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Abstract— The proliferation of Artificial Intelligence-Generated
Images (AIGIs) has greatly expanded the Image Naturalness
Assessment (INA) problem. Different from early definitions that
mainly focus on tone-mapped images with limited distortions (e.g.,
exposure, contrast, and color reproduction), INA on AI-generated
images is especially challenging as it owns more diverse contents and
could be affected by factors from multiple perspectives, including
low-level technical distortions and high-level rationality distortions.
In this paper, we take the first step to benchmark and assess the
visual naturalness of AI-generated images. First, we construct the
AI-Generated Image Naturalness (AGIN) dataset by conducting
a large-scale subjective study to collect human opinions on the
overall naturalness as well as perceptions from the technical quality
and rationality perspectives. AGIN verifies several insights for the
first time that naturalness is universally and disparately affected
by both technical and rational distortions, while its manifestations
vary with different generation tasks. Second, to automatically assess
the naturalness of AIGIs that align with human opinions, we pro-
pose the Joint Objective Image Naturalness evaluaTor (JOINT).
Specifically, JOINT imitates human reasoning in naturalness eval-
uation by jointly learning technical and rationality features with
several specific designs to guide model behavior from respective
perspectives. Experiments demonstrate that JOINT significantly
outperforms existing methods for providing more subjectively
consistent results on naturalness assessment. The dataset can be
accessed at https://github.com/zijianchen98/AGIN.

Index Terms— AI-generated images, image naturalness assess-
ment, image quality assessment, dataset.
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I. INTRODUCTION

RECENT advancements in generative models have
sparked a new craze in Artificial Intelligence-Generated

Images (AIGIs), which have gained significant progress across
various applications, including text-to-image generation [1],
[2], [3], image translation [4], [5], [6], [7], [8], image inpaint-
ing [9], [10], image colorization [11], [12], [13], and image
editing [14], [15], [16]. However, even cutting-edge models
occasionally generate irrational content or technical artifacts
in the image, which we refer to as the image naturalness
problem. Unlike natural scene images (NSIs) that are captured
from real-world scenes, AI-driven image generation harnesses
neural networks to learn synthesis rules from extensive image
datasets [17]. Its instability and randomness of generation
mode attach AIGIs with more diverse content, leading to vary-
ing degrees of naturalness, which often requires retouching and
filtering before practical use so as to avoid misleading people
and negative social repercussions. Consequently, objective
models for evaluating the naturalness of AIGIs are urgently
needed.

Conventionally, image naturalness is described as the degree
of correspondence between a real-life scene and a photograph
displayed on a device based on some technical criteria (e.g.,
exposure, color reproduction, shooting artifacts) [18], [19],
[20], which has been utilized for image quality assessment
(IQA) to compare and guide the optimization of systems and
algorithms [21], [22], [23]. Under this theory, the images with
richer details (Fig. 1(c) and Fig. 1(d)) should have notably
better naturalness than the blurred image in Fig. 1(a), which is
opposite to the human opinion. More recently, the emergence
of AIGIs broadened the definition of image naturalness to
comprise more non-technical semantic-related factors (e.g.,
existence and context), which are normally regarded as ratio-
nality factors [17], [24]. However, it is highly subjective and
its mechanism of how rationality affects human perception in
image naturalness perception is still ambiguous and may be
multi-dimensionally coupled.

In this paper, we make the first attempt to investigate
the naturalness assessment problem of AIGIs, a new field
of quality assessment with increasing attention [24], [35],
[39]. We collect the AI-Generated Image Naturalness (AGIN)
dataset, the first-of-its-kind dataset to study this problem.
Specifically, AGIN contains 6,049 images collected from five
different generative tasks with 18 model variants to ensure
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Fig. 1. An example from the proposed AGIN dataset. We highlight the
regions with apparent technical or rationality distortions using dotted yellow
circles. It is noticeable that although the background region is blurry and
noisy in Fig.1(a), humans assign a higher naturalness score than Fig.1(d),
because the banana in Fig.1(d) is more irrational. This indicates that traditional
quality definition is insufficient to encompass the issues faced by AI-generated
images, while multi-perspective settings can effectively avoid the perceptual
bias on single absolute evaluation and provide more accurate judgments to
serve as downstream supervisions.

diversity. A total of 907,350 human opinions for technical and
rationality perspectives as well as their effects on the overall
naturalness scores are collected from 30 participants. AGIN
also provides several valuable observations for understanding
human reasoning in visual naturalness. First, we find both tech-
nical distortions (e.g., contrast, blur, and generative artifacts)
and rationality distortions (e.g., existence, color, and layout)
can affect visual naturalness significantly. Second, we notice
that most factors in the two perspectives are relevant, but have
disparate impacts on the image naturalness, which can result in
a biased naturalness assessment when applying traditional IQA
models supervised by a single label. Furthermore, we observe
that the overall naturalness score can be well-approximated
by a weighted sum of the technical and rationality scores
(MOS = 0.145MOST + 0.769MOSR), which indicates that
joint learning from technical and rationality perspectives can
be a feasible way to predict naturalness.

Based on the AGIN dataset, we propose the Joint Objective
Image Naturalness evaluaTor (JOINT), an objective natu-
ralness assessment method that mimics human reasoning
of image naturalness by jointly learning on both techni-
cal and rationality branches. Specifically, given the different
characteristics of each branch, we elaborate several designs
including perceptual artifacts-guided patch partition, deep fea-
ture regularization, and pre-training, to allocate each branch
with corresponding learning interests. Two different supervi-
sion schemes including using the overall naturalness scores
(JOINT) and the respective scores for each perspective
(JOINT++) are applied to train the model. Subsequently,
we use an effective subjectively-inspired weighting strategy
that integrates the predictions of two branches to compute the
overall naturalness score. With these designs, the proposed
JOINT and JOINT++ not only reach better accuracy on the
overall naturalness prediction but also provide more reliable
results from technical and rationality perspectives.

Our contributions can be summarized as follows:
• We contribute the AGIN dataset (6,049 images), the first

INA dataset for AIGIs that focuses on five prevalent

generative tasks and contains 907,350 subjective opinions
from technical quality and rationality perspectives as well
as their effects on overall naturalness scores.

• We comprehensively analyze the human sensitivity and
perceiving differences at various naturalness distortion
types and further investigate the influence of technical
and rationality factors on image naturalness.

• We propose the JOINT, an objective naturalness evaluator
for AIGIs that models human perception of naturalness by
brain-inspired joint learning from technical and rationality
perspectives.

• Extensive experiments on AGIN and its subsets show
that JOINT and JOINT++ outperform existing IQA
methods by a large margin. Ablation experiments further
demonstrate the effectiveness of the view decomposition
strategy and other specific designs.

II. RELATED WORK

A. Image Naturalness Assessment

Different definitions of image naturalness have been given.
In the early days, naturalness was investigated by varying
the colorfulness, saturation, and hue of color images of nat-
ural scenes at various lightness levels [18], [41]. Cadfk and
Slavík [19] revealed that there exist high correlations between
naturalness and image attributes, especially luminance and
contrast. In [20], naturalness is defined as the degree of
correspondence between an imaging device’s captured photo
and memories of real-life scenes, where human skin, grass,
and sky were used as memory colors to express the perceived
naturalness differences. Wang et al. [42] proposed that global
naturalness is restrained by both high- and low-frequency
information as well as illumination and reflectance, which
are inherently related to the local details. Later in [23],
naturalness is defined based on artifacts induced by some
image processing methods (e.g., halos, blur, and lost details)
and on the individual feeling (e.g., memory, opinion, and
background). Recently, Le et al. [43] discussed the potential
relationships between image aesthetics, quality, and natural-
ness. Empirical studies have demonstrated that while there
exists a moderate correlation between image aesthetics and
naturalness, these attributes represent distinct facets of image
quality. In addition, there are some naturalness features have
been proposed for image quality assessment (IQA) in few
literature. Gu et al. [21] considered naturalness in tone-mapped
images as the fitness of the standard deviation and the mean
of pixel values to a Gaussian function and a Beta probability
density function, which was computed based on statistics with
3,000 natural scene images (NSI). Liu et al. [44] characterized
the naturalness variation through the distribution variations of
the locally mean subtracted and contrast normalized (MSCN)
coefficients and the products of pairs of the adjacent MSCN
coefficients so as to quantify the image quality degradation.
In another study, Yan et al. [22] integrated the naturalness
degree prediction task into the deep learning-based IQA task
to enhance the representation and generalization abilities of
models.

