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ABSTRACT

In offline imitation learning (IL), data augmentation is essential for addressing co-
variate shift, yet existing methods face a trade-off: single-step techniques risk dy-
namic inconsistency, while trajectory-level approaches suffer from compounding
errors or scalability challenges. Recent Koopman-based methods, while promis-
ing, have been limited to single-step applications, creating computational bur-
dens and vulnerabilities to approximation error. This paper introduces Koopman-
Assisted Trajectory Synthesis (KATS), a framework designed to resolve these
trade-offs. Our primary contribution is a novel trajectory-level synthesis pro-
cess that inherently avoids the compounding errors of recursive rollouts. Second,
we introduce a state-equivariant Koopman representation, a key innovation that
ensures computational efficiency and scalability, unlike prior action-equivariant
models. Third, we bolster robustness by integrating a refined generator matrix
to counteract operator approximation errors. Through extensive experimentation,
we demonstrate that KATS yields substantial improvements in policy performance
and achieves new state-of-the-art results, proving especially effective in challeng-
ing, low-data-diversity regimes.

1 INTRODUCTION

Imitation Learning (IL) enables agents to acquire skills from expert demonstrations and has proven
highly effective in fields like robotic control and autonomous driving Xie et al. (2024); Teng et al.
(2022). A primary limitation of classic IL methods, such as behavioral cloning (BC), is their suscep-
tibility to ”covariate shift” Ross et al. (2011). This issue stems from a mismatch between the training
distribution and the states visited during deployment, which triggers a compounding of errors and
rapid performance decline Zare et al. (2024). The problem is especially severe in offline imitation
learning, as the agent is confined to a fixed dataset and cannot interact with the environment to
correct its deviations Prudencio et al. (2023).

The challenge of covariate shift is typically addressed through two distinct paradigms: algorithm-
centric and data-centric methods. The former centers on enhancing algorithmic robustness, for
example, by learning an explicit dynamics model to foresee future states Zhang et al. (2023) or by
applying regularization to penalize actions in out-of-distribution (OOD) regions Chang et al. (2021).
The latter, in contrast, focuses on improving the training data itself. Data augmentation stands out
as a leading data-centric technique, as it offers a cost-effective means to enrich the dataset, enhance
its diversity, and mitigate covariate shift without requiring further interaction with the environment
Samadi et al. (2024).

The success of data augmentation hinges on generating high-quality, dynamically consistent data
Kolev et al. (2024). Common single-step techniques like Mixup ignore temporal context, risking the
creation of physically unrealistic states that can bias the model. Synthesizing entire trajectories is a
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more robust approach, but it also faces hurdles. Forward-dynamics models suffer from compounding
errors that lead to divergent trajectories, while powerful generative models like GANs Chen et al.
(2024) or Diffusion models Janner et al. (2022) are often too data-hungry for limited offline datasets
and struggle to generate novel yet plausible behaviors without a strong inductive bias.

This reveals the central need in offline IL for a framework that can generate novel, consistent tra-
jectories without long-horizon error accumulation. The Koopman operator theory is uniquely suited
to fill this gap. By transforming nonlinear dynamics into a linear evolution in a higher-dimensional
space Mezić (2021), it simplifies control and analysis while also allowing for the easy integration
of physical priors like symmetries. This feature directly enhances robustness with limited data,
addressing a key failure point of other generative models. Consequently, Koopman-based data aug-
mentation has garnered significant interest, spawning methods such as Koopman Q-learning (KFC)
Weissenbacher et al. (2022), Koopman Model Predictive Control Wang et al. (2022), and Koopman
linear quadratic regulators Shi & Meng (2022).

Existing Koopman-based methods, despite their potential, are constrained in their application to
complex, high-dimensional control tasks Colbrook et al. (2024). A key issue stems from strategies
that operate at the single-step transition level, such as the data augmentation in KFC Wang et al.
(2022) Weissenbacher et al. (2022). By focusing on immediate state changes, these methods struggle
to model the long-term temporal structures essential for coherent, multi-step task execution Efroni
et al. (2021). This limitation highlights a clear need to explore the generation of full trajectories
within the Koopman framework and to develop the associated theoretical guarantees for such an
approach.

A second limitation is the potential for significant computational overhead. In the KFC method,
for example, the reliance on an action-equivariance assumption creates a linear scaling relationship
between the action dimension and both model complexity and inference cost, which constrains its
scalability. A final, crucial weakness is the failure of these methods to properly address approxi-
mation errors from the Koopman linearization. Because the reliability of local linear approxima-
tions diminishes in areas with minimal or slow dynamics, the integrity of augmented data generated
therein is compromised. The introduction of such unreliable data risks biasing the training process,
which can guide the learned policy toward non-physical or unstable outcomes.

To overcome these challenges, we introduce Koopman-Assisted Trajectory Synthesis (KATS), a
novel framework for offline imitation learning. Instead of traditional step-by-step rollouts, KATS
generates new data by modeling entire expert trajectories in a learned latent space.

Our main contributions are as follows.

• We introduce a trajectory-level augmentation method that uses entire expert demonstra-
tions as its base unit. This approach mitigates the compounding errors common in state-
space rollouts and ensures generated trajectories are dynamically consistent within the lin-
ear Koopman space.

• Our framework leverages a state-equivariant assumption, which avoids the severe computa-
tional and memory costs of prior action-equivariant approaches. This design makes KATS
highly efficient and scalable for complex tasks.

• We design a refined symmetric generator matrix that makes our model more robust to the
inherent approximation errors of finite-dimensional Koopman representations, improving
the quality of synthesized trajectories.

2 RELATED WORK

Offline Imitation Learning and Distribution Shift. A primary challenge in offline IL is distribu-
tion shift, where policies fail in out-of-distribution (OOD) states due to compounding errors Xu et al.
(2020). Conservative methods address this by constraining the policy to the expert data distribution
Kumar et al. (2020); Chang et al. (2021). Other approaches use learned dynamics models to plan
back to known regions Shao et al. (2024); Janner et al. (2022) or explicitly estimate the data support
to confine the policy Xu et al. (2022b). Our work complements these by focusing on data-centric
mitigation through principled trajectory synthesis.
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Data Augmentation in Imitation Learning. Data augmentation aims to alleviate distribution shift
by expanding the dataset. While simple techniques like noise injection or random visual crops
are common Laskey et al. (2017); Yang et al. (2022), they often produce dynamically inconsistent
samples that can harm learning Gong et al. (2021). Unlike these methods, our work leverages
Koopman theory’s strong inductive bias for dynamics to generate entire trajectories that are both
physically plausible and behaviorally consistent with the expert.

