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ABSTRACT Computed tomography (CT) is a popular medical imaging modality and enjoys wide clinical
applications. At the same time, the X-ray radiation dose associated with CT scannings raises a public concern
due to its potential risks to the patients. Over the past years, major efforts have been dedicated to the
development of low-dose CT (LDCT) methods. However, the radiation dose reduction compromises the
signal-to-noise ratio, leading to strong noise and artifacts that down-grade the CT image quality. In this
paper, we propose a novel 3-D noise reduction method, called structurally sensitive multi-scale generative
adversarial net, to improve the LDCT image quality. Specifically, we incorporate 3-D volumetric information
to improve the image quality. Also, different loss functions for training denoising models are investigated.
Experiments show that the proposed method can effectively preserve the structural and textural information
in reference to the normal-dose CT images and significantly suppress noise and artifacts. Qualitative
visual assessments by three experienced radiologists demonstrate that the proposed method retrieves more
information and outperforms competing methods.

INDEX TERMS Machine leaning, low dose CT, image denoising, deep learning, loss function.

I. INTRODUCTION
X-ray computed tomography (CT) is one of the most popular
imaging modalities in clinical, industrial, and other appli-
cations [1]. Nevertheless, the potential risks (i.e., a chance
to induce cancer and cause genetic damage) of ionizing
radiation associated with medical CT scans cause a pub-
lic concern [2]. Studies from the National Council on
Radiation Protection and Measurements (NCRP) demon-
strate a 600% increase in medical radiation dose to the
US population from 1980 to 2006, showing both great
successes of the CT technology and an elevated alert to
patients [3].

The main drawback of radiation dose reduction is to
increase the image background noise, which could severely
compromise diagnostic information. How to minimize the
exposure to ionizing radiation while maintaining diagnostic
utility of low-dose CT (LDCT) has been a challenge for

researchers, who follows the well-known ALARA (as low
as reasonably achievable) guideline [1]. Numerous methods
were designed for LDCT noise reduction. These methods
can be categorized as follows: (1) Sinogram filtering-based
techniques [4]–[9]: these methods directly process projec-
tion data in the projection domain [6]. The main advan-
tage of these methods is computational efficiency. However,
they may result in loss of structural information and spatial
resolution [6], [7], [10]; (2) Iterative reconstruction (IR)
[11]–[20]: IR techniques may potentially produce high
signal-to-noise ratio (SNR). However, these methods require
a substantial computational cost and troublesome parametric
turning; (3) Image space denoising techniques [20]–[27]:
these techniques can be performed directly on reconstructed
images so that they can be applied across various CT scan-
ners at a very low cost. Examples are non-local means-
based filters [16], [21], dictionary-learning-based K-singular
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value decomposition (K-SVD) method [20] and the block-
matching 3D (BM3D) algorithms [24], [25]. Even though
these algorithms greatly suppress noise and artifacts, edge
blurring or resolution loss may persist in processed LDCT
images.

Deep learning (DL) has recently received a tremen-
dous attention in the field of medical imaging [28],
[29], such as brain image segmentation [30], image
registration [31], [32], image classification [33], and LDCT
noise reduction [34]–[40]. For example, Chen et al. [35]
proposed a Residual Encoder-Decoder Convolutional Neural
Network (REN-CNN) to predict NDCT images from noisy
LDCT images. This method greatly reduces the background
noise and artifacts. However, a limitation is that the results
look blurry sometimes since the method targets minimizing
the mean-squared error between the generated LDCT and
corresponding NDCT images. To cope with this problem,
the generative adversarial network (GAN) [41] offers an
attractive solution. In the GAN, the generator G learns to
capture a real data distribution Pr while the discriminator
D attempts to discriminate between the synthetic data dis-
tribution and the real counterpart. Note that the loss used
in GAN, called the adversarial loss, measures the distance
between the synthetic data distribution and the real one in
order to improve the performance ofG andD simultaneously.
Originally, GAN uses the Jensen-Shannon (JS) divergence
to evaluate the similarity of the two data distributions [41].
However, several problems exist in training GAN, such as
unstable training and non-convergence. To address these
issues, Arjovsky et al. introduced the Wasserstein distance
instead of the Jensen-Shannon divergence to improve the
neural network training [42]. We will discuss more details on
this aspect in Section II-D3.

In our previous work [37], we first introduced the percep-
tual loss to capture perceptual differences between denoised
LDCT images and the reference NDCT images, providing the
perceptually better results for clinical diagnosis at a cost of
low scores in traditional image quality metrics. Since the tra-
ditional image quality metrics evaluate the generated images
with reference to the gold-standard in generic ways, minimiz-
ing the perceptual loss does not ensure the results optimal in
terms of the traditional image quality metrics. To address this
discrepancy and inspired by the work in [36] and [43], here
we propose a novel 3D clinical Structurally-sensitive Multi-
scale Generative Adversarial Network (SMGAN) to capture
subtle structural features while maintaining high visual sen-
sitivity. The proposed structurally-sensitive loss leverages a
combination of adversarial loss [42], perceptually-favorable
structural loss, and pixel-wise L1 loss. Moreover, to validate
the diagnostic quality of images processed by our method,
we report qualitative image assessments by three expert radi-
ologists. Systematically, we demonstrate the feasibility and
merits of mapping LDCT images to corresponding NDCT
images in the GAN framework.

Our main contributions in this paper are summarized as
follows:

1) To keep the underlying structural information in LDCT
images, we adopt a 3DCNNmodel as a generator based
on WGAN which can enhance the image quality for
better diagnosis.

