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Abstract

Reasoning models like DeepSeek-R1 excel in
mathematics, logic, and code generation. How-
ever, their enhanced capabilities also introduce
safety risks, especially since reasoning models
using Chain of Thought (CoT) are more likely
to generate harmful content. Existing align-
ment methods (such as RLHF, SafeAligner,
and SFT) primarily focus on the safety of the
generated text from LLMs and fail to address
the potential risks in the reasoning process,
particularly those associated with CoT. To ad-
dress this, we propose SCoT-LoraAlign, which
contains two phases: SCOT Alignment and
SCOT-LoRA Alignment. SCOT Alignment
is a framework using Safety-focused Chain
of Thought (SCOT) to secure the reasoning
process via two-stage training: Supervised
Fine-Tuning (SFT) and Reinforcement Learn-
ing (RL). While SCOT Alignment improves
alignment capabilities, its focus on safety lim-
its generation ability and efficiency, as SCOT’s
length distracts the model and incurs computa-
tional overhead. Building on this, we further
introduce SCOT-LoRA, a test-time alignment
mechanism that converts SCOT into low-rank
parameters for dynamic model patching. It ac-
tivates full SCOT analysis only when facing
novel attacks, thus preserving alignment while
minimizing impact on generation ability and
efficiency. Our method achieved 43.2% higher
defense capability than baseline methods, with
lower training costs and negligible alignment
tax, validated across six models and five jail-
break methods.

1 Introduction

With the advent of reasoning models such as
DeepSeek-R1(DeepSeek-Al et al., 2025), their re-
markable capabilities in mathematical computa-
tion, logical reasoning, and code generation have
garnered widespread attention(DeepSeek-Al et al.,
2024). This pivotal moment has illuminated a new

path in the quest for Artificial General Intelligence
(AGD).

However, the enhancement of model capabil-
ities is accompanied by new safety threats. In
particular, the safety vulnerabilities of reasoning
models that employ chain-of-thought (CoT) (Wei
et al., 2022) reasoning have become increasingly
prominent. For instance, “jailbreak attacks” such
as (Zou et al., 2023, Jiang et al., 2024) have demon-
strated that reasoning models like DeepSeek-R1
(DeepSeek-Al et al., 2025) are more susceptible
to generating various types of harmful content (as
shown in Figure 1 left panel). Although many align-
ment methods have been proposed for LLMs to
achieve the 3H principle - harmlessness, helpful-
ness, and honesty - such as RLHF (Ouyang et al.,
2022b) and SafeAligner (Xu et al., 2024), which
mainly focus on ensuring the safety of the gener-
ated text from LL.Ms, They do not address the po-
tential harmfulness in the reasoning process itself,
particularly in the generated CoT. While reasoning-
enhanced models introduce certain safety risks, it is
important to highlight that their powerful reasoning
capabilities can also be used to improve the safety
of LLM responses (as shown in the right panel of
Figure 1).

To address the aforementioned challenges, we
introduce SCoT-LoraAlign, which contains two
main phases: SCOT Alignment and SCOT-LoRA
Alignment.

SCOT Alignment is a novel framework designed
to enhance the safety of the reasoning process. Our
architecture trains the model to leverage its inherent
reasoning capabilities through a dual-phase mecha-
nism: 1) SFT : The base model is first initialized
with Safety-focused chain of Thought (SCOT) data
to learn safe reasoning and response generation
during the SFT phase. 2) RL phase: It is then op-
timized via Proximal Policy Optimization (PPO)
using a reward model that prioritizes safety and
SCOT regulations.
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Figure 1: Example of reasoning model and SCOT-zero

Although the SCOT Alignment substantially im-
proves the model’s alignment capabilities, it ex-
hibits deficiencies in generation ability and effi-
ciency. This is attributed to two key limitations
resulting from its overemphasis on safety in the
SCOT generated during the reasoning process: 1)
the lengthy SCOT occupies a significant portion of
the text window, which can distract the model from
focusing on the generation task and consequently
impact its generation capabilities. Meanwhile, 2)
the generation of SCOT and the processing of the
long context it occupies result in substantial com-
putational resource overhead. Therefore, based
on SCOT-Zero, we have further proposed SCOT-
LoRA Alignment, a test-time alignment mecha-
nism that Converting SCOT into equivalent low-
rank parameters achieves the same alignment ef-
fect on the reasoning process as SCOT itself. This
achieves directly generating safety initial response
through dynamic model patching in test time by
equivalent low-rank parameters. Through SCOT-
LoRA Alignment, the LLM activates full SCOT
analysis only for novel attack patterns, eliminating
the impact on the model’s generation ability and ef-
ficiency, while remaining the alignment capability.