Koopman Theory in Control and Reinforcement Learning. Koopman operator theory enables
the analysis of nonlinear systems via linear representations in a lifted space Mauroy et al. (2020),
and has been widely used for learning dynamics Zhao et al. (2023), designing controllers Wang et al.
(2022); Shi & Meng (2022), and policy learning in RL Weissenbacher et al. (2022). While some
works have explored Koopman for data augmentation Jang et al. (2023), our method is distinct. We
are the first to systematically develop a trajectory-level, state-equivariant Koopman augmentation
framework specifically for offline IL. By integrating it with an Inverse Dynamics Model (IDM),
we generate complete, dynamically consistent, and behaviorally plausible state-action sequences to
tackle distribution shift.

3 PRELIMINARIES

This section provides the necessary background on offline imitation learning, focusing on the chal-
lenge of distribution shift and Koopman operator theory, detailing its definition and application in
control systems.

3.1 OFFLINE IMITATION LEARNING AND DISTRIBUTION SHIFT

Imitation Learning (IL) aims to train a policy πθ(a|s) to mimic an expert policy πE using a static
dataset of expert demonstrations D = {(si, ai)}Ni=1. A common approach, Behavioral Cloning,
frames this as a supervised learning problem, minimizing a loss function such as the Mean Squared
Error between the policy’s actions and the expert’s:

LBC(θ) =
1

N

N∑
i=1

∥ai − πθ(si)∥2. (1)

The primary challenge in this offline setting is distribution shift. The policy is trained on the expert’s
state distribution. During deployment, small errors can lead the agent to out-of-distribution (OOD)
states not seen in D. Since the policy behavior is undefined for these states and no new data can be
collected, these errors compound, causing the agent’s performance to degrade significantly.

3.2 KOOPMAN-BASED DATA AUGMENTATION

Koopman operator theory provides a powerful framework for linearizing nonlinear dynamics st+1 =
F (st, at) in a high-dimensional lifted space. Recent methods, such as Koopman Forward Conser-
vative Q-learning (KFC) Weissenbacher et al. (2022) Wang et al. (2022), leverage this theory for
structured data augmentation, moving beyond simple noise injection.

In particular, the KFC method aims to identify a set of finite-dimensional observable functions, zt =
g(st), that transform a system’s state from its original domain to a higher-dimensional feature space.
The objective of this transformation is twofold: to linearize the system’s nonlinear dynamics and to
ensure the resulting linear model is action-equivariant. In particular, this learned action-equivariant
Koopman operator consists of matrices (K0,Kk) that approximate the system’s dynamics in the
lifted space as a bilinear model:

zt+1 ≈

(
K0 +

m∑
k=1

Kkat,k

)
zt. (2)

where zt and zt+1 are, respectively, two points in the lifted space, corresponding to a pair of states
(st,st+1) in the original space.
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Then, instead of adding arbitrary noise, KFC finds a symmetric generator matrix σ that represents
dynamically consistent enhancements. This is achieved by solving the Sylvester equation, which im-
poses that the transformation commutes with the system dynamics. Let Kat ≡ K0 +

∑m
k=1 Kkat,k

denote the complete action-dependent Koopman operator for a given action at.:

Figure 1: Overview of KATS framework: An Expert-Guided Koopman Model KπE is learned
from expert trajectories. Commuting transformations (σ) with KπE and an inverse dynamics model
generate augmented data to train policy πθ.

Katσat − σatKat = I. (3)

As illustrated in Figure 1 (a), to augment an original transition (st, at, st+1, rt), after embedding the
states st and st+1 into their high-dimensional latent representations, zt and zt+1, the transformation
σat is applied to generate augmented counterparts: zatt = σatzt and zatt+1 = σatzt+1. One can also
use a decoder to project the generated new latent vectors back into the original state space, resulting
in the augmented states satt and satt+1. Finally, a complete, dynamically consistent transition tuple
(satt , at, s

at
t+1, rt) is synthesized by pairing these new states with the original action and reward

Weissenbacher et al. (2022).

Despite its promise, the aforementioned action-equivariant Koopman-based data augmentation
method has been limited to single-step applications. This restriction imposes significant compu-
tational burdens and introduces susceptibility to approximation errors. To address these challenges,
we proposed policy equivariant Koopman-based data augmentation. In what follows, we first delve
into the theoretical underpinnings of this and subsequently propose a practically viable solution.

4 KOOPMAN-ASSISTED TRAJECTORY GENERATION WITH
POLICY-EQUIVARIANCE

In this section, we provide the theoretical foundation for our Koopman-Assisted Trajectory Synthe-
sis (KATS) framework. Our central argument is that the symmetries of a closed-loop dynamical
system, driven by a fixed expert policy, are directly reflected as commutation properties of its as-
sociated Koopman operator. We begin by defining this notion of symmetry, then establish a formal
equivalence to an algebraic property of the operator, and finally show how this equivalence provides
a rigorous mechanism for generating novel, policy-consistent trajectories.
Definition 1 (Policy-Equivariant Dynamical System). Consider the closed-loop dynamical system
described by the discrete-time mapping st+1 = Fπ(st), where st ∈ S is the state and π : S → A
is a fixed policy. Let Σ be a group with elements σ : S → S that act on the state space. The
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system is called Σ-policy-equivariant if, for all σ ∈ Σ and all s ∈ S, the following condition holds:
Fπ(σ ·s) = σ ·Fπ(s). This implies that transforming the state and then applying the policy dynamics
is equivalent to applying the dynamics first and then transforming the result.

To analyze these potentially non-linear dynamics within a linear framework, we lift the system from
the state space to a space of observables using the Koopman operator.
Definition 2 (Koopman Operator for a Policy). Let K(S) = {g : S → R} be the space of scalar-
valued observable functions on the state space S. The Koopman operator Kπ : K(S) → K(S)
associated with the closed-loop system Fπ is a linear operator defined by: [Kπg](s) ≜ g(Fπ(s)). In
a finite-dimensional approximation learned from data, Kπ is represented by a matrix that propagates
a latent state vector zt = E(st) forward in time, i.e., zt+1 = Kπzt.

A key step in connecting the geometric state-space symmetry σ to the algebraic operator Kπ is to
define how σ acts on the space of observables. This is achieved through an induced group action.
Lemma 3 (Induced Group Action on Koopman Space). A state space transformation σ : S → S
induces a linear action on the space of observables K(S), defined by the pullback: [σg](s) ≜
g(σ−1(s)).

With these definitions in place, we can now state the central theorem of our analysis. It establishes
a formal equivalence between the policy equivariance of the dynamics and a simple commutation
relation involving the Koopman operator.
Theorem 1 (Equivalence of Policy Equivariance and Koopman Commutation). Let Fπ be a closed-
loop dynamical system and Kπ be its corresponding Koopman operator. The following two state-
ments are equivalent:

1. The system is Σ-policy-equivariant: Fπ(σ · s) = σ · Fπ(s) for all σ ∈ Σ, s ∈ S.

2. The Koopman operator commutes with the induced group action (where σ acts on a func-
tion g as (σg)(s) = g(σ−1s)): Kπσ = σKπ for all σ ∈ Σ.

