between labeled and unlabeled nodes are critical for gen-
eralization. To measure this, we employ uniform transductive stability (El-Yaniv & Pechyony, 2006),
which evaluates the stability of spectral GNNs under perturbations to individual training samples.

To study the interplay between graph structure and GNN performance, we use the contextual
stochastic block model (cSBM) (Baranwal et al., 2023; Deshpande et al., 2018), a widely used
generative model that captures both homophilic and heterophilic graph structures in a controlled
and analytically tractable manner. Previous studies have demonstrated that cSBM models real-world
datasets such as Citeseer, Cora, and Polblogs, which are frequently used in GNN research (Deshpande
et al., 2018; LEI, 2016; Dreveton et al., 2023; Kipf & Welling, 2017; Zhang et al., 2021). Specifically,
¢cSBM generates graphs with well-defined block structures, where nodes within the same block
are more likely to be connected (homophilic graphs) or nodes between blocks have a higher
connection probability (heterophilic graphs). Leveraging cSBM allows us to systematically vary
graph homophily and examine its impact on GNN generalization properties.

Contributions. Our main contributions are summarized as follows:

* We analyze the ~vy-uniform transductive stability of spectral GNNs by decomposing it into
two factors: the Lipschitz continuity and smoothness of the loss function and the spectral
GNN, and the gradient norm bound (Theorem 6). This enables us to study the effects
of node class distribution and spectral GNN architecture on training gradients through an
explicit gradient norm bound (Theorem 8).

* We establish the generalization error bound of spectral GNNs based on their stability, where
good stability indicates strong generalization capability (Theorem 9). To further explicitly
analyze the effects of graph homophily and polynomial order on generalization, we derive
an explicit form of the gradient norm bound for two node classes (Theorem 13).

* We prove that spectral GNNs generalize well on graphs that are strong homophilic or het-
erophilic, but perform poorly on graphs that are moderately homophilic or heterophilic. We
identify conditions under which increasing the polynomial order in spectral GNN architec-
tures may degrade generalization, providing insights into architectural design (Theorems 14
and 15; Proposition 16).

To validate our theoretical findings, we conduct experiments on nine synthetic datasets and nine
real-world benchmark datasets for node classification. The experimental results align closely with
our theoretical analysis.

2 RELATED WORKS

Previous work. We review prior studies on GNN generalization, typically categorized into graph
classification and node classification, with a primary focus on the latter.
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VC bound (Scarselli et al., 2018) | - n/a | n ' v | - | -1 - |
RC bound (Esser et al., 2021) 4 n/a H]\IH007 H]\[XHzﬁao 4 Vv - -
(transductive)  (Tang & Liu, 2023b) Vv n/a Vv V4 - -
(Oono & Suzuki, 2020) Vi n/a \MX I Vi v -] -
US bound (Verma & Zhang, 2019) - 4 V4 - - -
(Inductive) ~ (Zhou & Wang, 2021) - V4 H]\[||27 H]L[XHQ Vv V4 - -
US bound (Cong et al., 2021) 4 \/ Anas 4 Vv - -
(transductive) ~ Our work Vv M;; Vv - 4 Vv

. de ¢ oIl

| - llsos]l * [l2—00 denote the spectral norm, Frobenius norm, infinity norm and maximum column

£o-norm. n is graph node number. dy,,x denotes the maximum node degree. The other factors Tsize,
Depth, Hom, and Poly refer to training sample size, model depth, graph homophily, and polynomial
order, respectively. +/ indicates “discussed”, while — indicates “not discussed”.

Graph classification is typically considered as an inductive learning task. One prominent method
is the Vapnik—Chervonenkis (VC) bound, which relates the VC dimension of a GNN to the number
of colors generated by the 1-WL algorithm, reflecting the number of graphs the 1-WL algorithm
can distinguish (Morris et al., 2023). The PAC-Bayes bound is another approach. Liao et al. (2021)
connects generalization bound to factors like maximum node degree and GNN depth, while Ju et al.
(2023) refines this by tying the bound to the largest singular value of the graph matrix. Behboodi et al.
(2022) further extends the PAC-Bayes framework to equivariant networks, highlighting the influence
of group properties on generalization. Rademacher complexity and uniform convergence have also
been explored. Garg et al. (2020) shows that a GNN’s computational tree complexity bounds its
overall complexity, and Maskey et al. (2022) shows that generalization bound increases with model
complexity but decreases with higher average node degrees.

Generalization analysis for node classification is more challenging than for graph classification
due to its transductive nature (Tang & Liu, 2023b). Recent studies focus on how graph matrices
and GNN depth influence generalization. Rademacher complexity (RC) is commonly used for node
classification tasks due to its strong theoretical foundation in transductive learning (El-Yaniv &
Pechyony, 2007). It has been shown that the transductive RC of a GNN is proportional to the infinity
norm of its graph matrix, with generalization bounds provided for several classic GNNs (Tang &
Liu, 2023b). Esser et al. (2021) uses a planted model to illustrate the relationship between GNN
generalization and graph matrix compatibility. Oono & Suzuki (2020) shows that gradient boosting
reduces RC in multi-scale GNNs. Uniform stability (US) offers another key approach for analyzing
generalization. Verma & Zhang (2019) relates the generalization error bound of single-layer GCNs
to the largest absolute eigenvalue of the graph matrix, while Cong et al. (2021) demonstrates that
increasing GNN depth improves stability and lowers generalization error bounds. Other works deviate
from transductive assumptions, addressing non-i.i.d. settings. For example, Ma et al. (2021) derives
PAC-Bayesian bounds by assuming i.i.d. node classes given fixed node features.

Our work. In this work, we focus on node classification tasks, investigating how node class
distribution and the architecture of spectral GNNs influence generalization. While prior studies have
examined factors like graph size, training set size, graph matrix norms, and node features, they have
largely overlooked the role of graph homophily in generalization and the impact of increasing the
polynomial order of spectral GNNs. To our knowledge, this is the first study to analyze the effects of
graph homophily and polynomial order on the generalization of spectral GNNs.

Table 1 compares our work with other methods for node classification, highlighting several key
aspects: (1) Analysis settings (inductive or transductive): The VC bound (Scarselli et al., 2018)
is data-independent and thus agnostic to inductive or transductive settings. While Verma & Zhang
(2019); Zhou & Wang (2021) derive bounds for GNNSs in inductive settings, others (Esser et al.,
2021; Tang & Liu, 2023b; Oono & Suzuki, 2020; Cong et al., 2021) and our work address the
more complex transductive setting. (2) Analysis frameworks: Rademacher complexity estimates a
model’s capacity to fit noise based on graph structure and node features but does not account for node
labels. As a result, methods such as (Esser et al., 2021; Tang & Liu, 2023b; Oono & Suzuki, 2020)
are unable to analyze the effect of graph homophily, which depends on both graph structure and node
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labels. In contrast, uniform stability enables analysis of the relationship between generalization and
graph homophily using gradient-based analysis. It is worth noting that while (Cong et al., 2021)
employs uniform transductive stability, their analysis focuses solely on how GNN depth impacts
Lipschitz continuity and gradient. (3) Key factors in bounds: Training sample size is a critical factor
in all bounds except the VC bound (Scarselli et al., 2018). Model depth (number of GNN layers)
is addressed in (Esser et al., 2021; Tang & Liu, 2023b; Zhou & Wang, 2021; Cong et al., 2021).
Our work examines spectral GNNs, where the architecture comprises only one layer of K -order
polynomials. Unlike prior studies that focus on various graph matrix norms, our analysis takes a
finer-grained approach by considering the expectation of individual graph matrix elements. Moreover,
we explore the effects of graph homophily and the polynomial order on the generalization of spectral
GNNSs, aspects not previously investigated.

3 PROBLEM SETUP

An undirected, unweighted graph is denoted as G = (V| E), where V is the set of nodes, F is the
set of edges, and |V| = n. In this work, we model graphs with controlled properties using the
generalized multi-class contextual stochastic block model (cSBM) (Baranwal et al., 2023). A graph
G ~ ¢SBM(n, f,11, Q) consists of n nodes, partitioned into C distinct classes. Here, f is the
dimension of node features, IT = {II; };c|¢ is a set of C' continuous distributions, where ; € RS
and ¥; € R/*7 are the mean and variance of II; respectively, and Q € R®*C is a symmetric
edge-probability matrix. Each node v; is assigned a class y; sampled uniformly from a set of C
classes, and its feature vector z; € R/ is drawn from the distribution IT,,. This generates the node
feature matrix X € R™*/. For the adjacency matrix A € R"*", an edge between node v; and v; (ie.,
A;; = 1) is generated according to the edge-probability matrix () based on the following probability:

P(Aij = 11yiy;) = Quuy,»
where Q,,,. gives the edge formation probability between class y; and class y;.

For a spectral GNN VU, following (Wang & Zhang, 2022; Lu et al., 2024), we first consider
fw(X) = XW, and then discuss the effect of non-linear feature transformation. Here W € R/*¢.
Let S,, = (X, {y:}!™,) be a training set containing m labelled nodes, randomly sampled form the
graph G, and D, = (X, {y;}j-,, ) be the testing set containing the other nodes in the graph Gi. We
define a loss function (y;, ¥;|e,w) to measure the discrepancy between the truth class y; and the
prediction §; when a spectral GNN is parameterized by ©, W. The empirical loss Lg, (0, W) and
the expected loss Lp, (©, W) are defined as:

1

n—m

> Uy dile.w).

i=m-+1

1 .
£5,(0.W) = —> lyidilow). Lp,(0,W)=
i=1

Following (El-Yaniv & Pechyony, 2006), testing datasets are randomly sampled from real data and
we treat the loss on these testing datasets as the expected loss. Given that the optimal parameters
©*, W* minimize the empirical loss Lg, (0%, W*), our goal is to bound the generalization error:

Lp, (0", W*) = Lg, (0%, 7).

A small generalization error bound indicates that spectral GNNs can perform well on testing data.

3.1 ASSUMPTIONS

We first introduce assumptions used in the generalization analysis of spectral GNNs.

Assumption 1 (Lipschitz Continuity and Smoothness). The loss function £ and the spectral GNN ¥
are both Lipschitz continuous and smooth.

Assumption 1 is commonly used in the analysis of neural networks trained with gradient de-
scent (Ghadimi & Lan, 2013). They are necessary conditions ensuring that the neural network training
converges (Arfken et al., 2011; Liao et al., 2021). We use Lip(e) and Smt(e) to denote the Lipschitz
constant and smoothness of a function, respectively, and || || denotes the Frobenius norm.

Assumption 2 (Bounded Gradients). The gradients of both the spectral GNN and the loss function
£(y;, §;) w.r.t. any parameters ©, W, and for any node v; with class y; and prediction §;, are bounded:

IVouill T + IVwiillF: < B3 1Val(yi, 9)llr < B 2
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Here, Vg; and Vy ¢; represent the gradients of ¢; with respect to the parameters © and W,
respectively. V,£(y;, §;) refers to the gradient of the loss function with respect to §;.

Remark. The loss surface of neural networks often contains many local minima (Dinh et al., 2017).
The bounded gradient assumption ensures convergence during optimization (Li & Liu, 2021).

Unlike margin loss, the cross-entropy loss function is unbounded. For theoretical analysis, it is
typically assumed that the sample loss is bounded.

Assumption 3 (Bounded Sample Loss). For any sample (z;, y;), the maximum loss between the
ground truth class y; and the prediction g; satisfies £(g;,y;) < By.

Following the previous work (Zhang et al., 2019; Kuzborskij & Lampert, 2018), we assume that
parameter norms are bounded during training.

Assumption 4 (Bounded Parameters). Each parameter 6, € O and the parameter matrix W in a
spectral GNN are bounded, i.e., |0;| < Beg and ||W||p < By.

4 GENERAL RESULTS

In this section, we examine the generalization of spectral GNNs through uniform transductive
stability (El-Yaniv & Pechyony, 2006). We define ~-uniform transductive stability for spectral GNN,
analyze the key factors influencing v by deriving the gradient norm bound, and use these insights to
establish the generalization error bound.

Definition 5 (7-Uniform Transductive Stability). Let Sy} = (X, {y:}7, ,.; U {y;}) be a perturbed
dataset obtained by replacing the i-th sample in S,,, with the j-th sample from D,,. Let {©*, W*}
and {©’, W'} be the optimal parameters of a spectral GNN ¥ trained on S,,, and S, respectively.

Denote the predictions for node v; by ¢;|e~ w~ and §;|e’ w. The spectral GNN W is y-uniform
transductive stable if for any ¢ € [n]:

jDax 1¢(yi, Us

o= w=) — Lyi, Gilew)| <.

A larger ~y indicates worse stability of spectral GNNs. Below, we decompose -y into two terms: 7
and 5. Here, 7 accounts for the Lipschitz continuity and smoothness of the loss function and spectral
GNNs, while S bounds the gradient norm during training.

Theorem 6 (Stability and Gradient Norm). Let ¥ be a spectral GNN trained using gradient descent
Jor T iterations with a learning rate 1 on a training dataset S,,, and evaluated on a testing set D,,.
Under Assumption 1, for all iterations t € [1,T| and any sample (x;,y;) in Sy, or Dy, if the gradient
norm satisfies ||V 0(y;, Gilot,w)|| » < B, where {©', W'} are the parameters at the t-th iteration,
then VU satisfies ~y-uniform transductive stability with:

T
2naq 1
= = 1

Y TB? r m tzzl( + 77042) ’
where ay = Lip({) - Lip(¥) and ag = Smt(V)8; + Smit(€)Lip(V) 2.
Remark. o and ay represent the Lipschitz constant and smoothness of the loss function ¢ and the
spectral GNN U, respectively. They determine how parameter updates ©* and W* during training
affect the loss of a sample (x;, y;) through the term r. As described in Eq. (2), 51 and 5 are the
bounds for the loss and its gradient, respectively. The proof is provided in Appendix A.2.

Unlike previous work (Cong et al., 2021), which assumes a fixed gradient norm /3, we explicitly
derive 3 to analyze how graph homophily and the polynomial order of spectral GNNs influence the
gradient norm and, in turn, stability. To begin, we introduce the concept of a walk on a graph and its
expectation, both critical for analyzing the stability of spectral GNNs. A k-length walk on a graph
G is defined as a sequence of k edges {e1, es, ..., ek}, where e; € E, and the endpoint of e; is the
starting point of e; 1 fori € {1,...,k — 1}. The expectation of k-length walks is defined as follows.

Definition 7 (E [Afj] ). Fora graph G ~ ¢SBM (n, f,1I, Q) with adjacency matrix A, the expecta-
tion of the element Afj in the k-th power of A is:

E[Af]] = Z H ny’a

pEPL (v,v')ep
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where Pi’j. is the set of all k-length walks between v; and v;, and ), is the transition probability
between the classes y of v and ¢’ of v'.

Remark. Intuitively, Ai—“j represents the number of k-length walks between nodes v; and v;. The
first moment ]E[Afj] gives the expected number of such walks in the random graph generated by the
¢SBM. Since ), represents the probability of an edge between nodes of classes y and ', a larger

@y, increases the likelihood of edges in walks involving transitions between these classes, resulting
in higher expected counts of such walks.