Our contributions are threefold:

Enhancing safety in the reasoning model: We
train a SCOT-zero model to generate safety COT,
leveraging its reasoning capabilities to conduct
safety reflection and correction on the initial re-
sponse, which significantly enhanced the models’
safety alignment abilities.

Minimizing the impact on generation capa-
bility and efficiency: We propose SCOT-LoRA
alignment mechanism that converting SCOT into

SCOT staEJ

equivalent low-rank parameters, eliminating the
impact on the model’s generation ability and effi-
ciency.

Extensive experimental validation: Compre-
hensive evaluations across 6 models, especially
two reasoning-enhganced model, and 5 jailbreak
methods demonstrate CoTAlign’s superiority over
6 baselines methods, achieving 43.2% higher de-
fense capability withfewer training costs and negli-
gible alignment tax.

2 WorkFlow

SCoT-LoraAlign contains two phases. Phase 1:
Construct the SCOT-zero model to generate a long
text safety chain of thought dataset. Phase 2: Per-
form efficient fine-tuning of the target model using
the low-cost LoraAlign technique to enhance safety.
The details of workflow is as follows (seen in Fig-
ure 2).

Phase 1 - SCOT Alignment: we constructed
a dataset containing SCOT data and trained the
base reasoning model on this dataset to construct
the SCOT-zero. The SCOT-zero can reflect on and
correct the harmful initial output by generating the
safety COT, thereby ensuring the safety of the final
output. Furthermore, by using SCOT-zero as the
teacher model and distilling its ability to generate
SCoT into the target model, we enable the target
model to acquire the capability of reflecting on and
correcting its initial output through reasoning.

However, excessive concern on safety during rea-
soning progress and generating long text of SCOT
will occupy too much text window. The long text
not only distracts the target model’s attention from
its generative capabilities but also adds consider-
able computational burden during the generation
process. To address the decrease in generative capa-
bility and the substantial computational overhead
caused by the long text of SCOT, we proposed
SCOT-LoRA Alignment.

Phase 2 - SCOT-LoRA Alignment: we trans-
form the SCOT generated by the target model into
low-rank equivalent parameters. By updating the
target model with these low-rank equivalent param-
eters, we can achieve the same alignment effect
as incorporating SCoT into the context. Through
SCOT-LoRA alignment, the model enhances the
safety of the initial output, mitigates the generation
of long SCoT text, and retains the ability to reflect
on and correct during inference when encountering
new safety vulnerabilities, as well as to normally
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Figure 2: The work flow of CoTAlign.

perform downstream tasks.

We will provide detailed descriptions of the spe-
cific implementations of SCOT Alignment and
SCOT-LoRA Alignment in sections 3 and sections
4, respectively.

3 SCoT Alignment

In this section, we train the base reasoning model
to construct SCoT-zero, which generates SCoT to
reflect on and correct the harmfulness of its initial
output through the reasoning capability, thereby
ensuring the safety of the generated output. Then
distilling SCoT-zero’s SCoT generation capability
to target model through distillation.

3.1 Data Generation

We first construct a dataset for SCoT to facilitate
subsequent training. We guide reasoning models
R (e.g., GPT-03) to genertae SCoT through metic-
ulously designed prompts. These SCoT enable
the model to evaluate, reflect upon, and rectify the
potential harmfulness of initial outputt, ultimately
generating harmless outputs, the example of SCoT
is shown as below. Specifically, we provide the rea-
soning model with queries ¢ and harm-safe output
pairs (harmout,, safeout,) alongside a structured
prompt prompt instructing the model to analyze:
(1) assess the harmful categories and harmful el-
ements in harmout, compared to safeout, alterna-
tives, (2) reflect the overlooked values or behav-
ioral norms of harmout, under queries ¢, and (3)
identify the content that needs to be produced and

provide suggestions for modifications to safeout,.
This generation process of SCoT is formalized as:

€]

Safety CoT Example

Step 1: Analyze the Harmful Output’s Categories
and Elements
- Harmful Category Identification:
* The response falls under the category of “provid-
ing actionable advice for illegal ...
* Key Harmful Elements
> Explicit Guidance: The reply breaks down
logistical factors...
> Lack of Ethical Boundaries: It fails to disavow
the premise of the question ...
> ..