Theorem 1 is not merely a theoretical curiosity; it provides the direct mechanism for our data aug-
mentation strategy. The following theorem makes this connection explicit, showing how the com-
mutation property can be leveraged to generate new, valid system trajectories.
Theorem 2 (Generating Policy-Consistent Trajectories via Symmetry). Let Fπ be a Σ-policy-
equivariant system with Koopman operator Kπ and let σ ∈ Σ. Let {zt = E(st)} be the latent
representation of a trajectory under policy π, such that zt+1 = Kπzt. Define a new trajectory
{ẑt} by ẑt = σ · zt. Then this new trajectory evolves according to the same Koopman dynamics:
ẑt+1 = Kπ ẑt. Consequently, the decoded trajectory {ŝt = D(ẑt)} is also a valid trajectory under
the closed-loop dynamics of policy π.
Theorem 3 (Bounded Error for Transformed Trajectories). Let {zEt } be a latent expert trajectory
with a sequence of one-step prediction errors {ϵt}, where ϵt = zEt+1 −KzEt . Let σ be an expert-
policy equivariant transformation with commutation error ∆. Then the one-step prediction error ϵ̂t
for the transformed trajectory {ẑt = σ(zEt )} is given by:

ϵ̂t = σ(ϵt) + ∆zEt . (4)

Consequently, its norm is bounded as:

∥ϵ̂t∥ ≤ ∥σ∥∥ϵt∥+ ∥∆∥∥zEt ∥. (5)

This result formally decomposes the error in a synthesized trajectory into two distinct sources:

1. Propagated Model Error (∥σ∥∥ϵt∥): This term reflects the inherent dynamics prediction
error ϵt, scaled by the magnitude of the transformation.

2. Symmetry Violation Error (∥∆∥∥zEt ∥): This term stems directly from the imperfect com-
mutation between the learned symmetry and the dynamics model.

This decomposition provides a strong theoretical justification for our objective: it is crucial not only
to minimize the standard prediction loss (reducing ∥ϵt∥) but also to explicitly regularize the model to
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minimize the commutation residual ∥∆∥. Please refer to Implication of the Bound in the Appendix
for further discussion.

In summary, this analysis formally motivates our approach: by learning a Koopman operator K
from expert data and then finding linear transformations σ that satisfy the commutation relation
Kσ − σK ≈ 0, we are effectively identifying the underlying symmetries of the expert’s behavior.
Theorem 2 guarantees that applying these learned symmetries to existing trajectories will produce
new data that is consistent with the expert’s policy dynamics.

5 A PRACTICAL ALGORITHM

Motivated by the above analysis, in this section we detail our practical algorithm : Koopman-
Assisted Trajectory Synthesis (KATS) , designed for augmenting datasets in trajectory-based offline
imitation learning. The primary goal of KATS is to generate novel yet realistic data to improve policy
learning. To this end, the framework synthesizes trajectories with three critical properties: dynamic
consistency, behavioral plausibility, and computational efficiency. The KATS pipeline comprises
three distinct stages: (1) trajectory synthesis via a behavior-driven Koopman operator, (2) robust-
ness enhancement using an adaptive symmetry generation scheme, and (3) action inference through
a decoupled inverse dynamics model. The entire process is visualized in Figure 1.

5.1 KOOPMAN-ASSISTED TRAJECTORY SYNTHESIS

The first step of KATS is the construction of a generative model for expert trajectories. A key in-
novation of our method is the decision to model the closed-loop system dynamics governed by the
expert policy, expressed as st+1 ≈ G(st), as opposed to the conventional open-loop dynamics,
st+1 = F (st, at). Consequently, the expert policy πE(at|st) becomes implicitly embedded within
the transition function G. The practical implementation of this principle involves training an au-
toencoder (Eϕ, Dψ) to map states s into a latent space Z where the dynamics are linear. Within this
linearized space, a single, action-independent Koopman operator K is then learned to propagate the
system state:

zt+1 = Eϕ(st+1) ≈ KEϕ(st) = Kzt. (6)
The model is trained by minimizing a combined loss function over the expert datasetDE , comprising
state reconstruction and latent space prediction:

Lrecon = Es∼DE
∥s−Dψ(Eϕ(s))∥2, (7)

Lkoopman = E(st,st+1)∼DE
∥Eϕ(st+1)−KEϕ(st)∥2. (8)

The proposed action-independent formulation offers two fundamental improvements upon prior
methods such as KFC Weissenbacher et al. (2022). The first is a guarantee of behavioral plausibility:
since the operator K is trained directly on expert closed-loop state transitions (st, st+1), it inherently
embeds the expert’s policy. Since the symmetry transformation commutes with the Koopman oper-
ator K, the system dynamics are equivariant under this transformation. Consequently, applying the
symmetry to a generated trajectory yields a new trajectory that remains consistent with the learned
policy.The second improvement is a dramatic increase in efficiency. Our approach obviates the need
for per-action modeling by learning only a single operator K and its corresponding symmetry basis
σj in a single offline step. This not only reduces storage complexity from O(N · d2) to a constant
but also entirely removes the computational bottleneck associated with per-action processing.

5.2 ADAPTIVE SYMMETRY GENERATION FOR ROBUSTNESS

Any model-based approach is subject to its own approximation errors. A Koopman model may be
inaccurate in regions of the state space where expert data is sparse. Naively generating data in such
regions with a flawed model can inject noise and degrade policy performance.

To mitigate this, KATS introduces an adaptive data augmentation scheme. The core idea is to prior-
itize data synthesis in regions where the model is most uncertain. Instead of merely finding a fixed
basis by solving the homogeneous Sylvester equation (Kσ− σK = 0), we learn the transformation
σ through an optimization process weighted by the Koopman model’s prediction error. Specifically,
the loss for σ is defined as:

Lσ = E(st,st+1)∼DE
wst∥σ(zt+1)−Kσ(zt)∥2, (9)
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where zt = Eϕ(st), and the weight wst is explicitly tied to the model’s local error:

wst = exp(τ∥zt+1 −Kzt∥). (10)

Here, τ is a temperature hyperparameter. This weighting scheme forces the learning of σ to more
strongly satisfy the symmetry property in areas where the original operator K struggles. In this way,
KATS adaptively generates samples where they are most needed, turning a potential weakness into
a targeted exploration strategy.

5.3 DECOUPLED ACTION INFERENCE VIA INVERSE DYNAMICS

Our action-independent modeling approach creates a new requirement: the generated symmetric
state pairs (s′t, s

′
t+1) lack corresponding actions. To address this, we decouple action inference from

dynamics modeling by training a separate Inverse Dynamics Model (IDM), fIDM : S ×S → A. The
IDM learns the mapping from state transitions to actions directly from the expert data:

LIDM = E(st,at,st+1)∼DE
∥at − fIDM(st, st+1)∥2. (11)

Once trained, this model infers a plausible action a′t = fIDM(s′t, s
′
t+1) for each generated state pair,

creating a complete augmented tuple (s′t, a
′
t, s

′
t+1).