The following theorem reveals how the gradient norm bound 8 depends on the expectation of
k-length walks and their node class distributions within the graph.

Theorem 8. Consider a spectral GNN V with polynomial order K trained using full-batch gradient
descent for T iterations with a learning rate 1 on a training dataset Sy, sampled from a graph
G ~ ¢SBM(n, f,11,Q) with average node degree d < n. When n — oo and K < n, under
Assumptions 1, 2, and 4, for any node v;, i € [n|, and for a constant € € (0, 1), with probability at
least 1 — €, U satisfies y-uniform transductive stability, where v = 3 and

5=2|o @l - ulz)) +o(

K n
+0 (D) E[AY]

k=1 j=1

‘W;“w +2y1,HF)

n

Z E[Afthg; Ty, + E[Afj]zyj } :
t=1

Proof sketch. The main idea is to first derive the gradient of a sample loss and the expected gradient
norm I [||V£(y;, s|let wt )| r] for node (x;, y;) with fixed parameters (n, f,II, Q). Then the gradient
norm bound £ is derived using Markov’s Inequality (Evans & Rosenthal, 2004). When parameters
©, W are bounded (Assumption 4), the main factors in E [||V4(y;, Ji|letw+)| F] are || — vil|%
and moments of A* X. When graph structure and node features are independent given node labels,
we have E [A*X| = E [A*] E[X]. While A* depends on the graph structure, governed by the
parameter (), node feature X is controlled by parameter II, shown as the mean 7, and variance ¥,
of nodes belong to class y;. The full proof is provided in Appendix B.2. O

F

Remark. Theorem 8 shows that the gradient norm bound [ is primarily influenced by two factors:

(1) Expected prediction error E[||j; — v;||%] quantifies the difference between the truth node
class y; and the predicted label g; for a node v; by a spectral GNN. A well-performing
spectral GNN is characterized by a low expected prediction error.

(2) Expectation of k-length walks E[A¥.] measures the interaction between nodes v; and v,
through k-length walks. The existence of these walks depends on the labels of all nodes
along the walk, with edge probabilities in k-length walks determined by () in cSBM.

When a v-transductive learning algorithm is trained on two nearly identical training sets, differing
by just one sample, the expected generalization error equals the expected increase in sample loss (El-
Yaniv & Pechyony, 2006). Based on this known result, Theorem 6, and /3 obtained from Theorem 8,
we have the following generalization error bound for spectral GNNs.

Theorem 9 (Generalization Error Bound). Let Ha(n) £ Y 4 and Q(m,n — m) £
(n —m)® (Hy(n) — Hy(n —m)). For e € (0,1), if a spectral GNN is y-uniform transductive
stability with probability 1 — ¢, then under Assumption 3, for § € (0, 1), with probability at least
(1 = 6)(1 — e), the generalization error Lp,(©, W) — Lg, (©, W) is upper-bounded by:

m

v+ (27 + (n—lm + 1) (B¢ — 'y)) \/QQ(m, n —m)log % 3)

Remark. The generalization error bound of a spectral GNN is closely related to its uniform trans-
ductive stability -y, the number of training samples m, and the total number of nodes n in the graph.
A smaller v indicates stronger stability, which in turn suggests better generalization performance.
Factors such as graph homophily and the polynomial order of a spectral GNN affect v, thereby
impacting the generalization error. From Theorem 6, we observe that v = O(1/m). When n is

sufficiently large, the term 1/(n — m) becomes negligible, and Q(m, n — m) increases as O(m'/?).
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The following lemma shows that increasing the number of training samples m improves the
generalization. The proof is provided in Appendix C.2.

Lemma 10. Consider a spectral GNN trained with m samples as n — co. As the sample size m
increases, the generalization error bound decreases at the rate O(1/m) + O(+/21og(1/5)/m).

Thus far, we have considered only linear feature transformation functions fy in spectral GNNSs.
We now establish a result on how a non-linear fy influences uniform transductive stability.

Proposition 11. For a spectral GNN U 5 with a non-linear feature transformation function fy (X) =
6 (XW), assume the gradient norm bound (3 in Theorem 9 is the same for U and V5. If Lip(6) < 1
and Smit(G) < 1, then 5 < vy, where 75 is the stability of V5.

Remark. The v5-uniform transductive stability of spectral GNNs W5 with a non-linear transformation
is bounded by the stability of its linear counterpart W, provided that the activation function satisfies
Lip(6) < 1and Smt(6) < 1. These conditions ensure that the non-linear transformation does not
excessively amplify inputs or gradients, thus maintaining stability. Common activation functions like
ReLU, Sigmoid, and Tanh satisfy these criteria, indicating that they may contribute to stabilizing the
training of spectral GNNs by preventing large output fluctuations in response to small input changes.
The proof is provided in Appendix C.2.

5 FURTHER ANALYSIS

In this section, we analyze the impact of node class distribution and spectral GNN architecture
on the generalization error bound. To derive an explicit form for property analysis, we consider
cSBM(n, f, u,u, A, d), a well-studied specialization of the general multi-class cSBM (Deshpande
et al., 2018), widely used in prior studies on graph analysis (Esser et al., 2021; Ma et al., 2022;
Baranwal et al., 2021; Baranwal et al.). Specifically, for a node v; with label y; € {%1}, its feature
is sampled from a Gaussian distribution:

xi ~ N (yi/ p/nu, If/f)~

Two nodes of the same class are connected with probability ¢, = d + \V/d, while nodes of different

classes are connected with probability coy = d — Ad. In this simplified 2-class cSBM, the
distribution II reduces to {IL }, and the edge-probability matrix simplifies to a 2 x 2 matrix with
diagonal elements c¢;, /n and off-diagonal elements coy/n.

By adjusting the parameter A in cSBM, we can generate graphs with varying node class distribu-
tions. One way to quantify the node class distribution is the edge homophilic ratio (Zhu et al., 2020),

H _ |{et.7 "Ui,'UjEV,eijeE,yi:yjH
edge — |E‘ .

The relationship between the parameters d, A in cSBM and the edge homophilic ratio is as follows.

Proposition 12. For a graph G ~ ¢SBM (n, u,u, A, d), the expected edge homophily ratio is:

d+\d

Cin
2 ]E[Hedge] - (4)

E[Hegge] = e

When A > 0, the graph tends to be homophilic as E[H,g44.] > 0.5. Conversely, when A < 0, the
graph tends to be heterophilic. The proof is provided in Appendix E.1I.

5.1 UNIFORM TRANSDUCTIVE STABILITY

We now establish stability for graphs with two node classes and Gaussian-distributed node features.

Theorem 13. Consider a spectral GNN V parameterized by ©, W trained using full-batch gradient
descent for T iterations with a learning rate 1 on a training dataset containing m samples drawn
Sfrom nodes on a graph G ~ ¢SBM (n, f, u,u, A, d). When n — oo, k < n, and d < n, under
Assumptions 1, 2, and 4, for any node v; on the graph, with probability at least 1 — € for a constant
e € (0,1), W satisfies y-uniform transductive stability, where v = 3 and

5=~ [0 ® 5~ wllz)) + O <i (= (b ly=w)"] +E[(Ah |y # M])) }

k=2
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Proof sketch. The proof follows the same structure as Theorem 8. The gradient norm bound /3 can
be explicitly expressed as the expected prediction error IE [||§; — y;]|%| and the homophily-aware
walk variance (x = E [(AF; | yi = y;)?] + E [(AF; | yi # y;)?]. The connection between j, and
H,g44e can be analyzed in a tractable manner. The full proof is provided in Appendix D.3. O

Remark. The theorem derives the explicit form of k-length walks Ai-“j. Notably, (Afj ly; = y;) and
(Afj ly; # y,;) follow distinct distributions based on whether nodes v; and v; share the same label.
When k = 1, Afj follows a Bernoulli distribution. For n — co withd < nand 2 < k < n, Afj
follows a Poisson distribution. The term (x = E[(A|y; = y;)?] + E[(AF|y; # v;)?] captures

(3
the homophily-aware walk variance, reflecting the variance in k-length walks between same-class
or different-class nodes. This depends on the edge probabilities c¢;,, and coyi: (1) Cinn = Coue: the
graph is essentially an Erd&s-Rényi graph, lacking clusters or multipartite structure, leading to higher
variance in k-length walks. (2) ¢;, > cout: the graph is homophilic with cluster patterns, and walks
are concentrated within clusters, reducing variance. (3) ¢;,, < Cout: the graph is heterophilic with
multipartite patterns, and walks are concentrated along edges connecting different classes, affecting
the variance. In general, the absence of clear cluster or multipartite structures increases randomness

in k-length walks, resulting in higher (.

5.2 MAIN FACTORS IN STABILITY

We first analyze how exactly the expected prediction error E[||§; — v;||%] and the homophily-aware
walk variance (j vary with the parameters A and K, and then examine the combined effects of A and
K on the stability and generalization of spectral GNNs.

Theorem 14 (E [||§; — y;||%] and A, K). Given a graph G ~ cSBM (n, p,u, A, d) and a spectral

GNN of order K, E[||§; — ;|| %] for any node v; satisfies the following: it increases with A € [—/d, 0),

decreases with \ € |0, \/&], and reaches its maximum at A = 0; it increases with K if Zszz Ok%

(k—1)!
2k
Remark. When X\ = 0, the graph is neither homophilic nor heterophilic, resulting in the maximum
expected error. When A = ++/d, the expected error is minimized. This implies that spectral GNNs
perform well on strong homophilic or heterophilic graphs but poorly on graphs that are neither. The
relationship between the expected norm E[||9; — v;]|%] and the order K is nonetheless intricate,

depending on © = {6, }X_,. The proof is provided in Appendix E.2.

as K increases.

grows more slowly than ZkK:2 0?

We observe that (j, exhibits the same trend as E[||§; — y;||%] with respect to changes in \; however,
their behavior diverges with respect to K, as characterized in the following theorem.

Theorem 15 (), and A, K). Given a graph G ~ ¢SBM (n, i, u, A, d) and a spectral GNN of order

K, (i, has the following properties: (1) it increases with A € [—+/d, 0], decreases with X € [0,/d),
and achieves its maximum value at A = 0; (2) it increases with k as k grows, for k € [0, K].

Remark. When d is fixed, A — v/d, nodes with the same class form clusters, and when A\ — —/d,
they form a bipartite structure. In both cases, the graph structure exhibits clear patterns, leading to
a small variance V [A¥;] = E [(A};)?] — (E [AF,])? and, consequently, a small (. When A — 0,
the graph lacks simple patterns, resulting in a large variance and a correspondingly large (. When
k € [0, K] increases, more walks between two nodes exist and thus the variance V [Afj] increases.
Larger variance corresponds to a larger (i. The proof is provided in Appendix E.3.

Based on Theorems 14 and 15, the following proposition summarizes how A and K influence the
~-uniform transductive stability of spectral GNNs. The proof is provided in Appendix E.4.
Proposition 16. For a fixed K, vy-uniform transductive stability and generalization error bound
strictly increase as \ moves from —/d to 0, and decreases as A moves from 0 to \/d. For a fixed )\, if
Z?:z Ok U;k;,ll)' grows more slowly than Eszz 02 (k; kl)! as K increases, then ~-uniform transductive
stability and generalization error bound increase with K.

5.3 PRACTICAL IMPLICATIONS

We discuss two practical implications of our theoretical findings.

Rewiring graphs: Our analysis establishes a strong connection between graph homophily and the
generalization error bound, offering practical insights for rewiring graphs to enhance the performance
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Figure 1: Testing accuracy, accuracy gap, and loss gap of five spectral GNNs on synthetic and
real-world datasets: (a)-(¢) Syn-Varying-H.qq4: synthetic datasets with varying Heqge € [0.1,0.9]
(step 0.1) and m = 3, 000; (d)-(f) Syn-Varying-m: synthetic datasets with varying training sample
sizes m € [500,4500] (step 500) of fixed Hegge; (8)-(i) Real-m-100: real-world datasets with varying
H,g44e (shown on the right) and m = 100.

of spectral GNNs. Graphs with strong homophilic or heterophilic structures exhibit low variance in
k-length walks, which reveals clearer structural patterns. This reduction in variance decreases the
gradient norm bound 3 (Theorems 8 and 13), leading to improved ~y-uniform transductive stability
(Theorem 6). Enhanced stability, in turn, reduces the generalization error bound (Theorem 9).

Constrained graph convolution: Our theoretical results indicate that constraining the graph con-
volution parameters 0 < 6§, < 1 prevents the generalization error bound from increasing with the
polynomial order K. This is because the constraint ensures that the condition in Proposition 16, where

Z ko O (];A 1) increases slower than Z Ee2 92 k 1) , is violated, as 6, > 92 Previous work (He
et al., 2021) reports that constraining 0}, to non- negatlve values with Bernstein polynomlal basis leads
to valid polynomial filters. Our analysis further suggests adding the constraint ;, < 1 to maintain
stable generalization error as K increases.

6 EXPERIMENTS

Synthetic and real-wrold datasets. We use the following datasets: (1) Synthetic datasets consist
of nine graphs generated using G ~ ¢SBM (n, f, i, u, A, d) following (Chien et al., 2021). Each
graph contains 5,000 nodes with 2,000-dimensional features and an average degree of 5. The edge
homophily ratios (H,44) range from 0.1 to 0.9 in steps of 0.1. (2) Real-world datasets consist of
ten benchmark node classification datasets (Texas, Wisconsin, Actor, Chameleon, Squirrel, Citeseer,
Pubmed, Cora, Ogbn-Arxiv, Ogbn-Products) with H,g44. varying between 0.11 and 0.81. Following
previous work (He et al., 2021; 2022a; Chien et al., 2021), we randomly split each dataset into 60%
for training, 20% for validation, and 20% for testing.

Spectral GNNs. We select five widely recognized spectral GNNs for our experiments: ChebNet (Def-
ferrard et al., 2016), GPRGNN (Chien et al., 2021), BernNet (He et al., 2021), JacobiConv (Wang &
Zhang, 2022), and ChebNetlI (He et al., 2022a). For consistency with Eq. (1), we use a single-layer
ChebNet rather than the typical two-layer version.

Further details about the dataset statistics, spectral GNNs, hyper-parameter settings used in our
experiments and additional experimental results are provided in Appendix F. Below, we discuss the
effects of node class distribution and polynomial order on the accuracy and loss gaps of spectral GNNs.
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Figure 2: Accuracy gap and loss gap of JacobiConv and BernNet when the polynomial order K

increases, where p; = Zszg Gk% and po = Zszg 9% (k;})!: (a-b),(e-f) show the results on a

synthetic dataset of Hqg. = 0.2; (c-d),(g-h) show the results on Chameleon dataset of H.q4. = 0.24.

Figure 1(a)-(c) illustrates that as Hq4. of synthetic datasets varies from 0.1 to 0.9, accuracy and
loss gaps increase monotonically for H.g44. € [0.1,0.5] and decrease for Heg4e € [0.5,0.9], reaching
their maximum at H.44. = 0.5 across all spectral GNNs. This aligns with our theoretical analysis
in Proposition 16, which states that the generalization error bound increases as H.44. moves from
0 to 0.5 and decreases as H.44. moves from 0.5 to 1. In Figure 1(d)-(f), when the training sample
number m increases from 500 to 4, 500 on synthetic datasets, both accuracy and loss gaps decrease
consistently. This is consistent with Lemma 10, which shows that the generalization error bound
decreases with increasing m. Figure 1(g)-(i) shows that when training all real-world datasets with the
same sample size m = 100, spectral GNNs exhibit a similar trend to synthetic datasets. Loss gaps
are small at the extreme ends of the H,q4. range but increase as Hqgq, transitions from Texas (0.11)
to Ogbn-Products (0.81). These results align with Proposition 16.