In such an era dominated by generative models, AIGIs have
emerged as another significant source of visual content. Most
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TABLE I
COMPARISON OF THE PROPOSED AGIN DATASET WITH TRADITIONAL NATURAL SCENE AND AI-GENERATED IMAGE QUALITY DATASETS

generative adversarial network (GAN)-based methods [4], [5],
[6] even diffusion-based generative models [7], [9], [12], [15]
are prone to introduce perceptible unnatural perturbations (e.g.,
spurious details, disordered layout, or color mismatches) due
to their instability and mode collapse issues. Unfortunately,
prior naturalness assessment studies driven by image statis-
tic distribution or handcrafted features have predominantly
focused on NSIs, which fail in AIGIs, where more diverse
contextual content variations with less significant intrinsic
properties (e.g., resolution, color space, and image format)
exist. Consequently, there is an urgent need to define the
naturalness in AIGIs, as its underlying influencing factors
remain an open question.

B. IQA Datasets

In the past two decades, a variety of IQA datasets [25], [26],
[27], [28], [29], [30], [31], [32], [33] have been established
to support the development of objective IQA algorithms for
either generic images or domain-specific purposes. Tab. I
summarizes and compares these IQA datasets. Regarding
generic IQA datasets, LIVE [25] was proposed with 779 arti-
ficially distorted images. As a successor, TID2013 [28] was
released with more distortion types and images, compared with
LIVE, to simulate practical situations (e.g., image acquisition,
image compression, watermarking, and registration) compre-
hensively. Later, the emerging deep learning methods raise
new requirements on large-scale IQA databases. Subsequent
datasets [29], [30], [31], [32], [33] selected source contents
from the Internet or multimedia collections, achieving a sig-
nificant advancement either in image quantity or simulated
distortion types. For instance, KonIQ-10k [33] first created
a large collection of images in-the-wild to depict a broad
range of appropriate content and then sampled images via eight
content indicators, which enforce a more uniform distribution.

More recently, the rapid development and popularity of gen-
erative models have spawned several IQA databases for AIGIs.
As a pioneering work, Zhang et al. [35] constructed AGIQA-
1k, a small dataset with 1,080 generated images for the task of
IQA. In [36], Wang et al. proposed AIGCIQA2023 with 2,400

images generated by six text-to-image models, where three
dimensions of ratings are collected including quality, authen-
ticity, and correspondence. Meanwhile, Kirstain et al. [37]
built the Pick-A-Pic, a large-scale dataset of text-to-image
prompts and real users’ preferences over 500,000 generated
images. However, the images within the Pick-A-Pic dataset
were generated only by three models, resulting in a lack of
content variety. Additionally, it does not collect ratings in the
form of mean opinion score (MOS), as did in mainstream
IQA datasets, thus hindering its utility for training deep
learning-based IQA models. A similar problem also occurs
with ImageRewardDB [38] and PKU-AIGIQA-4K [40], where
the number of adopted generation models and annotators per
image is limited. In summary, the aforementioned works are
either carried out within small-scale groups or merely collect
coarse-grained, single-voice, and overall subjective opinions,
lacking the exploration of underlying influencing factors and
explainable evaluations on various image generation tasks,
which may lead to the ambiguity of subjective quality opinions
in AIGI quality assessment (AIGIQA).

C. Objective Quality Assessment on AIGIs

As a branch of IQA, the AI-generated image quality assess-
ment task has garnered increasing interest among researchers.
Early objective metrics such as Inception Score (IS) [45]
measures perceptual quality by calculating the uniformity of
AIGI group features from the output of Inception model.
Distance-based methods such as Fréchet Inception Distance
(FID) [46] and Kernel Inception Distance (KID) [47] as well
as Precision-Recall [48] evaluate the discrepancy between
distributions of AIGIs and NSIs to quantify the quality of
AIGIs. Nevertheless, the above methods are all group-targeted
and not suitable for assessing single image. Besides, the widely
used CLIPScore [49] is already saturated in comparing state-
of-the-art generative models with authentic images and can
inflate for a model trained to optimize text-to-image alignment
in the CLIP space [50]. Additionally, there have been a series
of learning-based works for quality assessment on AIGIs [36],
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Fig. 2. Workflow of the subjective evaluation in AGIN. Source images were first collected from 5 generative tasks and real-world image datasets (a), and
then we conducted in-lab training with instructions (b). After that, subjects were asked to rate the technical quality, rationality, and naturalness of AIGIs, and
select the corresponding main factor through the radio buttons (c, d), while the spot check was parallelly carried out (e) to control the annotation quality.
Zoom in for better visualization.

[37], [38], [39], [40], [51], which mainly take perception, text-
image alignment, and authenticity as the objective of AIGIQA.
Li et al. [39] proposed to divide the prompt into multiple
morphemes while cutting the whole picture into multiple stairs
and giving the final score through their one-on-one alignment.
In [38], Xu et al. used BLIP [52] to extract image and text
features, then combined them with cross attention, and finally
used an MLP to generate a scalar for human preference
prediction. Inspired by the fact that the visual quality and
authenticity are distance-sensitive, Zhou et al. [51] proposed
an adaptive mixed-scale feature fusion network (AMFF-Net)
for no-reference AIGIQA, which takes the scaled images
and original-sized image as the inputs to obtain multi-scale
features for better text-image feature alignment. However,
most of these AIGIQA methods rely heavily on the correlation
between textual and visual features, which is not conducive
to other prompt-free image generation tasks (e.g., image-to-
image translation, editing, or colorization.). Besides, these
models have not been specifically designed to address the
unique distortion issues (e.g., artifacts, layout, or existence)
of AIGIs, remaining as an open problem. This motivates us to
provide a more appropriate definition of image naturalness and
propose an objective model to evaluate AIGIs from multiple
perspectives.

III. AI-GENERATED IMAGE NATURALNESS DATASET

To aid in the advancement of objective assessment mod-
els tailored for AI-generated images, we have painstakingly
collected a novel dataset for AI-generated image naturalness
assessment. Below, we elaborate on the construction proce-
dures of the proposed AGIN dataset, shown in Fig. 2.

A. AIGI Collection

As an initial investigation, we choose five sources of AIGI
from text-to-image, image translation, image inpainting, image
colorization, and image editing tasks, which typically suffer
from naturalness problems. We select 18 mainstream models
including: 1) five text-to-image models (i.e., Stable Diffu-
sion1.5 [3], [53], Stable Diffusion2.1 [54], Openjourney [55],

Dreamlike [56], and Realistic Vision1.4 [57]) with over
400 prompts used for image generation, 2) five image trans-
lation models (i.e., RABIT [6], DiffuseIT [7], StyleCLIP [5],
MATEBIT [8], and CoCosNet [4]), with various text-, image-,
or mask-guided (e.g. edge map, semantic map) translation
modes, 3) two image inpainting models (i.e., RePaint [9] and
MAT [10]) that take mutilated images as inputs, 4) three image
colorization models (i.e., PDNLA-Net [13], DDColor [11],
and DISCO [12]) that colorize the grayscale images, and
5) three image editing models (i.e., InstructPix2Pix [15],
DragGAN [14], and MagicBrush [16]) that perform layout or
content editing on the image via text prompts or interactive
anchor points. Note that we also added 200 extra real images
into the AGIN dataset to help analyze the accuracy of the
subjective experiment and objective algorithms, which stand
for a high level of naturalness. As a result, 6,049 images were
collected for the following subjective experiments.

B. Design of the Subjective Evaluation

1) Choice of Naturalness-Related Factors: We study the
naturalness assessment problem from two perspectives, i.e., the
low-level technical quality-related perspective and the high-
level rationality-related perspective. For the factors in technical
perspective, we consider specific image attributes (i.e. lumi-
nance (T-1) and contrast (T-2)) that have high correlations
with the naturalness of real images [19], [21], [22]. Besides,
in-capture authentic distortions of NSI [58], such as repro-
duction of details (T-3) and blur (T-4), are also considered.
We further include the artifacts (T-5) (content discontinuity or
meaningless objects) introduced by the instability and mode
collapse issues of generative models [24], [39], [59]. Since
AIGIs possess richer content with diverse styles than real
images, the visual naturalness of AIGIs is largely affected
by rationality-related factors beyond technical distortions [17].
Such high-level factors are vaguely described as the memory
of the real-life in previous research [20], [23], which are
not suitable for qualitative and quantitative analysis. Here,
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Fig. 3. Visualization of images with severe (1st row with red box) and minor effects (2nd row with green box) of each dimension.

we contribute five rationality-related dimensions to collect
human feedback:

(R-1) Existence: Whether the scene or objects in the image
exist or could exist in the real world.

(R-2) Color: Does the image follow the natural color rule
with good color aesthetics [60]?

(R-3) Layout: Is the image layout logical?
(R-4) Context: Whether the objects in the image are related.
(R-5) Sensory Clarity: Perception of abstraction level.