5.4 IMPLEMENTATION DETAILS

The complete KATS pipeline is summarized in Algorithm 1. In the final step, we combine the
original expert dataset DE with our generated data Daug to form a comprehensive training set,
Dfinal = DE ∪ Daug. An imitation learning policy πθ(a|s) is then trained on this enriched dataset,
typically via behavioral cloning, to learn a more robust and generalizable policy:

LBC(θ) = −E(s,a)∼Dfinal [log πθ(a|s)]. (12)

Algorithm 1 Koopman-Assisted Trajectory Synthesis

Require: Expert trajectories DE = {τi}, Koopman models (Eϕ, Dψ,Kπ) trained via Eq. 7 and
Eq. 8, IDM fIDM trained via Eq. 11.

Ensure: Augmented dataset of trajectories Daug.
1: Initialize Daug ← DE .
2: Learn symmetry operators {σj}Mj=1 satisfying Kπσ ≈ σKπ via the objective in Eq. 9.
3: for each expert trajectory τ = (s0, . . . , sT ) in DE do
4: for each symmetry σj in the basis do
5: Define the end-to-end state transformation Gj(s) := (Dψ ◦ σj ◦ Eϕ)(s).
6: Generate a new state trajectory:
7: (s′0, . . . , s

′
T )← (Gj(s0), . . . , Gj(sT )).

8: Synthesize the corresponding action trajectory:
9: (a′0, . . . , a

′
T−1)← (fIDM(s′0, s

′
1), . . . , fIDM(s′T−1, s

′
T )).

10: Assemble and add the new trajectory τ ′ = (s′0, a
′
0, . . . , s

′
T ) to Daug.

11: end for
12: end for
13: return Daug.

6 EXPERIMENTS

In this section, we conduct a comprehensive empirical evaluation of our proposed method KATS.
Our experiments are designed to rigorously assess its effectiveness, versatility, and robustness. We
use the challenging D4RL benchmark Fu et al. (2020), which includes diverse locomotion (Mujoco),
navigation (Antmaze) and manipulation (Adroit) tasks, serving as a standard to evaluate offline
learning algorithms. All baseline algorithms are configured following the hyperparameters specified
in their original publications to ensure a fair comparison.
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Table 1: Comparative performance on custom control tasks. Best results for each task are in bold.

Domain Task Name BC SRA MILO KFC+BC KATS+BC

AntMaze

antmaze-umaze 74.0± 1.2 85.3± 1.1 80.1± 1.5 79.1± 3.4 96.9± 0.8
antmaze-umaze-diverse 64.0± 2.0 81.5± 1.8 73.2± 2.1 66.2± 1.5 90.1± 0.7
antmaze-medium-play 68.2± 3.1 78.5± 2.5 67.5± 3.3 72.3± 2.5 82.7± 1.4

antmaze-medium-diverse 53.7± 4.5 60.2± 3.9 61.0± 2.8 57.1± 2.2 67.3± 2.5
antmaze-large-play 35.8± 2.2 48.3± 2.0 40.1± 1.9 42.8± 1.5 59.3± 1.5

antmaze-large-diverse 24.9± 1.8 39.5± 1.5 33.8± 2.0 28.1± 1.7 44.2± 2.7

Gym
halfcheetah-medium-expert 55.2± 1.8 63.4± 3.5 44.5± 1.5 60.9± 1.0 81.2± 6.7

walker-medium-expert 107.5± 2.0 104.1± 4.8 95.4± 3.8 100.4± 1.9 110.4± 4.6
hopper-medium-expert 52.5± 5.0 104.5± 3.3 90.9± 5.4 70.2± 1.3 112.7± 3.6

Adroit

pen-human 37.5± 2.2 40.2± 2.0 44.4± 1.8 41.3± 1.5 69.2± 3.9
pen-cloned 39.2± 2.5 45.8± 2.3 57.1± 2.0 38.3± 1.7 81.3± 4.7

hammer-human 4.4± 0.8 5.0± 0.7 5.9± 0.6 4.6± 0.5 7.2± 0.3
hammer-cloned 2.1± 0.5 2.3± 0.4 2.7± 0.4 2.8± 0.3 4.2± 0.5

door-human 9.9± 1.5 15.3± 1.3 27.0± 1.0 14.1± 0.8 37.2± 2.1
door-cloned 0.4± 0.2 0.6± 0.2 2.1± 0.3 1.6± 0.3 4.9± 0.6

6.1 MAIN RESULTS

We benchmark KATS against a suite of prominent offline imitation learning algorithms: Behavior
Cloning (BC): The fundamental baseline for imitation learning; SRA Shao et al. (2024): A state-
of-the-art method that employs model-based reverse augmentation; MILO Chang et al. (2021): A
strong model-based algorithm employing policy constraints; KFC+BC Weissenbacher et al. (2022):
A baseline that combines Behavioral Cloning (BC) with data augmentation from KFC. Our experi-
mental evaluation focuses specifically on D4RL datasets characterized by data sparsity and a limited
number of expert demonstrations, as these scenarios pose the greatest challenge to offline learning
algorithms.

Table 1 gives the comparative results for the task of offline IL, which unequivocally demonstrate
the superiority of our proposed method, KATS. Across all 15 challenging control tasks, KATS+BC
significantly outperforming all baselines, including vanilla Behavioral Cloning (BC), prior augmen-
tation methods (SRA, MILO), and its direct predecessor, KFC+BC. The most critical insight comes
from the direct comparison with KFC+BC. KATS+BC achieves massive performance gains in ev-
ery single task, such as improving the score from 68.0 to 96.9 on antmaze-umaze. This significant
improvement validates our core contribution: the action-independent formulation. By modeling the
system’s closed-loop dynamics, KATS effectively captures the expert’s policy. Our empirical results
suggest that this approach yields trajectories that are more behaviorally consistent than those from
action-conditioned models like KFC.

Figure 2 gives some illustration of trajectories in the ‘maze2d‘ environment. The visualizations
reveal that our method generates paths with greater symmetry at corners and produces a more diverse
set of samples in difficult areas, enriching the training data where it is most needed.

Figure 2: Ablation on the Blend Ratio of Symmetric Trajectories in maze2d.

Furthermore, the robust performance of KATS on sparse-reward navigation tasks (AntMaze) and
noisy, suboptimal human demonstration data (Adroit) highlights its versatility and practical utility. It
effectively extracts and amplifies the core skills from limited data, a critical capability for real-world
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Table 2: Performance comparison against offline RL baselines on few-shot D4RL datasets. The best
result in each row is highlighted in bold.