Figure 2 shows that when the slope of p; is smaller than that of ps, accuracy and loss gaps increase.
Conversely, gaps decrease when p; grows faster than ps, aligning with Proposition 16. Intuitively,
this condition can be understood as follows: (1). Non-negative 0.: Spectral GNNs constrained to
0 < 0 < 1 demonstrate strong generalization. In this case, 0} > 02, ensuring p; grows faster than
p2, violating the condition of Proposition 16, and preventing the generalization error bound from
increasing with K. For instance, BernNet enforces non-negative 6, and as shown in Figure 2(e-h),
its accuracy and loss gaps remain stable with increasing K. (2). Unrestricted 0: Spectral GNNs
allowing both positive and negative 6} may exhibit poor generalization. If 0, < 0, p1 < p2. When
0, < 0and 0y, > 0, p; typically grows slower than ps, satisfying the condition of Proposition 16
and leading to increasing generalization error bounds with /. For example, JacobiConv does not
restrict the sign of y, and its accuracy and loss gaps increase with K in Figure 2(a-b).

7 CONCLUSION, LIMITATIONS, AND FUTURE WORK

This work investigates how node class distribution and architectural choices impact the generalization
of spectral GNNs. Our findings show that spectral GNNs generalize well on graphs with strong
homophilic or heterophilic structures, where node class distributions exhibit clear patterns, and the
generalization error of spectral GNNs increases with polynomial order under certain conditions.

We derive the uniform transductive stability of spectral GNNs on graphs generated by the general
multi-class cSBM, providing insights into the relationships between graph homophily, polynomial
order, and generalization error bounds. However, this analysis is limited to a specialized cSBM,
leaving room for further exploration of more diverse graph generation models. Another limitation
lies in architectural choices. While these choices, such as the selection of the graph matrix (e.g.,
Laplacian vs. adjacency matrix) and polynomial basis (e.g., Chebyshev vs. Bernstein), are critical
to generalization performance, we do not explore their specific impacts on generalization bounds.
Future work could investigate how these design decisions influence the theoretical and practical
performance of spectral GNNs. Finally, our theoretical analysis assumes training with gradient
descent, whereas Adam is the optimizer most commonly used in practice. This discrepancy between
theoretical assumptions and practical applications highlights an important direction for future research
to bridge the gap and improve the relevance of theoretical findings to real-world scenarios.

10
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A STABILITY AND GRADIENT

A.1 LEMMAS FOR THEOREM 6

We start by establishing the maximum variation in the sample loss and the maximum change in the
gradient of the loss function with respect to the parameters {O, W} of spectral GNNS, as defined
in Eq. (1). These two properties play a crucial role in the subsequent analysis.

Based on Assumption 1, we derive the following lemmas.

Lemma 17 (Bound of Loss function to Parameters). Under Assumption 1, given a loss function £

and a spectral GNN, for parameters ©, W ,0', W' and any node v; with truth class y; we have

10(yi> Vilo—o w=w) — £y, Vilew )|l Fr < aa \/Hé - 0% + W -W'|%

where oy = Lip(€) Lip(D).

Proof. Under Assumption 1, we have:

1€(i> Gilr=r) = €y, Gilr=r)Il < Lip(O)l|Gilr=r = Gilr=rlF;

ILip(O)[|Gilr=7 = Gilr=r|IF < Lip(Q)||7 — 7’| .

By combining the two inequalities above, we arrive at:

16yi, Gilr=7) = Ly, Gilz=+)Il < Lip(€) Lip(V) |7 — 7' p-
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Lemma 18 (Bound of Gradient to Parameters). Under Assumption 1, Assumption 2, for parameters
O, W, 0", W' of a spectral GNN, the following holds for any node v; with truth class y;

IV €y, Bilo—s.mw—w) — Ve iilermw)llr < asy/16 — ©/% + W — W|2
where ay = (Smt(¥)S1 + Smt(¢)Lip(¥)Ps) .
Proof. Since we have
vg(y1? gi|7=?) = vgjié(yvgi”T:? * VZMT:%;
Vg(yhyi“r:ﬂ) = v@ig(yagi”‘r:‘r’ : vyi|7':7"7
this leads to
Vé(yi, Z,Ali|7—=-7—) - Vﬂ(yi, gi|‘r=‘r/) = vgig(y7 yAi)|T=‘F(vﬂi“r=7" - v@i“l’:T/)
+ (vz)iz(y7yi)|7=7’ - V@Zf(y, :&i)‘T:T') v@i|‘f'=7'"
Hence, we obtain the following
||V€(yzvgl|7‘:7") - vg(yivgi“:'r’)HF é ||vy1€(yvgz)|'r:7"”F : ||v17i|'r:7" - v:&i|'r:‘r’HF
IVl 9i)lr=r — Vg, by, §i)lr=r || - |V Gilr=r|| -

)
Under Assumption 1 and Assumption 2, we have:
IVilr= = Viile=r|lr < Smt(E)|7 — 7’| ©)
Hvﬂqg(ya yi)‘T:% HF S /81-

Under Assumption 1, we have:

IV £y, i) =7 = Vb, §) lr=r' | p < SME(O|Gilr=7 = Gilr=r[| F o
< Smt(€)Lip(®)||7 — 7’| .

Under Assumption 2, we have:

IVilr=rlF < Ba. ®)

Substitute Eq. (6), Eq. (7), and Eq. (8) into Eq. (5), we have
VUi, Gilr=7) = V(i Gilr=r)lp < Smt(P)|I7 — /|| p - B1 + Smt(£) Lip(V)||7 — /|| 7 - B2
= (Smt(V)B1 + Smt(£) Lip(¥)B2) ||T — 7'|| -
O

A.2 PROOF OF THEOREM 6

Theorem 6 (Stability and Gradient Norm). Let ¥ be a spectral GNN trained using gradient descent
Jor T iterations with a learning rate 1 on a training dataset S,,, and evaluated on a testing set D,,.
Under Assumption 1, for all iterations t € [1,T| and any sample (x;,y;) in Sy, or Dy, if the gradient
norm satisfies ||V 0(ys, Jilot,w)|| . < B, where {©', W'} are the parameters at the t-th iteration,
then VU satisfies ~y-uniform transductive stability with:

T

2nan 1

= ) = 1 )
v=rf, r=— > (1 +nas)

t=1

where iy = Lip({) - Lip(¥) and cg = Smt(V)B1 + Smt(¢) Lip(¥)Bs.

Proof. We define 7 = [©; W] as the concatenation of the parameters © and . From Lemma 17
and Lemma 18, we derive:

(i, Gilr) — LY, Uil o+ )lp < callm — 7| 75
IVe(ys, Gil+) — VY, Gl )| F < 2|7 —7'||p,

15
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where a1 = Lip(¢)Lip(¥) and ag = (Smt(V)B1 + Smt(¢)Lip(¥)B2). The updating rule for
gradient descent is given by:

=7t VL, (T);
t+1 _ t t
Tl] nV,C ;Lyjl TZ])’
where

1" ) 1™ A
‘CSnz (Tt) = a Zg(yrayr"rt) and L"S,LYJ, (thj) = E Ze(yrvyr|rfj)'
r=1 r=1

represent the empirical loss on the training dataset S,,, and S, respectively. The difference between
the empirical losses is given by:

1 “ . R . .
Lgis (14;)=Ls,, () = - > (E(yr,yrlrgj)—E(ymyr\rt))+€(yj,yjlrgt)—f(ynyilrt)

r=1,r#i,j

We derive the parameter difference:
Irift =7

ij Ty~ nVLg (rij) =7 +nVLs, (Tt)HF
< |7l = 7'llr +0lV(Ls,, (7°) = Lgis (Ti;) || 7

U S X A X X
=l = 7'llr + |V | D (E(yr7y7’|7';‘j) —f(ymyrth)) + 0, Ujlt, ) — €wir Gilre)
r=1
L

F
77 m
<l =7l + 2 |32 aallrly = 7 le + 9 [6s, Giles) — ClssGil) ]| (Assumption 1)
r=1
r#i,j F
n n . .
<l = 7'l + = (m = Dazllr; = 71l + = [V [ 331wt = il |

217,6’

< ||7'th —7'F+ ﬂ(m - 1)0é2||7' — 7!+ == (Theorem 13)
m

(1+ 200

s )l = 7l + 22
m
< (1 +nag)lirly — Tl + 22

2776.

After T iterations, we obtain

2
||7' —7-T||F (1 + nas) || T-1 _ T71||F+%ﬂ

- 2np
< (1 n02)[(1 4 ma2) || 2 = 772+ )

T
< (1 +nap)? HTin - 7'0||F + Z(l + 77042)“1%
=1

T
2
E (14 nay)* 1Lﬁ.
m
t=1

Since the loss functlon lis ag L1pschitz continuous, for any sample (z;,y;) with parameters
T=[eT; W] and 7} = [6];; W], we have:

177

|€(z)i,yi;7 ) = (i, yis )| < o |77 = 7h
T
12
<oy (1+nag) 1205,
t=1 m
The proof is completed. ]

16
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B STABILITY ON GENERAL MULTI-CLASS CSBM

We derive the uniform transductive stability of spectral GNNs defined in Eq. (1) on graphs generated
by G ~ ¢SBM (n, f,I1,Q). Then we discuss how the non-linear feature transformation function
affect the stability.

We first give a brief introduction to inequalities and lemmas used in this proof.

B.1 LEMMAS FOR THEOREM 8

Lemma 19 (Jensen’s Inequality). Let X be an arbitrary random variable, and let f : R — R! be a
convex function such that E [f(X)] is finite. Then f(E[f(X)]) < E[f(X)].

Lemma 20 (Markov’s Inequality). If X is a non-negative random variable, then for all a > 0,
E[X]

P(X >a)<
(Xza) <=

That is, the probability that X exceeds any given value a is no more than the expectation of X
divided by a.

Remark. Lemma 19, Lemma 20 are important inequalities about a variable and its expectation.
Details can be found in (Evans & Rosenthal, 2004).

Lemma 21 (Cauchy-Schwarz Inequality (Arfken et al., 2011)).

O arbi)* < (3 a)(Q_bi).
k=1 k=1

k=1

The square of the ¢5-norm of the product of two vectors is less than or equal to the product of the
squares of the />-norms of the individual vectors.

Lemma 22 (Trace and Frobenius Norm). For any matrix A € R™*", the relation between its trance
and its Frobenius norm is

Tr(A) < vn-||Allp.
Proof. The trace of A is defined as:
Tr(A) = Z @i
i=1
Applying the absolute value, we have:

Tr(A) < Z |-
i=1

Using the Cauchy-Schwarz inequality (Lemma 21), this becomes:

n
Z laii| < v/n-
i—1

2

Since |a;;|? = a?, we can write:

n n
Z |aii|?> = Zazzi'

i=1 i=1

Thus:

Tr(A) < Vn- Zagi =vn-|A|F.
i=1

17
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Lemma 23 (Partial Derivatives). For spectral graph neural networks defined as y =
softmax (ZkK:o 0, A X W) with node feature matrix X € R™ S and ground truth node label

matrix Y € R"*Y, the cross-entropy loss for a single sample (x;,v;) is given by:
(y’L?y'L?@ W Z}/;Clog< 1C)'

The partial derivatives of £(3;, yi; ©, W) with respect to 0}, and W, are:

N = o A
%é@,m =3 (Vie—vie) (Axw)

8E(y“i,yi;®,W) _ (Y - X 1k
e = (ym - y,q) (; 0, A X)

Proof. We begin with the following definitions:

ip

K z.

~ ~ e“ic
Z =3 0.AXW, Yi=—g—
k=0 Zc’:l eZiC/

where Z € R™*C represents the feature matrix after aggregation, Y. is the softmax output for class
¢, and ¢(9;,y;; ©, W) is the cross-entropy loss for sample (z;, y;). We then compute the following
partial derivatives:

. LG,y ©,W) Zleog

Vi Yo'
Nie .
8Zw/ Y (500’ - )/ic’)a

where 4./ is the Kronecker delta, which equals 1 if ¢ = ¢’ and 0 otherwise.

(1) Gradient w.r.t. 6;.: We have:

0Z;c
AFX
0, — AW )ic.
By the chain rule of gradient, we have:
O, yi; 0, W) _ i (G0, W) (s~ ie  0Zie
00y, et 8}726 aZic/ 00,

- (z 0 z-cf>-<fwxw>,.c,)
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(2) Gradient w.r.t. W: Based on the following
f
Zekz k)z] ZXerrca
k=0 Jj=1 r=1

we have

e S S X =50 (1),

= Jj=1 =
where J., is the Kronecker delta, which is 1 if ¢ = ¢ and 0 otherwise. Then, by the chain
rule of gradient, we have:

(51, v, W) _ _if(@i,yi;@,m _ ( ) azic/>

W g oy, 0Zi  OWpy
¢y X K )
CE T (S o) (b))
c=1 "¢ c'=1 k=0 P

Il Il
| |
Mo 1M
&< =
o (2}
7N N
Q
/N
=%}
&
e
Q\
N—
: Y
N
2
(]~
=)
ol
/N
b
Eal
b
N——
3
x S~——
~

c=1 k=0 c'=1 k=0
C ) K ~
-3 (1) (s 3o (),
-3 (V) (35),
c=1 k=0

B.2 PROOF OF THEOREM 8§

Theorem 8. Consider a spectral GNN V with polynomial order K trained using full-batch gradient
descent for T iterations with a learning rate 7 on a training dataset Sy, sampled from a graph
G ~ ¢SBM(n, f,I1,Q) with average node degree d < n. When n — oo and K < n, under
Assumptions 1, 2, and 4, for any node v;, i € [n], and for a constant € € (0, 1), with probability at
least 1 — €, U satisfies y-uniform transductive stability, where v = 3 and

8= 1[0 ® [l — i) + O (I m + Zule)
ol |

Proof. Any spectral GNN described in Eq. (1) with a linear feature transformation function and a
polynomial basis expanded on a normalized graph matrix can be expressed in the following form:

K
Y = softmax (Z ekAkXW> , 9)

k=0

Z Amﬂ u +E[A§j]2y

t=1

F

19
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where A = D=2 AD~ 2 is the normalized graph adjacency matrix, and D is the diagonal degree
matrix. Here, Y € R™"*¢ denotes the ground truth node label matrix.