Whether the image content is easy to understand.
Fig. 3 presents examples with varying degrees of effect

for each dimension, illustrating the manifestations of the
naturalness problem across different dimensions.

2) Participants and Apparatus: To ensure the compre-
hensiveness and reliability of the evaluation, we recruited
30 participants (18 male, 12 female, age = 22.63.1) from
campus, all with normal (corrected and no difficulty in color
recognition) eyesight. We conduct the subjective studies in-
lab to ensure that all subjects have a clear and consistent
understanding of each factor. All images are displayed on a
Lenovo 27-inch screen with a resolution of 2560 × 1440 and
a viewing distance of about 70cm. Other settings, such as
ambient brightness, lighting, and background, are configured
according to the ITU-R BT.500 recommendation [61]. Note
that we have addressed the ethical challenges involved in
constructing such a dataset, by obtaining from each subject
depicted in the dataset a signed and informed agreement,
making it equipped with such legal and ethical characteristics.

3) Rating Strategy and Wording: We discuss the concrete
rating form for subjective evaluation as follows. a) Task-
oriented absolute choice. Since the wording of questions
can significantly affect annotators’ labeling behavior [50],
we abandon the traditional endpoint labels from worst to best,
which are too vague to describe the degree of naturalness.
As a solution, we design specific labels for the evaluated three
perspectives to reduce subjectivity, as shown in Fig. 2(c). b)
Pick up the main factor. Most existing IQA datasets merely
focus on the assessment of the overall score but neglect to
explore the underlying factors. Therefore, we ask subjects to
choose a primary factor that affects most for each perspective
after rating the general scores [27], which enables us to
investigate the correlation between each dimension and image
naturalness. Fig. 2(c) shows the rating interface, which is
composed of the left image display area and the right operation
area with function buttons. To avoid interference between each

perspective, we split the whole evaluation process into two
phases that only after the naturalness evaluation is complete
can participants move on to rate the technical quality and
rationality, as well as to select their respective main factor.

4) Training, Testing, and Annotation: As shown in Fig. 2,
before the annotation, we instructed all participants to have
a clear and consistent understanding of all evaluated aspects
and tested their eligibility via a 10-image pre-labeling. Their
answer is compared with ground-truth ratings that were
collected from five experts. Participants need to achieve at
least 70% ratings that satisfy |ground truth − rating| ⩽
1 to move on. During the formal annotation, we shuffled
and divided all images into 15 sessions, each containing
400 images except for the 15th. It took a participant 22.7s
on average to evaluate an image (= 15.3s of rating three per-
spectives + 7.4s of selecting the main factors). Consequently,
a single session will require over two hours to complete.
To reduce visual fatigue, there is a rest session with at least
15 minutes between two sessions. Moreover, we randomly
inserted ten golden images (universally acknowledged with
poor or good quality) into each session as an inspection to
ensure the quality of annotation for in-process testing. Each
participant was compensated $16 for each session according
to the current ethical standard [62]. At last, a total of 6,049 ×

30 × (3+2) = 907,350 ratings were collected. The mean
opinion score (MOSa,i ) for aspect a ∈ {T, R, N} of image
i is obtained by averaging the raw opinions OSk

a,i

∣∣K
k=0 from

K subjects.

C. Annotation Quality Control

In addition to the pre-labeling and in-process check trials,
we further assess the reliability of the rated scores by cal-
culating the inter-annotator agreement metric, Krippendorff’s
α [63]. Specifically, Krippendorff’s α for technical quality,
rationality, and naturalness ratings are 0.32, 0.33, and 0.37,
respectively, indicating appropriate variations among annota-
tors. Furthermore, we use Spearman’s rank-order correlation
coefficient (SRCC) to calculate the correlation between a
single participant and the overall MOS, thus judging whether
an annotator is an outlier. As a result, we noticed two line
clickers with over 37.5% of the same ratings, which have an
extremely low SRCC (0.1851 and 0.2839). We removed all
their ratings, improving Krippendorff’s α of 0.07, 0.05, and
0.04 w.r.t. technical quality, rationality, and naturalness scores,
respectively.
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Fig. 4. Feature distribution comparisons among the four representative
AI-generated image quality datasets: AGIQA-1k [35], AGIQA-3k [39],
PKU-AIGIQA-4k [40], and the proposed AGIN.

Fig. 5. Relative range Rk
i and coverage uniformity U k

i comparisons of
the selected five features computed on four representative AIGIQA datasets:
AGIQA-1k [35], AGIQA-3k [39], PKU-AIGIQA-4K [40], and our AGIN.

D. Dataset Analysis

1) Image Attributes: Here we characterize the content
diversity of the images in our dataset using five low-level fea-
tures, including brightness, contrast, colorfulness, sharpness,
and spatial information (SI). Three representative AIGIQA
datasets, i.e., AGIQA-1k [35], AGIQA-3k [39], and PKU-
AIGIQA-4k [40], are selected for comparison. Fig. 4 shows
the fitted normal distribution of each selected feature. Besides,
we follow the procedure in [64] to quantify the relative range
and coverage uniformity of these datasets over each feature
space, which measure the inter- and intra-dataset differences,
respectively. As shown in Fig. 4 and Fig. 5, our AGIN
exhibits comparable coverage with the other datasets in terms
of contrast and colorfulness. Regarding the sharpness and SI,
AGIQA-1k shows a skew towards higher values than the other
datasets, which is consistent with the observation that the
images in AGIQA-1k are generated by only two diffusion-
based text-to-image models. As for the brightness, our AGIN
and AGIQA-3k are spread most widely, while AGIQA-1k
adheres closer to middle values. In general, the proposed

TABLE II
CORRELATION BETWEEN DIFFERENT PERSPECTIVES AND OVERALL

NATURALNESS IN AGIN. a = 0.145, b = 0.769

Fig. 6. Data properties of AGIN. (a) The correlation between technical and
rationality perspectives, (b) distribution of the overall naturalness scores.

Fig. 7. The tendency of main factors chosen by participants across different
ranges of MOSN.

AGIN owns a preferable content diversity with appropriate
range and uniformity.

2) Statistics of the Subjective Ratings: We visualize the
distribution of three evaluated perspectives and the inner
correlation between the technical and rationality perspectives
in Fig. 6. Tab. II lists Spearman’s and Pearson’s correla-
tions between different perspectives and naturalness. We can
observe a right-skewed distribution in all three dimensions,
reflecting the overall performance of current generative mod-
els. Simultaneously, it is notable that technical quality and
rationality affect naturalness unequally, i.e., rationality has
a greater impact on the overall naturalness (SRCC=0.9694)
than technical perspective (SRCC=0.8647). Besides, a simple
addition of these two perspectives has a higher correlation with
the overall naturalness score than the technical itself. To seek
the best fitting form, we apply a two-parameter approximation
to explore the weights [65]. As a result, we find that the MOSN
can be well approximated as 0.145MOST + 0.769MOSR,
which reaches 0.9777 in terms of SRCC. This indicates that
employing mainstream IQA models, which follow an overall
MOS regression strategy, could inadvertently lead to biased
naturalness assessment.

3) Frequency of Different Naturalness Factors: Fig. 7
shows the proportion of each factor in different ranges of
naturalness scores. The terms “T-Null” and “R-Null” sig-
nify the absence of either the absence of factors related
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Fig. 8. MOS distribution comparisons among five image generation tasks.

to technical quality and rationality affecting the naturalness,
or the difficulty subjects faced in identifying the primary
factors. Specifically, we find that ‘T-Null’ and ‘R-Null’ are
more prevalent in images with higher naturalness scores
(MOSN ∈ [4, 5]), indicating that images with a high degree
of naturalness tend to exhibit relatively better technical quality
and rationality. Moreover, we notice that humans are more
sensitive to the artifacts (T-5) and blur (T-4) w.r.t. technical
quality while focusing more on the existence (R-1) of the
image contents w.r.t. rationality. Meanwhile, an notably high
proportion of artifacts (T-5), existence (R-1), and layout (R-3)
is found in cases of poor naturalness (MOSN ∈ [1, 2]). This
implies that severe artifact distortions can result in irrational
contents and disorganized layouts, underscoring their signifi-
cance as key factors of naturalness for consideration in AIGIs.

4) Statistics of Task-Wise Ratings: We can observe from
Fig. 8 that real images have higher MOS in all three per-
spectives than AIGIs, highlighting the naturalness problems in
current image generation tasks while emphasizing the neces-
sity of addressing these issues. Besides, compared to the other
generation tasks, the image translation task has a larger pro-
portion in the low segment of all three perspectives, indicating
that the change of content and style during image translation
is prone to produce naturalness distortion. It is worth noting
that image colorization owns the highest average MOS among
all three perspectives, aligning with the observation depicted
in Fig. 7, where color irrationality constitutes the smallest
proportion of the primary factors impacting naturalness. Fur-
thermore, we also investigate the occurrence frequency of each
factor across models, shown in Fig. 9. Overall, these newly
contributed dimensions describe the naturalness concerns of
AIGIs, some of which have never been encountered in the
conventional IQA domain, providing reliable intuitions for
developing objective naturalness assessment models.