2) To measure the structural difference between gen-
erated LDCT images and the NDCT gold-standard,
a structurally-sensitive loss is used to enhance the
accuracy and robustness of the algorithm. Different
from [37], we replace the perceptual loss with a com-
bination of L1 loss and structural loss.

3) To compare the performance of the 2D and the 3D
models, we perform an extensive evaluation on their
convergence rate and denoising performance.

This paper is organized as follows: Section II introduces
the proposed approach and analyzes the impact of each com-
ponent loss function on the image quality. Section III presents
the experimental design and results. Section IV discusses
relevant issues. Finally, the concluding remarks and future
plans are given in Section 5.

II. METHODS
A. PROBLEM INVERSION
Assuming that y ∈ RH×W×D denotes the original LDCT
image, and x ∈ RH×W×D denotes the corresponding NDCT
image, the relationship between them can be expressed as:

y = T (x)+ ε (1)

where T : RH×W×D
→ RH×W×D is a generic noising

process that degrades a real sample x of NDCT to a corre-
sponding LDCT sample y in a non-linear way. ε stands for
the additive noise and unmodeled factors, and H , W , D are
height, width and depth respectively.

From another standpoint, considering that the real NDCT
distribution Pr is unknown, we focus on extracting informa-
tion to recover desired images x from the noisy LDCT images
y. In general, the noise distribution in CT images is regarded
as the mixture of Poisson quantum noise and Gaussian elec-
tronic noise [44]. Compared with traditional denoising meth-
ods, the DL-based method is capable of effectively modeling
any type of data distributions since the DL-based denoising
model itself can be easily adapted to any practical noisemodel
with statistical properties of typical noise distributions in a
combination. Therefore, the proposed DL-based denoising
network is to solve the inverse problem T†

≈ T
_1 to retrieve

feasible images x̂, and the solution can be expressed as:

T†y = x̂ ≈ x (2)

As shown in Fig.1, the overall network comprises three
parts. Part 1 is the generator G, part 2 is the Structurally-
Sensitive loss (SSL) function, and part 3 is the discrimina-
torD.Gmaps a volumetric LDCT image to the NDCT feature
space, thereby estimating a NDCT image. The SSL func-
tion computes the structurally-sensitive dissimilarity which
encodes multi-scale structural information. The loss com-
puted by the SSL function aims to improve the ability of G to
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FIGURE 1. The overall structure of the proposed SMGAN network. Note that the variable n denotes the number of filters and s denotes the
stride size.

generate realistic results. D distinguishes a pair of synthetic
and real NDCT images. If D can identify the input image as
‘‘synthetic’’ or ‘‘real’’ correctly and tell us the discrepancy
between the estimated CT image and the corresponding real
NDCT image, we will know if G yields a high-quality esti-
mation or not. With the indication from D, G can optimize
its performance. Also, D can upgrade its ability as well.
Hence, G and D are in competition: G attempts to generate
a convincing estimate to an NDCT image while D aims to
distinguish the estimated image from real NDCT images.
See Sections II-C and II-D for more details. For your con-
venience, the summary of notations that we use in this paper
is in Table 5.

B. 3D SPATIAL INFORMATION
The advantages of using 3D spatial information are evi-
dent. Hence, volumetric imaging and 3D visualization
have become standards in diagnostic radiology [45]. There
is a large amount of 3D NDCT and LDCT volumet-
ric images available in practice. However, most of the
networks are of 2D-based architecture. With a 3D net-
work architecture, adjacent cross-section slices from a 3D
CT image volume exhibit strong spatial correlation which
we can utilize to preserve more information than with
2D models.

Asmentioned above, here we use a 3DConvNet as the gen-
erator and introduce a 3D Structurally-Sensitive loss (SSL)
function. Accordingly, we extract 3D image patches and use
a 3D filter instead of a 2D filter. The generator in our net-
work takes 3D volumetric LDCT patches as the input and
process them with 3D non-linear transform operations. For
convenience and comparison, 2D and 3D denoising networks
are referred to as SMGAN-2D and SMGAN-3D respectively.

The details of the network architecture are in the following
Section II-C.

C. NETWORK STRUCTURE
Inspired by the studies in [36] and [37], we introduce our pro-
posed SMGAN-3D network structure. First, in Section II-C1
we present the 3D generator G which captures local anatom-
ical features. Then, in Section II-C2 we define the 3D SSL
function which guides the learning process. Finally, we out-
line the 2.5D discriminator D in Section II-C3.

1) 3D CNN GENERATOR
The generator G consists of eight 3D convolutional (Conv)
layers. The first 7 layers each has 32 filters, and the last layer
has only 1 filter. The odd-numbered convolutional layers
apply 3×3×1 filters, while the even-numbered convolutional
layers use 3×3×3 filters. The size of the extracted 3D patches
is 80× 80× 11 as the input to our whole network; see Fig. 1.
Note that the variable n denotes the number of the filters and s
denotes the stride size, which is the step size of the filer when
moving across an image so that n32s1 stands for 32 feature
maps with a unit stride. Furthermore, a pooling layer after
each Conv layer may lead to loss of subtle textural and struc-
tural information. Therefore, the pooling layer is not applied
in this network. The Rectified Linear Unit (ReLU) [46] is our
activation function after each Conv layer.