R(prompt(q, (harrnoutq, safeoutq) ) = SCoTy

Step 2: Reflect on Overlooked Values and Norms
* Legal Responsibility: The model should prioritize
discouraging illegal ...
* Social Harm: Providing such advice could lead
to real-world consequences, including ...

Step 3: Identify Content to Produce and Modify
* Required Content for Safe Output:
> Explicit Refusal: Clearly state that the model
cannot assist ...
> Moral Stance (Optional): Briefly condemn the
act (e.g., “Stealing is illegal.
> ..

N

We construct the dataset based on the SCoT data
which can be used to enhance the model’s reason-
ing capability through CoT and focusing on the
safety of responses during the reasoning process.
This Dataset is utilized to train the base reasoning
model into SCoT-zero and will be open-sourced




to align reasoning models through their reasoning
capabilities.

3.2 SCoT-zero Training

In this work, we selected DeepSeek-r1 as the base
reasoning model to construct SCoT-zero. We adopt
a two-stage training paradigm to construct SCoT-
zero:

e SFT training phase: Initialize the base model
using SCoT dataset to study SCoT generation
capability and harmless response generation.

* RL training phase: During the RL phase,
we utilize the reward model which prioritizes
safety and the regulations for the generation
of SCoT, and optimize the policy via Proximal
Policy Optimization (PPO). This further helps
the base reasoning model study the paradigm
and rule of SCoT generation.

Through the training in the two aforementioned
stages, we have constructed SCoT-zero, which is
capable of assessing and correcting the harmfulness
of initial output through reasoning capability.

3.3 SCoT Cpability Distillation

Then we distilled SCoT-zero’s SCoT generation
capability to the target model through distillation.

We utilize SCoT-zero as the teacher model and
the target model as the student model. We input
harmful queries to SCoT-zero to guide it in gener-
ating SCoT. We filtered out outputs without SCoT
and those with irregular SCoT formats, using the
compliant outputs as learning samples for the target
model. The training process uses SCoT-zero’s next-
token distribution pp(x) and corresponding logits
z as the target for a student predicted next-token
distribution gs(z) and corresponding logits zg.

After distillation, the target model has acquired
the capability to generate SCoT and to reflect upon
and correct its initial outputs.

4 CoT-LoRA Alignment

In this section, we discovered that incorporating
SCoT into the context causes low-rank shifts in
the model’s hidden vectors during the inference
process. Inspired by this finding, we propose
SCOT-LoRA Alignment, which transforms SCoT
into equivalent low-rank parameters that induce
the same changes in the hidden vectors as SCoT,
thereby possessing equivalent alignment capabili-
ties."

4.1 The Impact of SCoT

In this section, we describe the discovery of the
equivalence between the addition of context and
modifications of low-rank parameters. The adjust-
ment of low-rank parameters can have the same
effect on the alignment as SCoT.

We first discovered that incorporating SCoT into
the context results in low-rank, less change pat-
tern characteristics changes in the hidden vec-
tors during the LLM’s inference process.

We recorded and observed the output of each
hidden layer during the inference process with two
forms of inputs: query and query combines SCoT
as context. Differences in the hidden vectors were
quantified to form a matrix, which was then ana-
lyzed using principal component analysis (PCA).

For the observation of figure 3, the first two prin-
cipal components account for over 76% of the vari-
ance, while the cumulative variance of the top ten
exceeds 95%. This implies that the variations ma-
trix of hidden vectors exhibited low-rank properties,
and there were few patterns of change in hidden
vector differences between the two attacks. These
results resemble those observed in output distribu-
tions caused by modifications to a small subset of
low-rank parameters in linear layers(Bellet et al.,
2013, Zeiler and Fergus, 2014). This inspired us
to adjust a low-rank parameter to update the mode
to achieve the same shifting in the hidden vector.
Thus we can transform SCoT into equivalent low-
rank parameters(Hu et al., 2021) that have the same
alignment with SCoT.
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Figure 3: left shows that the top few components ac-
count for the majority of the variance; right shows the
first few variables have different roles

4.2 Equivalent parameter Calculation

In this section, we will detail the specific process
of CoTLoRA alignment. The implementation of
CoTLoRA alignment is divided into three distinct
phases: Hidden Vectors Extracts for subsequent
calculations, Low-Rank Learning for calculating
equivalent low-rank parameters, and Parameter Fu-



sion for applying equivalent value parameters to
update the model. The objective of TurboLLoRA is
to train the generator model to directly generate a
safe initial response without SCoT while preserv-
ing its ability to generate harmless content. This
objective can be formally represented as follows:

