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Abstract001

Reasoning models like DeepSeek-R1 excel in002
mathematics, logic, and code generation. How-003
ever, their enhanced capabilities also introduce004
safety risks, especially since reasoning models005
using Chain of Thought (CoT) are more likely006
to generate harmful content. Existing align-007
ment methods (such as RLHF, SafeAligner,008
and SFT) primarily focus on the safety of the009
generated text from LLMs and fail to address010
the potential risks in the reasoning process,011
particularly those associated with CoT. To ad-012
dress this, we propose SCoT-LoraAlign, which013
contains two phases: SCOT Alignment and014
SCOT-LoRA Alignment. SCOT Alignment015
is a framework using Safety-focused Chain016
of Thought (SCOT) to secure the reasoning017
process via two-stage training: Supervised018
Fine-Tuning (SFT) and Reinforcement Learn-019
ing (RL). While SCOT Alignment improves020
alignment capabilities, its focus on safety lim-021
its generation ability and efficiency, as SCOT’s022
length distracts the model and incurs computa-023
tional overhead. Building on this, we further024
introduce SCOT-LoRA, a test-time alignment025
mechanism that converts SCOT into low-rank026
parameters for dynamic model patching. It ac-027
tivates full SCOT analysis only when facing028
novel attacks, thus preserving alignment while029
minimizing impact on generation ability and030
efficiency. Our method achieved 43.2% higher031
defense capability than baseline methods, with032
lower training costs and negligible alignment033
tax, validated across six models and five jail-034
break methods.035

1 Introduction036

With the advent of reasoning models such as037

DeepSeek-R1(DeepSeek-AI et al., 2025), their re-038

markable capabilities in mathematical computa-039

tion, logical reasoning, and code generation have040

garnered widespread attention(DeepSeek-AI et al.,041

2024). This pivotal moment has illuminated a new042

path in the quest for Artificial General Intelligence 043

(AGI). 044

However, the enhancement of model capabil- 045

ities is accompanied by new safety threats. In 046

particular, the safety vulnerabilities of reasoning 047

models that employ chain-of-thought (CoT) (Wei 048

et al., 2022) reasoning have become increasingly 049

prominent. For instance, “jailbreak attacks” such 050

as (Zou et al., 2023, Jiang et al., 2024) have demon- 051

strated that reasoning models like DeepSeek-R1 052

(DeepSeek-AI et al., 2025) are more susceptible 053

to generating various types of harmful content (as 054

shown in Figure 1 left panel). Although many align- 055

ment methods have been proposed for LLMs to 056

achieve the 3H principle - harmlessness, helpful- 057

ness, and honesty - such as RLHF (Ouyang et al., 058

2022b) and SafeAligner (Xu et al., 2024), which 059

mainly focus on ensuring the safety of the gener- 060

ated text from LLMs, They do not address the po- 061

tential harmfulness in the reasoning process itself, 062

particularly in the generated CoT. While reasoning- 063

enhanced models introduce certain safety risks, it is 064

important to highlight that their powerful reasoning 065

capabilities can also be used to improve the safety 066

of LLM responses (as shown in the right panel of 067

Figure 1). 068

To address the aforementioned challenges, we 069

introduce SCoT-LoraAlign, which contains two 070

main phases: SCOT Alignment and SCOT-LoRA 071

Alignment. 072

SCOT Alignment is a novel framework designed 073

to enhance the safety of the reasoning process. Our 074

architecture trains the model to leverage its inherent 075

reasoning capabilities through a dual-phase mecha- 076

nism: 1) SFT : The base model is first initialized 077

with Safety-focused chain of Thought (SCOT) data 078

to learn safe reasoning and response generation 079

during the SFT phase. 2) RL phase: It is then op- 080

timized via Proximal Policy Optimization (PPO) 081

using a reward model that prioritizes safety and 082

SCOT regulations. 083
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Figure 1: Example of reasoning model and SCOT-zero