2) STRUCTURALLY-SENSITIVE LOSS (SSL) FUNCTION
The proposed 3D SSL function measures the patch-wise
discrepancy between a 3D output from the 3D ConvNet and
the 3D NDCT image in the spatial domain. This measure is
back-propagated [47] through the neural network to update
the parameters of the network; see Section II-D for more
details.
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3) DISCRIMINATOR
The discriminator D consists of six convolutional layers with
64, 64, 128, 128, 256, and 256 filters and the kernel size
of 3 × 3. Two fully-connected (FC) layers produce 1024
and 1 feature maps respectively. Each layer is followed by
a leaky ReLU defined as max(0, x) − αmax(0,−x) [46],
where α is a small constant. A stride of one pixel is applied
for odd-numbered Conv layers and a stride of two pixels
for even-numbered Conv layers. The input fed to D is of
the size 64 × 64 × 3, which comes from the output of G.
The reason why we use a 2D filter in D is to reduce the
computational complexity. Since the adversarial loss between
each two adjacent slices in one volumetric patch contribute
equally to the weighted average in one iteration, it can be
easily computed. Following the suggestion in [42], we do not
use the sigmoid cross entropy layer in D.

D. LOSS FUNCTIONS FOR NOISE REDUCTION
In this sub-section, we evaluate the impact of different loss
functions on LDCT noise reduction. This justifies the use of
a hybrid loss function for optimal diagnostic quality.

1) L2 LOSS
The L2 loss can efficiently suppress the background noise, but
it could make the denoised results unnatural and blurry. This
is expected due to its regression-to-mean nature [43], [48].
Furthermore, the L2 loss assumes that background noise is
white Gaussian noise, which is independent of local image
features [49] and not desirable for LDCT imaging.

The formula of L2 loss is expressed as:

L2 =
1

HWD
||G(y)− x||22 (3)

where H , W , D stand for the height, width, and depth of
a 3D image patch respectively, x denotes the gold-standard
(NDCT), and G(y) represents the generated result from the
source (LDCT) image y. It is worth noting that since the L2
loss has appealing properties of differentiability, convexity,
and symmetry, the mean squared error (MSE) or L2 loss is
still a popular choice in denoising tasks [50].

2) L1 Loss
The L1 and L2 losses are both the mean-based measures,
the impacts of these two loss functions are different on
denoising results. Compared with the L2 loss, the L1 loss
does not over-penalize large differences or tolerate small
errors between denoised and gold-standard images. Thus,
the L1 loss can alleviate some drawbacks of the L2 loss we
mentioned earlier. Additionally, the L1 loss enjoys the same
fine characteristics as L2 loss except for the differentiability.
The formula for the L1 loss is written as:

L1 =
1

HWD
|G(y)− x| (4)

As shown in Figs. 3 -6, compared with the L2 loss, the L1 loss
suppresses blurring, but does not help reduce blocky artifacts.
For more details, see Section III.

3) ADVERSARIAL LOSS
The Wasserstein distance with the regularization term was
proposed in [48], which is formulated as

Ladv=−E[D(x)]+ E[D(z)]+λE[(||∇x̂D(x̂)||2 − 1)2] (5)

where the first two terms are for the Wasserstein distance,
and the third term implements the gradient penalty. Note that
z denotes G(y) for brevity. x̂ is uniformly sampled along the
straight line between a pair of points sampled from G and
corresponding NDCT images.

4) STRUCTURAL LOSS
Medical images contain strong feature correlations. For
example, their voxels have strong inter-dependencies. The
structural similarity index (SSIM) [49] and the multi-scale
structural similarity index (MS-SSIM) [51] are perceptu-
ally motivated metrics, and perform better in visual pattern
recognition than mean-based metrics [49]. To measure the
structural and perceptual similarity between two images,
the SSIM [49] is formulated as follows:

SSIM (x, z) =
2µxµz + C1

µ2
x + µ

2
z + C1

∗
2σxz + C2

σ 2
x + σ

2
z + C2

(6)

= l(x, z) ∗ cs(x, z) (7)

where C1,C2 are constants and µx ,µz, σx , σz, σxz denote
means, standard deviations and cross-covariance of the image
pair (x, z) from G and the corresponding NDCT image
respectively. l(x, z), cs(x, z) are the first term and second
factor we defined in Eqn. 6.

The multiscale SSIM provides more flexibility for multi-
scale analysis [51]. The formula for MS-SSIM [51] is
expressed as:

MS_SSIM (x, z) =
M∏
j=1

SSIM (xj, zj) (8)

where xj, zj are the local image content at the jth level, andM
is the number of scale levels. Clearly, SSIM is a special case
of MS-SSIM.

The formula for the structural loss (SL) is generally
expressed as:

LSL = 1−MS_SSIM (x, z) (9)

Note that the loss can be easily back-propagated to update
weights in the network, since it can be differentiated [43].

5) OBJECTIVE FUNCTION
As mentioned in the recent studies [37], [43], minimizing the
L2 loss leads to over-smoothed appearance. The adversarial
loss in GAN may yield sharp images, but it does not exactly
match the corresponding real NDCT images [37]. The per-
ceptual loss computed by a VGG network [47] evaluates the
perceptual differences between the generated images and real
NDCT images in a high-level feature space instead of the
voxel space. Since the VGG network is trained on a large
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dataset of natural images, not CT images, it may result in
distortions of processed CT images. To tackle these issues,
we propose to utilize different loss terms together for high
image quality.

As revealed in [43], the L1 loss allows noise suppression
and SNR improvement. However, it blurs anatomical struc-
tures to some extent. In contrast, the structural loss discour-
ages blurring and keeps high contrast resolution. To have
the merits of both loss functions, the structural sensitive
loss (SSL) is expressed as:

LSSL = τ × LSL + (1− τ )× L1 (10)

where τ is the weighting factor to balance between structure
preservation in the first term (from Eq. 9) and noise suppres-
sion in the second term (from Eq. 4).
Nevertheless, the above-mentioned two losses may still

miss some diagnostic features. Hence, the adversarial loss is
incorporated to keep textural and structural features as much
as possible. In summary, the overall objective function of
SMGAN is expressed as:

Lobj = LSSL + β × Ladv (11)

where β is the weight for the adversarial loss. In the last step
of the network, we compare the difference between the output
volume and the target volume, and then the error can be back-
propagated for optimization [52].

III. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL DATASETS AND SETUP
To show the effectiveness of the proposed network for LDCT
noise reduction, we used a real clinical dataset, published
by Mayo Clinic for the 2016 NIH-AAPM-Mayo Clinic Low
Dose CT Grand Challenge [53]. The Mayo dataset consists
of 2,378 normal dose CT (NDCT) and low dose (quarter
dose) CT (LDCT) images from 10 anonymous patients. The
reconstruction interval and slice thickness in the dataset were
0.8mm and 1.0mm respectively.

For limited data, the denoising performance of DL-based
methods depends on the size of the training datasets, so large-
scale valid training datasets can improve the denoising per-
formance. However, it is worth noting that the training image
library may not contain many valid images. To enhance the
performance of the network, the strategies we utilized are as
follows. First of all, in order to improve generalization perfor-
mance of the network and avoid over-fitting, we adopted the
‘‘10-fold cross validation’’ strategy. The original dataset was
partitioned into 10 equal size subsets. Then, a single subset
was used in turn as the validation subset and the rest of data
were utilized for training. Moreover, considering the limited
number of CT images, we applied the overlapping patches
strategy because it can not only consider patch-wise spatial
interconnections, but also significantly increase the size of
the training patch dataset [54], [55].

For data preprocessing, the original LDCT and NDCT
images are of 512 × 512 pixels. Since directly processing
the entire patient images is computationally inefficient and

infeasible, our denoisingmodel was applied to image patches.
First, we applied the overlapped slidingwindowwith a sliding
size of 1× 1× 1 to obtain image patches and then randomly
extracted 100,100 pairs of training patches and 5,100 pairs
for validation from remaining patient images of the same size
80×80×11. Then, the ‘‘10-fold cross validation’’ strategy is
used to ensure the accuracy of the proposed algorithm. Next,
the CT Hounsfield Unit (HU) scale was normalized to [0, 1]
before the images were fed to the network.

For qualitative comparison, in order to validate the
performance of our proposed methods (SMGAN-2D and
SMGAN-3D), we compare them with eight state-of-
the-art denoising methods, including CNN-L2 (L2-net),
CNN-L1 (L1-net), structural-loss net (SL-net), multi-scale
structural-loss net (MSL-net), WGAN, BM3D [25], RED-
CNN [35], and WGAN-VGG [37]. Among these existing
denoising methods, BM3D is a classical image space denois-
ing algorithm.WGAN-VGG represents a 2D perceptual-loss-
based network, and RED-CNN refers to a 2D pixel-wise net-
work. Note that the parameter settings in these methods [25],
[35], [37] had been followed per the suggestions from the
original papers.

For quantitative comparison, to evaluate the effective-
ness of the proposed methods, three metrics were chosen to
perform image quality evaluation, including peak signal-to-
noise ratio (PSNR), structural similarity index (SSIM) [51],
and root-mean-square error (RMSE).

B. PARAMETER SELECTION
In our experiments, the Adam optimization algorithm was
implemented for our network training [56]. In the training
phase, the mini-batch size was 64. The hyperparameter λ for
the balance between the Wasserstein distance and gradient
penalty was set 10, per the suggestion from the original
paper [42]. The parameter β for the trade-off between adver-
sarial loss and mixture loss was set be 10−3. The parameter
τ was set to 0.89. The slope of the leaky ReLu activation
function was set to 0.2. The networks are implemented in the
TensorFlow [57] on an NVIDIA Titan Xp GPU.

C. NETWORK CONVERGENCE
To examine the robustness of different denoising algorithms,
ten methods corresponding to the L1 loss (L1), structural loss
(SL), and Wasserstein distance were separately trained in the
same settings as that for SMGAN-3D.Note that the parameter
settings of RED-CNN, WGAN-VGG, and BM3D from the
original papers had been followed [25], [35], [37]. In addition,
the size of the input patches of the 2D network is 80 × 80
while our proposed 3D model uses training patches with the
size of 80 × 80 × 11. We calculated the averaged loss value
achieved by different methods versus the number of epochs
as the measure of convergence in Fig. 2.
In Fig. 2a and 2b, in terms of L1 and SL, we observe

that L1-net and L2-net achieved the fastest convergence
rate and have similar convergence trends in that all curves
decreased initially and then smoothly converged, indicating
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FIGURE 2. Comparison of loss function value versus the number of
epochs with respect to different algorithms. (a) L1 Loss, (b) Structural
Loss, and (c) Wasserstein Distance curves.

that these mean-based algorithms both have fast convergence
rates. Fig. 2a shows that they both converged around the 6th

epoch. In contrast, in Fig. 2a, there are differences between

SL-based and mean-based methods. We can see that the
convergence curve of the SL-net decreases initially and then
slightly rises around the 4th epoch as shown in Fig. 2a.
MSL-net also shows a small increase like SL-net in terms
of L1. This observation indicates that SL-based and mean-
based methods have different emphasis on minimizing per-
ceptually motivated similarity between real NDCT images
and generated NDCT images. For WGAN-based methods,
it can be clearly observed that the curves for WGAN,
WGAN-VGG, SMGAN-2D, and SMGAN-3D slightly oscil-
late in the convergence process after the 5th epoch in Fig. 2a
and 2b. The reason for such oscillatory behaviors is as fol-
lows: G attempts to mimic the real NDCT distribution while
D aims to differentiate between the real NDCT distribution
and the denoised LDCT distribution. Since GAN’s intrinsic
nature is a two-player game, the distributions of G and D are
constantly changing, and this leads to the oscillatory behavior
when converging to their optimal status.