(1) Walk counting: According to Definition 7, we have

= Z H Quy'

pePf (v,v')ep

(2) Feature expectation: Since we have G ~ ¢SBM (n, f,1I, @Q)), node classes have a uniform
prior y; ~ U(1,C). Thus,

u=1c (10)

— When k£ > 1, we have

E[(A*XW)y] = E [AL] E[(XW),]

— When k£ = 0, we have

1 &
=0 621(7TCW)J'
Thus, .
~ L _ (W) 5, k=0
B xw),) = { S an
ZSZI E |:Azs] ! C Zc:l(ﬁcw)ﬁ k Z 1
(3) Gradient Norm: The gradient norm can be relaxed as:
E(IVe(Giyi;0, W)l r] < ]E[\Iw(ﬁi,yi;@ Wlle]
aU( yz,yz,@ W) (i, yi;©, W)
= ZE [H le.| +E ”TH“
(12)
. . . . aﬁ(gi’yi;(-—lw)
According to Eq. (9) and Lemma 23, we get the partial derivatives —=-75—=—" and
M%if’w). Specially, when m = 1, we get the partial derivatives of empirical loss on
training sample (z;, y;):
(i, ysO.W) _ <~ (5 T
TV b2 7)) N (v, — v (A XW) 13
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00§, yi; O, W) (o N
- - (Y,q _ Y,q) ;;)QkA X (14)

ip

Thus, we have:

E

a0y, h

=
L
TIMQ

—_

S
< >
[}

\
=<
3

N—
—
o
>
3
—
-
o
.

IA
Mo
<

N
- >
[}

\
e
o

N—

N
.

ol

b

=

>

[}

[E—)

- iE [ (¥ie = Yee) |1 (A*xw) ] (15)
4 e[l 5 )
(Lemma 28)

DN | =

(B {15 - w:li3] +E[1 A x W3] )

E ||()||zl}

ow

Il
tV1k*
Mo

W, “

i)
Il
—_
Q
Il
[

I
tvja*
MQ

=
—
&

|
=
N—

N
M=
~

S

ol

>
y

’ﬁ —_

i
Il
—_
Q
Il
—

P
1= 1

M-

—~ B
=1
3T
So
IS
[\
0

- i I_( 16| (E (19 — vl ] + CE {(Z"“Xip])
_ f: 01 (£ Elg: — i3] + CE || A5 X]3)) -

(16)

(4) Expectation E [H[le WH%} and E [||fle ||%} For sparse graphs G with adjacency

matrix A, when d < n (average degree much smaller than the number of nodes) and
k < n (walk length much smaller than the number of nodes), A¥, and A% can be treated
as independent variables due to the following reasons: (a). The overlap between walks of
different lengths is limited due to the sparsity of the graph. (b). The existence of a k-length
walk between two nodes is a rare event when k£ < n, and the joint occurrences of two rare

events can be neglected. (c). When d < n, the variance of Afj is negligible compared to
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(E[Afj])2. Thus, by Eq. (11), we derive the following for the case k > 1:

o)

zn: zn: zsAft XW) (XW)t(“|

_ i > B[4 oow),, (xw),
3 "E[Ak} E[4] -E(xXW), (XW),]

When k£ = 0, we have:
E[IAEXWIE] = E [1X: W3]

C
> (XW)?C]

E

c=1

C
Z 7r77y+2 )W

Thus, we obtain
Sl Wi (7 Ty + Sy,) Wiy k= 0
E [||/~1fXW||%} = # Zf:l 22:1 [ } [Zt 1,t#s {Azt:| (WysW)c : (Wth)c

FE[AL] W (i + 5 W] k2
7)
Similarly, by Eq. (10), we have

Zc VL (mymy, +8y,) Le, k=0
E{H/HCXH%} — qud > B [ is} |:Zt_1,t;£s [AH Tysia " Tyea (18)

B [A4) 1] (] my, +5,) Lq} k1

By substituting Eq. (17) into Eq. (15), Eq. (18) into Eq. (16), and combining Eq. (15)
and Eq. (16) into Eq. (12), we obtain:
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E V(G yi; ©, W) r]

C
< % (E [HQz _yzH%} —|—ZWI (7‘(‘;71'% "‘Eyi) WC>
X , c=1
+Z2|:E Hyz yzH d2k: ZZE[ ]

c=1 s=1

[ S B[] W), ), + £ [AE] W (<4 |

f
f-E [”ﬂz - yz”%«“] + CZI:Z (WyTiﬂ'w + Eyi) I:q)

+
=
=

’ Nt

c=q
+Z|9k|[f B (15— wl3] + O 3 B[]
k=1 c=1s=1
n
) [ Z E {Aiﬂ “Myeq Tyig +E [Afs:| '[:Z (7"31771/5 +Eys)qu”
t=1t#s
1

fz |9k|> 19 — il %]
C

C
1
+§ZWI (my, Ty, + ) Wee +100C > LL (), my, + 5y,) Lo

c=1 c=1

k=1 d c=1 s=1
[ 3 E{Ag} (7, W) (wth)CjL]E[A’?} W (] 7, + 5 )W}
t=1,t#s
K C f n
+z d2k|9k|ZZE [Afce]
k=1 qg=1 s=1

c=1 c=1

K C n n
+ eSS B [AL] W | B[4 wm, +B[AL] (w5, | W

k=1 c=1 s=1 t=1

t#s
+f0"’k'z n E [45)] zn:E[A’?]w Py +E[AL] 1T (] 7y, +5,)) I
P dgk por 18 pot ot Ys,q " Yt,q 18 :q Ys''Ys Ys :q

t#s

Under Assumption 4, we can further simplify and relax the expression to:
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E (V€. ys: ©, W) | ]
G”lfz%>n%%w

—i—;Tr (WT (m,,my, + Sy,) W) + BeCTr (), my, + 5y,)

+ Z a2k ZE (ZE Aft 7T Ty TE [A;Cs:| (W;Wys +3y,)
= t#£s

=
3

+ Z 2&6 ZE [[151] ZE [Aft] Tr (ﬂ'yzﬂyt) +E [Alfs} Tr ((ﬂ'yzﬂys +25y.))

s=1 t=1
t#s
K+1 ;
< (2 + fBo(K +1) ) E[||9: — vill3]

BQ
+ (2W + B@C) Tr (WJWU +3y,)
L 1+CBe & k S k1T k T
— Z]E [Aij] Tr ZE [Ait] Ty Ty, + E [Aij] (Tl’yjﬂ'yj + Eyj>
j=1

k=1 t=1
t#]

(19)
With Lemma 22, we rewrite it as

E[IV6(gi, 5130, W)llr] < O (E [1g: — willF]) + O (g, my; + 2y,

r)
K n
4O (S S B[] I [AY] a] my, + E[A5]5, e
t=1

k=1j=1
(20)
(5) Concentration Bound: By Jensen’s inequality (Lemma 19), we have:
which implies:
B[V, 5 0. W) | £] < \/E[IVE(Giyi: 0, W)|[3). 1)
Using Markov’s inequality (Lemma 20), for a positive constant a, we have:
N E[|Ve(gi,yi;©,W
BV (G150, W) > a) < IV 0 € el _ @2)
Solving for a, we obtain:
E[|V{ Ai, 05 @, %4
IV 4G, yis 0, W)l ] -

€

Therefore, combining Eq. (20), Eq. (21), Eq. (22), and Eq. (23), with probability at least
1 — ¢, we have:

. 1 .

When ||V4(§;,y:; 0, W)||F < B, according to Theorem 6, spectral GNNs on graphs G ~
¢SBM (n, f,11, Q) have y-uniform transductive stability. We rewrite this in Big-O notation
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as:

r)

|

v=rp, B=:

[o (B [13: - wil12]) + O (Im] my, + 5,

n

+0 | YD EAE)]

k=1j=1

Z E[Aft]ﬂ;—j Ty, + E[A?j}zyj

t=1

F

where r is the same constant as in Theorem 6.

C GENERALIZATION ERROR BOUND OF SPECTRAL GNNS

We derive the generalization error bound of spectral GNNs based on their uniform transductive
stability. Subsequently, we analyze how the number of training samples affects the generalization
error bound.

We begin by introducing two lemmas for this proof.
Lemma 24 (Inequality for permutation (El-Yaniv & Pechyony, 2006)). Let Z be a random permuta-
tion vector. Let f(Z) be an (m, q)-symmetric permutation function satisfying || f(Z) — f(ZY)|| < B
foralli € IT" and j € I){{. Define Hy(n) £ Y"1, & and Q(m, q) 2 ¢ (Ha(m + q) — Ha(q)).
Then )
€
P(f(Z)-E[f(Z)] =€) < —_— .
(12~ BIf(2)) 2 9 < o0 (- 5550 )

Lemma 25 (Risk and uniform stability (El-Yaniv & Pechyony, 2006)). Given any training set S,
and test set D,,, the following holds:

E[Lp,(©,W) = Ls, (0,W)] =E[A(i,4,4,i)], i€l jelni]

m

where A(i, §,1,1) denotes the change in the loss of sample (x;,y;) when the model is trained on two
datasets: one with (x;,y;) in the training set and another with (x;,y;) from the test set exchanged
with (z;,y;)-

C.1 PROOF OF THEOREM 9

Theorem 9 (Generalization Error Bound). Let Ha(n) £ Y L and Q(m,n — m) £
(n —m)* (Hy(n) — Hy(n —m)). For e € (0,1), if a spectral GNN is y-uniform transductive
stability with probability 1 — €, then under Assumption 3, for § € (0,1), with probability at least
(1 = 6)(1 — €), the generalization error Lp,(©, W) — Lg, (©, W) is upper-bounded by:

m

v+ (27 + (n—lm + 1) (B¢ — ’y)) \/QQ(m, n —m)log % 3)

Proof. Let A(i, j, s,t) £ £(Gr, yi; OF, W) — £(§s, ys; ©T,WT), where ©F, W] are model pa-

I g i
rameters trained on dataset S% for T iterations and ©7, W7 are model parameters trained on
dataset S,,,. We first derive a bound on the permutation stability of the function f(S,,, D) £
Lp, (0,W)—Lg, (0,W), where ¢ = n — m. The bound is given as:
|(Lp, (0. W) ~ Ls,, (0,W)) — (Lp, (07, WY) — Ls, (07, W) | <

m

m+q m

1 o 1 L 1 . 1 L
- Z ||A(’L,j,’/‘,7“)H+*||A(’L,j,1,])”+a Z HA(ZM%T?T)H+EHA(7”]7]71)H'
r=m+1,r#j q r=1,r#i
(24
According to Definition 5, Assumption 3 and Theorem 6, we have

T

. 2np
A - 1 t—141P
(e JAG ) <y = ;_1:( +raz) T
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Thus, Eq. (24) is bounded:
I (L, (0. W)~ Ls, (0,W)) — (Lp, (07, W¥) — Ls, (67, W) |
qg—1 1

m—1 1
<—+-Be+—+ —B
q q m m

—1 —1 1 1
(5= (1)
q m qg m

Let B = (% + %) v+ (% + %) By. Then, the function f(Sp,,D,) = Lp, (0, W) —
Ls, (©, W) has transductive stability 5. Apply Lemma 24 to f(S,, D, ), equating the bound to

62
P <_25%20nm> =0

e = By/200m,q)log +

Therefore, we obtain that the probability at least 1 — § that

Lp,(0,W) — Ls, (0,W) —E [Lp, (09, W) — Lg (09, W9)] < B1/29(m,q) log% (25)

According to Lemma 25 and Theorem 6, for 1 <7 < m,m + 1 < j < n, we have
E[Lp, (07, W)~ Ls, (07, W) = E[A(i, j,4,7)] <y (26)
Substitute Eq. (26) into Eq. (25), we get:

~ 1
LD“ (G)a W) S ESm (G)a W) + 0 + /3 QQ(ma Q) lOg g

Lp, (©,W)—Ls, (0,W)<~y+ (27 + <nlm + ;) (By — 7)) \/QQ(m,n —m)log =

we get

It is rewritten as:

C.2 PROOF OF LEMMA 10

Lemma 10. Consider a spectral GNN trained with m samples as n — co. As the sample size m
increases, the generalization error bound decreases at the rate O(1/m) + O(y/21og(1/8)/m).

Proof. The proof is proceeded in three steps:

(1) —— is neglectable compared with %: As m < n, we have m = o(n).
1

T—m
1 n

mo = m . L whenn — oo, we have  — 0 and

= . —
n—m n 1-

— 1as m = o(n). Therefore,

1

lim =0, lim *5= =0;
n—oo N — m n—oo —
m
which indicates
L o)
= o —
n—m m

(2) Q(m,n —m) increase with m: As Ha(k) = Zle -+, we have:

Ha(n) = Holn—m) = 3 5
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As
1 _ 1 _ 1
m-— —<m
n? — i2 = (n—m)2’
i=n—m-+1
we have
! < Hs(n) — Hy( ) < !
m- — n) — n—m m-———.
nz =7 2 - (n—m)?

Multiple two sides with (n — m)?2, we have:

1

2.m.iS(n—m)Q'(Hz(”)*Hﬂ”*m))ﬁ(”7m)2'm.m’

(’/l - m) n2

As Q(m,n —m) = (n —m)? (Ha(n) — Ha(n —m)), we have:

B 2
=) < Q- m) <m
n

ie.,

Q(m,n —m) =0(m)

(3) Generalization error bound: From Theorem 6, we have v = O(%) Therefore:

v+ (27+ (nlm + ;) (B, — ’y)) \/2Q(m,n —m) log%
0Ly + (00 + (o) + ) (Be - 005 ) )y 20(m)tog 5
1

— oL+ BZO(%)O(ml/Q), /210g%

1 2log (%
_ ~ 1B g(3)
m

In summary, the decay rate of generalization error bound is O ('rln +O(y/ 21055“”) .

O

Proposition 11. For a spectral GNN U 5 with a non-linear feature transformation function fy (X
o)

a(XW), assume the gradient norm bound (3 in Theorem 9 is the same for U and V. If Lip(
and Smt(c) < 1, then v < =, where ~y; is the stability of ;.

)=
<1

Proof. We consider spectral GNN W:

K
U(M, X) =o()_ A"XW)
k=0

and spectral GNN WU

U, (M, X) = a(i G (AkXW))
k=0
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(1) Lipschitz Constant: For any two sets of parameters (O, W} ) and (©2, W), we have:
[W5(O1, W) — W5 (02, Wy)|

K K
= 0> 05 (A" XW1)) = 0(>_ Ok G5(A"XWr)) |
1=0 =0

K
< Llp || ZelkJ A XW1 ZQQka'(AkXWQ)”

=0 1=0
K
< Lip(o ||Z (01 — O21)5 (AP X)) + > Oa(5(APX W) — 6(AF X))
1=0
K ~
< Lip(o ||Z (O — O2) G (A X + D Oar(5(A* X W) — 6(AFXTW3)))
=0

< sz(o)(||61 = 027 max |5 (A XW1)|2 + ||| - Lip(5) - max [ A*X (Wy — Wa)|2)

Since Lip(6) < 1, we have:
[W5(01, W) = V5(02, Wa)|| < Lip(0)(|©1 — Ozl - C1 +[|O2]| 7 - [|[W1 = Wal|p - C2)

where C1, Cy are constants depending on X, A. The right hand side is identical to the bound
we get for ¥ without the activation function. Therefore, Lip(¥5) < Lip().