Although the SCOT Alignment substantially im-084

proves the model’s alignment capabilities, it ex-085

hibits deficiencies in generation ability and effi-086

ciency. This is attributed to two key limitations087

resulting from its overemphasis on safety in the088

SCOT generated during the reasoning process: 1)089

the lengthy SCOT occupies a significant portion of090

the text window, which can distract the model from091

focusing on the generation task and consequently092

impact its generation capabilities. Meanwhile, 2)093

the generation of SCOT and the processing of the094

long context it occupies result in substantial com-095

putational resource overhead. Therefore, based096

on SCOT-Zero, we have further proposed SCOT-097

LoRA Alignment, a test-time alignment mecha-098

nism that Converting SCOT into equivalent low-099

rank parameters achieves the same alignment ef-100

fect on the reasoning process as SCOT itself. This101

achieves directly generating safety initial response102

through dynamic model patching in test time by103

equivalent low-rank parameters. Through SCOT-104

LoRA Alignment, the LLM activates full SCOT105

analysis only for novel attack patterns, eliminating106

the impact on the model’s generation ability and ef-107

ficiency, while remaining the alignment capability.108

Our contributions are threefold:109

Enhancing safety in the reasoning model: We110

train a SCOT-zero model to generate safety COT,111

leveraging its reasoning capabilities to conduct112

safety reflection and correction on the initial re-113

sponse, which significantly enhanced the models’114

safety alignment abilities.115

Minimizing the impact on generation capa-116

bility and efficiency: We propose SCOT-LoRA117

alignment mechanism that converting SCOT into118

equivalent low-rank parameters, eliminating the 119

impact on the model’s generation ability and effi- 120

ciency. 121

Extensive experimental validation: Compre- 122

hensive evaluations across 6 models, especially 123

two reasoning-enhganced model, and 5 jailbreak 124

methods demonstrate CoTAlign’s superiority over 125

6 baselines methods, achieving 43.2% higher de- 126

fense capability withfewer training costs and negli- 127

gible alignment tax. 128

2 WorkFlow 129

SCoT-LoraAlign contains two phases. Phase 1: 130

Construct the SCOT-zero model to generate a long 131

text safety chain of thought dataset. Phase 2: Per- 132

form efficient fine-tuning of the target model using 133

the low-cost LoraAlign technique to enhance safety. 134

The details of workflow is as follows (seen in Fig- 135

ure 2). 136

Phase 1 - SCOT Alignment: we constructed 137

a dataset containing SCOT data and trained the 138

base reasoning model on this dataset to construct 139

the SCOT-zero. The SCOT-zero can reflect on and 140

correct the harmful initial output by generating the 141

safety COT, thereby ensuring the safety of the final 142

output. Furthermore, by using SCOT-zero as the 143

teacher model and distilling its ability to generate 144

SCoT into the target model, we enable the target 145

model to acquire the capability of reflecting on and 146

correcting its initial output through reasoning. 147

However, excessive concern on safety during rea- 148

soning progress and generating long text of SCOT 149

will occupy too much text window. The long text 150

not only distracts the target model’s attention from 151

its generative capabilities but also adds consider- 152

able computational burden during the generation 153

process. To address the decrease in generative capa- 154

bility and the substantial computational overhead 155

caused by the long text of SCOT, we proposed 156

SCOT-LoRA Alignment. 157

Phase 2 - SCOT-LoRA Alignment: we trans- 158

form the SCOT generated by the target model into 159

low-rank equivalent parameters. By updating the 160

target model with these low-rank equivalent param- 161

eters, we can achieve the same alignment effect 162

as incorporating SCoT into the context. Through 163

SCOT-LoRA alignment, the model enhances the 164

safety of the initial output, mitigates the generation 165

of long SCoT text, and retains the ability to reflect 166

on and correct during inference when encountering 167

new safety vulnerabilities, as well as to normally 168
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Figure 2: The work flow of CoTAlign.

perform downstream tasks.169

We will provide detailed descriptions of the spe-170

cific implementations of SCOT Alignment and171

SCOT-LoRA Alignment in sections 3 and sections172

4, respectively.173

3 SCoT Alignment174

In this section, we train the base reasoning model175

to construct SCoT-zero, which generates SCoT to176

reflect on and correct the harmfulness of its initial177

output through the reasoning capability, thereby178

ensuring the safety of the generated output. Then179

distilling SCoT-zero’s SCoT generation capability180

to target model through distillation.181

3.1 Data Generation182

We first construct a dataset for SCoT to facilitate183

subsequent training. We guide reasoning models184

R (e.g., GPT-o3) to genertae SCoT through metic-185

ulously designed prompts. These SCoT enable186

the model to evaluate, reflect upon, and rectify the187

potential harmfulness of initial outputt, ultimately188

generating harmless outputs, the example of SCoT189

is shown as below. Specifically, we provide the rea-190

soning model with queries q and harm-safe output191

pairs (harmoutq, safeoutq) alongside a structured192

prompt prompt instructing the model to analyze:193

(1) assess the harmful categories and harmful el-194

ements in harmoutq compared to safeoutq alterna-195

tives, (2) reflect the overlooked values or behav-196

ioral norms of harmoutq under queries q, and (3)197

identify the content that needs to be produced and198

provide suggestions for modifications to safeoutq. 199

This generation process of SCoT is formalized as: 200

R(prompt(q, (harmoutq, safeoutq)) = SCoTq (1)

Safety CoT Example

Step 1: Analyze the Harmful Output’s Categories
and Elements
· Harmful Category Identification:

* The response falls under the category of “provid-
ing actionable advice for illegal ...