As shown in Fig. 2c, we can evaluate the convergence
performance of WGAN. It can be seen that our proposed
SMGAN-2D has the mildest oscillatory behavior compared
with the other three models and reaches a stable state after
the 13th epoch. Moreover, the SMGAN-3D oscillates in a
relatively large range in the training process. This is because
our proposed SMGAN-3D considers 3D structural informa-
tion which results in a relatively larger vibrating amplitude
in the training process. However, the curve still oscillates
close to the x-axis, indicating SMGAN-3D’s robustness in
minimizing the Wasserstein distance between the generated
samples and real samples.

D. DENOISING PERFORMANCE
To demonstrate the effectiveness of the proposed network,
we perform the qualitative comparisons over three representa-
tive abdominal images presented in Figs. 3, 5 and 7. For better
evaluations of the image quality with different denoising
models, zoomed regions-of-interest (ROIs) are marked by
red rectangles and shown in Figs. 4, 6 and 8 respectively.
Note that all results from different denoising models focus
on two aspects: content restoration and noise-reduction. All
CT images in axial view are displayed in the angiography
window [−160, 240]HU.

The real NDCT images and corresponding LDCT images
are presented in Figs. 3a and 3b. As observed, there are
distinctions between ground truth (NDCT) images and LDCT
images. Figs. 3a and 7a show the lesions/metastasis. Fig. 5a
presents focal fatty sparing/focal fat. In Figs. 4a, 6a and 8a,
these lesions can be clearly observed in NDCT images; in
contrast, from Figs. 4b, 6b, and 8b, it can be seen that the
original LDCT image is noisy, and lacks structural features
for task-based clinical diagnosis. All adopted denoising mod-
els suppress noise to some extent.

1) COMPARISON WITH CNN-BASED DENOISING METHODS
To study the robustness of the adversarial learning frame-
work in SMGAN-3D, we compared SMGAN-3D with
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FIGURE 3. Results from abdomen CT images. (a) NDCT, (b) LDCT, (c) CNN-L2, (d) CNN-L1, (e) SL-net, (f) MSL-net, (g) WGAN (h) BM3D, (i) RED-CNN,
(j) WGAN-VGG, (k) SMGAN-2D, and (l) SMGAN-3D. The red rectangle indicates the region zoomed in Fig. 4. The display window is [−160, 240]HU.

the CNN-based methods, including CNN-L2, CNN-L1,
RED-CNN [35], SL-net and MSL-net. It is worth noting that
CNN-L2, CNN-L1, and RED-CNN are mean-based denois-
ing methods, and SL-net and MSL-net are SL-based denois-
ingmethods. All of themethods greatly reduce the noise com-
pared with LDCT images. Our proposed method preserves
more structural details, thereby yielding better image quality,
compared with the other five methods.

Mean-based methods can effectively reduce noise, but the
side effect is impaired image contents. In Fig. 3c, L2-net
greatly suppresses the noise, but blurs some crucial structural
information in the porta hepatis region. Meanwhile, some
waxy artifacts can still be observed in Fig. 6c. L2-net does
not produce good visual quality because it assumes that the
noise is independent of local characteristics of the images.
Even though it retains high SNR, its results are not clinically

preferable. Compared with L2-net, in Figs. 3d and 5d, it can
been seen that L1-net encourages less blurring and preserves
more structural information. However, as observed in Fig. 4d,
it still over-smooths some anatomical details. Meanwhile,
in Fig. 6d, there are some blocky effects marked by the blue
arrow. The results obtained by RED-CNN [35] deliver high
SNR but blur the vessel details as shown in Figs. 4i and 6i.

For SL-based methods, as observed in Figs. 3e and 5e,
SL-net generates images with higher contrast resolution and
preserves texture of real NDCT images better than L2-net
and L1-net. However, Figs. 4e and 6e show that SL-net
does not preserve the structural features well, and there still
remain small streak artifacts. Subsequently, in Figs. 4e and
4f, SL-net and MSL-net have low frequency image intensity
variance because SSIM/MS-SSIM is insensitive to uniform
biases [49], [51]. On the other hand, L1-net preserves the
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FIGURE 4. Zoomed parts of the region of interests (ROIs) marked by the
red rectangle in Fig. 3. (a) NDCT, (b) LDCT, (c) CNN-L2, (d) CNN-L1,
(e) SL-net, (f) MSL-net, (g) WGAN, (h) BM3D, (i) RED-CNN, (j) WGAN-VGG,
(k) SMGAN-2D and (l) SMGAN-3D. The red circle indicates the metastasis
and the green and blue arrows indicate two subtle structure parts. The
display window is [−160,240]HU.

overall image intensity, but it does not preserve high contrast
resolution well as SL-net and MSL-net do.

From Figs. 7 and 8, we can see mean-based and SL-based
methods work well with effective noise suppression and arti-
fact removal. However, the illustrations in Fig. 8 show that
these methods blur the local strutural features. Our proposed
SMGAN-based methods present a better edge preservation
than the competing methods.

Overall, the observations above support the following
statements. First, although the voxel-wise methods show
good noise-reduction properties, to some extent they blur the
contents and lead to the loss of structural details because
they optimize the results in the voxel-wise manner. Second,
SL-based methods better preserve texture than mean-based
methods, but they cannot preserve overall image intensity.
Third, the results produced by the proposed SMGAN-3D
demonstrate the benefits of the combination of two loss func-
tions and the importance of the adversarial training [41], [42].