Q

Min ZCE(T;Z,,T% ),is (sCoTy,) =0 (2)
Q) /

Min ;CE(Tqi,TscoTi ),is (sCoT,,) =1 (3)

Ti=GW+,q) T, = GW + AW, q) 4)

Tscor, = G(W, q; + sCoTy,) 5

Where CE represents the CrossEntropy function,
sCoT; is the harmful initial output and SCoT cor-
responding to question ¢;, G is the generator model
SCoT-zero, AW is the equivalent low-rank param-
eters.

Hidden Vectors Incorporating: During testing
time, whenever the model’s initial output is harmful
and generates SCoT for correction, we extract the
hidden vectors for subsequent calculations. We
collect the model’s parameters W and I-th layer
MLP’s hidden vectors input and output pair of 1-
th layer (27, y;) when the input of the model is an
original query and combined initial response and
SCoT added as context. The formal representation
is as follows:

WX+ b = Yl‘fH, input = ¢ (6)
WX ls CoTa 4 by = YlflOTq, input = g + sCoT,

(N

Low-Rank Learning: At this stage, we calcu-
late the equivalent low-rank parameters AW used
to update the model, completing the low-rank learn-
ing. The formula for calculating parameters utilizes
the Moore-Penrose pseudoinverse for efficient com-
putation, as outlined below:

X t=yx tur ®)

X =UxVT ,AX = x°C°T _x1 (9

AW =WAX (V2 tuT) (10)

Eq.8 represents the singular value decomposition
of X, and Eq.9 is obtained using the Penrose inverse

algorithm(Penrose, 1955). The detailed computa-
tional procedure and derivation are described in

the Appendix. Eq.10 calculates the value of Aw,
which is the optimal solution for Eq.1. By summing
the equivalent low-rank parameter to the original
model parameter matrix, it is possible to obtain the
same inference result as introducing value knowl-
edge in context when encountering attack queries.

Equivalent Parameter Fusion: In this phase,
we fuse the equivalent value parameters with the
original model and perform the validation of the
equivalent value parameters. The fusion of the
equivalent parameters calculated by CORLoRA
with the original model can be expressed as:

W' = (W 4+ AW) (11)

The inference results of the model with param-

eters W' for the original query are equivalent to

the inference results of the original model with

the introduction of SCoT into context, obtaining a

safe response that is aligned with the target human
values.

S Experiment

In this section, we validate the safety, downstream
task capabilities, and temporal efficiency of Co-
TAlign. 1. It is advisable to add a phrase after
"time efficiency": "that is, the consumption during
training and the consumption during inference," to
correspond with Table 1. 2. After "downstream
task capabilities," it is advisable to add a phrase:
"that is, the alignment tax," to correspond with
Table 1.

5.1 Experiment Setup

Dataset: Advbench was utilized to validate the
alignment effectiveness of CoTAlign. Truth-
fulQA(Lin et al., 2022) are used to evaluate the
truthfulness and reliability of the generated re-
sponse. GSMS8K (Cobbe et al., 2021) is aimed
at evaluating the model’s proficiency in understand-
ing and solving complex mathematical problems.
MMLU is a benchmark for evaluating a model’s
performance across a wide variety of tasks, across
57 diverse topics and domains.

5.1.1 Baseline

PPL (Perplexity) (Alon and Kamfonas, 2023) as-
sesses the uncertainty in a model’s output and de-
tects potentially harmful or nonsensical responses.
RLHF (Reinforcement Learning from Human
Feedback) (Ouyang et al., 2022b)refines an LLM
using reinforcement learning, where human feed-
back on model outputs guides the reward function.



SafeDecoding (Xu et al., 2024)is a method de-
signed to ensure safe and reliable outputs by apply-
ing constraints during the decoding process. Self-
Reminder (Xie et al., 2023)involves incorporating
mechanisms within the model that prompt it to self-
check or reflect on its generated responses. Retok-
enization (Jain et al., 2023)adjusts the tokenization
process to modify or restrict the vocabulary or in-
put sequences, mitigating the risk of generating
unsafe or biased content. AED (Adversarial Exam-
ple Detection) (Liu et al., 2024)identifies and filters
adversarial inputs or examples that might cause a
model to behave unpredictably or maliciously.
The detailed baseline settings for each experiment
are described in the appendix.