* Key Harmful Elements
> Explicit Guidance: The reply breaks down

logistical factors...
> Lack of Ethical Boundaries: It fails to disavow

the premise of the question ...
> ...

Step 2: Reflect on Overlooked Values and Norms
* Legal Responsibility: The model should prioritize

discouraging illegal ...
* Social Harm: Providing such advice could lead

to real-world consequences, including ...

Step 3: Identify Content to Produce and Modify
* Required Content for Safe Output:

> Explicit Refusal: Clearly state that the model
cannot assist ...

> Moral Stance (Optional): Briefly condemn the
act (e.g., “Stealing is illegal.

> ...
201

We construct the dataset based on the SCoT data 202

which can be used to enhance the model’s reason- 203

ing capability through CoT and focusing on the 204

safety of responses during the reasoning process. 205

This Dataset is utilized to train the base reasoning 206

model into SCoT-zero and will be open-sourced 207
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to align reasoning models through their reasoning208

capabilities.209

3.2 SCoT-zero Training210

In this work, we selected DeepSeek-r1 as the base211

reasoning model to construct SCoT-zero. We adopt212

a two-stage training paradigm to construct SCoT-213

zero:214

• SFT training phase: Initialize the base model215

using SCoT dataset to study SCoT generation216

capability and harmless response generation.217

• RL training phase: During the RL phase,218

we utilize the reward model which prioritizes219

safety and the regulations for the generation220

of SCoT, and optimize the policy via Proximal221

Policy Optimization (PPO). This further helps222

the base reasoning model study the paradigm223

and rule of SCoT generation.224

Through the training in the two aforementioned225

stages, we have constructed SCoT-zero, which is226

capable of assessing and correcting the harmfulness227

of initial output through reasoning capability.228

3.3 SCoT Cpability Distillation229

Then we distilled SCoT-zero’s SCoT generation230

capability to the target model through distillation.231

We utilize SCoT-zero as the teacher model and232

the target model as the student model. We input233

harmful queries to SCoT-zero to guide it in gener-234

ating SCoT. We filtered out outputs without SCoT235

and those with irregular SCoT formats, using the236

compliant outputs as learning samples for the target237

model. The training process uses SCoT-zero’s next-238

token distribution p̂T (x) and corresponding logits239

zT as the target for a student predicted next-token240

distribution q̂S(x) and corresponding logits zS .241

After distillation, the target model has acquired242

the capability to generate SCoT and to reflect upon243

and correct its initial outputs.244

4 CoT-LoRA Alignment245

In this section, we discovered that incorporating246

SCoT into the context causes low-rank shifts in247

the model’s hidden vectors during the inference248

process. Inspired by this finding, we propose249

SCOT-LoRA Alignment, which transforms SCoT250

into equivalent low-rank parameters that induce251

the same changes in the hidden vectors as SCoT,252

thereby possessing equivalent alignment capabili-253

ties."254

4.1 The Impact of SCoT 255

In this section, we describe the discovery of the 256

equivalence between the addition of context and 257

modifications of low-rank parameters. The adjust- 258

ment of low-rank parameters can have the same 259

effect on the alignment as SCoT. 260

We first discovered that incorporating SCoT into 261

the context results in low-rank, less change pat- 262

tern characteristics changes in the hidden vec- 263

tors during the LLM’s inference process. 264

We recorded and observed the output of each 265

hidden layer during the inference process with two 266

forms of inputs: query and query combines SCoT 267

as context. Differences in the hidden vectors were 268

quantified to form a matrix, which was then ana- 269

lyzed using principal component analysis (PCA). 270

For the observation of figure 3, the first two prin- 271

cipal components account for over 76% of the vari- 272

ance, while the cumulative variance of the top ten 273

exceeds 95%. This implies that the variations ma- 274

trix of hidden vectors exhibited low-rank properties, 275

and there were few patterns of change in hidden 276

vector differences between the two attacks. These 277

results resemble those observed in output distribu- 278

tions caused by modifications to a small subset of 279

low-rank parameters in linear layers(Bellet et al., 280

2013, Zeiler and Fergus, 2014). This inspired us 281

to adjust a low-rank parameter to update the mode 282

to achieve the same shifting in the hidden vector. 283

Thus we can transform SCoT into equivalent low- 284

rank parameters(Hu et al., 2021) that have the same 285

alignment with SCoT. 286

Figure 3: left shows that the top few components ac-
count for the majority of the variance; right shows the
first few variables have different roles