2) COMPARISON WITH WGAN-BASED
DENOISING METHODS
To evaluate the effectiveness of our proposed objective func-
tion, we compare our method with existing WGAN-based
networks, including WGAN and WGAN-VGG. Consider-
ing the importance of clinical image quality and specific
structural features for medical diagnosis, we adopted the
adversarial learning method [41], [42] in our experiments

because WGAN could help to capture more structural infor-
mation. Nevertheless, based on our prior experience, utilizing
WGAN alone may yield stronger noise than other selected
approaches, because it only maps the data distribution from
LDCT to NDCT without consideration of local voxel inten-
sity and structural correlations. The observations demonstrate
that the noise texture is coarse in the images, as shown
in Fig. 4g and Fig. 8g, which support our intuition.

Indeed, the images of WGAN-VGG [37], as shown
in Fig. 3j, exhibit better visual quality with respect to
more details and share structural details similar to NDCT
images according to human perceptual evaluations. However,
Figs. 4j (marked by the red circle) and 6j (marked by the
green circle) suggest that it may severely distort the original
structural information. A possible reason is that the VGG
network [47] is a pre-trained deep CNN network based on
natural images, and the structural information and contents
of natural images are different from medical images.

Compared with WGAN and WGAN-VGG, our proposed
SMGAN-3D, as shown in Figs. 4l (marked by the red circle)
and 6l (marked by the green circle), canmore clearly visualize
the metastasis and better preserve of the portal vein.

In Figs. 7 and 8, it can be found that the SMGAN-based
methods can achieve better anatomical feature preservations
and visual quality than other state-of-the-art methods.

The experimental results demonstrate that our proposed
objective function is essential to capture more accurate
anatomical details.

3) COMPARISON WITH IMAGE SPACE DENOISING
To validate the robustness of DL-based methods, we com-
pared our method with the image space denoising method.
Figs. 4h and 6h show that BM3D blurs the low-contrast
lesion marked by the red circle and smooths specific features
marked by the blue arrow. In contrast, SMGAN-3D exhibits
better on the low-contrast lesion and yields sharper features
as shown in Figs. 4l and 6l.

4) COMPARISON WITH 2D-BASED SMGAN NETWORK
In order to evaluate the 3D structural information, we com-
pared SMGAN-3D with SMGAN-2D. As shown in Fig. 4l,
our proposed SMGAN-3D generated the results with better
subtle details than SMGAN-2D and enjoys more similar sta-
tistical noise properties to the corresponding NDCT images.
The reasons why SMGAN-3D outperforms SMGAN-2D are
follows. First, SMGAN-3D incorporates 3D structural infor-
mation to improve image quality. Second, SMGAN-2D takes
input slice by slice, thus potentially leading to the loss of
spatial correlation between adjacent slices.

Figs. 7 and 8 demonstrate that the SMGAN-3D can be
used to provide improved anatomical feature preservation
over other state-of-the-art methods.

In summary, we compared our proposed methods with
existing methods, and it can be clearly observed that
SMGAN-3D achieves robust performance in noise suppres-
sion, artifact removal, and texture preservation. Note that we
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FIGURE 5. Results from abdomen CT images. (a) NDCT, (b) LDCT, (c) CNN-L2, (d) CNN-L1, (e) SL-net, (f) MSL-net, (g) WGAN (h) BM3D, (i) RED-CNN,
(j) WGAN-VGG, (k) SMGAN-2D, and (l) SMGAN-3D. The red rectangle indicates the region zoomed in Fig. 6. This display window is [−160, 240]HU.

recommend the reader to see ROIs (in Fig. 4 and 6) or zoom
in to better evaluate our results. To further validate the gen-
eralization ability of our proposed model, we conclude more
details in Appendix A.

E. QUANTITATIVE ANALYSIS
We performed the quantitative analysis with respect to
three selected metrics (PNSR, SSIM, and RMSE). Then,
we investigated the statistical properties of the denoised
images for each noise-reduction algorithm. Furthermore,
we performed a blind reader study with three radiologists on
10 groups of images. Note that quantitative full-size mea-
surements are in Table 1 and image quality assessments of
ROIs are in Fig. 9. The NDCT images are chosen as the
gold-standard.

1) IMAGE QUALITY ANALYSIS
As shown in Table 1, RED-CNN scores the highest PSNR
and RMSE, and ranks the second place in SSIM. Since the
properties of PSNR and RMSE are regression to the mean,
it is expected that RED-CNN, a mean-based regressiom opti-
mization, has better performance than other feature-based
models. For SL-net andMSL-net, it is not surprising that both
models achieve the highest SSIM scores due to the adoption
of structural similarity loss. However, a good score measured
by image quality metrics does not ensure the preservation
of high-level feature information and structural details, and
this explains why RED-CNN can have the best PSNR and
RMSE despite over-smoothing the content. PSNR, SSIM and
RMSE are not perfect, and they are subject to image blurring
abd blocky/waxy artifacts in the denoised images, as shown
in Figs. 3 - 8. Hence, these metrics may not be sufficient
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TABLE 1. Quantitative results associated with different approaches in Figs. 3 and 5.