IV. JOINT OBJECTIVE IMAGE NATURALNESS EVALUATOR

In this section, we introduce the proposed JOINT and
JOINT++. We first discuss the design philosophy and moti-
vation in Sec. IV-A. Then we elaborate on two key learning
branches, i.e., technical prior branch (Sec. IV-B) and ratio-
nality perceiving branch (Sec. IV-C). Lastly, we present the
associated objective functions (Sec. IV-D) for model training
as well as a subjective-inspired weighting strategy for natural-
ness assessment.

A. Motivation

To develop an objective INA model for evaluating the
naturalness of AI-generated images, we commence by first

gaining insights from the perceptual mechanism of human
visual system. Studies in neurosciences [66], [67] suggest that
humans possess two distinct visual systems, which follow two
main pathways, i.e., the dorsal stream and ventral stream,
to handle low-level and high-level visual perception, respec-
tively. The dorsal stream is involved in spatial information
awareness from the visual cortex and is good at detecting and
analyzing spatial distortions. The ventral stream is associated
with object recognition and form representation, especially
long-term stored representations (so-called memory), which
are highly related to the rationality perception of an image.
Meanwhile, we notice from the subjective studies in AGIN
that overall naturalness opinions are affected by both low-level
technical and high-level rationality perspectives.

Inspired by these findings, we propose the Joint Objective
Image Naturalness evaluaTor (JOINT) to align model behav-
ior with human perception process. Specifically, we decom-
pose the AIGI into two views, namely the technical view (VT)
that focuses on technical quality perception, and rationality
view (VR) for vice versa, shown in Fig. 10. With the decom-
posed views as inputs, two technical (MT) and rationality (MR)
branches evaluate different perspectives independently:

ŜT = MT(VT); ŜR = MR(VR). (1)

Although most perceptions related to the two perspectives
can be separated, a small proportion of factors are related
to both perspectives, such as color (an argument could also
be made for it to fall under the technical perspective that is
closely linked to low-level visual features including luminance
and contrast [68].), or artifacts (which can greatly impact the
semantic rationality of an image [24]). Henceforth, we cir-
cumvent separate these factors but instead employ inductive
biases for each branch (patch partition strategy and feature
regularization) to allocate these two branches with correspond-
ing learning interests. Furthermore, these two branches are
separately supervised, either both by the overall naturalness
scores (denoted as JOINT) or by respective technical and
rationality opinions exclusively in the AGIN (denoted as
JOINT++), introduced as follows.

B. Technical Prior Branch

For technical prior branch, we explicitly guide the model to
prioritize the technical distortions while minimizing the impact
of semantic information. A straightforward way is to crop
the image I into size-fixed patches and stitch them together
(Irand ) to disorganize most contents and layout while retaining
technical distortions, thus destroying semantic information and
rationality factors in images [69], [70]. However, different
from most global technical distortions (noise or blur), gener-
ated artifacts could become indistinguishable by random patch
partition. Thus, we propose to localize possible perceptual
artifacts first and bypass these regions to keep their local
distortion information.

Specifically, we use the segmentation model proposed
in [71] as the artifacts locator, which detects and segments the
artifact areas that are noticeable to humans, to guide the patch
partition. Given an image I of size IW × IH , the perceptual

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 11,2025 at 13:46:28 UTC from IEEE Xplore.  Restrictions apply. 



3580 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 35, NO. 4, APRIL 2025

Fig. 9. Radar chart of the frequency of occurrence at different generative tasks for ten types of naturalness distortions.

Fig. 10. Framework of the proposed JOINT and JOINT++, including the technical prior branch (Sec. IV-B) and rationality perceiving branch (Sec. IV-C)
with indirect and fine-grained supervision strategies (Sec. IV-D).

artifacts-guided patch partition can be formulated as:

mc, nc = ALocator(I), c ∈ {1, . . . , C} (2)

Irand = R Part
(
I

j∈[1,
IH
N ]\{mc},k∈[1,

IW
N ]\{nc}

, N8

)
, (3)

where ALocator(·) denotes the perceptual artifact locator that
returns coordinates for the c-th artifacts in m-th horizontal grid
and n-th vertical grid. C is the total number of detected artifact
regions. The size of divided patch I j,k is N × N . Specifically,
j and k are range from 1 to IH

N and IW
N , respectively, while

subject to the condition that ( j, k) ̸= (mc, nc). R Part (·, N8)

indicates a random partition within the 8-connected neigh-
borhoods of a patch, which destructs the local semantics of
the image while preserving the global semantics (Fig. 11).
Afterward, the re-permuted patches will pass through a Swin-
T [72] backbone, and the extracted features are then flattened
and sent to a multilayer perceptron (MLP) for technical quality
score regression.

C. Rationality Perceiving Branch

Since the high-level semantic information in rationality con-
cerns is likewise of interest to the image aesthetic assessment
(IAA), we thereby pre-train this branch with IAA dataset
AVA [73] first and introduce a deep feature regularization
to mitigate the impact of technical perspective. In particular,
to maintain the principal content of the image while reducing
the impact of partial technical distortions (e.g., noise, blur,
or detail loss), we apply the piece-wise smooth algorithm [74]

Fig. 11. Visualization of perceptual artifacts-guided patch partition. The
first row shows the original images from AGIN. The second row exhibits the
prediction results of artifacts (violet areas). The third row shows the resulting
Irand after perceptual artifacts-guided patch partition.

to obtain the low-frequency map (LFM) of image ILFM
(Fig. 12). We can observe that the ILFM filters out some tech-
nical quality-related attributes but still preserves the semantic
information of the original image.

Moreover, existing research [75], [76] suggests that the
distribution differences of deep features among different stages
are related to technical distortions. Henceforth, we employ the
one-dimensional form of Wasserstein distance (WSD) as the
penalty constraint LWSD to eliminate the technical interference
in rationality branch (MR) by reducing the feature distribution
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Fig. 12. Comparison of the original image (first row) and its corresponding
low-frequency map (second row).

divergence between I and ILFM:

LWSD = Wl (I, ILFM) +

N∑
i=1

Wl

(
I i , I i

LFM

)
, (4)

where I i and I i
LFM denote the extracted features of I and

ILFM at the i-th stage. Wl(·, ·) is the Wasserstein distance
with l-norm. More specifically, as shown in Fig. 10, we take
the original image I and its LFM ILFM as inputs and use
the ResNet50 [77] to extract their deep features at five stages,
which has been proved to be useful for quality assessment [78].
Later, we reshape the I, ILFM, I i , and I i

LFM to 1D vectors to
calculate the LWSD. Beyond this, the regression tactic in the
rationality branch is the same as technical branch.

D. Learning Objectives

To utilize the relative quality among images while keeping
the absolute prediction accuracy, we apply the weighted sum
of monotonicity and the commonly used mean squared error
(MSE) loss. Specifically, SRCC loss is adopted to boost the
prediction monotonicity of models [86], which is defined in
the form of Pearson’s linear correlation coefficient (PLCC)
between ranks:

LMSE =
1
M

∑M

n=1

∥∥yn − ŷn
∥∥2

2, (5)

LSRCC = 1 −

∑
n (vn − v̄)(pn − p̄)√∑

n (vn − v̄)2 ∑
n (pn − p̄)2

, (6)

LC = LMSE + αLSRCC, (7)

where vn and pn denote the rank of the ground truth yn
and the rank of predicted score ŷn , respectively. Since the
naturalness is affected by both technical quality and rationality
perspectives (Sec. III-D), we first optimize two branches using
the overall naturalness MOSN in an indirect supervision way
(LIS):

LIS = LC

(
ŜT, MOSN

)
+ LC

(
ŜR, MOSN

)
+ βLWSD, (8)

where β is a hyperparameter to control the strength of LWSD.
ŜT and ŜR denote the predicted score of the technical qual-
ity and rationality branches, respectively. Besides, based on
the AGIN dataset, we also propose a fine-grained version
(LFS) using the corresponding perspective opinions for both
branches:

LFS = LC

(
ŜT, MOST

)
+ LC

(
ŜR, MOSR

)
, (9)

and the proposed JOINT++ is trained by a weighted combi-
nation of the above two losses (LIS and LFS) to obtain more
accurate predictions for both branches:

LJOINT++ = LFS + λISLIS (10)

Finally, we adopt a simple but effective fusion strategy to
compute the overall naturalness score (ŜN) from two perspec-
tives: ŜN = 0.145ŜT + 0.769ŜR, according to the subjective
studies in AGIN.