4.2 Equivalent parameter Calculation 287

In this section, we will detail the specific process 288

of CoTLoRA alignment. The implementation of 289

CoTLoRA alignment is divided into three distinct 290

phases: Hidden Vectors Extracts for subsequent 291

calculations, Low-Rank Learning for calculating 292

equivalent low-rank parameters, and Parameter Fu- 293
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sion for applying equivalent value parameters to294

update the model. The objective of TurboLoRA is295

to train the generator model to directly generate a296

safe initial response without SCoT while preserv-297

ing its ability to generate harmless content. This298

objective can be formally represented as follows:299

Min
∆W

|Q|∑
i=1

CE(T
′
qi ,Tqi), is (sCoTqi) = 0 (2)

Min
∆W

|Q|∑
i=1

CE(T
′
qi ,TsCoTi), is (sCoTqi) = 1 (3)

Ti = G(W+, qi) T
′
i = G(W +∆W, qi) (4)

TsCoTi = G(W, qi + sCoTqi) (5)

Where CE represents the CrossEntropy function,300

sCoTi is the harmful initial output and SCoT cor-301

responding to question qi, G is the generator model302

SCoT-zero, ∆W is the equivalent low-rank param-303

eters.304

Hidden Vectors Incorporating: During testing
time, whenever the model’s initial output is harmful
and generates SCoT for correction, we extract the
hidden vectors for subsequent calculations. We
collect the model’s parameters W and l-th layer
MLP’s hidden vectors input and output pair of l-
th layer (xl, yl) when the input of the model is an
original query and combined initial response and
SCoT added as context. The formal representation
is as follows:

WXq
l + bl = Y q

l+1, input = q (6)

WX
sCoTq

l + bl = Y
sCoTq

l+1 , input = q + sCoTq

(7)

Low-Rank Learning: At this stage, we calcu-
late the equivalent low-rank parameters ∆W used
to update the model, completing the low-rank learn-
ing. The formula for calculating parameters utilizes
the Moore-Penrose pseudoinverse for efficient com-
putation, as outlined below:

X−1 =VrΣ
−1
r UT

r (8)

X =UΣV T ,∆X = XsCoT −Xq (9)

∆W =W∆X(VrΣ
−1
r UT

r ) (10)

Eq.8 represents the singular value decomposition305

of X, and Eq.9 is obtained using the Penrose inverse306

algorithm(Penrose, 1955). The detailed computa-307

tional procedure and derivation are described in308

the Appendix. Eq.10 calculates the value of ∆w, 309

which is the optimal solution for Eq.1. By summing 310

the equivalent low-rank parameter to the original 311

model parameter matrix, it is possible to obtain the 312

same inference result as introducing value knowl- 313

edge in context when encountering attack queries. 314

Equivalent Parameter Fusion: In this phase,
we fuse the equivalent value parameters with the
original model and perform the validation of the
equivalent value parameters. The fusion of the
equivalent parameters calculated by CORLoRA
with the original model can be expressed as:

W
′
= (W +∆W ) (11)

The inference results of the model with param- 315

eters W
′

for the original query are equivalent to 316

the inference results of the original model with 317

the introduction of SCoT into context, obtaining a 318

safe response that is aligned with the target human 319

values. 320

5 Experiment 321

In this section, we validate the safety, downstream 322

task capabilities, and temporal efficiency of Co- 323

TAlign. 1. It is advisable to add a phrase after 324

"time efficiency": "that is, the consumption during 325

training and the consumption during inference," to 326

correspond with Table 1. 2. After "downstream 327

task capabilities," it is advisable to add a phrase: 328

"that is, the alignment tax," to correspond with 329

Table 1. 330

5.1 Experiment Setup 331

Dataset: Advbench was utilized to validate the 332

alignment effectiveness of CoTAlign. Truth- 333

fulQA(Lin et al., 2022) are used to evaluate the 334

truthfulness and reliability of the generated re- 335

sponse. GSM8K (Cobbe et al., 2021) is aimed 336

at evaluating the model’s proficiency in understand- 337

ing and solving complex mathematical problems. 338

MMLU is a benchmark for evaluating a model’s 339

performance across a wide variety of tasks, across 340

57 diverse topics and domains. 341

5.1.1 Baseline 342

PPL (Perplexity) (Alon and Kamfonas, 2023) as- 343

sesses the uncertainty in a model’s output and de- 344

tects potentially harmful or nonsensical responses. 345

RLHF (Reinforcement Learning from Human 346

Feedback) (Ouyang et al., 2022b)refines an LLM 347

using reinforcement learning, where human feed- 348

back on model outputs guides the reward function. 349
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SafeDecoding (Xu et al., 2024)is a method de-350