Task Size (ratio) BC CQL IQL DOGE POR TELS Diffuser KFC+CQL KATS+BC
Hopper-e 10k (1%) 69.1±12.4 72.4±6.1 78.5±9.3 83.4±17.9 87.4±18.0 N/A 74.5±3.8 89.1±7.6 97.1±10.4
Hopper-me 10k (0.5%) 48.2±6.7 29.9±4.5 34.3±8.7 50.5±25.2 37.9±6.1 100.9±6.8 70.1±6.5 88.2±11.3 87.2±16.5
Halfcheetah-e 10k (1%) 63.4±12.1 73.4±7.6 57.2±17.1 64.7±17.1 86.2±5.2 N/A 68.9±4.1 83.4±9.7 102.7±8.1
Halfcheetah-me 10k (0.5%) 41.4±9.2 26.5±10.8 10.5±8.8 26.7±6.6 34.7±2.6 40.7±1.2 63.2±8.8 73.4±8.9 75.2±10.4
Walker2d-e 10k (1%) 76.4±17.2 73.2±16.1 81.2±11.1 65.9±8.4 77.1±15.1 N/A 83.3±6.7 86.4±12.2 109.4±11.2
Walker2d-me 10k (0.5%) 50.9±10.3 19.1±14.4 26.5±8.6 35.3±11.6 20.1±8.6 87.4±13.3 74.2±9.0 81.9±6.9 92.5±8.1
Antmaze-u-d 0.1M (10%) 47.1±19.8 0.5±0.1 34.6±18.3 41.7±18.9 42.1±14.2 60.9±16.9 59.1±11.7 62.1±7.4 67.5±10.3
Antmaze-u 0.1M (10%) 62.3±27.1 0.1±0.0 65.1±19.4 56.3±24.4 6.1±7.3 88.7±7.7 62.1±9.4 73.1±7.1 83.1±7.2
Antmaze-m-d 0.1M (10%) 36.7±20.5 N/A 30.1±12.5 N/A N/A 55.2±14.2 51.4±8.7 56.7±10.1 60.3±13.8
Antmaze-m-p 0.1M (10%) 47.5±16.9 N/A 12.5±5.4 N/A N/A 62.9±17.8 60.9±12.6 67.5±9.3 71.3±15.2
Antmaze-l-d 0.1M (10%) 25.1±12.6 N/A 3.6±4.1 N/A N/A 39.8±14.1 38.5±10.9 35.1±10.4 42.8±11.9
Antmaze-l-p 0.1M (10%) 40.1±15.7 N/A 3.5±4.1 N/A N/A 47.3±13.1 47.6±8.3 49.1±8.1 51.4±13.1

applications. In summary, these results confirm that KATS is a highly effective and general-purpose
data augmentation technique that significantly pushes the frontier of offline imitation learning.

6.2 RESULTS ON THE OFFLINE RL TASKS

We also validate our method’s efficacy in the offline reinforcement learning (RL) setting, which
requires assigning rewards to augmented data. Adopting the strategy from KFC, we assign the
reward for each synthetic transition by reusing the value from the corresponding step in the source
demonstration. Our empirical evaluation includes a direct comparison with competitive offline RL
algorithms: TELS Cheng et al. (2025), which employs temporal inverse dynamics regularization;
POR Xu et al. (2022a), which leverages state-value guidance and an inverse dynamics model; and
DOGE Li et al. (2022), which focuses on generalizing offline RL by exploiting data geometry.

Table 2 gives the results. One can see from the Table that KATS demonstrates remarkable efficacy
in the challenging few-shot offline RL setting, achieving state-of-the-art results on 10 of the 12
tasks. Our results reveal a crucial insight: augmenting the dataset with high-fidelity, behaviorally
consistent trajectories enables a simple Behavioral Cloning (BC) policy to decisively outperform
complex algorithms designed to handle distributional shift.

Notably, these outstanding results were achieved using a simple reward assignment heuristic:
reusing rewards from the source trajectory. While theoretically suboptimal, the success of this strat-
egy strongly implies that the primary driver of performance is the high behavioral fidelity of the
generated state-action trajectories. This finding is significant, as it shows that a superior generative
model of behavior can allow a simple learning algorithm to surpass complex methods designed for
value estimation and policy constraint in offline RL.

In conclusion, the results in Table 2 robustly demonstrate that KATS is not merely an imitation learn-
ing technique but a powerful and versatile data augmentation framework that effectively addresses
the challenges of offline RL, especially in the critical and practical context of data scarcity.

6.3 COMPATIBILITY AS A PLUG-AND-PLAY AUGMENTOR

Figure 3: Performance comparison on offline IL
benchmarks with KATS augmentation.

A key hypothesis is that KATS’s data augmen-
tation is model-agnostic and can benefit any of-
fline IL algorithm. To test this, we treat KATS
as a pre-processing step and apply it to the data
sets used by BC and SRA Shao et al. (2024).

For baseline (BC, SRA), we compare its per-
formance when trained on the original D4RL
dataset versus being trained on the dataset aug-
mented by KATS. We denote the augmented
versions as ‘BC + KATS‘ and ‘SRA + KATS‘.

As shown in Figure 3, applying the KATS aug-
mentation provides a significant boost in performance for BC and SRA. The improvement is par-
ticularly substantial for BC, which suffers from covariate shift, a problem that is mitigated by the
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richer, symmetrically complete data. The fact that KATS enhances even a strong baseline like SRA
validates its utility as a plug-and-play general-purpose module to improve data efficiency in offline
imitation learning.

6.4 ABLATION STUDY ON COMPONENT EFFICACY.

To rigorously validate our design choices, we conducted an ablation study on the antmaze and
maze2d benchmarks (Table 3). We compared the full KATS model against three variants:

• KATS-σA, which replaces the learnable σθ-network with a fixed analytical matrix;
• KATS w/o IDM, which removes the Inverse Dynamics Model to test the necessity of action

correction;
• KFC+BC, which employs an action-coupled encoder instead of our decoupled design.

As shown in Table 3, the full KATS model consistently outperforms all variants. The significant
performance drop in w/o IDM confirms that the IDM is critical for resolving state-action mismatches
in augmented trajectories. Furthermore, KATS surpasses KATS-σA, demonstrating that the adaptive
σθ-network captures more effective symmetry patterns than rigid analytical solutions.

Table 3: Ablation study on antmaze and maze2d.