V. EXPERIMENTS

A. Experimental Setup

1) Implementation Details: In the technical branch, we crop
patch at size 32 × 32, and Swin-T [72] is used as backbone.
We use the ResNet50 backbone [77] pre-trained with AVA
dataset [73] in the rationality branch. α and β in LIS are set
as 1 and 0.5, respectively. λIS in Eq. 10 is set as 0.5. We train
our model for 30 epochs using the Adam optimizer [87] with
β1 = 0.9 and β2 = 0.999. The learning rate is 2 × 10−5, and
the batch size is set to 32. In the rationality branch, all images
are calculated at size 224 × 224 so as to satisfy the input
requirement of ResNet50. Besides, for the regularization term
LWSD, we set l = 2 at Eq. 4, as in [76], making the quality
measure more sensitive to outliers, while the N in LWSD is 5,
corresponding to the five stages in Resnet50 backbone. Other
baselines are initialized using their respective settings. Before
training, we randomly split the AGIN dataset into the training,
validation, and test sets with a ratio of 7:1:2 for 5 times, and
report the averaged results. All experiments are conducted on
a single NVIDIA RTX 4090 24G GPU.

2) Evaluation Criteria: We adopt two criteria to evaluate
the accuracy of quality predictions: SRCC and PLCC, which
measure the prediction monotonicity and linearity, respec-
tively. Before calculating PLCC, we mapped the model’s
predictions to the MOSs using a four-parameter logistic non-
linearity [86].

3) Competing Methods: We select 14 representative meth-
ods for comparison, including two classical no reference (NR)
IQA methods: BRISQUE [88] and NIQE [89], five deep NR
IQA methods, DBCNN [90], HyperIQA [91], MUSIQ [92],
UNIQUE [93], and MANIQA [94], four image aesthetic
assessment (IAA) methods: PAIAA [95], TANet [83], Delegate
Transformer (Dele-T) [60], and SAAN [84], and three con-
trastive language-image pre-training (CLIP) model-based IQA
methods, CLIP-IQA [96], CLIP-IQA+ [96], and LIQE [97].

B. Exploring the Necessity of AGIN Dataset

We first conduct experiments to verify whether the existing
IQA and IAA datasets can solve the problem of AI-generated
image naturalness assessment, i.e., the necessity of AGIN
dataset. Specifically, we test a large number of models (both
traditional IQA and IAA models, along with the visual-
language prior-based IQA models) that were trained on
datasets from their respective domains, such as TID2013
[28] for synthetic distortions, KonIQ-10k [33] for in-the-
wild authentic distortions, PIPAL [34] for GAN-based image
restoration distortions, and AVA [73] for aesthetic analysis.
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TABLE III
VALIDATING THE NECESSITY OF AGIN DATASET. ALL BASELINES ARE TRAINED USING DATASETS FROM THEIR RESPECTIVE DOMAINS. THE 1ST, 2ND,

AND 3RD BEST SCORES ARE DENOTED IN RED, BLUE, AND BLACK, RESPECTIVELY

We calculate the SRCC and PLCC between the model’s
predicted outputs and the MOS across three perspectives in the
AGIN dataset. We can obtain the following observations from
Tab. III. First, either state-of-the-art IQA models or deep IAA
models yield inferior results on all three perspectives. Among
them, the second-best approach, MANIQA [94] trained on
KonIQ-10k [33], performs lower than our JOINT++ in
naturalness evaluation by 0.4327 (-109.91%) and 0.4328
(-107.29%) in terms of SRCC and PLCC. Meanwhile, the
evaluated IAA models achieve average SRCC scores of only
0.1580, 0.2261, and 0.2109 in terms of technical, rational-
ity, and naturalness perspectives, respectively. These results
indicate that the distortion issues on AIGIs are significantly
different from those on NSIs (neither a complete technical
distortion nor an aesthetic problem) and show the inappli-
cability of current IQA and IAA algorithms in naturalness
evaluation, thus highlighting the necessity of our AGIN dataset
for developing future objective naturalness metrics. Second,
evaluating AIGIs from technical and rationality perspectives
exhibits notable differences. We notice that IQA methods per-
form relatively better in evaluating technical quality, whereas
IAA methods are more proficient at assessing rationality,
which underscores the reasonability and effectiveness of our
distinct exploration of each perspective in the AGIN dataset.
Third, the evaluation of image naturalness is distinct from
the image quality assessment and image aesthetic assess-
ment tasks. Since mainstream IQA and IAA approaches
trained with current assessment datasets fail to provide sub-
jectively consistent results for image naturalness (>105%
lower in SRCC and PLCC), we speculate that this is due
to the variance of image content sources and disparities in
task objectives, illustrating the necessity of defining natu-
ralness for AIGIs and exploring its underlying influencing
factors.

TABLE IV
PERFORMANCE COMPARISONS ON THE AGIN. WE RETRAINED ALL MOD-

ELS USING THE SCORE OF EACH CORRESPONDING PERSPECTIVE

C. Evaluation on the AGIN

1) Quantitative Studies: In Tab. IV, we evaluate the base-
line algorithms by retraining and testing them on the AGIN
dataset. It can be observed that the two classical IQA methods,
BRISQUE and NIQE, perform significantly worse than deep
IQA methods, and the proposed JOINT++ still achieves the
best performance in terms of technical quality, rationality, and
overall naturalness perspectives. Surprisingly, all IAA methods
reach subpar performance compared to deep IQA models
and perform on average 44.74%/45.56% w.r.t. SRCC/PLCC
lower than the JOINT++ in naturalness evaluation. Their
ineffectiveness can be attributed to a lack of consideration
for technical factors and an attention bias in understanding
the semantics of the content itself. It is worth noting that
most IAA models concentrate more on global information
(e.g., semantic, composition, and color) than local artifacts
that could overwhelmingly affect the image naturalness, which
further demonstrates the differences between the definition
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Fig. 13. Performance comparison on different generation tasks. T2I, IT,
II, IC, and IE are the abbreviations of text-to-image, image translation,
image inpainting, image colorization, and image editing tasks, respectively.
We divided the AGIN dataset into five subsets according to the generation
tasks and trained JOINT++ using the other four subsets while testing on the
single target subset (a). Besides, we conducted train-test at a ratio of 8:2
within each subset (b).

Fig. 14. Qualitative studies of JOINT/JOINT++. Visualizations of images in
the AGIN where technical and rationality predictions are diverged.

of naturalness and aesthetics. Moreover, all IQA and IAA
approaches solely consider a single perspective with highly
coupled factors during image naturalness reasoning, thereby
rendering them incapable of providing reliable results.

2) Performance on Different Generation Tasks: We further
investigate the performance of JOINT++ on different gen-
eration tasks by conducting training and testing within the
task-oriented subsets of AGIN. As shown in Fig. 13(a), when
training with the other four subsets and testing independently
on the T2I, IT, and IE subsets, JOINT++ performs similarly to
when tested on the combinational subset of the whole AGIN.
Nevertheless, when testing on the II and IC subsets, the perfor-
mance dropped steeply. We conjecture that this corresponds to
the variance of distortion types in each subset, i.e., T2I, IT, and
IE tasks involve richer forms of naturalness distortion than IC
(mostly irrational color). Additionally, most of the images in
II subset are derived from human face datasets that inherently
differ from the other subsets in contents. Fig. 13(b) shows a
marked decrease in terms of SRCC when conducting train-
test evaluations within a single subset, primarily attributed
to the reduced number of training samples. On the whole,
performance on the technical perspective is slightly better than
the rationality perspective except for the IC subset, since color

Fig. 15. SRCC performance of different parameters.

disharmony belongs more to a high-level rationality perception
with aesthetics concerns.

3) Qualitative Studies: In Fig. 14, we visualize four images
with diverged predicted technical and rationality scores. The
two images with better technical scores (Fig. 14(a)&(b))
have clear contents yet suffer from irrational existence (a
person with feminine characteristics has bushy beard hairs)
and color (a nearly red bathroom). On the contrary, the two
with better rationality scores (Fig. 14(c)&(d)) possess unam-
biguous semantics but with blurs and artifacts (incompletely
formed zebra in the distance and a woman behind the door).
These observations align with human perception of the two
perspectives, proving the effectiveness of our joint learning
strategy that can provide disentangled quality predictions. Fur-
thermore, it should be noted from the perspective of real-world
applications that rationality or irrationality may be strongly
dependent on cultural context or diverse biometric differences.
Therefore, the models trained on AGIN could be biased in
some scenarios, which motivates us to continuously refine the
dataset and conduct cross-cultural comparative research in the
future.