signed to ensure safe and reliable outputs by apply-351

ing constraints during the decoding process. Self-352

Reminder (Xie et al., 2023)involves incorporating353

mechanisms within the model that prompt it to self-354

check or reflect on its generated responses. Retok-355

enization (Jain et al., 2023)adjusts the tokenization356

process to modify or restrict the vocabulary or in-357

put sequences, mitigating the risk of generating358

unsafe or biased content. AED (Adversarial Exam-359

ple Detection) (Liu et al., 2024)identifies and filters360

adversarial inputs or examples that might cause a361

model to behave unpredictably or maliciously.362

The detailed baseline settings for each experiment363

are described in the appendix.364

5.1.2 Jialbreak Method365

GCG (Gradient-based Controlled Generation)366

(Zou et al., 2023) exploits gradient-based tech-367

niques to manipulate a model’s output. AutoDAN368

(Liu et al., 2023) uses automatic techniques to369

generate adversarial inputs that can bypass con-370

tent moderation mechanisms. Codeattack (Jha371

and Reddy, 2022) is an attack method that targets372

code-generation models, crafting inputs that exploit373

vulnerabilities in the model’s training or decoding374

process. Pair (Chao et al., 2023) involves craft-375

ing paired inputs that exploit vulnerabilities in the376

model’s response generation.377

5.1.3 Target model378

Our study uses the following widely used models379

as target models: Vicuna-13b(Anonymous, 2023),380

LLaMA2-7b(Touvron et al., 2023), LLaMA3-381

7b(Touvron et al., 2023), Mistral-7b(AI, 2023),382

Deepseek-r1 (DeepSeek-AI et al., 2025), and383

Deepseek-v3 (DeepSeek-AI et al., 2024).384

5.1.4 Dataset385

Attack Datasets: We utilized Advbench and HEx-386

PHI as attack query datasets as test datasets to387

validate the safety of CoTLoRA and Anthropic388

Helpful-Harmless as training datasets.389

Downstream Tasks Datasets: TruthfulQA (Lin390

et al., 2022) is comprised of questions that are for-391

mulated to challenge the veracity of the model’s392

outputs, which are used to evaluate the truthfulness393

and reliability of the generated response. GSM8K394

(Cobbe et al., 2021) is aimed at evaluating the395

model’s proficiency in understanding and solving396

complex mathematical problems typically encoun-397

tered at the grade school level. WildChat is a398

large corpus of real-world user-ChatGPT interac- 399

tions and is instrumental in evaluating the model’s 400

over-refusal tendency. 401

5.1.5 Evalution Metrics 402

Our study employed several metrics for compre- 403

hensive evaluation: 404

• Attack Success Rate (ASR) : We use the At- 405

tack Success Rate (ASR) as the metric to eval- 406

uate the alignment safety. For each query, 407

we repeat the inquiry five times, and any sin- 408

gle instance of generating harmful content is 409

considered a successful attack. We evaluate 410

the safety of responses using three methods: 411

LlamaGuard, GPT-4 evaluation, and human 412

assessment. Overly refusals are also consid- 413

ered alignment failures. A response is classi- 414

fied as positive if it is considered unanimously 415

deemed safe by all judgment. 416

• PromptBench: We utilize GPT-4 and prompt 417

engineering to evaluate the usefulness of 418

model responses by designing prompts that 419

assess relevance, accuracy, and informative- 420

ness, inspired by methods like PromptBench 421

(Microsoft Research, 2023), which systemati- 422

cally integrates evaluation prompts for diverse 423

NLP tasks. 424

5.2 Experimental Result and Analysis 425

In this chapter, we raise a series of experiments 426

about safety, alignment tax, and temporal efficiency 427

of the alignment method. 428

5.2.1 CoTAlign Is Effective in Alignment 429

We first verify whether CoTAlign can better assist 430

LLMs in aligning with human values and generat- 431

ing harmless responses. 432

The experimental results shown in Table 3 in- 433

dicate that CoTAlign achieves the lowest ASR on 434

almost all models compared to baseline methods. 435

It is noteworthy that the original alignment capa- 436

bilities of the Deepseek-R1 model were relatively 437

poor, but after undergoing training to SCoT-zero, 438

its protective capabilities have been greatly en- 439

hanced. This demonstrates that the inherent strong 440

reasoning capabilities of the reasoning model hold 441

tremendous potential in terms of safety alignment. 442

5.2.2 CoTLoRA Reduces the Computing 443

Overhead 444

Tab 4 validated the temporal efficiency of CoTAl- 445

ign. We used 10,000 harmful queries as a round 446
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Model Method No Attack↓ GCG↓ AutoDAN↓ codeattack↓ Pair↓ ArtPrompt↓

DeepSeek-R1

No Defense 8.51% 86.32% 82.12% 46.65% 87.52% 32.79%
PPL 6.45% 0.00% 75.20% 40.33% 65.52% 33.70%
RLHF 5.62% 17.02% 24.60% 23.22% 28.35% 27.16%
Self-Reminder 0.00% 33.22% 17.05% 32.08% 36.82% 23.28%
Retokenization 32.68% 53.99% 25.58% 40.10% 61.71% 29.10%
AED 0.00% 9.50% 17.18% 25.25% 28.17% 10.73%
Safedecoding 0.00% 3.28% 10.59% 10.88% 18.65% 8.06%
CoTAlign(SCoT-zero) 0.00% 3.30% 6.29% 8.40% 8.65% 3.06%
CoTAlign(LoRA) 0.00% 2.92% 6.98% 8.87% 8.69% 3.04%