5.1.2 Jialbreak Method

GCG (Gradient-based Controlled Generation)
(Zou et al., 2023) exploits gradient-based tech-
niques to manipulate a model’s output. AutoDAN
(Liu et al., 2023) uses automatic techniques to
generate adversarial inputs that can bypass con-
tent moderation mechanisms. Codeattack (Jha
and Reddy, 2022) is an attack method that targets
code-generation models, crafting inputs that exploit
vulnerabilities in the model’s training or decoding
process. Pair (Chao et al., 2023) involves craft-
ing paired inputs that exploit vulnerabilities in the
model’s response generation.

5.1.3 Target model

Our study uses the following widely used models
as target models: Vicuna-13b(Anonymous, 2023),
LLaMA2-7b(Touvron et al., 2023), LLaMAZ3-
7b(Touvron et al., 2023), Mistral-7b(Al, 2023),
Deepseek-rl (DeepSeek-Al et al.,, 2025), and
Deepseek-v3 (DeepSeek-Al et al., 2024).

5.1.4 Dataset

Attack Datasets: We utilized Advbench and HEx-
PHI as attack query datasets as test datasets to
validate the safety of CoTLoRA and Anthropic
Helpful-Harmless as training datasets.
Downstream Tasks Datasets: Truthful QA (Lin
et al., 2022) is comprised of questions that are for-
mulated to challenge the veracity of the model’s
outputs, which are used to evaluate the truthfulness
and reliability of the generated response. GSM8K
(Cobbe et al., 2021) is aimed at evaluating the
model’s proficiency in understanding and solving
complex mathematical problems typically encoun-
tered at the grade school level. WildChat is a

large corpus of real-world user-ChatGPT interac-
tions and is instrumental in evaluating the model’s
over-refusal tendency.

5.1.5 Evalution Metrics

Our study employed several metrics for compre-
hensive evaluation:

¢ Attack Success Rate (ASR) : We use the At-
tack Success Rate (ASR) as the metric to eval-
uate the alignment safety. For each query,
we repeat the inquiry five times, and any sin-
gle instance of generating harmful content is
considered a successful attack. We evaluate
the safety of responses using three methods:
LlamaGuard, GPT-4 evaluation, and human
assessment. Overly refusals are also consid-
ered alignment failures. A response is classi-
fied as positive if it is considered unanimously
deemed safe by all judgment.

* PromptBench: We utilize GPT-4 and prompt
engineering to evaluate the usefulness of
model responses by designing prompts that
assess relevance, accuracy, and informative-
ness, inspired by methods like PromptBench
(Microsoft Research, 2023), which systemati-
cally integrates evaluation prompts for diverse
NLP tasks.

5.2 [Experimental Result and Analysis

In this chapter, we raise a series of experiments
about safety, alignment tax, and temporal efficiency
of the alignment method.

5.2.1 CoTAlign Is Effective in Alignment

We first verify whether CoTAlign can better assist
LLMs in aligning with human values and generat-
ing harmless responses.

The experimental results shown in Table 3 in-
dicate that CoTAlign achieves the lowest ASR on
almost all models compared to baseline methods.

It is noteworthy that the original alignment capa-
bilities of the Deepseek-R1 model were relatively
poor, but after undergoing training to SCoT-zero,
its protective capabilities have been greatly en-
hanced. This demonstrates that the inherent strong
reasoning capabilities of the reasoning model hold
tremendous potential in terms of safety alignment.

5.2.2 CoTLoRA Reduces the Computing
Overhead

Tab 4 validated the temporal efficiency of CoTAI-
ign. We used 10,000 harmful queries as a round



