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Abstract

State-Space Models (SSMs) have re-emerged as a powerful tool for online function approx-
imation, and as the backbone of machine learning models for long-range dependent data.
However, to date, only a few polynomial bases have been explored for this purpose, and the
state-of-the-art implementations were built upon a few limited options. In this paper, we
present a generalized method for building an SSM with any frame or basis. This framework
encompasses the approach known as HiPPO, but also permits an infinite diversity of other
possible “species” of SSM, paving the way for improved performance of SSM-based machine
learning models. We dub this approach SaFARi: SSMs for Frame-Agnostic Representation.

1 Introduction

Modeling sequential data is a cornerstone of modern machine learning, with applications spanning natural
language processing, speech recognition, video analysis, and beyond (Zubi¢ et al.l |2024; |Alemohammad
et al., [2021} Nguyen et al., [2022)). A fundamental challenge in these domains is the efficient representation of
long-range dependence in time-series data, where the goal is to capture and preserve the essential features of
the input signal necessary for downstream tasks over extended time horizons while maintaining computational
tractability (Hochreiter & Schmidhuber} 1997)).

Machine learning approaches, such as recurrent neural networks (RNNs), struggle to learn long-range
dependencies due to limited memory horizons (Elman) |1990; Hochreiter & Schmidhuber| (1997 |Schuster &
Paliwall 1997} [Pascanu et al, |2013). During backpropagation, gradients are repeatedly multiplied by the
same weight matrix, causing them to either shrink exponentially (vanish) or grow exponentially (explode).
Vanishing gradients prevent the network from updating weights effectively, while exploding gradients lead to
unstable training. Although variants like LSTMs (Graves & Schmidhuber} 2005) and GRUs (Cho et al., 2014)
address some of these limitations, they often require task-specific parameterization, and cannot generalize
across different sequence lengths or timescales.

State-space models (SSMs) present a powerful alternative for online representation of sequential data. By
design, SSMs enable the online computation of compressive representations, maintaining a constant-size
memory footprint regardless of sequence length. The seminal work of |Gu et al.| introduced High-Order
Polynomial Projection Operators (HiPPO), which leverages orthogonal function bases to enable theoretically
grounded, real-time updates of sequence representations. This framework, and its subsequent extensions into
learned architectures, have demonstrated remarkable performance in tasks involving long-range dependencies,
such as language modeling and signal processing (Gu & Dao, 2023; |Gu et al., |[2022b; [2023} |Gupta et al., 2024;
Gu et al.| [2022a; [Smith et al.l [2023} Hasani et al., 2023). By formulating sequence representation as an online
function approximation problem, HiPPO provides a unified perspective on memory mechanisms, offering
both theoretical guarantees and practical efficiency.

However, despite its successes, the HIPPO framework has been limited to specific families of orthogonal
polynomials. While these bases are well-suited for certain applications, they are not universally optimal for
all signal classes. Fourier bases, for instance, are optimal for smooth, periodic signals due to their global
frequency representation. Polynomial bases, such as orthogonal polynomials (e.g., Legendre or Chebyshev),
are particularly effective for approximating smooth functions over compact intervals.
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The absence of a more flexible basis selection restricts the adaptability of the HIPPO framework. In this
work, we address this restriction by presenting a generalized method for constructing SSMs using any frame
or basis of choice, which we term SaFARi (SSMs for Frame-Agnostic Representation). Our approach extends
and generalizes the HIPPO framework using a numerical (as opposed to closed-form) method, which enables
us to relax the requirements on the basis, such as orthogonality of the components.

Our key contributions are as follows:

e Generalized SSM construction: We present SaFARI, a frame-agnostic method for deriving SSMs
associated with any basis or frame, generalizing the HIPPO framework to a broader class of function
representations.

e Error Analysis: We provide a comprehensive discussion of SaFARi’s error sources and derive error
bounds, offering theoretical insights into its performance and limitations.

This paper is organized as follows. In Section [2] we review the HiPPO framework and its limitations,
motivating the need for a generalized approach. Section [3] provides the required mathematical preliminaries.
Section [4] introduces our frame-agnostic method for SSM construction, and then Sections [5] and [6] address
implementation considerations and strategies for SaFARI, covering error analysis and computational efficiency.
Section [7] demonstrates empirical validation of the method and theoretical claims presented in this paper.
Finally, Section [§] discusses the broader implications of our work and outlines directions for future research.

2 Background

Recent advances in machine learning, computer vision, and LLMs have exploited the ability to collect and
contextualize more and more data over longer time frames. Handling such sequential data presents three
main challenges: 1) generating a compact and low-dimensional representation of the sequence, 2) effectively
preserving information within that representation, and 3) enabling real-time updates for streaming data.

The classic linear method of obtaining the coefficients of a compressed representation of a signal is through a
transform (e.g. Fourier) (Oppenheim)| [1999; |Abbate et al., 2012} Box et all 2015} [Proakis), [2001}; [Prandoni
& Vetterli, 2008). However, a significant limitation of this method is its inefficiency in handling real-time
updates. When new data arrives, the representation must be recalculated in its entirety, necessitating the
storage of all prior data, which is sub-optimal in terms of both computation and storage requirements. This
limits the horizon of the captured dependencies within the sequence.

Nonlinear models, such as recurrent neural networks (RNNs) and their variants, have been introduced
more recently (Elman), [1990; [Hochreiter & Schmidhuber} [1997; (Cho et al., [2014; |Schuster & Paliwal, [1997)).
Since these learned representations are task-specific, they are not easily utilized for other circumstances or
applications. Furthermore, RNNs struggle to capture long-range dependencies due to issues such as vanishing
and exploding gradients.

2.1 State-space models

The state-space representation itself is not new; it was introduced by [Kalman| (1960]) via the eponymous
Kalman Filter. For an input u(t), output y(t), and a state representation called x(t), many systems and their
properties can be described and controlled with the following system of linear equations:

#(t) = Az(t) + Bul(t)

y(t) = Cx(t) + Du(t). @
In many classic applications, we iteratively update the matrices A, B, C, and D to control or predict the
output y based on previous values of u. For online function approximation, however, we instead define the
matrices A and B such that they iteratively update a vector of coefficients ¢ over a particular basis. For the
moment, we can ignore C and D (or, equivalently, consider C to be an identity matrix and D = 0). For
stability, A must have only negative eigenvalues, so we explicitly include a negative sign here. A and B may
or may not be constant over time, so for completeness, we call these A(t), B(t). Eq.[l]is now
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Figure 1: An SSM block-diagram, with the necessary ODE update step included.