DeepSeek-v3

No Defense 6.81% 73.00% 64.23% 44.32% 73.15% 34.43%
PPL 5.56% 0.00% 54.46% 38.31% 62.29% 32.07%
RLHF 4.84% 15.32% 23.33% 22.11% 27.27% 25.81%
Self-Reminder 0.00% 31.56% 16.20% 30.48% 35.16% 22.14%
Retokenization 29.34% 51.34% 24.30% 38.09% 58.77% 27.65%
AED 0.00% 8.55% 16.32% 24.01% 26.73% 10.22%
Safedecoding 0.00% 3.12% 10.12% 10.34% 17.78% 7.71%
CoTAlign(SCoT-zero) 0.00% 2.94% 6.03% 8.02% 8.24% 2.91%
CoTAlign(LoRA) 0.00% 3.78% 6.83% 8.46% 8.27% 2.74%

Llama2-7B-Chat-HF

No Defense 0.0% 37.68% 27.83% 57.59% 29.40% 43.33%
PPL 0.0%% 0.0% 10.50% 45.46% 18.90% 37.87%
RLHF 1.24% 5.09% 5.85% 16.53% 14.72% 14.47 %
Self-Reminder 0.0% 3.22% 12.61% 24.66% 19.49% 17.80 %
Retokenization 0.0% 6.59% 11.11% 50.13% 12.93% 36.19 %
AED 0.0% 8.00% 6.1% 22.61% 17.56% 16.01 %
Safedecoding 0.95% 2.38% 6.83% 18.05% 3.47% 14.82 %
CoTAlign(SCoT-zero) 0.0% 1.62% 4.83% 5.13% 3.49% 4.10%
CoTAlign(LoRA) 0.0% 1.54% 5.08% 4.92% 3.65% 5.96%

Vicuna-13B

No Defense 0.0% 93.97% 80.15% 58.32% 92.40% 40.99%
PPL 8.06% 0.0% 84.00% 50.41% 81.90% 42.13%
RLHF 7.03% 12.18% 18.25% 26.53% 25.44% 13.95%
Self-Reminder 0.0% 41.53% 21.31% 40.10% 46.03% 29.09%
Retokenization 40.85% 67.51% 31.97% 50.13% 77.14% 36.38%
AED 0.0% 13.88% 21.48% 31.57% 35.22% 13.44%
Safedecoding 0.0% 12.03% 27.98% 36.52% 10.26% 28.25%
CoTAlign(SCoT-zero) 0.0% 4.10% 13.24% 13.60% 10.81% 10.07%
CoTAlign(LoRA) 0.0% 3.90% 12.63% 14.94% 10.30% 8.57%

Llama3-8B-Instruct

No Defense 0.0% 33.91% 25.05% 51.83% 28.46%% 40.72%
PPL 0.0%% 0.0% 9.45% 40.91% 17.01% 29.44%
RLHF 1.12% 3.58% 9.42% 18.88% 17.75% 31.46%
Self-Reminder 0.0% 2.90% 11.35% 39.07% 15.74% 29.84%
Retokenization 0.0% 5.93% 10.00% 45.12% 11.64% 36.54%
AED 0.0% 4.10% 10.28% 19.55% 15.80% 16.95%
Safedecoding 0.86% 2.14% 16.15% 16.7% 3.42% 15.17%
CoTAlign(SCoT-zero) 0.0% 1.46% 4.35% 6.12% 6.42% 6.91%
CoTAlign(LoRA) 0.0% 1.39% 4.57% 7.81% 5.25% 6.78%

Mistral-7B

No Defense 0.0% 100.00% 96.18% 68.80% 62.83% 64.02%
PPL 0.0% 0.0% 18.17% 29.55% 13.47% 45.99%
RLHF 0.12% 9.61% 16.79% 17.59% 21.09% 18.65%
Self-Reminder 0.0% 5.35% 18.70% 22.21% 35.65% 17.14%
Retokenization 5.79% 13.72% 21.78% 40.50% 35.57% 38.22%
AED 0.0% 11.72% 18.70% 27.14% 30.12% 24.71%
Safedecoding 0.84% 9.76% 28.53% 28.77% 31.56% 22.87%
CoTAlign(SCoT-zero) 0.0% 3.64% 5.48% 9.12% 12.74% 10.25%
CoTAlign(LoRA) 0.0% 3.46% 5.71% 8.67% 12.01% 10.46%