FIGURE 6. Zoomed parts of the region of interests (ROIs) marked by the
red rectangle in Fig. 5. (a) NDCT, (b) LDCT, (c) CNN-L2, (d) CNN-L1,
(e) SL-net, (f) MSL-net, (g) WGAN, (h) BM3D, (i) RED-CNN, (j) WGAN-VGG,
(k) SMGAN-2D and (l) SMGAN-3D. The red circle indicates the metastasis
and the green and blue arrows indicates two subtle structures. The
display window is [−160,240]HU.

in evaluating image quality and indicating diagnostic per-
formance. Indeed, WGAN can provide better visual quality
and achieve improved statistical properties. Compared with
the CNN-based methods, the WGAN architecture can pro-
gressively reserve the consistency of the feature distributions
between LDCT and NDCT images. By encouraging less
blurring, WGAN alone could introduce more image noise
to compromise diagnosis. To keep information in LDCT

images, our novel loss function with a regularization term is
structurally alert to enhance the clinical usability as compared
to the other methods.

Although mean-based approaches, such as L1-net, L2-net,
enjoy high metric scores, they may over-smooth the over-
all image contents and lose feature characteristics, which
do not satisfy our HVS requirements because mean-based
methods favor the regression toward the mean. Meanwhile,
WGAN-VGG satisfies HVS requirements, but gets the lowest
scores in the three selected metrics. The reason for the lowest
scores is that WGAN-VGG may suffer from loss of subtle
structural information or noise features, which may severely
affect the diagnostic accuracy. The proposed SMGAN-2D
outperforms the feature-based method WGAN-VGG with
reference to the threemetrics, illustrating the robust denoising
capability of our proposed loss function. Compared with the
SMGAN-2D model, SMGAN-3D achieves higher scores in
PSNR and SSIM since it incorporates 3D spatial information.
To further validate the performance of each denoising model
with respect to clinically significant local details, we per-
formed the quantitative analysis over ROIs. The summary of
the quantitative results from ROIs is shown in Fig. 9. It is
worth noting that the quantitative results of the ROIs follow
a similar trend to that of the full-size images.

2) STATISTICAL ANALYSIS
To quantitatively evaluate the statistical properties of pro-
cessed images by different denoisingmodels, we calculate the
mean CT number (Hounsfield Unit) and standard deviations
(SDs) of ROIs, as shown in Table 2. For each denoising
model, the percent error of the mean and SD values were
calculated in comparison to those of the reference (NDCT)
images. The lower percent errors correspond to more robust
denoising models. As shown in Table 2, L1-net, L2-net, SL-
net, MSL-net, BM3D, RED-CNN, and WGAN-VGG gen-
erate high percent errors in SD with respect to the NDCT
images. There are blocky and over-smoothing effects in the
images which match our visual inspections. Specifically, for
Fig. 8, the absolute difference in SD between BM3D and
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FIGURE 7. Results from abdomen CT images. (a) NDCT, (b) LDCT, (c) CNN-L2, (d) CNN-L1, (e) SL-net, (f) MSL-net, (g) WGAN (h) BM3D, (i) RED-CNN,
(j) WGAN-VGG, (k) SMGAN-2D, and (l) SMGAN-3D. The red rectangle indicates the region zoomed in Fig. 8. This display window is [−160, 240]HU.

NDCT is the largest among all of the denoising models,
which indicates that BM3D has the most noticeable blurring
effects. The standard deviation of BM3D supports our visual
observations as shown in Figs. 4h, 6h, and 8h. The mean
values of WGAN, WGAN-VGG, SL-net and SMGAN-2D
deviated much from that of the NDCT image in Fig. 4.
This indicates that WGAN, WGAN-VGG, and SMGAN-
2D effectively reduce the noise level but compromise sig-
nificant content information. Nevertheless, the SD value of
SMGAN-2D is close to that of NDCT, which indicates that
it supports HVS requirements. From the quantitative analysis
in Table 2, it can be observed that our proposed SMGAN-3D
achieves the best matching SD to the NDCT images out of all
other methods. Overall, SMGAN-3D is a highly competitive
denoising model for clinical use.

3) VISUAL ASSESSMENTS
To validate clinical image quality of processed results, three
radiologists performed a visual assessment on 10 groups of
images. Each group includes an original LDCT image with
lesions, the corresponding reference NDCT image, and the
processed images by different denoising methods. NDCT,
considered as the gold-standard, is the only labeled image
in each group. All other images were evaluated on sharp-
ness, noise suppression, diagnostic acceptability, and contrast
retention using a five-point scale (5= excellent and 1= unac-
ceptable). We invited three radiologists with mean clinical
experience of 12.3 years to join our study. Note that these
results were evaluated independently and the overall image
quality score for each method was computed an averaging
score from the four evaluation criteria. For different methods,
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TABLE 2. Statistical properties of the images in Figs. 4, 6 and 8. These are the ROIs indicated by the red rectangles in Figs. 3, 5 and 7. Note that the
relative percentage difference of NDCT values versus the rest of models is added to aid the readers.

TABLE 3. Visual assessment scores by three radiologist readers.

the final score is presented as mean±SD (average score of
three radiologists± standard deviation). The final quantita-
tive results are listed in Table 3.
As observed, the original LDCT images have the lowest

scores because of their severe image quality degradation.
All denoising models improve the scores to some extent
in this study. From Table 3, RED-CNN obtains the highest
score in noise suppression. Compared to all other meth-
ods, our proposed SMGAN-3D scores best with respect
to sharpness, diagnostic acceptability, and contrast reten-
tion. Furthermore, voxel-wise optimization (CNN-L2) has
the best visually-assessed image noise suppression, but it
suffers from relatively low scores in sharpness and diag-
nostic acceptability, indicating a loss of image details. The
proposed SMGAN-3D model gets a superior overall image
quality score relative to the 2D model, which indicates
that a 3D model can enhance CT image denoising perfor-
mance by incorporating spatial information from adjacent
slices.