¢ = —A(t)e(t) + B(t)u(t). 2)

The challenge in the problem of the approximation of online functions is to derive appropriate matrices A

and B, which was answered by HiPPO (Gu et al., [2020). We note that the term “SSM” in machine learning
literature in recent years has become a synecdoche, referring both to the classical A, B matrix structure
described here, as well as the larger models that utilize these SSMs as a layer, such as S4 |Gu et al.| (2022b)).
For the purposes of this paper, we disambiguate these structures, and we will use the term SSM to describe
only the former.

2.2 HiPPO: High-order Polynomial Projection Operators

The HiPPO framework (Gu et al., |2020]) enables online function approximation using pre-determined SSM
parameters derived from a basis of orthogonal polynomials G. It optimizes |ur — ¢ (t)|, for gD (t) € G,
to find a set of coefficients for the orthogonal polynomials at every time T', which yields the approximation of
the input function over [0, 7.

In addition to choosing the set of polynomials, one must also select a measure: the combination of a weighting
function and a windowing function. The window indicates which samples are included, and the weighting
assigns a weight to each sample. HiIPPO (Gu et al.l |2020) considered several possible measures, two of which
(illustrated in Fig. [2]) are:

1 1
Ntr(t) = glte[T—H,T]a Nsc(t) = Tlte[O’T]' (3)

The uniform translated measure, u.(t), gives equal weight to all samples in the most recent window with
a constant length 0, and zero weight to previous samples. The uniform scaled measure, ps.(t), gives equal
weight to all the times observed since ¢ = 0. This can be interpreted as squeezing or stretching the basis or
frame to match the current length of the signal at any given time. Thus, the representation produced by
this measure becomes less informative about the finer details of the signal as more history is observed, since
the stretching of the basis will gradually increase the lowest observable frequency. This work considers only
uniformly weighted measures, for the sake of clarity in our derivations and examples. However, one could
implement any desired weighting scheme by applying any function of 7" in place of % or % in Eq.
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Figure 2: Two different uniform measures (red) applied to a signal (blue). The red shaded area demonstrates
how the measure changes as time evolves and more samples of the input are observed.
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For the space of orthogonal polynomials, the HIPPO ODE update (Gu et al., 2020) (see Fig. [1]) follows a
first-order linear differential equation:

d _

AT = —AmdT) + Beryu(T) (4)
where u(T) is the value of the input signal at the current time 7', and &(T) is the vector containing the
representation of the ¢ € [0, T] part of the input signal. A(ry and B(ry are also a time-varying matrix and
vector that can be derived for the particular choice of the measure and orthogonal polynomial.

Solving the differential equation to update the SSM: The differential equation (Eq. 4] can be solved
incrementally, and there are several methods to do so |Butcher| (1987)). We use the generalized bilinear
transform (GBT) (Zhang et al., 2007)), relying on findings from |Gu et al| (2020) that the GBT produces the
best numerical error in solving first-order SSMs. The GBT update rule is

ct+ Aty =1+ 5tC¥A(t+6t))71 (I —dt(1 — Oé)A(t))C(t) + (I + 5tOéA(t+5t))71 otB(t)u(t), (5)

where 0 < « < 1 is a chosen constant. (Note that for a = 0, the update rule becomes the same as the forward
Euler method.)

Diagonalizing the transition matrix A: The incremental update given by the GBT requires a matrix
inversion and matrix products at each increment. Having a diagonal A significantly reduces the computational
cost of these operations. If the measure used for the SSM is such that the eigenvectors of A(t) remain
constant (for example, if A(t) is a constant matrix multiplied by an arbitrary function of time), then it is
possible to find a change of basis that makes the SSM matrix diagonal. To do this, one finds the eigenvalue
decomposition of the matrix A(t) = VA(#)V ! and re-write the SSM as

o _ o~
prche —A(t)c+ Bu(t), (6)
where ¢ = V¢ and B = V~1B(t). This means that one can solve Eq. @instead of Eq. [4] then find the

representation ¢ from ¢ with a single matrix multiplication.

2.3 Limitations of HiPPO

The original HiPPO formulation and a subsequent follow-up (Gu et al., [2023)) included a handful of orthogonal
polynomial bases with specific measures. There is no method in the literature for arbitrary choice of basis
and measure (see Table .

Measure Scaled Translated
9 Gu et al.| (2020),§4] |Gu et al|(2020),§4
5 hesendre MRl (2023) :
L: Fourier ~ |Gu et al. (2020), §4 |Gu et al. (2020),§4
2 Laguerre §4i Gu et al. (2020)°,§4
7 Chebychev §4 Gu et al.|(2020)°§4]
M  Arbitrary §4 §4

Table 1: An overview of the combinations of frames (or bases) and measures covered in the literature to date.
SaFARI fills in missing combinations in this table for the scaled and translated measures in Section @

Performance of various bases were shown to be strongly task-dependent. Only one basis-measure combination,
the scaled-Legendre (LegS), performed empirically well across most tasks (Gu et al.| (2020), but it introduced
additional challenges as its A matrix is not stably diagonalizable (Gu et al.l [2022al). The majority of the
follow-up work since HiPPO has abandoned the task of function approximation by SSMs alone. Instead,

1S4 technically applies an exponential measure in the ODE; however, the A matrix of the SSM is generated based on a
uniformly weighted scaled Legendre polynomial basis.
2Some implementations in the translated case also apply an exponential decay measure in order to ensure orthogonality.



Under review as submission to TMLR

most research has employed a diagonal approximation of the best-performing extant version (LegS) as an
initialization for machine learning architectures such as S4 (Gu et al., [2022b; [Smith et al.| [2023]). Still, the
HiPPO framework still holds untapped potential for online function approximation and better initializations
for learning tasks.

3 Mathematical Preliminaries

Prior to introducing SaFARI, we first cover some required theoretical background on the use of frames for
function representation and approximation. This section will cover distinctions between approximations
performed on the full signal all at once, and approximation performed in a sequential (online) fashion.

3.1 Function representation using frames

Given a function u(t) of a time domain ¢ € Dy, we aim to represent u(t) using a collection of functions over
Dr. This representation is performed with respect to a measure that determines the relative importance of
the function’s value at different times. We formulate the task of function representation using frames via the
definitions below.