(2) Smoothness Constant: We first get partial derivatives of ¥ and W4 with respect to 0y:

oV X

_—= . Al . Ak

o va(§} 0, ATXW) - AFXW

s _ = Vo( § je GAXW)) - 5(AFXW)
06),

Partial derivatives of ¥ and W5 with respect to W are:

o S o
—— =Vo(d_ 0AXW)- Y 6;AX

oW
oV, - _ K _ _
S = VJ(Z-:O 0;5(A'XW)) - ;@VJ(A XW)-A'X

The Lipschitz constant of these gradients determine the smoothness. For U5, the ad-
ditional 6 and V& terms do not increase the Lipschitz constant of the gradient as
Lip(c) <1,Smt(s) < 1:

— 0 is 1-Lipschitz, so it doesn’t increase the difference between inputs.
— V& is bounded by 1 (since Smit(5) < 1), so it doesn’t amplify the gradient.

Therefore, the Lipschitz constant of the gradient of W is at most equal to that of U, i.e., :

Smt(¥s) < Smt(¥)

(3) Stability v5: According to Theorem 6, we have oy = Lip(¢) - Lip(¥) and as =
Smt(V)By + Smt(£)Lip(V)La2. Thus, we have a smaller a5, ans as Lip(¥5) < Lip(V)
and ¥;) < Smit(V). Then, we have r5 < r.

As (3 is the same for W5 and ¥ and 5 = Brs,y = fr, we have
Ve <
O
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D STABILITY ON SPECIALIZED CSBM

We establish the uniform transductive stability of spectral GNNs with the architecture described
in Eq. (1) on graphs generated by G ~ ¢SBM (n, f, u,u, A,d). Theorem 13 is a specialized form
of Theorem 8, where the data model is specialized to nodes with binary classes and Gaussian node
features.

We present lemmas essential for calculating node features after graph convolution in Appendix D.1.
Then we derive the expectation and variance of the element A% in the adjacency matrix and the ex-
pectation and variance of node features after graph convolution in Appendix D.2. Using these results,
we derive the transductive stability of spectral GNNs on the specialized data model in Appendix D.3.

D.1 LEMMAS FOR THEOREM 13

Lemma 26 (Poisson Limit Theorem (Durrett, 2019)). For each n, let X, p,,1 < m < n, be
independent random variables with P(X,, ;, = 1) = ppm and P(X,, ;, = 0) = 1 — py, . Suppose:

LY Pum — A€ (0,00), and
2' maXlSWSTL pn,m — O,

then if S, = Z:;Zl Xp.m, Sn, converges in distribution to a Poisson random variable with mean )\,

i.e., Sy ~ Poisson(\).

Remark. The Poisson limit theorem, also known as the law of rare events, states that the total number
of events will follow a Poisson distribution if the probability of occurrence of an event is small in
each trial but there are a large number of trials. For more details, see (Durrett, 2019).

Lemma 27 (Binomial Coefficient Approximation). When n > k, the binomial coefficient (Z) can

be approximated as:
ny _ nk
k) Ok

Proof. The binomial coefficient is defined as:

(1) = mo

Expanding the factorial terms for n!, we have:

(n> :n-(n—l)-(n—2)~...-(n—k‘—|—1)-(n—k)!
k K- (n— k) '

Canceling the (n — k)! terms in the numerator and denominator gives:

(Z) :n~(n—1)-(n—3€)'-...-(n—k+1)

When n > k, the terms (n—1), (n—2), ..., (n—k+ 1) are approximately equal to n. Therefore,
the product simplifies as:

n-(n—1-(n—2)-...-(n—k+1)~nk.

Substituting this approximation, we obtain:

k
n n
(k) o forn > k.

O

Lemma 28 (Expecatations of E [AB] ). For any two random variables A and B, the following
inequality holds:

E[A?] + 1H—E[BZ].

E[AB] < >

N | =
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Proof. Define a function f(¢) for any real number ¢:

)

Since f(t) is the expectation of a squared term, it is non-negative for any real ¢, i.e., f(¢) > 0.

f)=E

Expanding f(t), we get:
1, 2,
f&)=E|-A°—tAB+ —B“|.
2 2
Rearranging terms, this becomes:
1 2,
fit) = §]E[A | — tE[AB] + E]E[B ]
Since f(t) > 0 for all ¢, substitute ¢ = 1 to simplify:
1 1
(1) = 5E[A2] —E[AB] + 5IE[B?] > 0.
Rearranging this inequality gives:

E[AB] < ~E[A?] + %E[BQ].

N | —

Thus, the result holds. O

k K\ 2
Lemma 29 (Monotonicity of g(\)). The function g(\) = ((d + )\\/E) — (d — )\\/&) ) satisfies

the following properties:
« It monotonically increases on \ € [0,/d].

* It monotonically decreases on \ € [—/d, 0].

* It achieves its minimum value when X = 0.

Proof. First, observe that g(\) is an even function because:
k k 2 k k 2
g(-X) = ((d— AWa) — (d+ V) ) = (<d+ AWA) — (d-Avd) ) —g(\).

Thus, it is symmetric about A = 0. Therefore, we only need to analyze its behavior for A > 0, and
the results for A < 0 follow by symmetry.

Define:
A=d+M\d, B=d-\/d.
Then, the function g(\) can be rewritten as:

g(N) = (AF — BY)?.

Using the chain rule:

§(N) =2(4% — BY) - T (aF - B,

The derivative of A* — B¥ with respect to \ is:

0

E(Ak — BF) = kVd(AF~1 4 BF 1),

Thus:
g'(\) = 2kVd(AF — BF)(AF1 4 BF1),
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When A > 0, A > B > 0, we have:
A —BE >0, A1y BFL>0.

Therefore:
g (A\) >0 for\>0.

This shows that g(\) is monotonically increasing on [0, v/d].
By the even symmetry of g()\), we have:

g (=2 =—=g'\V).
Since ¢’(A) > 0 for A > 0, it follows that ¢’(\) < 0 for A < 0. Thus, g(\) monotonically decreases
on [—V/d, 0].
At A =0, A= B = d, we have:
9(0) = (d* — d*)2 = 0.

Thus, g(\) achieves its minimum value when A = 0.

The proof is complete. O

k—s s
Lemma 30 (Monotonicity of g(\)). The function g(\) = Z’;:1 (d + )\\/3) (d — A\/E) satis-
fies the following properties:

« It monotonically decreases on X € [0,/d).

« It monotonically increases on \ € [—/d, 0).

e [t achieves its maximum value at X = 0.

Proof. The function g(\) can be rewritten as:
k k
g(\) = @d)" — (d+\Vd) — (d-AVa) .
Differentiate g(\) with respect to \:

J(N) = kvd [(d ~awvd) - (a w)’”} .

* When A > 0, we have (d— /\\/a) < (d+ /\\/3) This implies (d— )\\/E) o <

k-1
(d + )\\/ﬁ) and g’(\) < 0. Therefore, g(\) is strictly decreasing on \ € [0, V/d].

* When A < 0, we have (d— /\\/a) > (d+ /\\/3) This implies (d— )\\/E) o >

k-1
(d + )\\/ﬁ) and g’(\) > 0. Therefore, g()\) is strictly increasing on A € [—+/d, 0].

* When A = 0, we have (d + A\/&) = (d - )\\/&) = d and g(0) = (2d)* — 2d*. This is
the maximum value of g(\), as ¢’(\) changes sign from positive to negative at A = 0.

The proof is complete. ]
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D.2  EXPECTATION AND VARIANCE OF A%, AND (A*XT);;

Theorem 31 (Expectation and Variance of Afj). Let the graph be generated by G ~

cSBM (n, f,p,u, \,d). Forn — oo, d < n, and 2 < k < k® < n, the number of k-length
walks connecting nodes v; and v; follows a Poisson distribution, Poisson(p'), where:

(k—1)! ol min(2(a—1),2(k+1—a)) s .
p== n-2k*1. a=2 0 Z Cin o Cf)ut ) lfyz =Yy,
; s=min(2,2(a—2),2(k+1—a))
p = (h—1)1 ok min(2a—1,2(k—a)+1) . '
P# = 7L~2k*i Za:l 0o Zl Cin * Cfmt ) lfyl 7é Yj-
s=

The expectation and variance are:
k k
E[Aj] =0/, V[A5] =/

When k = 1, the 1-length walk (i.e., a single edge) connecting nodes v; and v; follows a Bernoulli
distribution, Ber(p), where:

:{p_=“;';, ifyi = yj,
Pt = 2t ify # ;.

The expectation and variance in this case are:
E[AY] =p, VI[A}]=p(1-p).

k
ij>

E[Afj]: Z H Qyy'

pEPE; (v,v')€p

Proof. According to Definition 7, the expectation of A
nodes v; and v;, is given by:

the number of k-length walks between

where Pfj represents the set of all k-length walks between v; and v;, and @, is the probability of
an edge between nodes v and v’, conditioned on their respective classes y and y/'.

When C' = 2 (binary classes), the edge probabilities (), are:

Cin lfy — y/
— n’ ’
ny { c#t , lf y 7& y/’

where ¢;,, and ¢, are the intra-class and inter-class edge probabilities, respectively.

Casel: y; =y;and k > 2

For nodes v; and v; sharing the same class y;, we consider walks of length k that include a nodes
sharing the class y; and k£ 4+ 1 — a nodes with different classes. Since v; and v; both belong to class
1:, we need to choose a — 2 nodes from the same cluster and k — a + 1 nodes from the other cluster.
The total number of ways to arrange these nodes in a walk is (k — 1)!, as there are k — 1 positions to
fill. The probability of each edge depends on whether it connects nodes of the same class or different
classes.

The number of ways to choose the nodes is as follows:

* Choose a — 2 nodes from 4 — 2 nodes in the same cluster: ( 5:22)

. — n 1 . Bl
Choose k — a + 1 nodes from % nodes in the other cluster: (, _2_ ).

The number of ways to arrange these nodes is (k — 1)!. Considering the class changes in the
k-length walk, let s denote the number of walk class changes:

» If 2a > k + 1, then sy = min(2,2(k + 1 — a)) and spmax = 2(k + 1 — a).
e If 2a < k + 1, then $yj, = min(2,2(a — 2)) and spax = 2(a — 1).
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The probability of a k-length walk with a nodes sharing the same class as v; is:

pi(vi,vj | Yi = yj) =

n_o n 2(kt1-a) c.. \k—s e s .
(220) - (2p0) - (B= 1)t > ()7 () ), if 20 > K+ 1

s=min(2,2(k+1—a)

n 2(aZ1) —s s .

Fe NPT RCES VR D VRN C DR ) ekl
s=min(2,2(a—2))

The total probability of a k-length walk connecting v; and v; when y; = y; is:

e (vi, v5 | ¥i = yj)

k1
2 n 2(a—1)

() (R ) e S (o))

s=min(2,2(a—2))

2(k+1—a)

+’§<§:2) ( g+1>'(k_1)!' 2 (%Y_

k+1 s=min(2,2(k+1—a))
27
Using Lemma 27, the binomial coefficients simplify as:
n n a—2 n n\k—a+1
5-2\_(5-2 5 _ (5)
a—2 (a—2)! " \k—a+1 (k—a+1)I
Thus, we have
5-2 z n\k~1 (k-1
2 : 2 (k—1)!=0 (7) : .
<a—2> (k—a+1> ( ) ( 2 a—2
Substituting into Eq. (27), we get:
pr(vis vy | yi = y5)
AL 2(a—1)
- n\ k-1 k-1 Cin k=s Cout \*
So(() 7 (00)) | X () (e
a=2 s=min(2,2(a—2))
k—+1 b1 2(k+1—a) e
n k—1 Cin 5 (Cout\®
#o((5) () S (e
% s=min(2,2(k+1—a))
k
=t 2(a—1) (28)

1 k-1 .
ZWZO (CL—2> : Z Cfn " Cout

a=2 s=min(2,2(a—2))
k+1 2(k+1-a)
1 k—1 k—s s
+mk 0 (a—?) : . Z Cin " Cout
% s=min(2,2(k+1—a))
k+1 min(2(a—1),2(k+1—a))
(k — 1)' k—s S
e ST D SR
a=2 s=min(2,2(a—2),2(k+1—a))

Case2: y; # y;and k > 2

For nodes v; and v;, when they belong to different classes (y; # y;), we count the walks of length
k where there are a nodes of the same class as v; and k + 1 — a nodes of the class of v;. We need to
choose a — 1 nodes from the same cluster as v; and k¥ — a nodes from the cluster of v;. The total
number of ways to arrange these nodes in a walk is (k — 2)!, as there are k — 2 positions to fill.

The number of ways to choose the nodes is:
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. n __
¢ Choose a — 1 nodes from g — 1 nodes in the same cluster as v;: (2_11);

* Choose k — a nodes from 5 — 1 nodes in the same cluster as v;: (Z__;)

The number of ways to arrange these nodes is (k — 1)!. Considering the class changes in the
k-length walk, let s denote the number of class changes. The minimum and maximum values of s
are:

e If 2a > k + 1, then syin, = 1 and spax = 2(k — a) + 1;
e If 2a < k + 1, then sp;, = 1 and sppa = 2a — 1.

The probability of a k-length walk with a nodes sharing the same class as v; is:
Pi(vi, vslyi # y;) =
(57 (B2 - (k= (20 ()7 (o)), if 202 k41
(o) Go) - = (S350 ()77 (5)7), i 20 <kt
The total probability of a k-length walk connecting v; and v; when y; # y; is:
Pr(vi,vjlyi # y;) =

) () e (B @)

s=1 (29)
k n _ n_1 2(k—a)+1 Cs k—s Cout \ ©
2 2 (k=1)- -t B il
£ (G0) (o) e X ()
a="3= s=
When k < n, using Lemma 27, we have
51y _(G-D' g1y (5D
a—1 (a—1)! "\k—a (k—a)l ~
Then:
no_ 1 no_ (ﬂ,l)afl (ﬂ,lkfa
2 (2 (k=1 =2 .22 (k=1
(al) (ka) ( ) (a—1)! (k—a)! ( )
S R
- \2 a—1
We simplify Eq. (29) to
AL 2a-1
n k=1 k-1 — Cin k—s Cout \ *
eesintn =3 (59 (0) (S (50) ()
k 2(k—a)+1
n =l (k=1 Cin \K=% [ Cout\®
+ X () (57))- > G )
a="3= s=
L 2a—1
1
_ . 30
n'Qk_la_10<(a_1> <ZC Out)) .
k 2(k—a)+1
1 k—1 hes s
t oo Zk 0 <a_1>' YAt o
a:% s=1

min(2a—1,2(k—a)+1)

k
(k - ]-)' k—s s
= n- 9k—1 Z o Z Cin * Cout
a=1

s=1
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Case3: k=1
When k = 1, we have AF = A and

Cin

S, iy =y
E[A;;]=4¢ »° 7>
(4] { if y; # yj.

In the following, we show that when a graph is sparse and k is small, A can be modeled using a
Poisson distribution.

* For sparse graphs with a large number of nodes (n — oco,d < n), the probability of a
potential k-length walk existing is very small.

* When k£ < n, the dependence between two different k-length walks is negligible.

» The number of potential k-length walks is large (n*~! as n — o0).