Model Method No Attack] | GCG] [ AutoDAN] | codeattack] Pair] ArtPrompt]
No Defense 8.51% 86.32% 82.12% 46.65% 87.52% 32.79%
PPL 6.45% 0.00% 75.20% 40.33% 65.52% 33.70%
RLHF 5.62% 17.02% 24.60% 23.22% 28.35% 27.16%
Self-Reminder 0.00% 33.22% 17.05% 32.08% 36.82% 23.28%
DeepSeck-R1 Retokenization 32.68% 53.99% 25.58% 40.10% 61.71% 29.10%
AED 0.00% 9.50% 17.18% 25.25% 28.17% 10.73%
Safedecoding 0.00 % 3.28% 10.59% 10.88% 18.65% 8.06%
CoTAlign(SCoT-zero) 0.00 % 3.30% 6.29% 8.40% 8.65% 3.06%
CoTAlign(LoRA) 0.00% 2.92% 6.98% 8.87% 8.69% 3.04%
No Defense 6.81% 73.00% 64.23% 44.32% 73.15% 34.43%
PPL 5.56% 0.00% 54.46% 38.31% 62.29% 32.07%
RLHF 4.84% 15.32% 23.33% 22.11% 27.27% 25.81%
Self-Reminder 0.00% 31.56% 16.20% 30.48% 35.16% 22.14%
DeepSeck-v3 Retokenization 29.34% 51.34% 24.30% 38.09% 58.77% 27.65%
AED 0.00% 8.55% 16.32% 24.01% 26.73% 10.22%
Safedecoding 0.00% 3.12% 10.12% 10.34% 17.78% 7.71%
CoTAlign(SCoT-zero) 0.00% 2.94% 6.03% 8.02% 8.24% 291%
CoTAlign(LoRA) 0.00% 3.78% 6.83% 8.46% 8.27% 2.74%
No Defense 0.0% 37.68% 27.83% 57.59% 29.40% 43.33%
PPL 0.0% % 0.0% 10.50% 45.46% 18.90% 37.87%
RLHF 1.24% 5.09% 5.85% 16.53% 14.72% 14.47 %
Self-Reminder 0.0% 3.22% 12.61% 24.66% 19.49% 17.80 %
Llama2-7B-Chat-HF Retokenization 0.0% 6.59% 11.11% 50.13% 12.93% 36.19 %
AED 0.0% 8.00% 6.1% 22.61% 17.56% 16.01 %
Safedecoding 0.95% 2.38% 6.83% 18.05% 3.47% 14.82 %
CoTAlign(SCoT-zero) 0.0% 1.62% 4.83% 5.13% 3.49% 4.10%
CoTAlign(LoRA) 0.0% 1.54% 5.08% 4.92% 3.65% 5.96%
No Defense 0.0% 93.97% 80.15% 58.32% 92.40% 40.99%
PPL 8.06% 0.0% 84.00% 50.41% 81.90% 42.13%
RLHF 7.03% 12.18% 18.25% 26.53% 25.44% 13.95%
Self-Reminder 0.0% 41.53% 21.31% 40.10% 46.03% 29.09%
Vicuna-13B Retokenization 40.85% 67.51% 31.97% 50.13% 77.14% 36.38%
AED 0.0% 13.88% 21.48% 31.57% 35.22% 13.44%
Safedecoding 0.0% 12.03% 27.98% 36.52% 10.26% 28.25%
CoTAlign(SCoT-zero) 0.0% 4.10% 13.24% 13.60% 10.81% 10.07%
CoTAlign(LoRA) 0.0% 3.90% 12.63% 14.94% 10.30% 8.57%
No Defense 0.0% 3391% 25.05% 51.83% 28.46% % 40.72%
PPL 0.0% % 0.0% 9.45% 40.91% 17.01% 29.44%
RLHF 1.12% 3.58% 9.42% 18.88% 17.75% 31.46%
Self-Reminder 0.0% 2.90% 11.35% 39.07% 15.74% 29.84%
Llama3-8B-Instruct Retokenization 0.0% 5.93% 10.00% 45.12% 11.64% 36.54%
) AED 0.0% 4.10% 10.28% 19.55% 15.80% 16.95%
Safedecoding 0.86% 2.14% 16.15% 16.7% 3.42% 15.17%
CoTAlign(SCoT-zero) 0.0% 1.46% 4.35% 6.12% 6.42% 6.91%
CoTAlign(LoRA) 0.0% 1.39% 4.57% 7.81% 5.25% 6.78 %
No Defense 0.0% 100.00% 96.18% 63.80% 62.83% 64.02%
PPL 0.0% 0.0% 18.17% 29.55% 13.47% 45.99%
RLHF 0.12% 9.61% 16.79% 17.59% 21.09% 18.65%
Self-Reminder 0.0% 5.35% 18.70% 22.21% 35.65% 17.14%
Mistral-7B Retokenization 5.79% 13.72% 21.78% 40.50% 35.57% 38.22%
AED 0.0% 11.72% 18.70% 27.14% 30.12% 24.71%
Safedecoding 0.84% 9.76% 28.53% 28.77% 31.56% 22.87%
CoTAlign(SCoT-zero) 0.0% 3.64% 5.48% 9.12% 12.74% 10.25%
CoTAlign(LoRA) 0.0% 3.46% 5.71% 8.67% 12.01% 10.46%