Frame: The sequence ® = {¢, }ner is a frame in the Hilbert space H if there exist two constants A > 0 and
B > 0 such that for any f € H:

Aframer||2 S Z |<f7 ¢n>|2 S Bframe||f||2 (7)

nel’

where (-,-) is the inner product of the Hilbert space H, and I" denotes the indices of the frame elements in ®.
If Aframe = Bframe, then the frame is said to be tight (Mallat, 2008} |Christensen, 2003} |Grochenig), 2001)).

Frame operator: If the sequence ® = {¢,, },cr is a frame, then its associated operator Ug is defined as:
U<I>f = a Cp = <fa ¢n>a VneT. (8)

It can be shown that the frame condition (Eq.[7)) is necessary and sufficient for the frame operator (Eq.
to be invertible on its image with a bounded inverse. This makes the frame a complete and stable (though
potentially redundant) framework for signal representation.

Dual frame: The set ® = {¢,, }ner is the dual of the frame ®, ® = Dual{®} if:

bn = (U3Us) o (9)
where U} is the adjoint of the frame operator: (Us f,c) = (f, Ukc).

It can be shown that the composition of the dual frame and the frame is the identity operator in the Hilbert
space H: Uchpf = f (Mallat, [2008} |Christensen, |2003; |Grochenig, [2001)). Thus, we can think of the dual

frame as the operator that transforms the signal from frame representation back into the signal space.

Function approximation using frames: The compressive power of frame-based function approximation
lies in its ability to efficiently represent functions using a relatively small number of frame elements. Different
classes of functions exhibit varying effectiveness in capturing the essential features of different signal classes.
This efficiency is closely tied to the decay rate of frame coefficients, which can differ significantly between
frames for a given input function class. As a result, selecting an appropriate frame is critical for optimal
approximations while minimizing computational resources and storage space.

In the task of online function representation, we aim to represent a function up := {u(t),t € [0,T]} for any
given time T, using a frame ® that has the dual ® and the domain ¢ € D. To do so, we need an invertible
warping function so that the composition of the frame and the warping function ®(™) includes the domain
[0,T]. Without loss of generality, we assume that the frame has the domain Dg = [0, 1], and use the warping
¢ (t) = ¢ (&). (If this is not the case, then one can easily find another warping function to warp Dg — [0, 1]
and apply it beforehand.) To calculate the representation, the frame operator of @1 acts on urp:
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T -
Projection: ¢ =®Dup, ¢, = (up, (D) = / u(t) & (t)u(t)dt, (10)
t=0
where the overline in ¢(t) is the complex conjugate of ¢(t). Then, the dual frame operator transforms the
discrete representation back to the function up:

Reconstruction: ur = aT)(I)(T)uT, ur(t) = Z<UT7 ¢51T)>551T) (t). (11)
nel’
Measures: Throughout this paper, we work with the Hilbert space consisting of all functions over the
domain D with p(t) representing a measure as in Eq. |3} and the inner product defined as:

() = / (e (12)

We will consider both scaling and translating windows with uniformly weighted measures as described in Eq.
and Fig. [2| and derive the SSMs for each. We only implement uniform weighting schemes in this work for the
sake of clarity and generalizability, as the weighting does not impact the SSM’s derivation. The windowing
function does impact the derivation, however, because it changes the limits of integration, and so we provide
frameworks for both scaled (with a changing number of prior inputs) and translated (with a constant number
of prior inputs). Given the combination of these generic models, one could create any arbitrary measure by
combining the appropriate window with any desired weighting scheme as a function of ¢ in Eq.

4 SaFARi

We now introduce a generalized method for online function representation using arbitrary frames. We
formulate the update rule for online approximation as a first-order linear differential equation following a
state-space model, and provide templates for the uniform translated and scaled measures.

4.1 Formulation

For the given frame ® (without loss of generality, we assume ® has the domain D = [0, 1]), and an input
function u(7T), the objective is to find the representation of the function using the frame ® similar to Eq.

T JE—
Projection: ¢y (T) = (Ug), = /t_t u)os (t)p(t)dt . (13)

The representation vector ¢(T) is a vector with its n'" component defined as above. We next find the
derivative of the representation with respect to the current time 7', and show that it follows a particular SSM
for a scaled or translated measure.

4.2 Uniform scaled measure s

When we use the scaled measure (us.(t) in Eq. |3), the representation generated by applying the frame
operator to the observed history of the input up(t) is

en(T) = /t_Tou(t)qﬁn (;) %dt. (14)

Definition 1. For a given frame ® consisting of functions on D, we define the auxiliary derivative of the
frame Yo = {v, }ner as a collection having v, = t%(bn(t).

The auxiliary derivative of the frame is the result of the operator t% acting on each individual frame element.
Note that the auxiliary derivative of the frame is not necessarily a frame itself and the frame condition in
Eq. [7] does not necessarily hold for Y.

Theorem 1. For the representation defined in Eq. the partial derivative of ¢ with respect to T is

0 1 1
—dT) =—-=AdT)+ =Bu(T A=1 b 1
a7 cT) = = FAAT) + ZBu(T), +UrU% (15)
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HiPPO-LegS A Matrix, N = 10 : SAFARi-LegS A Matrix Sub-Block, N = 10
: L =250 L =500 L = 1000

e

Figure 3: HiPPO provides a closed-form solution for the scaled Legendre (LegS) SSM. SaFARi provides a
computed solution, where the accuracy depends on the discretization of the N x L frame. Larger L gives a
finer discretization of the basis vectors and thus a better numerical result.

where B is the complex conjugate of a vector containing members of the main frame evaluated at T =1 so
that B = {¢,,(T = 1)}ner. The A operator can also be described as a matrix

1
o_ -
Ay =diy+ [ fegam| S, (16)
o L Ot .
Proof is provided in the Appendix [A:1] We will refer to the SSM with a scaling measure as scaled-SaFARI.

4.3 Uniform translated measure i,

When the translated measure is used (- (t) in Eq. , the representation resulting from applying the frame
operator to the window of recently observed input up(t) is

en(T) = /tT Nors (t_(g_e)) %dt. (17)

=T-0
Definition 2. For a given frame ¢ = {¢n }ner consisting of functions of time, we define the time derivative
of the frame ® = {¢,, = %qﬁn(t)}nep as a collection of time derivatives of ¢,, components.