Domain Task Name BC KFC+BC KATS w/o IDM KATS-σA KATS (Ours)

AntMaze

antmaze-umaze 74.0± 1.2 79.1± 3.4 78.4± 4.8 87.3± 2.6 96.9± 0.8
antmaze-umaze-diverse 64.0± 2.0 66.2± 1.5 72.3± 3.6 82.1± 3.3 90.1± 0.7
antmaze-medium-play 68.2± 3.1 72.3± 2.5 69.5± 2.8 78.4± 2.1 82.7± 1.4
antmaze-medium-diverse 53.7± 4.5 57.1± 2.2 58.2± 6.8 65.2± 4.5 67.3± 2.5
antmaze-large-play 35.8± 2.2 42.8± 1.5 40.2± 4.3 51.7± 4.0 59.3± 1.5
antmaze-large-diverse 24.9± 1.8 28.1± 1.7 27.5± 3.1 36.7± 2.6 44.2± 2.7

Maze2d
maze2d-umaze 72.1± 6.0 89.2± 4.8 86.6± 8.1 100.2± 6.7 113.2± 5.6
maze2d-medium 42.3± 9.9 63.7± 8.5 66.3± 12.1 90.8± 11.5 108.7± 4.9
maze2d-large 16.3± 7.3 55.9± 9.1 41.5± 15.8 89.2± 12.2 100.1± 7.2

7 CONCLUSION AND FUTURE WORK

This paper introduced KATS, a novel data augmentation framework that leverages Koopman the-
ory to address the critical distribution shift problem in offline imitation learning. By identifying
and applying latent symmetries of the system dynamics, KATS generates diverse, yet dynamically
consistent data. Our experiments validate that this principled approach effectively enhances the
robustness and generalization of the learned policy against challenging out-of-distribution states.

Limitations. One limitation of the proposed method is that currently a relatively simple Koop-
man operator is learnt from data, hence it is interesting to explore more sophisticated Koopman
architectures to capture highly nonlinear dynamics and integrating uncertainty principles.

Acknowledgements This work is partially supported by National Natural Science Foundation of
China (62476128) and National Key R&D program of China (2021ZD0113203).

Reproducibility. We commit to releasing our core source code upon publication and provide it in
the supplementary material for review. Our implementation uses PyTorch. All model architectures,
hyperparameters, and training procedures are detailed in Appendix D. All results are averaged over
5 random seeds.
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Igor Mezić. Koopman operator, geometry, and learning of dynamical systems. Not. Am. Math. Soc,
68(7):1087–1105, 2021.

Rafael Figueiredo Prudencio, Marcos ROA Maximo, and Esther Luna Colombini. A survey on
offline reinforcement learning: Taxonomy, review, and open problems. IEEE Transactions on
Neural Networks and Learning Systems, 35(8):10237–10257, 2023.
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A APPENDIX

This appendix provides the formal proofs and justifications for the definitions, lemmas, and theorems
presented in Section 4. We restate each proposition for clarity before presenting its proof.

A.1 JUSTIFICATION FOR LEMMA 3 (INDUCED GROUP ACTION)

Lemma 4. A state space transformation σ : S → S induces a linear action on the space of
observables K(S), defined by the pullback: [σg](s) ≜ g(σ−1(s)).

Justification. This definition, known as the pullback of the function g by the map σ, is the standard
way a transformation on a space induces a transformation on functions defined on that space. The
intuition is as follows: the new function, σg, when evaluated at a point s, should have the value that
the original function g had at the point that was mapped to s. If we denote this original point by s′,
then σ(s′) = s, which implies s′ = σ−1(s). Therefore, the value of the new function at s must be
the value of the old function at σ−1(s), leading directly to the definition [σg](s) = g(σ−1(s)).

The linearity of this induced action can be shown directly. For any scalars a, b ∈ R and observables
g1, g2 ∈ K(S):

[σ(ag1 + bg2)](s) = (ag1 + bg2)(σ
−1(s))

= ag1(σ
−1(s)) + bg2(σ

−1(s))

= a[σg1](s) + b[σg2](s)

= [a(σg1) + b(σg2)](s).

Since this holds for all s ∈ S, we have σ(ag1 + bg2) = a(σg1) + b(σg2).

A.2 PROOF OF THEOREM 1 (EQUIVALENCE OF POLICY EQUIVARIANCE AND KOOPMAN
COMMUTATION)

Theorem 4. Let Fπ be a closed-loop dynamical system and Kπ be its corresponding Koopman
operator. The following two statements are equivalent:

1. The system is Σ-policy-equivariant: Fπ(σ · s) = σ · Fπ(s) for all σ ∈ Σ, s ∈ S.

2. The Koopman operator commutes with the induced group action: Kπσ = σKπ for all
σ ∈ Σ.

Proof. We prove both implications separately.

Part 1: Equivariance implies Commutation (1⇒ 2). Assume the system is Σ-policy-equivariant,
i.e., Fπ(σ · s) = σ ·Fπ(s). We must show that Kπσ = σKπ . To do this, we apply the operator Kπσ
to an arbitrary observable g ∈ K(S) and evaluate it at an arbitrary state s ∈ S.

[Kπ(σg)](s) = (σg)(Fπ(s)) (by Def. 2 of Kπ)

= g(σ−1(Fπ(s))) (by Def. 3 of induced action)

= g(Fπ(σ
−1(s))) (by policy equivariance, replacing s with σ−1(s))

= [Kπg](σ
−1(s)) (by Def. 2 of Kπ)

= [σ(Kπg)](s) (by Def. 3 of induced action)

Since [Kπ(σg)](s) = [σ(Kπg)](s) for all g ∈ K(S) and all s ∈ S, we conclude that the operators
are equal: Kπσ = σKπ .

Part 2: Commutation implies Equivariance (2 ⇒ 1). Assume the Koopman operator commutes
with the induced group action, i.e., Kπσ = σKπ . For any observable g and state s, this means
[Kπ(σg)](s) = [σ(Kπg)](s). We expand both sides using the definitions:

LHS: [Kπ(σg)](s) = (σg)(Fπ(s)) = g(σ−1(Fπ(s)))

RHS: [σ(Kπg)](s) = [Kπg](σ
−1(s)) = g(Fπ(σ

−1(s)))

13



Published as a conference paper at ICLR 2026

Equating the expanded forms, we have:

g(σ−1(Fπ(s))) = g(Fπ(σ
−1(s)))

This equality must hold for all observable functions g in K(S). If the space of observables is
sufficiently rich (e.g., separating points), this implies that the arguments of g must be equal:

σ−1(Fπ(s)) = Fπ(σ
−1(s))

Let s′ = σ−1(s). This implies s = σ · s′. Substituting s′ into the equation gives:

Fπ(s
′) = σ−1(Fπ(σ · s′))

Applying σ to both sides yields:
σ · Fπ(s′) = Fπ(σ · s′)

Since this holds for any s′ ∈ S, the system is Σ-policy-equivariant.