Thus, according to Lemma 26, the number of k-length walks connecting nodes v; and v;, Afj,
follows a Poisson distribution Poisson(p’) when k > 2, where:

(k—1)! 1 min(2(a—1),2(k+1—a)) s )
P= = gt 2aa=2 O 2 Cin Cout | » Ty =y,
; s=min(2,2(a—2),2(k+1—a))
P = (k_1)! min(2a—1,2(k—a)+1)
p?é:an )1 Za 10 21 ci'cn_s'czut ) lfyz#yj
s=

When k = 1, p(v;, v;) follows a Bernoulli distribution Ber(p), where:
p= %7 if Yi =Yy,
This completes the proof.
O

Theorem 32 (Expectation and variance of (flkX W)i;). Given a graph generated by G ~
cSBM (n fyp,u, A d). The input node feature matrix is X and the normalized adjacency ma-

trix is A. The k-th power matrix AF s applied to obtain a new feature matrix A*XW, then the
expectation and the variance of (AkX W),; are as follows:

Fork =1:
~ 1
E [(AkXW)ZJ} = 2d\/ﬁ(cm, Cout) yzUWj

i xw] = Gt u ) (F 2 . Wl
V [(AXW),] = 5 (d - T2 )+

Fork > 2:

= k—1
E [(A’“XW)”} = d(k 2k)10 (Ckn Cléut) \/gyiuW:j

k+1 min(2(a—1),2(k+1—a))

v - (So( Uy aa
s=min(2,2(a—2),2(k+1—a))

k min(2a—1,2(k—a)+1) M 0 HW||2
sYol X ) (Baryrs BHE)
a=1 s=1
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Proof. Given that the node feature x; for node v;, generated by a conditional Stochastic Block Model
(cSBM) conditioned on  and node class y;, is distributed as:

(o)

For a linear transformation matrix W, the transformed node feature is given by:

T
xiWNN<\/EyiUVV7W W)
n f

Feature after transformation with W and propagation with A¥ is
AkXW) =S4k (xw
(Arxw), = 3 Ak
- 1 1% GTW j
= AF EypuW.; J
S ()

—ZA \fy,uw
{(A""‘XW) }:f(Z]E{ }y,p)uwtj G1)

We now derive the expectation E[Afj} of the adjacency matrix A raised to the power k.

and

1. Expectation E [(flkXW) _ } when k > 2
ij
Two clusters generated by cSBM are in equal size. According to Theorem 31, we have

o), - (S )

1

= /e (Z( [Ably: = ye] +E [Af ]y #yr})yr> ulv,

min(2a—1,2(k—a)+1)

k—1) o I
( —)1 ZO Z Cfn " Cout )yr> UW]
a=1
+1
o
2

min(2(a—1),2(k+1—a))

=1
n k:+1

k—s s
(e >

r=1 s=min(2,2(a—2),2(k+1—a))

s=1
min(2(a—1),2(k+1—a))
s

k— s
Cin * Cout

2k
(k—1)!
dk 2k 1

k min(2a—1,2(k—a)+1)
k— [H
o Z Z Cin ° Ciut) EyiUVVIj
a=1 s=1

(k—1)! k k I
dk ok— 10 (C _Cout) Eyiqu

2. Variance E [(AkX W)

s=min(2,2(a—2),2(k+1—a))

}WhenkEQ

j
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The variance of new feature X ; given u, Y can be expressed as:

ZA \/gyruW;j + )]

- Tzn:_lV [ Ak (\/7 Yr \/V; )} , feature dimension independent
- | A | erW j ~ 2 GTW ] 2
X e o ] e e )]

(Vi) 48 - e[

i E :(A’C)fr: ( ) %
S et ((Bor) s ) (e 8] (s

\3
Il
—

Il
NE
—
S
=
=
S
N———
[\
_|_
<
ES
L‘
N———
VN
VN
=
Neag
el
5
N———
()
+
NE
oo
N——

ZQ;UMMVW?MVMm@wmuW@@]
L (E A= w)) + (B [l 2 ])?) - L
+%§([ |yz—yr]+V[AW|yz7éyr]).(’u(W]) ||Wf||2>

(32)

According to Theorem 31, when k > 2, we have

k 2 (k— 1)1 &= min(2(a—1),2(k+1-a)) ) 2
(B [AGly: = w])" = | Y o 3 et g

s=min(2,2(a—2),2(k+1—a))

9 (k o 1)| k min(2a—1,2(k—a)+1) 2
(]E [Afjhh 7 yj]) “\no2t Z 0 Z Cii:S “Cout

s=1
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Two clusters generated by cSBM are in equal size. Then, Eq. (32) is written as:

v [(AxW)y| = =2 (@ [Ably = )" + (B[4l ly £ 1])7)

1 n
Ty

(VA% |y = v, ] + V [AE Jys £ 00]) - (Z W)+

f
2
k+1 min(2(a—1),2(k+1—a))
((k—1)H” h—s s
= a1 2.0 > Cin " Cout
a=2 s=min(2,2(a—2),2(k+1—a))

min(2a—1,2(k—a)+1) 2

. W13
(ol X ) ) S
a=1

s=1
k+1 min(2(a—1),2(k+1—a))
(k — 1)' k—s s
dgk- . Qk Z O Z Cin : Cout
a=2 s=min(2,2(a—2),2(k+1—a))

min(2a—1,2(k—a)+1)

: s s p 2 IWyll3
+ZO Z Cin  * Cout E(UW:J‘) JF?

a=1 s=1

min(2(a—1),2(k+1—a))

k+1
(k — 1)' k—s s
= d2k . 9k Z 0 Z Cin  * Cout

a=2 s=min(2,2(a—2),2(k+1—a))

k min(2a—1,2(k—a)+1)
O k—s s K 2 ||W:j||§
+Z Z Cin * Cout E(U’W]) +f y M= o0
a=1

s=1

3. Expectation and variance of ([lkX W) - whenk =1
ij

o <ZE [Airlyi = vl vi = > E[Airlyi # 2] yz> uW;
r=1 r=1

v
1 M(ncin N Cout ) w.
5T Yi T 5 Y ) uW
n \2 ny 2 n 4 /

when k = 1, we have

(E [A5ly: = y,])" = (%)2

(B [A% s # ;])°

I
/N
&

S g
g
N———
[\

Eq. (32) is written as:
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. 1
[(Axw),] = 2 (8 [y = w])’ + E (Al £ w])”) - 1
1n Ky m . ﬁ 115113
_Infrem\? | rcou\2) W3
—cm((n) +( n)) 7
1n Cin Cin Cout Cout 1% \2 ||W7H%
wary (G (= 5+ 5 (- 5)) - (4 e+
1 W.;l|3
- (& + ) - I fgllz

D.3 PROOF OF THEOREM 13

We first give a lemma about the order of E [A}; ], which will be used in proof of Theorem 13.

Lemma 33 (order of E [A};]). The order of E [A};] is O (’;'g: )

Proof. According to Theorem 31, Afj ly; = y; and Afj ly; # y; obeys different Poisson distributions.
As

st =0 (dk) ,

m

we have,

k+1 min(2(a—1),2(k+1—a))
::ﬂ Qk 1 Z Cin " Cout
s=min(2,2(a—2),2(k+1—a))

k+1 min(2(a—1),2(k+1—a))

Qk 120 Z dk

s=min(2,2(a—2),2(k+1—a))

k+1
k
_n 2k— 120 k d

& ;k1)10 (k? - d¥)

kL d*
o(5)

similarly, we have p» = O (k!'d: >

n-2

O
Below, we prove Theorem 13, which is a specific case of Theorem 8 when the graph is generated
by G ~ cSBM(n, f, p,u, A, d).

Theorem 13. Consider a spectral GNN V parameterized by ©, W trained using full-batch gradient
descent for T iterations with a learning rate 1 on a training dataset containing m samples drawn
Sfrom nodes on a graph G ~ ¢SBM (n, f, u,u, \,d). Whenn — oo, k < n, and d < n, under
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Assumptions 1, 2, and 4, for any node v; on the graph, with probability at least 1 — € for a constant
e € (0,1), W satisfies y-uniform transductive stability, where v = r 3 and

5:% O (E [[lg: — il £]) +O (i (]E {(Afj | vi :yjﬂ +E [(Afj v #yj)QD> }

Proof. Any spectral GNNs in Eq. (1) with linear feature transformation function, and polynomial
basis expanded on normalized graph matrix can be transformed into the format:
K

Y = softmax() 0, A* XW) (33)
k=0
where A = D=2 AD~ % is the normalized graph adjacency matrix, D is the diagonal degree matrix.
We denotes Y € R™*C as the ground truth node label matrix.

When graph G ~ ¢SBM (n, f, p, u, A, d), the node feature
zi ~ N (yiv/ p/nu, It/ f)
Denote B = XW and S = BB, then we have

W. 2
B ~ N (y; \/guwzka ”;lF)

» when i # j, By, Bj), are independent, then

c
E [Sm] = ZE [B“kaJ]
k=1
c
= Zyz‘yj* (uWp)?
k=1

* wheni = j:
W15
f

i
E[Su] = EHUWH% +

When node number n — oo, we have
n

n o n I
> E[Sjg) = 5y S lluWE + Syi(—y;) = [uW |7 = 0.
) 279 n 2 n
q=1,q9#j
Therefore,
Z E [AfjA?q} E [Saq]
Jj=1g=1,q#j
n? o, op
= P eWlE (=5 =)
n? 1
+ o PR=PRE EHUWH%; (vi =y # Yq)
n? p (34)
+ o Perpe=— luWlE (6 # 95 = yo)
n? 7
+ Zﬂi;ﬁEHUWH%; (i = yq 7# Yj)
n? pu
=1 ﬁHUWH% PRz — 2Pkt pr= + Pi )
n® p 2
=7 EHUWH% “(pr=— prs)
According to Theorem 31,
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* when k > 2, A¥, ~ Poisson(p},), then

E [||/~1§:XW||H _ At xw (xw)T (ﬁﬁ)q

_q:l j=1
B dWIE (AiinqSJq)
q=1j=1
1 n n
- 2k Z Z]E [Af]qu} E [Sjq]
q=1 j=1
! ; Ak 2 1 - - Ak Ak
:ﬁZE{( i) ]]E[Sjj]erTZ [ 1 E[Sjq]
J=1 Jj=1q=1,q#j
1n 2 1 n 9
=@t [(Aff) v = yJ] E1Sj]+ x5 [(Afj) | yi # yj} E [S;;]
Ln? p 2 2
+tomr g WllE - (o= —piz)™ - (Eg- G4)

W13
T 2k9 (pk + Pre + Pr# +Pi¢) ( uW |7 + 7 —r

K 2
T EHUWH% “(Pr=— pr2)

= e (sl + UL ) o P v (o — i)

where (i, = pj_ + pr=+ Py + Pz
* when k =1, A;; ~ Ber(p), then

E[|A.x W3] = 1 2 0 e+ VIR
A XWIE] = 55 (02 +p=(=p=) %+ 92 (0= p2)) (L0 + 7
Ln o I

— 55 O o) (Ehawi o+ 1
_in2d(p s [WIE
e G
(e VIR
=2 (B + I
Substituting E {H/LXWH%} into Eq. (15), we have
E |5€(y2,yl,9 W)| _
00y,
3 (B (g — will3] + (“IIuWH?ﬂLH £)). itk =0
2 .
3 (E (19— il + (“||uW|\F+“WF)), ifh=1
n 2 .
3 (E 19 - all2] + zd%ck(unuwnF PR ) e [ W 3 - (pim = pie)”) iR 22
(35)
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Similarly, we have

i Bllu||2 +1, if k=0
E[IAEXI%] = {4 (4llult +1). it k=1
s (llulld +1) + ghellul? - (k= — pre)?, if k> 2

Substituting E [Mﬁxn%} into Eq. (16), we have

ol Ai) i;(—)vW ~
B 122 | = ool (£ 01 - ] + € (40l + 1))

. 1
w10 (7B [l i) + 05 (Sl +1)

K
1 . 1 nu
+3 16 (f E [l — will?] + Cggape (ulluld +1) + Lo ul® - (o= = pk;é)?)
k=2
(36)

Substitute Eq. (35), Eq. (36) into Eq. (12), we have

K
N oU(9i,yi; ©, W 009, yi;©, W
B0I6( 550 W] < o [|ZB0 T, |y | b 000, |
k=0

1 I w
— 5 (B 13- w3+ (L + ”F))
1 1
+ 5 (500 - w3 + 5 (L + 1E) )
K
1 . 1 n||W|? 37
#3g ( 09wl + e (s "R )+ ) O
m
+ 100l (£ E (I3 = ll3] + € (Ellull3 + 1))

. L /p
100 (7B [l i) + 05 (Ll +1)

[\V]

~ ]. nlj, ~
+ Z d7k|9k\ <f E (|19 — will 2] + Cm(k (ullullF +1) + 12k Jull7 - <13>
k=2

where Cx = pi_ + pr=+ Pl + Pit: Gk = Pr= — Pit-
According to Lemma 33, when n — oo, we have

0 (@) =nom - 0
- (o(%5))
—0
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N2
Thus, n (Ck) can be neglected. Thus, we rewrite Eq. (37) as

. 0y, y:;©, W 0U(Yi,yi; ©, W
E (Ve v 0, W)lr] = S E [()nf } E [n()nh]

00 ow

=
( (95 = will 3] + (guWH%H'W;”%))
i( (15 — wil12] + 1(’;||uW|%+V?“%))
+Z s (200wl + e (o + L3 )
160l (£ - 135 = ll?] + € (Elull? +1))

. 1
160 (7B (19— 1) + O s (Xl + 1))

Mw

I\DM—!?V

+

K
1 . 1
+ Z d7k|9k| (f “E[llg: — will %] + C’M—%Ck (pllull% + 1)>
k=2

<3 (2009 - wl) + (L1ulp53 + Bf))
+;(E[||yi—yi%} +fj( lu FBW+B;)> -
4 ,i; <E 19 = will 7] + 2d2k 22k S ('“IUHFBW " nlj“))

+Bo (B (I3 — wl3] +C (Ll +1))

o <f E (g — will 7] + Cé (%”“HQF - 1))

\V]

4SO
+ 3 Do (1B (I~ 0] + Cor (s + 1))

k=2

( +2fBg + Z T2k B@) E [19;: — vill%]

k=2

2
- (1 ) (( +CB@) Ejjul + % +CB@>
2
# 3 i (et 7) 5+ Gt 1) 32)

We express the result in big-O notation:

K
E [IVe(5i, y:: 0, W) r) = O (E [I19: — will F]) + O (Z Ck)
k=2
where ¢, = E [(Afj | yi = yj)z} +E {(Af] | yi # yj)z}

After obtaining the upper bound of the gradient norm, and applying Theorem 6, we derive the
uniform transductive stability of spectral GNNs on graphs G ~ ¢SBM (n, f, u, u, A, d) with two
classes (C' = 2) in big-O notation as:
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. K
v =rfi =~ |0 (& [l — will}]) + 0 <Z
k=2

(B[(A% |5 = )| +E[ (4l | 3: # yjﬂ))]

where r is the same as that in Theorem 6.
O

E ANALYSIS OF PROPERTIES

In this section, we first derive the relationship between the parameter A in cSBM and the edge
homophilic ratio of the graph. We then analyze how the expected prediction error, E[||g; — y; %],
and (i vary with A and K. Finally, we examine the impact of A and K on the uniform transductive
stability and generalization performance of spectral GNNs.