Definition 3. For a given frame ® = {¢,, }ner consisting of functions of time, the zero-time frame operator
is similar to the frame operator but only acts on ¢ = 0 instead of the integral over the entire domain:

Qof=7F, x,=f(t=0)p,(t=0). (18)

Theorem 2. For the representation defined in Eq. the partial derivative of ¢ with respect to T is
aﬂT = 1AﬂT 1B T A =T, Ux X 19
ST) = —g AAT) + 3 Bu(T), A =Uyls + Qo (19)

where B is the complex conjugate of a vector containing members of the main frame evaluated at T'=1 so we
have B = {¢,,(T = 1)}ner. The A operator can also be described using the matriz representation

1
_ - o _ -
A5 =3,05,00+ [ |580| e (20)
o LOt st
Proof is provided in Appendix[A-2] We will refer to the SSM with a scaling measure as translated-SaFARI.

4.4 SaFARi as generalization of HiPPO

HiPPO provides exact, closed-form solutions for A and B for a few specific basis and measure combinations.
SaFARI replicates these A and B matrices to within some numerical error caused by discretization of the
frame vectors into length L. Increasing L will provide matrices that converge toward the closed-form solution
(see Fig. . When a closed-form solution exists for the desired basis and measure (e.g., HIPPO-LegS for the
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scaled Legendre basis), then it is preferable to use it (see the derivations in|Gu et al| (2020} [2023))[[] SaFARi
provides a method for any basis/measure where the closed-form solution might not exist. We also show that
SaFARi preserves all of HIPPO’s robustness to timescale when applied to a general frame in Appendix

While the numerical method described above could be applied to any differentiable set of vectors, we require
that the vectors form a frame. If not, then projecting the input signal onto the given vectors is lossy and
not invertible. More precisely, the frame condition (Eq. E[) is necessary and sufficient for the frame operator
to be invertible on its image with a bounded inverse. This makes the frame a complete and stable (though
potentially redundant) framework for signal representation. Second, and most importantly for this work, if
¢ does not meet the frame condition, then Eq. 0] does not hold, and the derivative of representation with
respect to time cannot be calculated using only the current hidden state.

5 Error analysis

This section describes the computational efficiency and accuracy concerns of SaFARI, including strategies for
producing the finite-dimensional approximation of the complete infinite-dimensional SaFARi in Section [5.1
We analyze the errors introduced by these approximations in Section [5.2

5.1 Truncation of frames

Section [4] demonstrates how a particular SSM can be built from an arbitrary frame ®. Since the input space
for the SSM is the class of functions of time, no ® with a finite number of elements can meet the frame
condition (Eq. , since the true representation of the input signal is infinite-dimensional. In practice, the
representation reduces to the truncated representation. In this section, we analyze the theoretical implications
of truncated representation using SaFARi.

5.1.1 Finite-dimensional approximation of SaFARi

In the finite-dimensional case, we will use only N elements of a frame. Partial representation of size N
requires that the resulting representation approximates the infinite-dimensional representation. We call the
SSM with its ¢ having N coefficients SaFARi™).

Definition 4. A SaFARi®") sequence is a sequence of the pairs [A(N),B(N)] where AN) e CN*N and
B™W) € CN such that sequence converges to [A, B] of SaFARi as

lim AW = A4, lim BN = B. (21)
N —oc0 N —oc0
where convergence for A is the Strong Operator Topology (SOT) convergence, and convergence for B is the
vector norm-2 convergence. This convergence means any arbitrary precision can be achieved by selecting the
appropriate truncation level. See Appendix for details.

Definition [4| is not a constructive definition; that is, it does not uniquely determine [A(N ), BN )]. In fact,
there may be many such sequences that all converge to [A4, B] of SaFARi. Of course, this does not mean
that all such sequences would produce equal representation error. For the following section, we assume the
convergence and present and analyze two alternate constructions. See Appendix for details.

5.1.2 Truncation of dual (ToD)

The first construct of a SaFARi(™) sequence is through finding the infinite dimensional A and B, then
truncate to size N

AN = Ap.non. BWY) =B (22)

This construction results in a sequence that approximates the infinite-dimensional SaFARi according to
Definition [} The practical way of finding the truncated A, B involves finding A ; as introduced in Eq. [T6]
and Eq. 20| for i, j < N.

INote that HiPPO used the convention of absorbing a negative sign from the ODE in Eq. [4] into the A matrix, where we do
not.
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Note that calculating A; ; requires finding 5, the dual of the (infinite-dimensional) frame ®. For certain families
of functions, the dual frame can be found analytically. However, if an analytical way of finding ® is not known,
then one must use a numerical approximation of the dual frame. In this case, the construction for [A(N) B(V)]
involves forming the truncated frame for a much bigger size Ny > N, then finding d(MV2) — Dual{®jy.n,}
numerically as an approximation for dual frame (@N 2) 5) Next, we truncate the approximate dual and
use its first NV elements as an approximation for the first NV elements of the dual frame in constructions in

Eq. [16] and Eq.

5.1.3 Dual of truncation (DoT)

The ToD construction becomes numerically intractable for cases where the dual frame is not analytically
known; this motivates the need for an alternate constructor for SaAFARi(™). To construct this sequence:

1. Truncate the frame at level N and form &) = {bi}i<n-

2. Numerically approximate the dual of the truncated frame ®®) = Dual{®®™} using the pseudo-
inverse.

3. Use @™ and &™) in Eq. [16| or Eq. to compute [AN), BV,

DoT and ToD approximate SaFARi with different rates. In the next sections, we provide a thorough error
analysis of SaFARi("") that enables us to compare the usage of different frames, as well as different construction
methods for size N constructs. We then demonstrate that the DoT construction always has a minimum
reconstruction error, and is the optimal choice for implementing SaFARIi.

5.2 Error analysis

Using truncated representations for online function approximation
will result in some reconstruction error, regardless of basis. We focus

0
here on errors emanating from truncation of the representation in an 0 N% B
SSM, rather than those caused by sampling, which have been exten- S5
sively studied in the digital signal processing literature (Oppenheim, A Mixing c
1999). 2R
Let ¢(®) denote the infinite-dimensional representation obtained from N
an SSM without truncating its associated A, B matrices. When the
associated A, B matrices for the SSM are truncated to the first N

o

levels, it produces a truncated representation ¢(N). This truncation / Truncation

causes two distinct types of error, which we outline below. ///////////
00

5.2.1 Truncation errors Figure 4: Error types due to frame

Truncation errors are due to the fact that the truncated frame of size truncation. Truncation errors arise

N cannot represent any part of the signal contained in indices n > N. from energy in coefficients of index

This is not limited to SSMs, but is true for any basis representation 7 > N, while mixing errors result from

of a signal. In SaFARI, truncation errors correspond to discarding energy blending during the operation
the green shaded region in the AXY) illustrated in Fig. Ac.