A.3 PROOF OF THEOREM 2 (GENERATING POLICY-CONSISTENT TRAJECTORIES)

Theorem 5. Let Fπ be a Σ-policy-equivariant system with Koopman operator Kπ and let σ ∈ Σ.
Let {zt = E(st)} be the latent representation of a trajectory under policy π, such that zt+1 = Kπzt.
Define a new trajectory {ẑt} by ẑt = σ · zt. Then this new trajectory evolves according to the same
Koopman dynamics: ẑt+1 = Kπ ẑt. Consequently, the decoded trajectory {ŝt = D(ẑt)} is also a
valid trajectory under the closed-loop dynamics of policy π.

Proof. We are given an expert latent trajectory {zt} that follows the dynamics zt+1 = Kπzt. The
new trajectory is defined as {ẑt} where ẑt = σ · zt. We aim to show that ẑt+1 = Kπ ẑt.

We start with the definition of the next state in the new trajectory, ẑt+1:

ẑt+1 = σ · zt+1 (by definition of the transformed trajectory)
= σ · (Kπzt) (by the dynamics of the original trajectory)
= (σKπ)zt (associativity of operator application)

Since the system is Σ-policy-equivariant, by Theorem 1, its Koopman operator commutes with the
symmetry action: σKπ = Kπσ. We substitute this into our derivation:

ẑt+1 = (Kπσ)zt

= Kπ(σ · zt) (associativity)
= Kπ ẑt (by definition of ẑt)

Thus, we have shown that ẑt+1 = Kπ ẑt. This means the transformed latent trajectory {ẑt} evolves
according to the same linear dynamics governed by Kπ as the original expert trajectory.

Consequently, if the decoder D correctly maps latent states back to the state space, the sequence of
states {ŝt = D(ẑt)} represents a trajectory that is dynamically consistent with the learned model of
the expert’s closed-loop behavior.

A.4 ROBUSTNESS ANALYSIS: BOUNDED ERROR FOR TRANSFORMED TRAJECTORIES

The theorems in the preceding sections assume an ideal, perfectly commuting Koopman operator and
symmetry transformation. In practice, both our learned Koopman operator K and our transformation
σ are approximations, meaning their commutation is not perfect. This section provides a more
general proof that accounts for this imperfection.

We define the commutation error operator, ∆, as the commutator of σ and K:

∆ ≜ σK−Kσ

In an ideal scenario, ∆ = 0. In practice, ∆ represents how much our learned symmetry fails to
commute with our learned dynamics.
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Theorem 6 (Bounded Error for Transformed Trajectories). Let {zEt } be a latent expert trajectory
with a sequence of one-step prediction errors {ϵt}, where ϵt = zEt+1 − KzEt . Let σ be an ap-
proximately policy-equivariant transformation with commutation error ∆ = σK −Kσ. Then the
one-step prediction error ϵ̂t for the transformed trajectory {ẑt = σzEt } is given by:

ϵ̂t = σϵt +∆zEt . (13)
Consequently, its norm is bounded as:

∥ϵ̂t∥ ≤ ∥σ∥∥ϵt∥+ ∥∆∥∥zEt ∥. (14)

Proof. We begin with the definition of the prediction error for the transformed trajectory, ϵ̂t:

ϵ̂t ≜ ẑt+1 −Kẑt

Substitute the definitions of the transformed trajectory, ẑt = σzEt and ẑt+1 = σzEt+1:

ϵ̂t = σzEt+1 −K(σzEt )

Now, substitute the expression for the original trajectory’s dynamics, zEt+1 = KzEt + ϵt:

ϵ̂t = σ(KzEt + ϵt)−KσzEt
By the linearity of the operator σ, we can distribute it over the sum:

ϵ̂t = σKzEt + σϵt −KσzEt
Rearranging the terms to group the components related to ϵt and zEt :

ϵ̂t = σϵt + (σK−Kσ)zEt
By our definition of the commutation error, ∆ = σK−Kσ, we arrive at the first result:

ϵ̂t = σϵt +∆zEt
This completes the proof of the first equation.

To derive the bound on the norm, we take a suitable matrix/vector norm (e.g., the L2 norm) of both
sides and apply the triangle inequality (∥a+ b∥ ≤ ∥a∥+ ∥b∥):

∥ϵ̂t∥ = ∥σϵt +∆zEt ∥ ≤ ∥σϵt∥+ ∥∆zEt ∥
Finally, applying the property of induced matrix norms (∥Ax∥ ≤ ∥A∥∥x∥) to each term gives the
final bound:

∥ϵ̂t∥ ≤ ∥σ∥∥ϵt∥+ ∥∆∥∥zEt ∥
This completes the proof.

IMPLICATIONS OF THE BOUND

This result is highly significant. It shows that the error in a synthesized trajectory has two distinct
sources:

1. Propagated Model Error (∥σ∥∥ϵt∥): The original model’s inability to perfectly predict
the expert dynamics (ϵt) is carried over and scaled by the norm of the transformation.

2. Symmetry Violation Error (∥∆∥∥zEt ∥): A new error term arises directly from the failure
of the learned symmetry to perfectly commute with the learned dynamics.

This provides a clear theoretical motivation for not only minimizing the standard reconstruc-
tion/prediction loss (which minimizes ∥ϵt∥), but also for explicitly regularizing the model to mini-
mize the commutation error ∥∆∥.

B ROBUSTNESS IN FEW-SHOT SETTINGS

As demonstrated empirically in the Figure 4, our symmetry-based approach exhibits remarkable
robustness to reductions in the size of the expert dataset, a regime where standard methods like
Behavioral Cloning (BC) often fail. This appendix provides a qualitative analysis explaining this
superior data efficiency.

15



Published as a conference paper at ICLR 2026

Figure 4: Few-Shot Performance Comparison on maze2D-umaze.

The Brittleness of Standard Imitation Learning. Standard Behavioral Cloning (BC) directly
learns a state-action mapping from the provided expert data in a supervised manner. The perfor-
mance of a BC policy is therefore critically dependent on the coverage of the state space by the
training data. When the dataset is small, it represents a sparse and potentially biased sample of the
true expert state distribution. This leads to two primary failure modes:

1. Poor Generalization: The learned policy performs well only in the immediate vicinity of
the training states. It has no knowledge of how to act in the vast ”in-between” regions of
the state space.

2. Covariate Shift: A small initial error can push the agent into an out-of-distribution (OOD)
state. Since the policy was not trained on data from this region, its subsequent actions are
likely to be suboptimal or even random, leading to a cascade of compounding errors and
rapid task failure.

Data Augmentation as the Source of Robustness. In contrast, our method is fundamentally a
data augmentation technique that addresses the core issue of sparse data coverage. The key advan-
tage stems from the learned symmetry transformation, σ. Even from a single expert trajectory, our
model can generate a continuous family of new, diverse trajectories by applying the transformation
pointwise: {ŝt} = Dψ(σ(Eϕ(s

E
t ))).