Table 1: The alignment performance(ASR) of applying alignment methods. We bold the best performing.s

of validation to assess the impact of SCOT-LoRA447

on computational overhead. SCOT-LoRA reduced448

the computational overhead by 15.7% in the first449

round of test-time, and after alignment during one450

round of test-time training, it reduced the computa-451

tional overhead by 45.2%. This overhead will be452

further reduced with multiple rounds of Q&A and453

a broader range of queries. This is because SCOT-454

LoRA Align can transform a generated SCoT into455

low-rank parameters and update the model after456

one generation, avoiding the need to produce long457

chains of thought and use them as context when458

facing similar queries next time, thus reducing com-459

putational costs.460

5.2.3 CoTAlign Is Useful461

Tab 2 and Tab 3 show the impact of imple-462

menting CoTAlign on downstream tasks in LLMs.463

CoTAlign achieves the highest accuracy in the464

downstream tasks compared to baseline methods465

Figure 4: Temporal Efficiency

with virtually no impact on downstream tasks and 466

does not exhibit significant over-refuse phenomena 467

compared to more refusal-trained models Claude- 468

3. This is because SCoT can thoroughly analyze 469

whether a response needs correction and generate 470

accordingly, thus avoiding any impact on harm- 471

less tasks and responses. When SCoT is trans- 472

formed into equivalent low-rank parameters, its 473

7



low-rank nature allows it to precisely enhance the474

model’s safety alignment capabilities without af-475

fecting other task capabilities.476

Moreover, the reasoning ability brought by the477

long chain of thought has a certain degree of gener-478

alizability, which can improve the model’s reason-479

ing capabilities on other downstream tasks to some480

extent.481

Model Name TruthfulQA GSM8K MMLU
Llama2-chat 46.3 38.4 45.3
RLHF 37.6 33.6 40.1
PPLM 28.0 18.7 22.8
Self-Reminder 41.8 32.7 42.5
Retokenization 35.7 22.5 38.9
Safedecoding 39.9 23.5 37.7
RAG 41.6 31.3 40.6
CoTAlign 44.5 34.8 42.8

Table 2: Down Stream Task Capability(ACC)