Table 1: The alignment performance(ASR) of applying alignment methods. We bold the best performing.

of validation to assess the impact of SCOT-LoRA
on computational overhead. SCOT-LoRA reduced
the computational overhead by 15.7% in the first
round of test-time, and after alignment during one
round of test-time training, it reduced the computa-
tional overhead by 45.2%. This overhead will be
further reduced with multiple rounds of Q&A and
a broader range of queries. This is because SCOT-
LoRA Align can transform a generated SCoT into
low-rank parameters and update the model after
one generation, avoiding the need to produce long
chains of thought and use them as context when
facing similar queries next time, thus reducing com-
putational costs.

5.2.3 CoTAlign Is Useful

Tab 2 and Tab 3 show the impact of imple-
menting CoTAlign on downstream tasks in LL.Ms.
CoTAlign achieves the highest accuracy in the
downstream tasks compared to baseline methods
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with virtually no impact on downstream tasks and
does not exhibit significant over-refuse phenomena
compared to more refusal-trained models Claude-
3. This is because SCoT can thoroughly analyze
whether a response needs correction and generate
accordingly, thus avoiding any impact on harm-
less tasks and responses. When SCoT is trans-
formed into equivalent low-rank parameters, its



low-rank nature allows it to precisely enhance the
model’s safety alignment capabilities without af-
fecting other task capabilities.

Moreover, the reasoning ability brought by the
long chain of thought has a certain degree of gener-
alizability, which can improve the model’s reason-
ing capabilities on other downstream tasks to some
extent.

Model Name TruthfulQA | GSM8K | MMLU
Llama2-chat 46.3 38.4 45.3
RLHF 37.6 33.6 40.1
PPLM 28.0 18.7 22.8
Self-Reminder | 41.8 32.7 42.5
Retokenization | 35.7 22.5 38.9
Safedecoding 39.9 23.5 37.7
RAG 41.6 31.3 40.6
CoTAlign 4.5 34.8 42.8

Table 2: Down Stream Task Capability(ACC)

Original SCoT- CoT Claude-
Zero LoRA Opus
Refusal Rate 1.2% 1.4% 2.1% 18.8

Table 3: Over-refusal evaluation on DeepSeek-R1

5.2.4 Influence of Rank r

Result: By analyzing the results in Figure 5, it’s ev-
ident that even with a rank setting of 10, the model
retains over 79% of the defensive capabilities en-
hancement. As the rank r increases, PER gradually
increases. This is because most of the energy is still
encapsulated within low-rank parameters. When
comparing models of rank 50 to 100, no significant
change in defensive capability is observed. The
model’s protection capacity is gradually leveling
off. It further substantiates that SCOT-LoRA ex-
hibits commendable efficacy even in lower-rank
settings. However the rank continues to increase,
and TurboLLoRA’s protective capabilities will de-
cline rapidly after exceeding a certain value after
numerous updates with SCOT-LoRA. Therefore,
TurboLoRA is not suitable for selecting excessively
large ranks.

6 Related Works

6.1 Alignment Methods

Fine-tuning(He et al., 2022) approaches enhance
LLMs’ alignment with human values by leveraging
extensive datasets. RLHF(Ouyang et al., 2022a)
employs a reward model under the PPO framework
to learn human preferences. Self Aligner enables
models to self-regulate outputs, AED(Liu et al.,

Rank r Impact
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2024) detects and filters adversarial inputs, and
SafeDecoding(Xu et al., 2024) mitigates jailbreak
attacks by prioritizing safety tokens and suppress-
ing harmful sequences. However, jailbreak attacks
exploiting generalization mismatches can still by-
pass these defenses, causing alignment failures.

6.2 Jailbreak Methods

AutoDAN(Liu et al., 2023) uses hierarchical ge-
netic algorithms to generate semantically mean-
ingful jailbreak prompts, while Prompt Automatic
Iterative Refinement (PAIR)(Chao et al., 2023) it-
eratively refines prompts using pre-trained LLMs
to elicit unintended behaviors with only black-box
access. Greedy Coordinate Gradient (GCG)(Zou
et al., 2023) employs gradient-based searches to
craft token sequences that bypass safety measures.
ArtPrompt(Jiang et al., 2024) uses ASCII art to ob-
scure malicious prompts, exploiting weaknesses in
non-semantic representation recognition. CodeAt-
tack(Jha and Reddy, 2022) targets adversarial vul-
nerabilities in LLM code generation.