D. Discussion on Model Parameter Selections

We further explore the selection of the parameters N in
Eq. 4, α in Eq. 7, β in Eq. 8, and λIS in Eq. 10 by recording
the SRCC results when different values are employed. A large
value of α, β, and λIS indicates that more counterparts, i.e.,
LSRCC, LWSD, and LIS, are considered in the loss function,
respectively. N represents the granularity of deep features that
participate in computing the Wasserstein distance. As shown in
Fig. 15(a), the SRCC value experiences a vast improvement
when α increases from 0.3 to 0.5, indicating that adding a
proper proportion of monotonicity prediction terms within the
loss function can boost model performance. Besides, optimal
model performance is achieved when both balanced factors
β and λIS are set to 0.5 (Fig. 15(b)&(c)). Fig. 15(d) shows
that introducing more hierarchical features into the calculation
of WSD can effectively enhance the ability of the rationality
perceiving branch to suppress quality-sensitive information.
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TABLE V
ABLATION STUDY OF SPECIFIC DESIGNS

TABLE VI
ABLATION STUDY OF CORRELATIONS BETWEEN PERSPECTIVES AND THE

EFFECT OF SUBJECTIVE FUSION STRATEGY (DENOTED AS ⊕)

TABLE VII
PERFORMANCE ON THE AGIN BY VARYING OF DIFFERENT BACKBONES

IN THE TECHNICAL PRIOR BRANCH

E. Ablation Studies

1) Effects of Specific Designs: As Tab. V shows, we verify
the effects of three special designs in the proposed JOINT by
keeping other parts the same. First, JOINT performs superior
to its variant w/o Localization that randomly shuffles the
patches and destructs all image semantics, proving the impor-
tance of preserving the local perceptual artifact distortions for
technical quality score regression. Second, a 0.027 improve-
ment of SRCC in the rationality perspective is observed when
equipped with deep feature regularization, demonstrating its
effectiveness in reducing the technical influences in rationality
prediction. Third, JOINT is notably better than the variant
w/o Multi-perspective (+6.38%/+7.54%/+9.90% in terms of
SRCC for three perspectives) that directly takes the original
images as inputs of both branches, suggesting that explicit
view decomposition encourages better naturalness-aware fea-
tures to be learned.

2) Effects of Subjectively-Inspired Weighting: We discuss
the naturalness score fusion strategy in Tab. VI. It is worth
noting that predicted scores from any single branch can
not adequately represent the naturalness, and directly taking
ŜT + ŜR as overall naturalness score without weights is also
less accurate (−5.01%/-5.98% in terms of SRCC/PLCC) than
the proposed subjectively-inspired weighting strategy. These
results further support the subjective observations found in the
AGIN.

3) Performances With Different Backbones: Since deploy-
ing different backbones within the rationality perceiving

Fig. 16. SRCC performance of different parameters, compared with our
method (JOINT++).

TABLE VIII
ABLATION STUDY OF LEARNING OBJECTIVES

branch can affect the calculation of WSD, we merely probe the
impact of different network architectures and model sizes on
the technical prior branch of JOINT++. Four representative
backbones, i.e., ResNet [77], ViT [98], ConvNext [99], and
Swin Transformer [72], are included. The results are listed
in Tab. VII, from which we make two valuable observations.
First, equipped with more sophisticated backbone networks
deliver better performance. We can observe that the perfor-
mance improves as the FLOPs of the backbones increase.
ResNet50, ViT-Tiny, ConvNext-Tiny, and Swin Transformer-
Tiny are with FLOPs around 4.5 × 109 (image resolution at
224 × 224), while their base versions are about 15.4 × 109.
Second, replacing the backbone network of technical branch
has a minimal impact on the prediction accuracy of the
rationality branch (< 0.01 decay in SRCC except for ResNet),
since they do not share parameters and only partial parameters
are affected during the overall loss optimization process.

4) Effects of Pre-Train&Fine-Tune Scheme: In Fig. 16,
we evaluate the effects of the pre-train&fine-tune scheme
applied in the rationality perceiving branch compared to direct
training on the AGIN dataset (w/o end-to-end pre-train) and
merely linear regression on pre-trained features (w/o end-
to-end finetune). The large-scale pre-training on the image
aesthetics dataset, AVA [73], contributes to the performance by
about 7.5% and 6.9% in terms of rationality and naturalness
perspectives, respectively. The end-to-end fine-tuning also
leads to nearly 3.2% and 2.9% improvements. Both processes
undoubtedly promote the model to integrate general high-
level semantics knowledge with rationality-concerned visual
information, leading to more accurate and reliable predictions.

5) Effects of Different Learning Objectives: In Tab. VIII,
we further validate whether the extra objective (LFS) can
improve the subjective consistency of overall naturalness pre-
diction. By combining LIS with LFS, JOINT++ achieves
+0.48%, +2.16%, and +0.85% performance gain in SRCC
for three perspectives, respectively. In addition, even directly
supervised by the overall naturalness MOS labels can also
achieve comparable performance, suggesting the feasibility
of explicitly modeling human perception of naturalness into
an approximated sum of technical quality and rationality
perspectives.

F. Can Re-Permuted Patches Preserve Semantics?

Prior studies [69], [70] show that technical quality per-
ception should consider global semantics to better measure
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Fig. 17. An example of measuring the degree of semantic information
retention.

TABLE IX
THE SRCC RESULTS OF CROSS-DATASET EVALUATION

TABLE X
THE SRCC AND PLCC RESULTS OF GENERALIZATION EVALUATION

distortion levels. Here, we discuss this unclear question: can
re-permuted images in the technical prior branch retain seman-
tic information that can still be recognized by deep neural
networks? Specifically, we evaluate its ability by conducting
experiments: we first utilize the vision-language model to
generate descriptions for the original and re-permuted images,
respectively, and then tokenize them to calculate the cosine
similarity. Fig. 17 shows an example of the procedures. It can
be observed that our perceptual artifacts-guided patch partition
strategy reaches 0.8414 cosine similarity, while random parti-
tion is about 10.3% lower. As for the whole AGIN, the average
similarity score of our strategy is 0.7323 (on average 14.7%
higher than w/ random partition). This indicates that it can
preserve weak global semantics to distinguish textures from
noises while guiding the model to focus more on low-level
technical distortions.

G. Cross-Dataset & Generalization Evaluation

We further test the applicability of the AGIN dataset and
the generalization ability of JOINT, shown in Tab. IX and
Tab. X. Two representative IQA methods, i.e., HyperIQA [91]
and UNIQUE [93], are employed for comparison. Concretely,
we select another two AIGIQA datasets, AGIQA-3K [39] and
AIGCIQA2023 [36], to evaluate the performance of JOINT
under the cross-dataset setting. Since these two datasets do
not satisfy the training requirements of JOINT++, we test on
their common dimension, namely the quality dimension and
crop the rationality perceiving branch of our JOINT, leaving
the technical branch to be trained (T-branch). Conversely, R-
branch denotes that only the rationality branch to be trained.
It is noteworthy that the performance of T-branch is slightly

worse than the others since it is only composed of a Swin-
T backbone followed by a simple regressor without other
special designs. The performance in R-branch is significantly
worse than the others, since they own different learning pref-
erences. Moreover, we observe that models trained on AGIN
show superior applicability when testing on other AIGIQA
datasets (avg. SRCC > 0.818 in same evaluation dimension).
To evaluate the generalization ability of JOINT, we conduct
experiments on three natural scene IQA datasets, i.e., KADID-
10k [32], KonIQ-10k [33], and PIPAL [34]. Specifically,
PIPAL gathers and annotates images enhanced by various
GAN-based image restoration algorithms, which do not follow
the natural image distribution and exhibit quite different from
the other datasets. It is clear from Tab. X that our JOINT
(T-branch) is on par with UNIQUE and HyperIQA on KADID-
10k and KonIQ-10k that achieves on average 0.8674 and
0.8741 in terms of SRCC and PLCC respectively. While the
performance of JOINT (R-branch) is reduced due to its special
design, which reduces the consideration of low-level distor-
tions. We also notice that none of the tested methods presents
promising results on PIPAL, suggesting the inapplicability of
models under such particular algorithm-dependent distortions.

VI. CONCLUSION AND FUTURE WORK

In this paper, we contribute the AGIN dataset and the
first subjective evaluation aimed at exploring the impact of
technical and rationality perspectives on the naturalness of
AIGIs. Besides, we propose JOINT, an objective naturalness
evaluator that achieves higher alignment with human opinions
against existing IQA and IAA approaches. Our work benefits
the community by 1) presenting AGIN, which enables research
on benchmarking and evaluating the naturalness of AIGIs by
multi-dimensional human ratings; 2) encouraging new research
on the naturalness assessment of AIGIs via analysis of tech-
nical and rationality features; 3) promoting the development
of better naturalness assessment algorithms for AIGIs or other
forms of AI-generated multimedia.