E.1 PROOF OF PROPOSITION 12

Proposition 12. For a graph G ~ ¢cSBM (n, u,u, A, d), the expected edge homophily ratio is:

d+ \d Cin
57 ElHedgel = —*— “)

Cin + Cout

E[Heage] =

Proof. Graphs generated with cSBM contain two clusters of equal size. Thus, there are 5 nodes in

each cluster belonging to the same class. The expected number of edges between nodes of the same
class is given by:

5 mn mn -2
]E[Esame] 2 Cf = Ma
2 n 8

where (%) represents the number of possible edges between nodes within the same cluster, and <= is
the probability of an edge existing between two nodes of the same class.

The expected number of edges between nodes of different classes is given by:

Cout 1 _ CoutN

n n
E[Egqi] = — - — - ,
[Eain] 22 n 2 8

where 5 - 5 represents the total number of possible edges between nodes in different clusters, <2 is

the probability of an edge existing between nodes of different classes, and the factor % accounts for
double-counting edges.

The expected value of H.g4gc, the ratio of the expected number of edges between nodes of the
same class to the total expected number of edges, is given by:

]E[Esame]
E[Esame} + IE[E‘diff]

Cin(n—2)
8
Cin(n—2)

g T T
(d+ \Wd)(n —2)
(d+Md)(n—2)+ (d— \Wd)n
_d+\d
2d

E[Hedge] =

, asn — oo.

Here, d represents the average degree, and A measures the level of separation between clusters.
As n — oo, the terms involving (n — 2) and n simplify, yielding the final expression for E[Hqge].
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We also derive the relationship between the expectation of Hq4. and the parameters c¢;,, and cou¢
as follows:
E[Esame]

]E[Esame] + E[Ediff]
Cin(n—2)
8

]E[Hedge] =

cin(n=2) | coun
3 + =%

Cin(n —2)
Cin(n —2) + courn
Cin
=——— asn— .
Cin + Cout

E.2 PROOF OF THEOREM 14

Theorem 14 (E [||§; — y;||%] and A, K). Given a graph G ~ cSBM (n, p,u, A, d) and a spectral

GNN of order K, E[||§; — ;|| %] for any node v; satisfies the following: it increases with A € [—+/d, 0),
decreases with \ € [0,~/d), and reaches its maximum at \ = 0; it increases with K if Z?:z 919%

K k—1)! )
grows more slowly than ), 07 ( - ! as K increases.

Proof. Denote
K

Z =Y 6 A*XW, Y = softmax(Z).
k=0

For any node v; with true class y;, its prediction is denoted as:

§; = softmax(Z;,).

In the case of binary classification (C' = 2), for a node with true class y; = [1, 0], the predicted
class is:

9 = [U1, §o] = softmax([Z;1, Zi2]) = [0(Zi1 — Zi2),1 — 0(Zin — Z;2)],

where o(z) = is the sigmoid function.

1
14+e—%
Let Zi = L1 — Zig, then:
9i = lo(zi), 1= o(z)].

Thus, the squared Frobenius norm of the difference between ¢; and y; is:
19: = yillz = (0(z:) = 1)* + (1 = 0(2:))* = 2(1 = 0(2:))>.
Taking the expectation, we have:

Ellg: — yill%] = 2E[(1 — o(24)))-

As the node feature z; ~ N (y;\/p1/nu, I/ f), any linear combination of Gaussian variables is
still Gaussian. Therefore, we have:

Zi NN(NZiawi)v

where:

Given that ¢, = d + AWd, cour = d — A\Wd, and \ € [—\/&, \/E], we observe:

&k~ =0d"), & =0, &, =0(". (39)

in in
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Assuming u ~ N(0,1y), d < f, and that ©, W are bounded (as per Assumption 4), we analyze

the dominant terms in p,, and wz From Theorem 32, we derive the expectation of (A*X W)ij.
Consequently, we obtain:

e, = E{Zu] - E[Zig] = oof W(Wiy — W)

+ 91@ N(Cln Cout)Yiu(Wa — Wia)

E—1)! ., (40)
+ Z ekék.i%,)lo(cén - Clgut)\/gyiu(wzl - Wa)
=2

K (k1)
=0 (Z ok(2,€7_1) (from Eq. (39)).
k=2

Since A* and X are independent, and the columns of X are also independent, it follows that
(E?:o 0, AF X ) and (ZkK:O 0, AF X ) are independent. According to Theorem 32, we compute
ij it
the variance of (A¥ XW);;. Then, we have:

wi = Var(Zi1 — Zi2)

= Var <<ZK: kal’“X> (W — W:2)>
k=0 i

F /K
= Var Z (Z 9kAkX> (Wi — Wj2)
P .

f K
:Z 1 — Wia 229k Var((Ak ) ) (independence)
7j=1 k=0
f K 2 2 2
2 Cin+co o 2 HWH (41)
e Eal o). (o
j=1 k=0
k+1 min(2(a—1),2(k+1—a))
k—s s
ko 9k (ZO Z Cin  Cout
s=min(2,2(a—2),2(k+1—a))
k min(2a—1,2(k—a)+1) 9
s s 0 2 Wyl
+ZlO Zl Cfn * Cout ) (Tl (U’WJ) +Tj2

-0 (Z 0? (k 2—k1)!> (from Eq. (39)).

(1) E[||9; — v:/|%] and A: According to Lemma 29 and Lemma 30, we know that:

— [, monotonically decreases, and wﬁi monotonically increases on A € [—+/d, 0];
— [, monotonically increases, and w2 monotonically decreases on \ € [0, Vd dJ;

— 1, achieves its minimum value, and w? . achieves its maximum value when A = 0.

The expectation of (1 — o(2;))? is given by:

00 1 7(ziu22i)2
E[(l_a(zi))2]:/ (1—-0(z))*- oz o dz. (42)

Since the integral decreases with p,, and increases with wfi, we conclude:
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- E[(1 — o(2;))?] increases on \ € [—/d, 0];
E[(1 — 0(z;))?] decreases on \ € [0, V/d];
- E[(l — 0(2;))?] achieves its maximum value when \ = 0.

Since E[||§; — i | %] has the same trend as E[(1 — o(z;))?], we observe the same behavior
for E[|[g; — ylHF]

(2) E[||9: — y:||%] and K: We rewrite z as:

z = :uzi + wziy)
where y ~ N(0, 1). Substituting into Eq. (42), we have:

Bl - o] = [ (1= o s+ ) e

(a) If p, increases faster than wgi as K increases: In this case, z is dominated by p.,, and
we have:

Bl - 0] = [ (- olu)) Se=e ¥ dy

= (1 - o(p=,)?
< 0.25.

(b) If p, increases slower than wgi as K increases: In this case, z is dominated by w,y,
and we have:

Bl- o)) = [ (1= olwap)® ey

0 1 g2 * 1
:/ (1-0)- me_T dy+/ (1—1)%- e” 7 dy
—00 0

=0.5.

From this analysis, we conclude:

— If p1,, increases slower than w2, as K increases, E[(1 — o(z))?] approaches 0.5.
2

— If p1,, increases faster than w?, as K increases, E[(1 — o(z))?] is at most 0.25.

Briefly, when ., increases slower than w?, as K increases, E[||§; — y;/|%] increases with K.

From Eq. (40) and Eq. (41), we observe that the dominant term of s, is Z w2 Ok (k— 1)',

while the dommant term of w? is K o 07 (k ! Therefore, E[||§; — vil| 2] increases with

Kif Y p, 0. 52 erows slower than Yy o2t

E.3 PROOF OF THEOREM 15

Theorem 15 ((;, and A, K). Given a graph G ~ ¢SBM (n, u,u, A, d) and a spectral GNN of order

K, (. has the following properties: (1) it increases with \ € [—/d, 0], decreases with \ € [0,~/d],
and achieves its maximum value at X = 0; (2) it increases with k as k grows, for k € [0, K].

Proof. As

Gk = E[(Aflyi = y)%] + E[(Af |yi # y5)°]

(43)
— (B[S ]y = 3))" + V [A51ys = u;] + (BIAY|ys # y3)) " + V [A5 |y # 5] -
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According to Theorem 31, we have explicit forms of E[Afj] and Var(Af”‘j) for the cases y; = y;
and y; # y;. Substituting these into Eq. (43), we get:

Ck=p2:+p:+pi+ﬂ¢

' k+1 min(2(a—1),2(k+1—a))

_ k—s s
- n- 2k 120 Z Cin " Cout

s=min(2,2(a—2),2(k+1—a))

(k—1)! k41 min(2(a—1),2(k+1—a))
— k— :
n - 9k—1 Cin ° C;ut
a=2 s=min(2,2(a—2),2(k+1—a))
2
k min(2a—1,2(k—a)+1)
(k—1)! .
n - 2k=1 0 Z Cin " Cout
a=1 s=1

min(2a—1,2(k—a)+1)

&
+ fbk 2k1_)1. E 0 E : Ci'cn_s ! Cfmt
a=1

s=1

Given ¢;, = d + A\d and cour = d — \Vd, all terms pZ + p— + pi + px in (, are in the form:

k
g(N) =D _(d+ AW (d— W)
s=1
According to Lemma 30, functions in this form g()) strictly increase on A € [—+/d, 0] and strictly
decrease on \ € [0,/d]. Therefore, ¢}, strictly increases on A € [—+/d, 0] and strictly decreases on
A € [0,/d]. When k increases, (j, contains more terms, causing it to increase with & in the order of
O

E.4 PROOF OF PROPOSITION 16

Proposition 16. For a fixed K, vy-uniform transductive stability and generalization error bound
strlctly increase as \ moves from —+/d to 0, and decreases as \ moves from 0 to \/d. For a fixed ), if

K
Z oo Ok (gk 11 grows more slowly than ", 02 (k 1) as K increases, then ~-uniform transductive
stability and generalization error bound increase wzth K.

Proof. According to Theorem 6 and Theorem 13, the uniform stability of spectral GNNs depends on
the upper bound of the gradient norm (3, and

K
ﬁ _ (I(;’_ + 2fB@ + Z 0ng9> E I:”Q’L - yzH%‘]
k=2

1 B3, W B,
+ <1 + d) ((2 -I-CB@) EHUHF + ? +CBe
, n\ B Beg
+ Z e (s + 2 ) B804 e+ 1) 22)

where ¢, = p2 + p— + p> ~ + p#, and p— and p are the parameters of distribution in Theorem 31.
Denote

K
%—( b +2fBe+Zd2k >;

K
C n 32 B@
27 M||U||%’+? T+ (ullull® +1) FE
k=
We show that the terms E [||§; — ys]|%] , 1y, and 11 can all be affected by A, K.
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ey

@

3)

Term E [||5; — vi|3]

According to Theorem 14, the expected prediction error E [Hyl — il %] strictly increases
with A € [—+/d, 0] and decreases with A € [0, v/d]. In addition, it increases with K when

S, 0 &Y erows slower than Y4, 62 $2 1!

Term v,

As i, = (% + Zf:o |0k | f) which does not contain A, the class distribution has no
effect on 1), It also increases with order K.
Terms 1,

According to Theorem 15, {j, strictly increases on A € [—v/d, 0], decreases on \ € [0, /d]
and it increases with order K.

Since all the other elements in 1/, except (; are positive, ¥; and (j has same trend when A
and K changes.

According to Proposition 12, we have

A€ [0,Vd] & Hegge € [0.5,1] and A € [—V/d, 0] < Hegge € [0,0.5].

According to Theorem 9, any factors affecting -y affect the generalization error bound. Thus, we
conclude the following cases:

(a)

(b)

uniform transductive stability y, generalization error bound and A

From the above analysis, we know that ¢,, is not affected by \, and terms E [||§; — y;[|%].
1y strictly increase on A € [—v/d, 0] and decrease on A € [0, v/d]. According to Theorem 6
and Theorem 9, this shows that the stability decreases and the generalization error bound
increases when Hq4. € (0, 0.5]. The stability increases and the generalization error bound
decreases when H.44e € [0,5,1). Spectral GNNs are stable and generalize well on strong
homophilic and heterophilic graphs.

uniform transductive stability v, generalization error bound, and K

From the above analysis, we know that terms ¢,,, 11 increase with K. According to Theo-
rem 14, when the condition Zszz Gk% grows slower than Zszz 07 (k;kl)!
the expected prediction error E [||g; — ;[|%] increases with K.

is satisfied,

Therefore, when above condition is satisfied, the gradient norm bound 3 increase with K.
According to Theorem 6 and Theorem 9, this indicates that the uniform transductive stability
v and generalization error bound also increases with K.

O

F DETAILS OF EXPERIMENTS

F.1 DATASETS

The statistical properties of real-world datasets, including the number of nodes, edges, feature
dimensions, node classes, and edge homophily ratios, are summarized in Table 2 and Table 3. We
use the directed and cleaned versions of the Chameleon and Squirrel datasets provided by (Platonov
et al., 2023), where repeated nodes have been removed.

F.2 SPECTRAL GNNs

In the literature, there are generally two kinds of architectures for spectral GNNs:

Early spectral GNNGs architecture: Itis givenby Y = X, X; = « (Zszl Mle,lHlk) s
where M is a graph matrix, X; is the feature at the I-th layer, H;, € Rf>*/i-1 f; is
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Statistics Texas Wisconsin Cornell Actor Chameleon Squirrel Citeseer Pubmed Cora
# Nodes 183 251 183 7,600 890 2,223 3,327 19,717 2,708
# Edges 295 466 295 26,752 27,168 131,436 4,676 44,327 5278
# Features 1,703 1,703 1,703 932 2,325 2,089 3,703 500 1,433
# Classes 5 5 5 5 5 6 5 7

Edge Homophily ~ 0.11 0.21 0.22 0.24 0.22 0.74 0.8 0.81

Table 2: Statistics of real-world datasets.

Statistics OGBN-Arxiv OGBN-Products

# Nodes 169,343 2,449,029

# Edges 2,315,598 61,859,140
# Features 128 100
# Classes 40 47
Edge Homophily 0.65 0.81

Table 3: Statistics of OGBN datasets.

the feature dimension of the [-th layer, and « is an activation function. This describes
the architecture of earlier spectral GNNs, such as GCN (M* = D=1/2(T + A)D~1/?)
and ChebNet (where MP* represents the Chebyshev polynomial basis expanded on the
normalized graph Laplacian matrix).

* Modern spectral GNNs architecture: Recent advances in spectral GNNs do not adhere to
this multi-layer architecture. Instead, state-of-the-art spectral GNNs employ a single-layer
structure as described in Eq. (1) of our paper:

U(M, X) = o(ge(M)fw (X)),

where M € R™*™ is a graph matrix (e.g., Laplacian or adjacency matrix), go(M) =
Ef:o 0Ty (M) performs graph convolution using the k-th polynomial basis 7y (-) and
learnable parameters © = {05}, fi (X) is a feature transformation parameterized by
W, and o is a non-linear activation function (e.g., softmax). Recent spectral GNNs, such as
GPRGNN, JacobiConv, BernNet, ChebBase, and ChebNetll, adopt this architecture (Chien
et al., 2021; Wang & Zhang, 2022; He et al., 2021; 2022b), and it serves as the basis for
theoretical analysis of spectral GNNs (Wang & Zhang, 2022; Balcilar et al., 2021).