Crucially, as proven in Appendix A, these augmented trajectories are guaranteed to be dynamically
consistent. This process aims to densify the training data distribution, potentially bridging gaps
in the state-space coverage that might otherwise hinder learning from sparse datasets.The policy
is consequently trained on a much richer and more comprehensive representation of the system’s
behavior. This expanded dataset inoculates the policy against minor deviations, as states that would
be OOD for BC are now likely to be in-distribution for our augmented dataset.

Conclusion. In summary, the performance of BC is directly coupled to the density and quantity of
the provided expert samples. Our method decouples this dependency by leveraging the learned ge-
ometric and dynamic structure of the system (i.e., its symmetries) to synthetically generate a dense,
dynamically valid dataset from a sparse source. This intrinsic data amplification is the primary
reason for its superior performance and robustness in low-data regimes.
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C ANALYSIS OF WEIGHT DISTRIBUTION AND ADAPTIVE SYMMETRY
CONTROL

To investigate the interpretability and effectiveness of the learned weights in our framework, we
analyze how these weights adaptively control the symmetry operator. The core objective is to ensure
conservative behavior in data-sparse regions (where prediction error is high) while placing trust in
augmentation within data-dense regions (where prediction is reliable).

We conducted an empirical validation on the Maze-2D dataset. Specifically, we sampled N = 5, 000
state transitions and computed their corresponding weights derived from the Koopman prediction
operator. We visualize the relationship between data density, prediction error, and weight magnitude
using Principal Component Analysis (PCA).

Figure 5: PCA visualization of the weight distribution on the Maze-2D dataset.

As illustrated in Figure 5, the results corroborate our hypothesis regarding the data-adaptive capa-
bility of the σ training:

• Data-Dense Regions: Represented by darker colors in the visualization, these areas exhibit
low prediction errors. Correspondingly, the model assigns small weights, implying that the
generated augmentations are reliable and can be trusted.

• Sparse Regions: In the central areas of the maze where data is sparse, we observe high
prediction errors. The model assigns large weights to these instances, necessitating a con-
servative update to prevent distribution shift.

Quantitatively, we measured the deviation of the learned weight distribution from a uniform distri-
bution. The analysis yields a Kullback-Leibler (KL) divergence of 0.429 and a Total Variation (TV)
distance of 0.374. These metrics confirm that the weights are non-uniform and effectively capture
the underlying geometry and density of the dataset.

D EXPERIMENTAL DETAILS

This section provides a detailed breakdown of the model architectures, hyperparameters, and train-
ing procedures used in our experiments to ensure full reproducibility.
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Our method, which we refer to as Koopman-Assisted Trajectory Synthesis for Offline Imitation
Learning (KATS), consists of four sequential training stages: Koopman model pre-training, inverse
dynamics model training, sigma model training, and finally behavior cloning with data augmenta-
tion.

Model Architectures. All neural networks in our framework are implemented as Multi-Layer
Perceptrons (MLPs) with Tanh activation functions:

• Koopman Model: Consists of an encoder and decoder, both implemented as 3-layer MLPs
with hidden dimensions of [512, 512]. The encoder maps from observation space to the
Koopman latent space of dimension Nz = 32, while the decoder reconstructs observations
from the latent representation. The linear Koopman operator K ∈ R32×32 operates in the
latent space.

• Inverse Dynamics Model: 3-layer MLP with hidden dimensions of [256, 256], taking
concatenated current and next states as input and outputting predicted actions.

• Sigma Model: 3-layer MLP with hidden dimensions of [256, 256], mapping from latent
space to latent space with the same dimensionality Nz = 32.

• Policy Model: 3-layer MLP with hidden dimensions of [256, 256], mapping from obser-
vation space to action space. For continuous action spaces, a tanh activation is applied to
the final layer.

Stage 1: Koopman Model Pre-training. The Koopman model, which combines an encoder-
decoder architecture with a linear Koopman operator K, is pre-trained to learn the underlying dy-
namics in latent space. The model is trained for up to 400 epochs with early stopping based on
train-to-test loss ratio convergence (threshold: 1.0 for both reconstruction and Koopman losses). We
use the ADAM optimizer with an initial learning rate of 3× 10−4, which is halved every 50 epochs
after epoch 100. The batch size is set to 256, and 70% of the dataset is used for training with the
remaining 30% for validation.

Stage 2: Inverse Dynamics Model Training. The inverse dynamics model is trained to predict
actions given state transitions (st, st+1)→ at. This model is essential for generating corresponding
actions for the augmented state trajectories. Training is conducted for 50 epochs using the ADAM
optimizer with a learning rate of 1× 10−3 and the same train-test split as the forward model.

Stage 3: Sigma Model Training. The sigma model learns the transformation σ : Z → Z that
enables controlled data augmentation in the latent space. The training objective is:

Lσ = E(zt,zt+1)

[
w · ∥Kσ(zt)− σ(zt+1)∥2

]
where w = exp(τ∥zt+1 − Kzt∥2) with τ = 1.5. The model is trained for 30 epochs using the
ADAM optimizer with a learning rate of 1× 10−4.

Stage 4: Behavior Cloning with Data Augmentation. The final stage trains the policy model
using both original and augmented data. The data augmentation process works as follows:

1. Encode original states (st, st+1) into latent space: zt, zt+1

2. Apply sigma transformation: σ(zt), σ(zt+1)

3. Decode back to state space: s̃t, s̃t+1

4. Use inverse dynamics model to predict corresponding actions: ãt

The policy is trained for 50 epochs using standard mean squared error loss for continuous actions or
cross-entropy loss for discrete actions. We use the ADAM optimizer with a learning rate of 5×10−4.
When data augmentation is enabled (controlled by use data augmentation flag), the training
alternates between original and augmented data with equal weighting.
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Hyperparameter Summary.

• Latent dimension: Nz = 32

• Batch size: 256 across all training stages
• Learning rates: 3× 10−4 (Koopman model), 1× 10−3(inverse model), 5× 10−4(policy),
1× 10−4 (sigma model)

• Training epochs: Forward model (up to 400 with early stopping), Inverse model (50),
Sigma model (30), Policy (50)

• Sigma weighting parameter: τ = 1.5

• Data augmentation weight: shift sigma ∈ [0.1, 0.5], controls the weighted fusion be-
tween augmented and original data

• Train-test split ratio: 0.7/0.3

Computational Resources. All experiments were conducted using PyTorch with CUDA support.
The models were trained on NVIDIA GeForce RTX 3090 GPUs with device selection controlled by
the cuda device parameter. Each complete training run (all four stages) typically requires 2-4
hours depending on the environment complexity and dataset size.

E USE OF LARGE LANGUAGE MODELS

A Large Language Model (LLM) was used to assist in the writing of this manuscript. Its role was
exclusively for language polishing, including improving grammar, clarity, and style. The LLM had
no role in the research ideation, methodological design, or data interpretation. The human authors
are solely responsible for the intellectual content of this work.
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