New possibilities of basic visual naturalness modeling
advancement can be tried in a number of major directions.
First, more fine-grained single-dimensional naturalness pertur-
bations are needed for future advanced naturalness evaluation.
Currently, naturalness distortions basically accompany mul-
tiple types of technical or rationality distortions, reducing
the requirement of fine-grained perception for models. With
the development of image generation models, the quality
of synthesized images continues to improve, albeit showing
unnaturalness only in specific small aspects, posing more
stringent demands on the model’s sensitivity to naturalness
distortions. In addition, image naturalness assessment can be
also used to distinguish whether the image is generated by AI.
Further extensions can be made to evaluate the naturalness of
face images (portraits), which stand for an important branch
of image assessment, as well as assess the naturalness of AI-
generated videos at frame-level.
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[47] M. Bińkowski, D. J. Sutherland, M. Arbel, and A. Gretton, “Demysti-
fying MMD GANs,” 2018, arXiv:1801.01401.

[48] T. Kynkäänniemi, T. Karras, S. Laine, J. Lehtinen, and T. Aila,
“Improved precision and recall metric for assessing generative models,”
in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019, pp. 3927–3936.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 11,2025 at 13:46:28 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: STUDY OF SUBJECTIVE AND OBJECTIVE NATURALNESS ASSESSMENT OF AI-GENERATED IMAGES 3587

[49] J. Hessel, A. Holtzman, M. Forbes, R. Le Bras, and Y. Choi, “CLIP-
Score: A reference-free evaluation metric for image captioning,” 2021,
arXiv:2104.08718.

[50] M. Otani et al., “Toward verifiable and reproducible human evaluation
for text-to-image generation,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2023, pp. 14277–14286.

[51] T. Zhou, S. Tan, W. Zhou, Y. Luo, Y.-G. Wang, and G. Yue, “Adaptive
mixed-scale feature fusion network for blind AI-generated image quality
assessment,” IEEE Trans. Broadcast., vol. 70, no. 3, pp. 833–843,
Sep. 2024.

[52] J. Li, D. Li, C. Xiong, and S. Hoi, “BLIP: Bootstrapping language-image
pre-training for unified vision-language understanding and generation,”
in Proc. Int. Conf. Mach. Learn., 2022, pp. 12888–12900.

[53] Stable Diffusion V1.5. Accessed: Nov. 30, 2023. [Online]. Available:
https://huggingface.co/runwayml/stable-diffusion-v1-5

[54] Stable Diffusion V2.1. Accessed: Nov. 20, 2023. [Online]. Available:
https://huggingface.co/stabilityai/stable-diffusion-2-1

[55] Midjourney. Accessed: Nov. 20, 2023. [Online]. Available:
https://www.midjourney.com

[56] Dreamlike.art. Accessed: Nov. 20, 2023. [Online]. Available:
https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0

[57] Realistic-Vision-1.4. Accessed: Nov. 20, 2023. [Online]. Available:
https://huggingface.co/SG161222/Realistic_Vision_V1.4

[58] X. Yu, C. G. Bampis, P. Gupta, and A. C. Bovik, “Predicting the quality
of images compressed after distortion in two steps,” IEEE Trans. Image
Process., vol. 28, no. 12, pp. 5757–5770, Dec. 2019.

[59] Z. Chen et al., “GAIA: Rethinking action quality assessment for AI-
generated videos,” 2024, arXiv:2406.06087.

[60] S. He, A. Ming, Y. Li, J. Sun, S. Zheng, and H. Ma, “Thinking image
color aesthetics assessment: Models, datasets and benchmarks,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2023, pp. 21838–21847.

[61] Methodology for the Subjective Assessment of the Quality of Television
Pictures, document Rec. ITU-R BT.500-11, Int. Telecommun. Union,
Geneva, Switzerland, 2002.

[62] M. S. Silberman, B. Tomlinson, R. LaPlante, J. Ross, L. Irani, and
A. Zaldivar, “Responsible research with crowds: Pay crowdworkers
at least minimum wage,” Commun. ACM, vol. 61, no. 3, pp. 39–41,
Feb. 2018.

[63] A. F. Hayes and K. Krippendorff, “Answering the call for a standard
reliability measure for coding data,” Commun. Methods Measures, vol. 1,
no. 1, pp. 77–89, Apr. 2007.

[64] Z. Tu, Y. Wang, N. Birkbeck, B. Adsumilli, and A. C. Bovik, “UGC-
VQA: Benchmarking blind video quality assessment for user generated
content,” IEEE Trans. Image Process., vol. 30, pp. 4449–4464, 2021.

[65] H. Wu et al., “Towards explainable in-the-wild video quality assessment:
A database and a language-prompted approach,” in Proc. 31st ACM Int.
Conf. Multimedia, Oct. 2023, pp. 1045–1054.

[66] M. A. Goodale and A. D. Milner, “Separate visual pathways for
perception and action,” Trends Neurosci., vol. 15, no. 1, pp. 20–25,
Jan. 1992.

[67] J. Norman, “Two visual systems and two theories of perception: An
attempt to reconcile the constructivist and ecological approaches,”
Behav. Brain Sci., vol. 25, no. 1, pp. 73–96, Feb. 2002.

[68] C. A. Párraga, G. Brelstaff, T. Troscianko, and I. R. Moorehead, “Color
and luminance information in natural scenes,” J. Opt. Soc. Amer. A, Opt.
Image Sci., vol. 15, no. 3, pp. 563–569, 1998.

[69] H. Wu et al., “Fast-vqa: Efficient end-to-end video quality assessment
with fragment sampling,” in Proc. Eur. Conf. Comput. Vis., Cham,
Switzerland. Springer, 2022, pp. 538–554.

[70] H. Wu et al., “Exploring video quality assessment on user generated
contents from aesthetic and technical perspectives,” in Proc. Int. Conf.
Comput. Vis., 2023, pp. 20144–20154.

[71] L. Zhang et al., “Perceptual artifacts localization for image synthesis
tasks,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2023,
pp. 7579–7590.

[72] Z. Liu et al., “Swin transformer: Hierarchical vision transformer using
shifted windows,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2021, pp. 10012–10022.

[73] N. Murray, L. Marchesotti, and F. Perronnin, “AVA: A large-scale
database for aesthetic visual analysis,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2012, pp. 2408–2415.

[74] L. Bar, N. Sochen, and N. Kiryati, “Semi-blind image restoration via
Mumford–Shah regularization,” IEEE Trans. Image Process., vol. 15,
no. 2, pp. 483–493, Feb. 2006.

[75] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The
unreasonable effectiveness of deep features as a perceptual metric,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 586–595.

[76] X. Liao, B. Chen, H. Zhu, S. Wang, M. Zhou, and S. Kwong,
“DeepWSD: Projecting degradations in perceptual space to Wasserstein
distance in deep feature space,” in Proc. 30th ACM Int. Conf. Multime-
dia, Oct. 2022, pp. 970–978.

[77] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[78] Z. Chen et al., “BAND-2k: Banding artifact noticeable database for
banding detection and quality assessment,” IEEE Trans. Circuits Syst.
Video Technol., vol. 34, no. 7, pp. 6347–6362, Jul. 2024.

[79] Z. Ying, H. Niu, P. Gupta, D. Mahajan, D. Ghadiyaram, and A. Bovik,
“From patches to pictures (PaQ-2-PiQ): Mapping the perceptual space
of picture quality,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., vol. 29, Jun. 2020, pp. 3575–3585.

[80] Y. Fang, H. Zhu, Y. Zeng, K. Ma, and Z. Wang, “Perceptual quality
assessment of smartphone photography,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2020, pp. 3677–3686.

[81] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis., vol. 115, pp. 211–252, Dec. 2015.

[82] M. Cristani, A. Vinciarelli, C. Segalin, and A. Perina, “Unveiling the
multimedia unconscious: Implicit cognitive processes and multimedia
content analysis,” in Proc. 21st ACM Int. Conf. Multimedia, Oct. 2013,
pp. 213–222.

[83] S. He, Y. Zhang, R. Xie, D. Jiang, and A. Ming, “Rethinking image
aesthetics assessment: Models, datasets and benchmarks,” in Proc. 31st
Int. Joint Conf. Artif. Intell. (IJCAI), Jul. 2022, pp. 942–948.

[84] R. Yi, H. Tian, Z. Gu, Y.-K. Lai, and P. L. Rosin, “Towards artistic image
aesthetics assessment: A large-scale dataset and a new method,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2023,
pp. 22388–22397.