In brief, the visual assessment demonstrates that
SMGAN-3D has powerful capabilities in noise reduction,
subtle image structure and edge preservation, and artifact

removal. Most importantly, it satisfies the HVS requirements
as shown in Figs. 3 - 6.

F. COMPUTATIONAL COST
In CT reconstruction, there is a trade-off between the
computational cost and the image quality. In this aspect,
a DL-based algorithm has great advantages in computational
efficiency. Although the training of DL-based methods is
time-consuming, it can rapidly perform the denoising tasks on
reconstructed LDCT images after the training is completed.
In our study, the proposed 2Dmethod requires about 15 hours
and the 3D model needs approximately 26 hours for training
to converge. WGAN-VGG, which has the same number of
layers, takes about 18 hours in the training phase. Com-
pared with iterative reconstruction, any DL-based approach
will require much less execution time, which facilitates the
clinical workflow. In practice, our proposed SMGAN-2D
and SMGAN-3D took 0.534s and 4.864s respectively in the
validation phase on a NVIDA Titan GPU. Compared with the
results in [58] and [59], our method took significantly less
time. For example, the computational cost for soft threshold
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FIGURE 8. Zoomed parts of the region of interests (ROIs) marked by the
red rectangle in Fig. 7. (a) NDCT, (b) LDCT, (c) CNN-L2, (d) CNN-L1,
(e) SL-net, (f) MSL-net, (g) WGAN, (h) BM3D, (i) RED-CNN, (j) WGAN-VGG,
(k) SMGAN-2D and (l) SMGAN-3D. The red and the green circles indicate
subtle edges. The display window is [−160,240]HU.

filtering (STF)-based TV minimization in the ordered-subset
simultaneous algebraic reconstruction technique (OS-SART)
framework took 45.1s per iteration on the same computing
platform. Hence, it is clear that once the model is trained,
it requires far less computational overhead than an iterative
reconstruction method given that other conditions are equal.

IV. DISCUSSIONS
As mentioned before, different emphases on visual evalua-
tion and traditional image quality metrics were extensively
investigated. When training with only the mean-based losses
(L1-net, L2-net, RED-CNN), the results can achieve high
scores in quantitative metrics and yield promising results
with substantial noise reduction. When training with the
feature-based methods (WGAN-VGG), the results can meet
HVS requirements for visualization since they preserve more
structural details than mean-based methods. However, these
methods suffer from the potential risk of content distortion
since a perceptual loss is computed based on a network [47]
trained on a natural image dataset. Practically and theoreti-
cally, even though adversarial learning can prevent smoothing
in the image, and capture structural characteristics, they may
often result in severe loss of diagnostic information. To inte-
grate the best characteristics of these loss functions, we have
proposed a hybrid loss function to deliver the LDCT image
quality optimally.

Although our proposed network has achieved high-quality
denoised LDCT images, there are still rooms for potential
improvements. First and foremost, some feature edges in
the processed results still look blurry. Also, some struc-
tural variations between NDCT and LDCT do not perfectly
match. A possible way to enhance correlation betweenNDCT
and LDCT is to design a network with a better modeling

FIGURE 9. Performance comparison of LDCT and ten algorithms over the
ROIs marked by the red rectangles in Fig. 3a and Fig. 5a.

capability, which is the work we have started. As far as our
reader study is concerned, although visual assessment may be
subject to intra- as well as inter-operator variability, on aver-
age such assessment can still evaluate different algorithms
effectively, especially in a pilot study. In our follow-up study,
we will invite more radiologists to rate the results, and then
quantify inter-operator variability in a task-specific fashion,
and also study intra-operator variability.
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TABLE 4. Quantitative results associated with different training sets for
SMGAN-3D in Figs. 10.

FIGURE 10. Results from four different training sets for SMGAN-3D.
(a)-(d) refer to Fig. 3, (e)-(h) refer to Fig. 5 and (i)-(l) refer to Fig. 7. This
display window is [−160, 240]HU. (a) CASE1. (b) CASE2. (c) CASE3.
(d) CASE4. (e) CASE1. (f) CASE2. (g) CASE3. (h) CASE4. (i) CASE1. (j) CASE2.
(k) CASE3. (l) CASE4.

V. CONCLUSION
In conclusion, we have presented a 3D CNN-based method
for LDCT noise reduction. As a follow-up to our previous
work [37], a 3D convolutional neural network is utilized
to improve the image quality in the 3D contextual setting.
In addition, we have highlighted that the purpose of loss func-
tions is to preserve high-resolution and critical features for
diagnosis. Different from the state-of-the-art LDCT denois-
ing method used in [36], an efficient structurally-sensitive
loss has been included to capture informative structural fea-
tures. Moreover, we have employed the Wasserstein distance
to stabilize the training process for GAN.We have performed
the quantitative and qualitative comparison of the image
quality. The assessments have demonstrated that SMGAN-
3D can produce results with higher-level image quality
for clinical usage compared with the existing denoising
networks [34]–[37].

In the future, we will extend our model to other
medical imaging modalities in a task-specific manner. More-
over, we plan to incorporate more advanced denoising mod-
els such as the networks mentioned in [60]–[62] for LDCT

TABLE 5. Summary of notations.

reconstruction. Finally, we are also interested in making our
denoising software robust over different scanners.

APPPENDIX A
DIFFERENT TRAINING SETS FOR SMGAN-3D TRAINING
We randomly splitted the Mayo dataset [53] into four dif-
ferent training sets,each with 5,000 image patches of size
80 × 80 × 11 pixels. Then, different training sets were used
to validate the generalizability of our proposed 3D SMGAN
model. The results are presented in Fig. 10 and Table 4.

APPPENDIX B
SUMMARY OF NOTATIONS
See Table V.
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