5.2.2 Mixing errors

Mixing errors arise from error propagation in the SSM update rule. Specifically, this update involves
computing Ac (as in Eq. and Eq. , where the matrix A introduces unwanted mixing between the
omitted components (n > N) and the retained components (n < N) of the representation. Consequently,
errors from the truncated portion of the representation propagate into the non-truncated portion. This is
illustrated by the blue shaded regions in Fig. ] For the operator A and truncation level IV, the contaminating
part of operator is 4; ; V(i < N,j > N).
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In the case of a translated measure, this mixing error is exacerbated since each update step requires estimating
the initial value in that window (recall Eq. . A key insight from our analysis below is that mixing errors
have two sources:

1. nonzero components in the upper right quadrant of A, and
2. nonzero coeflicients in ¢ at indices greater than N.

5.2.3 Mitigating errors

Truncation errors can never be eliminated, but may be alleviated by using a frame that exhibits a rapid decay
in the energy carried by higher-order levels of representation.

To counter mixing errors, we should ensure that values in the upper right quadrant of A are as close to zero
as possible, and/or that coefficents of ¢ in the blue region of Fig. [4] are as close to zero as possible. If the
matrix A is lower-triangular, then any arbitrary truncation results in the contaminating part of A being zero,
which guarantees the second type of error is always zero, regardless of any coefficients in ¢. This is the case
for the HiPPO-LegS (scaled Legendre) A matrix, as shown in Fig. a). Indeed, the zero coefficents in the
upper right quadrant of A were considered strictly necessary in prior work (Gu et all [2020} [2023]). This
restriction explains the continued use of HIPPO-LegS in follow-up works, regardless of whether or not scaled
Legendre polynomials are an optimal choice for a given application.

To summarize, there are two primary concerns when finding an appropriate frame for use in an SSM:

1. compatibility between the frame and the given class of input signals, and
2. the operator A that results from a given frame has a small contaminating part.

Truncation and mixing errors have different sources but are linked. The optimal strategy to reduce both at
the same time is to choose a basis that results in a representation where the energy is concentrated in the
first NV coefficients. This can only be achieved, however, if we have some prior knowledge of the input signal
in order to choose the right basis and truncation level. In cases where little is known about the input signal
or correct truncation level, it is advisable to instead choose an SSM that is zero in the upper right quadrant,
such as HiPPO-LegS, as it will inherently negate mixing errors.

5.2.4 Error bound

In order to quantify the mixing error, we show that the truncated representation follows the same differential
equation with a perturbation defined by the theorem below.

Theorem 3. (Poof in Appendix The truncated representation generated by scaled-SaFARi follows a
differential equation similar to the full representation, with the addition of a perturbation factor:

0 1 1 1

(a) Scaled Legendre (b) Translated Legendre (¢) Scaled Fourier (d) Translated Fourier

50
u
" 0
"
B "
"
" Cp
J - s B

Figure 5: Examples of the A matrices for several basis/measure combinations: (a) Scaled Legendre, (b) Trans-
lated Legendre, (¢) Scaled Fourier, and (d) Translated Fourier. The dense non-zero elements in the upper
right of (b) explain its poor performance compared to (a). The numerous small nonzero elements above the
diagonal in (c) and (d) contribute to mixing errors over long sequences.
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where
&T) == (ur, &), E=7(D —I). (24)

The mixing error term €(T") cannot be directly calculated; however, we can derive an upper bound for the
mixing error and demonstrate that this bound can be made arbitrarily small with appropriate truncation.
This generic error bound is not necessarily tight; tighter bounds could be identified for specific instantiations
of SSMs for given parameters (frame or basis, measure, dimension, etc.)

Theorem 4. If one finds an upper bound such that for all the times before T we have |e(T)||2 < €m, then
the representation error is bound by

— 1 _
AT |z < €my [ 7 = emll A (25)

where \; are the eigenvalues of A, and F indicates the Frobenius norm. See proof in Appendiz[A.6

5.2.5 Error analysis for different SaFARi("Y) constructs

In Section we define SaFARI(M) as a finite dimensional approximation for SaFARi, and provide two
particular constructions, DoT and ToD. Armed with the quantification of representation error, we compare
these different constructs. We provide Theorem [5| to demonstrate DoT has the optimal representation error
between different choices for SaFARIN) using the same frame.

Theorem 5. Given a frame ®, the Dual of Truncation (DoT) construct introduced in Sectz’on has
optimal representation error when compared to any other SaFARiI™N) construct for the same frame ®. See

proof in Appendiz[A.6

As established by the result of Theorem |5, SaFARi(M) should be constructed with the DoT method.

6 Computational and runtime complexity

This section develops the computational methods for obtaining sequence representations with SaFARi,
emphasizing its efficiency in both training and inference phases. We analyze the computational complexity of
different update methods, and highlight the benefit of parallel computation with diagonalizable SSMs. These
discussions provide a foundation for understanding the scalability of SaFARI in practical applications.

6.1 Computational complexity for sequential updates

To compute representations using scaled-SaFARi, the GBT update requires solving an N x N linear system
at each step, leading to O(N3L) complexity for a sequence of length L. In contrast, translated-SaFARi reuses
the same inverse across all steps, reducing the complexity to O(N2L).

If the state matrix A is diagonalizable, both scaled and translated variants can be accelerated. The sequence
representation C' is computed for the diagonal SSM and transformed back via C = V), reducing the
complexity to O(NL). On parallel hardware, such diagonalized systems decompose into N independent scalar
SSMs, yielding O(L) runtime with sufficient parallel resources.

Diagonalizability of an SSM depends on the frame or basis used in its construction. One limitation of Legendre-
based SSMs such as HiPPO is that its A matrix cannot be stably diagonalized, even for representation sizes as
small as N = 20 (Gu et al., 2022al), leading to significantly higher cost. To address this limitation, (Gu et al.,
2023) proposed a fast sequential update method for HiPPO-LegS, claiming O(N) computational complexity
and O(1) runtime complexity per update on parallel processors. However, we observe that this method
becomes numerically unstable at larger N, as discussed in Appendix To resolve this, we suggest a
simple modification: computing lower-degree representations before higher-degree ones. While the modified
approach preserves the O(N) overall computational cost, it increases runtime to O(N) per sequential update,
as it is no longer parallelizable.

11
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Similar to HIPPO-LegS for the scaled measure, HIPPO-LegT for the translated measure also cannot be stably
diagonalized. To our knowledge, LegT has no analogue for the fast LegS update method in |Gu et al.| (2020).
Therefore, the computational complexity remains considerably higher than for diagonalizable SSMs.