We study spectral GNNs with modern architecture. We detail the spectral GNNs used in our
experiments below. For a graph with adjacency matrix A, degree matrix D, and identity matrix

I, we define the following matrices: the normalized Laplacian matrix L = [ — D~Y/2AD~1/2,
the shifted normalized Laplacian matrix L = —D~'/24AD~1/2, the normalized adjacency matrix
A =D 'Y2AD~'/2, and the normalized adjacency matrix with self-loops A’ = (D + I)~V/2(A +
(D +1)~1/2

ChebNet (Defferrard et al., 2016): This model uses the Chebyshev basis to approximate a spectral
filter:

K
Y =" 0Ti(L) fw (X)
k=0

where X is the raw feature matrix, © = [0y, 01, . .., 0x] is the graph convolution parameter, W is the

feature transformation parameter and fy (X) is usually a 2-layer MLP. T, (L) is the k-th Chebyshev
basis expanded on the shifted normalized graph Laplacian matrix L and is recursively calculated:

To(L) =1
Ty (L)=L
Tw(L) = 20Ty (L) — Tr—o(L)
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ChebNetlII (He et al., 2022a): The model is formulated as
9 K K

m Z ZGJTk(x])Tk(i)fW(X)’

k=0 j=0

Y:

where X is the input feature matrix, W is the feature transformation parameter, fy (X) is usually a
2-layer MLP, T}(+) is the k-th Chebyshev basis expanded on -, z; = cos (( + 1/2) 7/ (K + 1)) is
the j-th Chebyshev node, which is the root of the Chebyshev polynomials of the first kind with degree
K + 1, and ¢; is a learnable parameter. Graph convolution parameter in ChebNet is reparameterized
with Chebyshev nodes and learnable parameters 6.

JacobiConv (Wang & Zhang, 2022): This model uses the Jacobi basis to approximate a filter as:

K
Y =0T (A) fw (X),
k=0

where X is the input feature matrix, © = [0y, 01, . .., 0] is the graph convolution parameter, WV is
the feature transformation parameter and fy (X) is usually a 2-layer MLP. T} P (A) is the Jacobi

basis on normalized graph adjacency matrix A and is recursively calculated as

TP (A) =1
- 1-0b b+2 -
TeNA) = L0 PO
2 2
T (A) = AT (A) + 9T (A) + T (A)
2k—+a+b)(2k+a+b—1 2k+a+b—1)(a®—b2 k+1—1)(k+b—1)(2k+a+b
where v, = ( Qk(L(Jer) )a’Y//c = 21€((k+a+b)(2lzg-a+b_)2)371/gl = { k(k+rz-(i-b)(2k—|-)¢(z+b—2) :

and b are hyper-parameters. Usually, grid search is used to find the optimal a and b values.

GPRGNN (Chien et al., 2021): This model uses the monomial basis to approximate a filter:

K
Y =Y 0,4 fi(X)
k=0
where X is the input feature matrix, © = [0y, 01, ..., 0k] is the graph convolution parameter, W

is the feature transformation parameter and fy (X) is usually a 2-layer MLP. A’ is the normalized
adjacency matrix with self-loops.

BernNet (He et al., 2021): This model uses the Bernstein basis for approximation:

1 (K
> ANK—k 7k
Yk509k2K<k>(2IL) L* fw (X)
where X is the input feature matrix, © = [0, 01, . .., 0] is the graph convolution parameter, W

is the feature transformation parameter and fyy (X) is usually a 2-layer MLP. L is the normalized
Laplacian matrix.

F.3 HYPER-PARAMETER SETTINGS

All experiments were conducted on an NVIDIA RTX A6000 GPU with 48GB of memory.

We employ a two-layer Multi-Layer Perceptron (MLP) with a hidden layer size of 64 for the
feature transformation function fy, using ReLU as the activation function across all spectral GNN
models.

Following (Tang & Liu, 2023a; Cong et al., 2021), the dropout rate and weight decay are set to
0.0. The Adam optimizer is used for optimization. Each experiment runs for a maximum of 300
iterations and is repeated 10 times to report the mean and variance of the results. A grid search is
conducted to determine the best learning rate from {0.05,0.01,0.001}.

F.4 DETAILED EXPERIMENTAL RESULTS
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Heage | 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ChebNet \ 94.92+024  86.08+043 81.09+0.63 75.11+073 72.69+0.66 74.66x0.65 79.62+078  86.03x06  94.64+039
Acc Gap 5.08+024  13.92+041 18.91x057 24.89+072  27.3#062  25.34#068 20.38+074 13.97+061  5.36+041
Loss Gap 0.64+007  3.15%0.14 3.72+02 5.42+024 5.88+0.5 6.01+027 4.62+03 3.04+018  0.98+0.06
ChebNetIl | 92.19+051 85.03%058 79.83043 77.55%064 77.342054  77.7+057 7822+073 83.68+041 91.43%0.48
Acc Gap 7.81+047 14972058 20.17+041 22.45%066 22.66+049  22.3+057  21.77+071 16324044  8.57+047
Loss Gap 0.660.07 1.84%0.11 3.55%0.21 4.77+026  4.86x0.13  4.64%021 4.23+033  2.14x017  0.72005

JacobiConv | 89.25+335 77.23x451 77.192066  77.0%055  79.06x061  80.2+057  84.642039 90.48+024 96.91x024
Acc Gap 10.71+286  22.73+436  22.8+067  23.0%054  20.94%0.61 19.8+06  15.36+041  9.51x024  3.09+0.25
Loss Gap 0.69+0.26 1.58+045  4.08+0.21 4.33+014  5.36+033 1.95+0.13 1.58+013  0.99+006  0.16+0.01
GPRGNN \ 90.33+057  87.06+0.64 81.71x041 77.03+047 77.23+065 79.52+059 82.72+052  89.25+05  96.45+0.18
Acc Gap 9.66+054  12.94+067 18.29+042 22.96+049 22.77+064 20.48x06 17.27+052 10.75%054  3.55%0:2
Loss Gap 1.42+0.08 2.21+0.14 3.27+02 4.72+0.19 5.17+0.13 4.7+0.25 3.7+047 244032 1.05%0.11
BernNet \ 87.44x05  82.92+067  79.3%044  77.69+053 77.97x054 T77.49+072 76.58+079  79.73x13  85.68%1.05
Acc Gap 12.55+05  17.08+076  20.7#044  22.31#054 22.03x055 22.51+064 23.41x08 20.27+139 14.32+1.06
Loss Gap 1.2+0.06 2.45+0.21 3.69z0.16  4.77x024  4.72%0.15 4.7+017 4.35+035  2.92+031 1.3620.14

Table 4: Testing accuracy, accuracy gap, loss gap of spectral GNNs on synthetic datasets with
edge homophilic ratio Hegg4e € [0.1,0.9]. Small accuracy and loss gaps imply good generalization

capability.

Datasets |  Texas Wisconsin Actor Squirrel ~ Chameleon  Cornell Citeseer Pubmed Cora
ChebNet | 40.82+725  52.23+377  26.63x053  30.08+114  33.94#158  44.88+619 64.16%082 84.742037 74.95%0.96
Acc Gap 59.18+6.94  47.77+392 73.26+054 69.92+128  66.06x152 55124595 35.82+075 15.25+037  25.05+0.92
Loss Gap 5.91+0.66 5.77+0.87 21.64+08  35.68+233  36.17+304  6.57+082  4.68+0.22 1.44+0.06 3.940.29

ChebNetll | 77.55+s571 7438308  27.94%036  28.1%182 38.45+163  73.69+512  65.85+052  84.7+03 74.0+0.8
Acc Gap 2245452 25.62+331  71.94+033  71.83+1.77 6147153 2631#50 34.12+048 15.16+028  26.0+075
Loss Gap 1.12027 1.39+032  20.16x076  27.56+288  19.33+1.68 1.7+03 2.66+0.09 1.132000  2.14+0.09

JacobiConv \ 78.06+531  77.62+2.92  27.89+063  26.78+1.28 32.242.08 80.41+398 73.56+064 86.33+047 84.31+0.49
Acc Gap 21.94+541 22384285 71.97+066 50.85+11.88  63.82+946  19.59+418 26.41+065 10.87+145 15.69%05
Loss Gap 0.94+0.26 1.19+022  31.67+086 32.75+11.57  38.77%7.16 091+0.16  2.16£006  0.510.14 1.28+0.09
GPRGNN | 46.84+622 72084323 26.29+065 29.91x119  3428+158 61334612 72.89+062 85.42+04 84.371051
Acc Gap 53.16%6.12  27.92+292  71.52+482  70.09+£1.09  65.72+1.60  38.67+643 27.08+067 14.58+037 15.63+0.54
Loss Gap 3.35+0.83 1.6031 29.22+269  35.34+558  29.88+2.22 2.240.53 3.32+0.16 1.24+0.09 1.54+0.1
BernNet ‘ 75924531 81.85+223  27.28+076  33.42+114  33.72+138  81.43+346 67.17+059 84.82+025 73.39+087
Acc Gap 24.08+541  18.15%216  72.61x071  66.58%1.11 66.28+133  18.57+357  32.82057  14.95+045 26.61+087
Loss Gap 1.24+031 0.87x026  24.68+071  28.17+x147  27.83+£175 1.06+0.18  2.66+0.09 1.13+013  2.18+0.08

Table 5: Testing accuracy, accuracy gap, loss gap of spectral GNNs on real world datasets with edge
homophilic ratio Heqge € [0.11,0.81]. Small accuracy and loss gaps imply good generalization

capability.
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Order K 1 2 3 4 5 6 7 8 9 10
ChebNet 8731403  89.11x031 88.48+049  84.19+09 713430  79.58+052  80.77+062 76.21x051 82.94+048 86.08+0.41
Acc Gap 12.7+032  10.89+031  11.52#05 15.8+092  28.7+354  20.42+051 19.23x057 23.79+047 17.06+045 13.92+042
Loss Gap 2.2+0.09 1.76x0.07 1.9+0.14 2.84+0.27 724145 3.88+0.2 3.08+0.21 3.79+0.26 3.8x0.11 3.15+0.14
ChebNetIl | 85.92+056  80.1x099  82.65+07  85.56+045 84.64+08 84.62+059 85.27+051 86.2+064  86.39+05  85.030.57
Acc Gap 14.07+0.53  19.9+102  17.35%073 14442045 15362087 153806  14.73205  13.79+06 13.61+049 14.97+058
Loss Gap 1.94+008  3.23+031 2.62+014  2.06%0.14 1.94+021 1.95+0.17 1.99+0.15 1.75+0.14 1.830.11 1.84+0.11

Acc Gap 22.55+062 19.49+046 50.56+1.18  60.13+198 51.19+263 52.25+708 39.7+732  32.45+776 31.96%9.19 22.73+482
Loss Gap 5.72+0.19 5.8+0.26 8.81+079  12.63+122  7.3%101 823+177  498+123 3424139  3.33+1.32 1.58+0.48
GPRGNN | 83.61x0.66 86.14+029 79.44+105 88.36x028 87.25x05  88.0+039 87.57+047  87.5%03 87.17x03  87.060.59
Acc Gap 16.39+060 13.86+029 20.56x106 11.63+029 12.76x049 12.01x032 12432048 12.49+033 12.84+029 12.94+068
Loss Gap 2.370.11 2.21%0.1 3.180.19 1.83+0.1 2.14+02 1.93x009  2.06x0.13 2.12x009  2.190.13 2.210.14

BernNet 82.76+072  81.14x041 81.21x057 81.47x06 81.77+066 82.11+075 82.32+088 82.55+0.84  82.8+081  82.92+0.79
Acc Gap 17.24+071  18.86+039 18.79+056  18.53+07  18.23x062 17.89+085 17.68+084 17.45+079  17.2+079  17.08+0.7
Loss Gap 2.45+017  3.02+0.11 2.95+0.21 2.84+0.2 2.75+021 2.65+021  2.59+022 2.54+02 2.49+0.21 2.45+021

\
|
|
JacobiConv \ 77.44+067 80.51+048 49.44+112 39.85+191 48.81+265 47.73+763 60.29+748 67.53+795 68.0320.15  77.23+4.79
|

Table 6: Testing accuracy, accuracy gap, loss gap of spectral GNNs on synthetic dataset of edge
homophilic ratio Hegge = 0.2 when K € [1,10]. Small accuracy and loss gaps imply good
generalization capability.

Order K 1 2 3 4 5 6 7 8 9 10
ChebNet 83.78+245 80.61x459 80.51+347 61.73x50 63.37#857 36.33%572 44.18+50 24.39+214  30.2+48  40.82+735
Acc Gap 16.224245 1939448  19.49+378  38.27#50 36.63+786 63.67+6.12  55.82+50 75.61+224  69.8+50  59.18%7.15
Loss Gap 1.49+0.44 1.26+0.44 1.48+031 2.77+053 3.08+059  8.98+068  6.09+0.72 7.99+0.93 9.01.03 5.91%0.69
ChebNetll | 80.41+398 7541572 76.53#429 76.53+459 76.94+50 78.78+s561 78.88+52  77.45+49 76.94+s572 77.55%551
Acc Gap 19594378 24.59+52  23.47+459 23.47+449  23.06+48 21224561 21.124582  22.55+449  23.06%561 22.45%531
Loss Gap 0.74+0.14 1.2+044 1.15+0.29 1.28+03 1.23+033 1.110.29 1.16+026  1.21%029 1.24+027 112027

\
|
|
JacobiConv \ 52244541 80.92+378 7531531 74394378  79.08+367 78.67+408  80.0+306  73.67+633 77.65+541 78.06+5.61
|
|

Acc Gap 47.76+531  19.08+£398  24.69+50 25.61+367 20.92+347 21.33+367  20.0+306  26.33x6.84  22.35+51  21.942541
Loss Gap 2.54+042 0.89+0.2 1.1025 1.18+0.27 0.9+0.17 0.97+016  0.93x0.13 1.22+039 097026  0.94+0.24
GPRGNN | 53.88+48  49.18+s5.1  46.73+s582 45.82+664 46.124541  45.61+52  46.43+459  46.12+50  47.55+48  46.84+622
Acc Gap 46.12+49  50.824531 5327561 54.18+663 53.88+572  54.39452  53.57+49  53.88+49 524551  53.16%6.43
Loss Gap 2.6+0.44 321053 3.5+0.67 3.6+0.63 3.58+063  3.51x064 347048 344061 3224073  3.35%083

BernNet 76.73+367  75.92+245 75.61%367 77.04%388 77.14x439 75247 7494572 752452 74.8+592  75.71%s571
Acc Gap 23.27+367 24.08+265 24.39+357 22.96+398 22.86+429  24.8+4.69 25.1+52 24.8+5.61 25.2+602  24.29+5.61
Loss Gap 0.96+022  0.95%0.18 1.01x017 1.020.21 1.06=0.21 1.13+025 1.19031 1.18+0.26 1.27+034  1.25%031

Table 7: Testing accuracy, accuracy gap, loss gap of spectral GNNs on Texas dataset of edge
homophilic ratio Heqge = 0.11 when K € [1,10]. Small accuracy and loss gaps imply good
generalization capability.
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