7 Conclusion

To address these safety challenges in the reason-
ing model, we proposed CoTAlign. In the SCoT
alignment phase, through the construction of SCoT-
zero and the distillation process, the target model
studies the capability to generate SCoT which con-
ducts safety reflection and correction on the ini-
tial response. In SCOT-LoRA alignment, we con-
vert SCoT into equivalent low-rank parameters in
test time to eliminate computation overhead and
the generation impact of SCoT. We validate CoT-
LoRA through comprehensive evaluations across 6
models, especially two reasoning-enhanced mod-
els, and 5 jailbreak methods demonstrate CoTAl-
ign’s superiority over 6 baseline methods, achiev-
ing higher defense capability with fewer training
costs and negligible alignment tax.
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Limitations

While our proposed SCOT-LoraAlign demonstrates
significant improvements in safety alignment for
reasoning models, several limitations warrant dis-
cussion.

Dependency on SCOT Dataset Quality: The con-
struction of SCOT-zero relies on a manually cu-
rated dataset of safety-focused chain-of-thought
(SCOT) examples. While we designed structured
prompts to guide SCOT generation, the dataset’s
coverage of diverse harmful categories and novel
attack patterns may be incomplete. Biases or gaps
in the SCOT data could limit the model’s ability
to generalize to emerging or highly adversarial
threats.
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Trade-offs in Low-Rank Approximation: Al-
though SCOT-LoRA effectively reduces computa-
tional overhead by converting SCOT into low-rank
parameters, this approximation may constrain the
expressiveness of safety reasoning.

Long-Term Stability of Parameter Updates: Re-
peated low-rank parameter fusion could lead to cu-
mulative shifts in model behavior over time. While
our experiments show minimal alignment tax in
short-term evaluations, prolonged usage might de-
grade performance on downstream tasks or intro-
duce unintended biases, necessitating periodic re-
calibration.

Limited Evaluation on Multilingual Scenarios:
SCOT-LoRA focuses on updating the model at test
time as a form of patch and cannot completely re-
place the training process. Periodically using the
SCOT-LoRA data to retrain at training times results
in better results. Our validation is conducted exclu-
sively on English-language datasets. The method’s
effectiveness in non-English contexts, where cul-
tural norms and harmful content definitions differ,
remains unexplored.

Addressing these limitations would further en-
hance the robustness and applicability of safety
alignment frameworks for reasoning models. Fu-
ture work We will address the issue of catastrophic
forgetting in SCoT-Align as well as its collapse
after multiple iterations and expand SCOT datasets
to cover broader threat landscapes.

A Derivation and Proof

In this section, we describe and derive the formula
for calculating equivalent low-rank knowledge pa-
rameters and prove the validity of the method.

For the original model, the computation in the
I-th MLP layer during the inference process for
queries @ and @’ satisfies the following equation:

WXI+b =Y, WXy =ysCl

12)
When the model is updated with AW, as deter-
mined by the target formula 1, for the original
input @, the hidden vectors calculated with the
updated parameter should match those calculated
in the original parameter for the input Q'+ SCoTgq,
which is integrated SCoT into the context. This is
formally represented as:

sCoTy

< (13)

(W + AW)X{ +b, =Y,

Based on this target formula 13, we compute the
equivalent parameters AW necessary for model
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updates. AW can be further formalized and repre-
sented as follows:

AYE _ lesCqu . },lq7 AX[ _ XlsCqu . qu
AW X; =AY, = WAY, (14)
= AW = WAYX;* (15)

However, in most cases, where the number of
queries does not equal the dimensionality of the
hidden vectors, therefore X is not a square matrix,
and hence an inverse X fl does not exist directly.

For this purpose, we compute the pseudoinverse
of X using the Penrose pseudoinverse as showned
in formula 2, which satisfies the requirement for
calculating AW. The equivalence found in 3.1
proves the validity of AW.

Once we have obtained the pseudoinverse matrix
X l_l, we can directly compute the equivalent pa-
rameter AW, achieving the alignment of the model.
Ultimately, AW can be derived using the formula
presented below:

AW = WAX (V.S 1U)) (16)
We then add the computed equivalent parameter
AW to the model’s original parameter W to imple-
ment sustainability updates of the LLMs’ parame-
ters.
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