6.2 Convolution kernels and diagonalization

When using an SSM for a recognition or learning task, a training phase is required in which the downstream
model is trained on the generated representation. Using sequential updates for training is prohibitively taxing
on computational and time resources as the whole sequence is available in the training time. Ideally, we
would perform computations of the sequential SSM in parallel. However, this is a challenge since each new
update depends on the result of the previous. The authors of |Gu et al.| (2022b) discussed how to implement a
parallel computation algorithm for SSMs produced by HiPPO. To do so, one “unrolls” the SSM as:

Ck :Zk...21§0u0+--~+Zk§k,1uk,1 +§kuk , c=K=xu (26)
Zi = (I + 6taAl)_1(I - 5t(1 - a)Ai), Ei = (I + (StaAiJrl)_lBi. (27)

The convolution kernel K in Eq. [26] removes the sequential dependency, enabling parallel computation on
hardware such as GPUs, and significantly reducing training time.

6.3 Runtime complexity

6.3.1 Runtime complexity of scaled-SaFARi

If the SSM is not diagonalizable, then the kernel can still be computed in parallel by framing the problem
as a scan over the associative prefix product. Since matrix multiplication is associative, all such prefix
products can be computed efficiently using parallel scan algorithms (Blelloch) 1990} Hillis & Jr., [1986). When
implemented on parallel hardware such as GPUs, this strategy achieves a time complexity of O(N3log L) if
enough parallel processors are available.

However, if the SSM is diagonalizable, all the matrix products A; matrices in the matrix products appearing
in the kernel expression become diagonal. As a result, the convolution kernel can be calculated with the time
complexity of O(N log L). Furthermore, the below theorem suggests how to find the kernel in closed form.

Theorem 6. For scaled-SaFARi, if A is diagonalizable, then the convolution kernel K that computes the
representations can be found in closed form. See Appendiz[A7 for the closed-form solution.

As noted above, HiPPO-LegS is not diagonalizable, complicating kernel computation. A heuristic method
proposed by |Gu et al.| (2023)) enables approximate kernel evaluation with time complexity O(N log L), but it
introduces additional computation and lacks a closed-form solution.

6.3.2 Runtime complexity of translated-SaFARi

Similar to the scaled case, all the matrix products Ay, ... A_,, can be computed efficiently using parallel
scan algorithms (Blelloch, [1990; [Hillis & Jr., |1986)). As a result, the convolution kernel K can be computed
with an overall time complexity of O(N?log(L)) since A, remains the same for all values of k. Similarly
to the scaled case, if the A matrix is diagonalizable, then the A matrices become diagonal. With access to
parallel processors, the runtime complexity can be reduced to O(N?log(L)).

Furthermore, for diagonalizable SSMs, the convolution kernel for the translated measure has a closed form.

Theorem 7. For translated-SaFARi, if A is diagonalizable, then the convolution kernel K that computes the
representations can be found in closed form. See Appendiz[A7]

7 Empirical validation

We demonstrate that SaFARi can generate SSMs for function approximation over any frame or basis by choosing
examples that are non-orthogonal, incomplete, or redundant. We then evaluate SaFARi-generated state-space
models on some sample datasets online function approximation, benchmarking against established baselines.
Code to replicate the results of this section, as well as generate SSMs with arbitrary frames is provided at:
https://osf.io/p8u3c/files/osfstorage?view_only=5627b286531d4b75b40370d3340dbe90.
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Name Spans L2  Orthogonal Redundant Category
Legendre v 4 X Orthonormal Basis
Laguerre v v X Orthonormal Basis
Chebyshev v v X Orthonormal Basis
Fourier v v X Orthonormal Basis
Bernstein v X X Non-orthogonal Basis
Gabor v X v Frame
Random Harmonics X v X Neither
Fourier+Random Harmonics v X v Frame

Table 2: The first four elements in this table were studied in previous works (Gu et al| (20205 2023)). We
reproduce them here for comparison. We also introduce several new variants with characteristics such as
non-orthogonality and redundancy, which can now be handled with SaFARIi.

7.1 Instantiations with different frames

No single frame is universally optimal all input classes. Different signal families exhibit different decay rates
in representation error depending on the chosen frame or basis. We instantiate SaFARi over several sets of
functions as in Fig. [ which may constitute bases, frames, or neither, as summarized in Table 2] Description
and further discussion can be found in Appendix [A8] For each function family, we scale the functions to an
interval of [0, 1].

7.2 Diagonalization of A

As discussed in Sec. [6.3] not all bases produce an A matrix that is stably diagonalizable. This section does
not attempt to provide rules to guarantee a stably diagonalizable A; however, we consider two key metrics
that illustrate how the choice of basis and measure can result in an A matrix with more (or less) desirable
properties: how sensitive eigendecomposition is to perturbation, and the effective rank of A.

Legendre Polynomials A Scaled A Translated Fourier Series A Scaled A Translated
1 .
1 . ) JER)
= .
0.5 ol i -
0f 1 ..-'
—1f | - -
—0.5L NS N E| L ] Lo
Chebyshev Polynomials A Scaled A Translated Random Harmonics A Scaled A Translated

1 B o

RN |

-

Laguerre Polynomials A Scaled A Translated Fourier+Random Frame A Scaled A Translated
1t u "
| e~ A ] b f
0.5
of 1 = .
N\
Ul e i % 1 f a
- .
—0.5 - -
Bernstein Polynomials A Scaled A Translated Gabor Filters A Scaled A Translated
1t 1 0.2} 1 =
"
"
.
0.5F 1 ot i - .
v 'k
=
Ui ] 0.2k ] L

Figure 6: For each of the SSMs instantiated in this work, we show a few elements of the frame, and the
resulting A matrices for scaled and translated measures. The scale for the A matrices is the same as in Fig.
for consistency.
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From the Bauer-Fike theorem (Bauer & Fike| (1960)), given a matrix A with eigenvalues \; and eigenvectors
V, and a perturbed matrix A = A + E with corresponding eigenvalues X, we have thal

A=A < w(V)[|E],, (28)

where (V) = ||V||2]]V"t||2. This theorem describes a relationship between a matrix perturbation and the
impact on its eigenvalues, which has a bound determined by the condition number of the eigenvectors of A.
The larger this value, the less numerically stable the operations on A will be. Varying N for different SaFARi
instantiations can result in unstable diagonalization of A matrices, as shown in Fig. [7]

k(V') gives some information about the stability of the eigenvalue decomposition, but does not address
structural issues such as degenerate eigenvalues. To address this, we consider the effective rank, defined by
[Roy & Vetterli| (2007) as the Shannon entropy of the normalized singular values py. The closer this value is
to N, the less redundancy of eigenvalues.