[85] A. Ciancio, A. L. N. T. Targino da Costa, E. A. B. da Silva, A. Said,
R. Samadani, and P. Obrador, “No-reference blur assessment of digital
pictures based on multifeature classifiers,” IEEE Trans. Image Process.,
vol. 20, no. 1, pp. 64–75, Jan. 2011.

[86] B. Li, W. Zhang, M. Tian, G. Zhai, and X. Wang, “Blindly assess
quality of in-the-wild videos via quality-aware pre-training and motion
perception,” IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 9,
pp. 5944–5958, Sep. 2022.

[87] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[88] A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image quality
assessment in the spatial domain,” IEEE Trans. Image Process., vol. 21,
no. 12, pp. 4695–4708, Dec. 2012.

[89] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a “Completely
blind” image quality analyzer,” IEEE Signal Process. Lett., vol. 20, no. 3,
pp. 209–212, Mar. 2013.

[90] W. Zhang, K. Ma, J. Yan, D. Deng, and Z. Wang, “Blind image quality
assessment using a deep bilinear convolutional neural network,” IEEE
Trans. Circuits Syst. Video Technol., vol. 30, no. 1, pp. 36–47, Jan. 2018.

[91] S. Su et al., “Blindly assess image quality in the wild guided by a self-
adaptive hyper network,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2020, pp. 3667–3676.

[92] J. Ke, Q. Wang, Y. Wang, P. Milanfar, and F. Yang, “MUSIQ: Multi-
scale image quality transformer,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis., Oct. 2021, pp. 5148–5157.

[93] W. Zhang, K. Ma, G. Zhai, and X. Yang, “Uncertainty-aware blind
image quality assessment in the laboratory and wild,” IEEE Trans. Image
Process., vol. 30, pp. 3474–3486, 2021.

[94] S. Yang et al., “MANIQA: Multi-dimension attention network for no-
reference image quality assessment,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., Jun. 2022, pp. 1191–1200.

[95] L. Li, H. Zhu, S. Zhao, G. Ding, and W. Lin, “Personality-assisted multi-
task learning for generic and personalized image aesthetics assessment,”
IEEE Trans. Image Process., vol. 29, pp. 3898–3910, 2020.

[96] J. Wang, K. Chan, and C. C. Loy, “Exploring CLIP for assessing the
look and feel of images,” in Proc. AAAI Conf. Artif. Intell., Jun. 2023,
vol. 37, no. 2, pp. 2555–2563.

[97] W. Zhang, G. Zhai, Y. Wei, X. Yang, and K. Ma, “Blind image quality
assessment via vision-language correspondence: A multitask learning
perspective,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2023, pp. 14071–14081.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 11,2025 at 13:46:28 UTC from IEEE Xplore.  Restrictions apply. 



3588 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 35, NO. 4, APRIL 2025

[98] A. Dosovitskiy et al., “An image is worth 16×16 words: Transformers
for image recognition at scale,” in Proc. Int. Conf. Learn. Represent.,
Jan. 2021.

[99] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A
ConvNet for the 2020s,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2022, pp. 11976–11986.

Zijian Chen (Graduate Student Member, IEEE)
received the B.E. degree from Wenzhou University,
Wenzhou, China, in 2020, and the M.E. degree from
East China University of Science and Technology,
Shanghai, China, in 2023. He is currently pursuing
the Ph.D. degree with the Institute of Image Commu-
nication and Information Processing, Shanghai Jiao
Tong University, Shanghai. His research interests
include image quality assessment, perceptual signal
processing, and machine learning.

Wei Sun (Member, IEEE) received the B.E. degree
from East China University of Science and Technol-
ogy, Shanghai, China, in 2016, and the Ph.D. degree
from Shanghai Jiao Tong University, Shanghai,
in 2023. He is currently a Post-Doctoral Fellow with
Shanghai Jiao Tong University. His research interests
include image quality assessment, perceptual signal
processing, and mobile video processing.

Haoning Wu received the B.S. degree from the
School of Electronic Engineering and Computer
Science, Peking University, Beijing, China, in 2021.
He is currently pursuing the Ph.D. degree with
the S-Laboratory, School of Computer Science
and Engineering, Nanyang Technological Univer-
sity, Singapore, supervised by Prof. Weisi Lin. His
research interests include video quality assessment,
including improving its robustness, efficiency, and
interpretability and connecting it with related tasks.

Zicheng Zhang (Student Member, IEEE) received
the B.E. degree from Shanghai Jiao Tong University,
Shanghai, China, in 2020, where he is currently pur-
suing the Ph.D. degree with the School of Electronic
Information and Electrical Engineering. His research
interests include image quality assessment, video
quality assessment, and 3D visual quality assess-
ment. He is a reviewer for IEEE TRANSACTIONS
ON MULTIMEDIA and IEEE TRANSACTIONS ON
CIRCUITS AND SYSTEMS FOR VIDEO TECHNOL-
OGY.

Jun Jia received the B.S. degree in computer science
and technology from Hunan University, Changsha,
China, in 2018. He is currently pursuing the Ph.D.
degree with the Department of Electronic Engi-
neering, Shanghai Jiao Tong University, Shanghai,
China. His current research interests include com-
puter vision and image processing.

Ru Huang received the B.S. degree from Nanjing
University, Nanjing, China, in 1999, and the Ph.D.
degree in circuits and systems from Shanghai Jiao
Tong University, Shanghai, China, in 2008. From
March 2015 to March 2016, he was a Visiting
Scholar with the University of Wisconsin–Madison,
Madison, WI, USA. He is currently an Associate
Professor of electronics and communication engi-
neering with East China University of Science and
Technology, Shanghai. His research interests include
wireless sensor networks, complex networks, and
deep learning.

Xiongkuo Min (Member, IEEE) received the B.E.
degree from Wuhan University, Wuhan, China,
in 2013, and the Ph.D. degree from Shanghai
Jiao Tong University, Shanghai, China, in 2018.
From June 2018 to September 2021, he was a
Post-Doctoral Researcher with Shanghai Jiao Tong
University. From January 2016 to January 2017,
he was a Visiting Student with the University of
Waterloo. From January 2019 to January 2021,
he was a Visiting Scholar with The University of
Texas at Austin and the University of Macau. He is

currently a tenure-track Associate Professor with the Institute of Image
Communication and Network Engineering, Shanghai Jiao Tong University.
His research interests include image/video/audio quality, quality of experience,
multimedia, image/video processing, and computer vision. He received the
Best Paper Runner-Up Award of IEEE TRANSACTIONS ON MULTIMEDIA in
2021, the Best Student Paper Award of IEEE International Conference on
Multimedia and Expo (ICME) in 2016, the Best Paper Award of IEEE Inter-
national Symposium on Broadband Multimedia Systems and Broadcasting
(BMSB) in 2022, and several first place awards of grand challenges held at
IEEE ICME and ICIP.

Guangtao Zhai (Senior Member, IEEE) received
the B.E. and M.E. degrees from Shandong Uni-
versity, Shandong, China, in 2001 and 2004,
respectively, and the Ph.D. degree from Shanghai
Jiao Tong University, Shanghai, China, in 2009.
From 2008 to 2009, he was a Visiting Student
with the Department of Electrical and Computer
Engineering, McMaster University, Hamilton, ON,
Canada, where he was a Post-Doctoral Fellow
from 2010 to 2012. From 2012 to 2013, he was
a Humboldt Research Fellow with the Institute of

Multimedia Communication and Signal Processing, Friedrich Alexander Uni-
versity of Erlangen–Nürnberg, Germany. He is currently a Research Professor
with the Institute of Image Communication and Information Processing,
Shanghai Jiao Tong University. His research interests include multimedia
signal processing and perceptual signal processing. He received the Award
of National Excellent Ph.D. Thesis from the Ministry of Education of China
in 2012.

Wenjun Zhang (Fellow, IEEE) received the B.S.,
M.S., and Ph.D. degrees in electronic engineer-
ing from Shanghai Jiao Tong University, Shanghai,
China, in 1984, 1987, and 1989, respectively. After
three years working as an Engineer with Philips,
Nürnberg, Germany, he went back to his Alma Mater
in 1993 and became a Full Professor of electronic
engineering at Shanghai Jiao Tong University in
1995. He is also the Chief Scientist of Chinese
Digital TV Engineering Research Centre (NERC-
DTV), an industry/government consortium in DTV

technology research and standardization, and the Director of the Cooperative
Media Network Innovation Centre (CMIC), an excellence research cluster
affirmed by Chinese Government. He was one of the main contributors to
Chinese DTTB Standard (DTMB) issued in 2006. He holds 238 patents and
published more than 130 papers in international journals and conferences. His
research interests include video coding and wireless transmission, multimedia
semantic analysis, and broadcast/broadband network convergence.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 11,2025 at 13:46:28 UTC from IEEE Xplore.  Restrictions apply. 