Original SCoT-
Zero

CoT
LoRA

Claude-
Opus

Refusal Rate 1.2% 1.4% 2.1% 18.8

Table 3: Over-refusal evaluation on DeepSeek-R1

5.2.4 Influence of Rank r482

Result: By analyzing the results in Figure 5, it’s ev-483

ident that even with a rank setting of 10, the model484

retains over 79% of the defensive capabilities en-485

hancement. As the rank r increases, PER gradually486

increases. This is because most of the energy is still487

encapsulated within low-rank parameters. When488

comparing models of rank 50 to 100, no significant489

change in defensive capability is observed. The490

model’s protection capacity is gradually leveling491

off. It further substantiates that SCOT-LoRA ex-492

hibits commendable efficacy even in lower-rank493

settings. However the rank continues to increase,494

and TurboLoRA’s protective capabilities will de-495

cline rapidly after exceeding a certain value after496

numerous updates with SCOT-LoRA. Therefore,497

TurboLoRA is not suitable for selecting excessively498

large ranks.499

6 Related Works500

6.1 Alignment Methods501

Fine-tuning(He et al., 2022) approaches enhance502

LLMs’ alignment with human values by leveraging503

extensive datasets. RLHF(Ouyang et al., 2022a)504

employs a reward model under the PPO framework505

to learn human preferences. Self Aligner enables506

models to self-regulate outputs, AED(Liu et al.,507

Figure 5: Temporal Efficiency

2024) detects and filters adversarial inputs, and 508

SafeDecoding(Xu et al., 2024) mitigates jailbreak 509

attacks by prioritizing safety tokens and suppress- 510

ing harmful sequences. However, jailbreak attacks 511

exploiting generalization mismatches can still by- 512

pass these defenses, causing alignment failures. 513

6.2 Jailbreak Methods 514

AutoDAN(Liu et al., 2023) uses hierarchical ge- 515

netic algorithms to generate semantically mean- 516

ingful jailbreak prompts, while Prompt Automatic 517

Iterative Refinement (PAIR)(Chao et al., 2023) it- 518

eratively refines prompts using pre-trained LLMs 519

to elicit unintended behaviors with only black-box 520

access. Greedy Coordinate Gradient (GCG)(Zou 521

et al., 2023) employs gradient-based searches to 522

craft token sequences that bypass safety measures. 523

ArtPrompt(Jiang et al., 2024) uses ASCII art to ob- 524

scure malicious prompts, exploiting weaknesses in 525

non-semantic representation recognition. CodeAt- 526

tack(Jha and Reddy, 2022) targets adversarial vul- 527

nerabilities in LLM code generation. 528

7 Conclusion 529

To address these safety challenges in the reason- 530

ing model, we proposed CoTAlign. In the SCoT 531

alignment phase, through the construction of SCoT- 532

zero and the distillation process, the target model 533

studies the capability to generate SCoT which con- 534

ducts safety reflection and correction on the ini- 535

tial response. In SCOT-LoRA alignment, we con- 536

vert SCoT into equivalent low-rank parameters in 537

test time to eliminate computation overhead and 538

the generation impact of SCoT. We validate CoT- 539

LoRA through comprehensive evaluations across 6 540

models, especially two reasoning-enhanced mod- 541

els, and 5 jailbreak methods demonstrate CoTAl- 542

ign’s superiority over 6 baseline methods, achiev- 543

ing higher defense capability with fewer training 544

costs and negligible alignment tax. 545
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Limitations 763

While our proposed SCOT-LoraAlign demonstrates 764

significant improvements in safety alignment for 765

reasoning models, several limitations warrant dis- 766

cussion. 767

Dependency on SCOT Dataset Quality: The con- 768

struction of SCOT-zero relies on a manually cu- 769

rated dataset of safety-focused chain-of-thought 770

(SCOT) examples. While we designed structured 771

prompts to guide SCOT generation, the dataset’s 772

coverage of diverse harmful categories and novel 773

attack patterns may be incomplete. Biases or gaps 774

in the SCOT data could limit the model’s ability 775

to generalize to emerging or highly adversarial 776

threats. 777
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Trade-offs in Low-Rank Approximation: Al-778

though SCOT-LoRA effectively reduces computa-779

tional overhead by converting SCOT into low-rank780

parameters, this approximation may constrain the781

expressiveness of safety reasoning.782

Long-Term Stability of Parameter Updates: Re-783

peated low-rank parameter fusion could lead to cu-784

mulative shifts in model behavior over time. While785

our experiments show minimal alignment tax in786

short-term evaluations, prolonged usage might de-787

grade performance on downstream tasks or intro-788

duce unintended biases, necessitating periodic re-789

calibration.790

Limited Evaluation on Multilingual Scenarios:791

SCOT-LoRA focuses on updating the model at test792

time as a form of patch and cannot completely re-793

place the training process. Periodically using the794

SCOT-LoRA data to retrain at training times results795

in better results. Our validation is conducted exclu-796

sively on English-language datasets. The method’s797

effectiveness in non-English contexts, where cul-798

tural norms and harmful content definitions differ,799

remains unexplored.800

Addressing these limitations would further en-801

hance the robustness and applicability of safety802

alignment frameworks for reasoning models. Fu-803

ture work We will address the issue of catastrophic804

forgetting in SCoT-Align as well as its collapse805

after multiple iterations and expand SCOT datasets806

to cover broader threat landscapes.807

A Derivation and Proof808

In this section, we describe and derive the formula809

for calculating equivalent low-rank knowledge pa-810

rameters and prove the validity of the method.811

For the original model, the computation in the
l-th MLP layer during the inference process for
queries Q and Q′ satisfies the following equation:

WXq
l + bl = Y q

l , WX
sCoTq

l + bl = Y sCoTq

(12)
When the model is updated with ∆W , as deter-
mined by the target formula 1, for the original
input Q, the hidden vectors calculated with the
updated parameter should match those calculated
in the original parameter for the input Q′+SCoTq,
which is integrated SCoT into the context. This is
formally represented as:

(W +∆W )Xq
l + bl = Y

sCoTq

l+1 (13)

Based on this target formula 13, we compute the
equivalent parameters ∆W necessary for model

updates.∆W can be further formalized and repre-
sented as follows:

∆Yl = Y
sCoTq

l − Y q
l , ∆Xl = X

sCoTq

l −Xq
l

∆WXl =∆Yl = W∆Yl (14)

=⇒ ∆W = W∆YlX
−1
l (15)

However, in most cases, where the number of 812

queries does not equal the dimensionality of the 813

hidden vectors, therefore X is not a square matrix, 814

and hence an inverse X−1
l does not exist directly. 815

For this purpose, we compute the pseudoinverse 816

of X using the Penrose pseudoinverse as showned 817

in formula 2, which satisfies the requirement for 818

calculating ∆W . The equivalence found in 3.1 819

proves the validity of ∆W . 820

Once we have obtained the pseudoinverse matrix
X−1

l , we can directly compute the equivalent pa-
rameter ∆W , achieving the alignment of the model.
Ultimately, ∆W can be derived using the formula
presented below:

∆W = W∆X(VrΣ
−1
r UT

r ) (16)

We then add the computed equivalent parameter 821

∆W to the model’s original parameter W to imple- 822

ment sustainability updates of the LLMs’ parame- 823

ters. 824
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