N
erank = exp < Zpk logpk> (29)
k=1

While these metrics may not account for all possible edge cases, in general, we would like the A matrix to
have a very low value for x(V) and a high value for erank. Our results support the findings of prior work
|Gupta et al. (2024); Gu et al|(2022al), noting that at relatively low N, Legendre-based A matrices rapidly
become difficult to stably diagonalize. Notably, in Fig. [7} several of the orthogonal polynomials of prior
work are suboptimal, whereas one of our newly-introduced frames (Gabor—which can only be constructed via
SaFARI, having no closed-form solution) shows promise in both metrics.

7.3 Datasets for experiments

S&P 500: We use the daily S&P 500 index as a broad, large-cap U.S. equities benchmark over the last
decade: from August 2015 to August 2025 |Yahoo Finance| (2025)). The series consists of end-of-day levels for
the price index. Overlapping sequences of 500 samples are collected as different instances of time series to
form a dataset, and resampled into 4,000 samples to emulate longer time-series signals.

M4: The M4 dataset consists of a collection of time-series data across different realms, including economic,
financial, industrial, and demographic, at various intervals.

2The norm || - || in Eq. can be any p-norm, e.g. 1, 2, or co. The 2-norm was used here, which denotes the largest singular
value of E.

Condition Number of Eigenvectors of A Effective Rank of A

80 | -1 |- LegS

’ -o- LegT
—— FouS
-4- FouT
—&— ChebyS
-8- ChebyT
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--- LagT
—— BernS
-+- BernT
—— Gab$S
-#- GabT

1022 [

1016 -

40 -

erank

T 101

20 -
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N (dimension of A) N (dimension of A)

Figure 7: Comparison of A matrices produced by SaFARi. The condition number of eigenvectors of A
indicates how sensitive the diagonalization is to perturbations, and the effective rank relates to the distribution
of eigenvalues.
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7.3.1 Function memorization and approximation

Members of the M4 and S&P 500 datasets were passed to SSMs constructed from different bases and
frames. At each iteration, the SSM generates a coefficient vector ¢ (see Fig. |1} Eq. and subsequent
equations) which is a compressed representation of the time-series signal up to that point. The error between
the reconstructed signal from ¢ and the original input signal is a measure of how effectively the SSM can
remember and represent the signal. An illustration based on a single instance of M4 is shown in Fig.

Scaled and translated SSMs: For the lof_{gconstruction by Fourier Basis and Harmonics
translated case, the window size is set ‘ ‘ ‘ ‘
at 10% of the input signal length. Since
we are only estimating a small portion 0

—— Signal
——  Fourier
—v— Harmonics

of the signal each time we evaluate the Fourier+
translated case, the MSE reported is the —_9 ‘ ‘ ‘ ‘ | Harmonics
mean of all intermediate estimates. For 0 2,000 4,000 6,000 8,000 10,000
iCsorrlrslleS;CSelIllfey(;l tt}}llee esrarr(ifelr‘;;;e ,S]?Elee(ilv—[csa;}z Reconstruction by Polynomial Families

between the reconstructed signal and the ||—  Signal
estimated signal are reported in Table [3] — Laguerre

|| == Chebyshev
—e— Legendre

Size and Rank: Both scaled and trans-
lated versions were evaluated with N =
32,64, 128, where N the size of the sig- 0 27600 47600 6,600 8,600 10:000
nal representation. For orthonomal bases,
basis elements are linearly independent,
so both basis and A matrix have rank N.
For frames, elements have redundancy, so
the SSM has effective rank Nog < N. In
Table the two frames (Fourier+Random
Harmonics and Gabor) are treated sep- _o| ‘ ‘ ‘ ‘ ]
arately to highlight the distinction. We 0 2,000 4,000 6,000 8,000 10,000

first instantiate these frames with N mem-

ber vectors (Fou+, Gabor). We then add ~Figure 8: One sample from the M4 dataset reconstructed by differ-

N* > N member vectors and diagonalize ent SaFARi implementations. These are separated into multiple
the resulting A matrix, so that the result- subfigures for visibility.

ing (Negr) matches the desired N (Fou+*,

Gabor™).

2Reconstruction by Non-orthogonal Frames
10~

||—— Signal
——  Gabor
|| —— Bernstein

Discussion: In Table [3] the lowest MSE depends on a combination of N, the windowing function, and
the data being processed. However, some broad patterns emerge. Most of the best-performing SSMs have
characteristics of redundancy (Fou+, Fou+*, Gabor, Gabor*) or non-orthogonality (Bernstein), which were
never explored in prior work due to their lack of a closed-form solution for A and B. This suggests that
alternative SSMs constructed via SaFARi could improve the performance of SSM-based models.

We also observe that the representative power of a given SSM depends in part on the length of the signal
under consideration. In the translated case, the window size is constant, so any SSM that can adequately
model features in a signal of length W will have negligible performance advantages. In the scaled case,
however, the length of the signal changes at each iteration, and the choice of frame or basis for SSM can have
a significant impact on MSE.

7.3.2 Comparing SSMs to learned structures in the long horizon delay task

To compare the performance of SaFARi SSMs as online memory units, SaFARi features are computed on a
signal by sequential update, then the observed scalar input at t = T — d (where T is the current time sample
and d is the delay) earlier is reconstructed from the representation via the dual frame. The MSE between
the reconstruction and the ground truth delayed input is an indicator of the memory performance of the

15



Under review as submission to TMLR

Scaled Translated
N =32 N =64 N =128 N =32 N =64 N =128
SP M4 SP M4 SP M4 SP M4 SP M4 SP M4
Leg 0.039 0.328 0.039 0.322 0.039 0.322 0.166 0.288 0.166 0.287 0.166 0.289
Fou 0.018 0.218 0.013 0.159 0.009 0.109 0.314 0.271 0.314 0.270 0.314 0.271
Lag 0.678 0.712 0.678 0.709 0.678 0.712 0.313 0.271 0.314 0.207 — -

Cheby  0.015 0.162 0.013 0.117 0.012 0.077 0.021 0.179 0.024 0.176 0.030 0.181
Bern 0.026 0.194 0.020 0.173 0.017 0.158 0.021 0.179 0.021 0.174 0.021 0.178

Rand 0.026 1.175 0.020 0.563 0.014 0.249 0.022 0.179 0.023 0.176 0.026 0.179
Fou+ 0.017 0.191 0.011 0.152 0.009 0.109 0.021 0.179 0.023 0.175 0.026 0.180
Fou+* 0.013 0.156 0.009 0.101 0.007 0.058 0.022 0.179 0.025 0.176 0.027 0.181
Gabor  0.024 0.266 0.018 0.191 0.714 0.206 0.021 0.179 0.022 0.175 0.023 0.179
Gabor®* 0.018 0.223 0.016 0.181 0.051 0.144 0.022 0.179 0.022 0.175 0.024 0.179

Table 3: MSE of reconstructed signals with different instantiations of SaFARi. The table is divided into
polynomial (top) and non-polynomial (bottom) representations. Asterisks indicate that the frame was
augmented with additional vector elements to achieve an effective rank. For each test, the minimum MSE for
polynomial and non-polynomial SSMs is shaded. Missing entries for Laguerre could not be computed due to
numerical errors arising from exponents in higher-order terms.

structure, as it demonstrates that information in the long history horizons is recoverable. For each test, we
use the same delay amount and the same representation size of 32. The SSM-based models in our study do
not include any learned parameters; their dynamics are fully determined by the state-space formulation, so
their number of learnable parameters is effectively zero. The LSTM and GRU models are trained using an
Adam optimizer ) until they converge, and the final validation performance is shown in Fig. El

Discussion: The trends in Fig. 0] reflect how SSM-based models demonstrate better memory performance
than learnable models for the same representation size. Models with learnable parameters (LSTMs, GRUs)
need large amounts of data to generalize well. When the delay horizon is long and the available data is
limited, these models tend to perform worse. This is consistent with our observation that the gap between
RNNs and SSMs is smaller for the M4 dataset, which has many more samples, compared to the S&P 500
dataset. Even in data-rich settings, RNNs prioritize short-term dependencies because of their internal gating
mechanisms and training dynamics, which helps avoid vanishing or exploding gradients. This bias limits their
ability to retain information from long time horizons. In contrast, SSM models are designed to maintain
information flow over longer sequences.

S&P 500 Dataset M4 Dataset
a ‘ ‘ ‘ ‘ ‘ ‘ —— LSTM
5F Bl a — GRU
=1 | |—=— SaFARIi-Chebyshev
—+—  SaFARi-Gabor
= B3 —o— HiPPO-Legendre
= = 50 | |-~ HiPPO-Fourier
] —
Io |
— -
r Tk e
| A . 4 S ?Q/f’.:o
L I I I I I I I ] I I I I
0 500 1,000 1,500 2,000 2,500 3,000 3,500 500 1,000 1,500 2,000
Delay Delay

Figure 9: Memory recall performance of learned models, HIPPO SSMs, and SaFARi SSMs in the long horizon
delay task. Legendre and Chebyshev SSMs are nearly indistinguishable. Gabor and Fourier also track closely.
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Another notable trend in the plots of Fig[g]is the varying MSE as the delay increases. Intuitively, at longer
delays, the memorization task becomes more difficult, and we expect the MSE to increase. The MSE does
increase overall, but not strictly monotonically, and this is especially salient for the SSM models. If the
underlying time series exhibits non-monotonic autocorrelation structure, then periodic or quasi-periodic
components cause the signal at specific lags to be more correlated (and thus more predictable) than at nearby
lags, which is often the case for real-world signals [Kantz & Schreiber| (2003). SSM models also contain
structured functions that exhibit periodicity (see Fig. @, whereas learned models do not necessarily converge
to periodic representations. Thus, the same structure that gives SSMs an advantage in MSE performance can
also make them more susceptible to periodic correlation in delay and copying tasks.

8 Conclusions

In this work, we demonstrate how function approximation with SSMs, originally introduced by
, can be extended to general frames through SaFARi. Our method generalizes the HiPPO framework
to accommodate bases or frames where closed-form solutions are unavailable, paving the way for broader
applicability in sequential modeling tasks. Key findings regarding the choice of frame or basis of an SSM
motivate the need for more flexibility than prior methods could provide:

e The underlying frame of the SSM should be compatible with the signal of interest; there is no
“one size fits all”. The correct choice of frame reduces both the error and representation size (Sec. m)

e Notably, SSMs using non-orthogonal and redundant frames—which do not have closed-form
solutions—can outperform the standard polynomial-based instances (Sec. @

e Even for an optimal frame, an SSM’s performance will also depend on structural features of the

A matrix (Sec. [5.2).

o Different frames result in A matrices with better or worse numerical properties (Sec.(7.2)), and
stable diagonalization of the A matrix is critical for computational efficiency (Sec. [6.3]).

The groundwork laid in this paper lends itself naturally to several future research directions. One considers
SaFARi as a standalone representation module. While we have presented several new frames and bases in
this work, there are many other structured frames, such as different wavelet types, that could be leveraged
for localized and sparse representations.

Another direction focuses on the integration of SaFARI into learned models, specifically advanced SSM
architectures such as S4 and Mamba. By embedding known temporal structures of dynamical systems directly
into the SSM architecture with SaFARi, we can improve memory and reconstruction performance of the core
SSM, which in turn reduces the need to learn all parameters from scratch. We anticipate that this will reduce
the computational burden of training, while increasing stability and parameter efficiency. SaFARI is also a
natural candidate for implementing gating-like behavior: the memory encoded in the state vector determines
how historical information is selectively integrated into downstream computations. In this sense, SaFARi
modules could function analogously to gating layers in RNNs, but with efficiently designed, context-aware
structure.

SaFARI also enables us to investigate the synergy between ML models and SSM variants. The interplay
between the internal structure of the SSM (from the frame and measure) and the architecture of the learned
model that contains it may play an important role in overall performance. For example, a wavelet-based SSM
that detects discontinuities in signals may have better synergy with models designed for sparse data, whereas
polynomial-based SSMs techniques may be better suited for use with techniques involving logistic regression.

By extending SSM construction beyond specific bases, SaFARi provides a flexible foundation for efficient
state-space representations by linking theoretical advancements to practical applications in sequential data
processing.
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A Appendix

A.1 Derivation of SaFARi with the scaled measure

Theorem . Assuming elements in the frame ® and the input signal w are right-continuous, for the
representation defined in Eq. the partial derivative is:

o _ . 1
a0 ="7

where A is a linear operator defined as:

AE(T) + %BU(T) (A1)

A=1+UrUs (A.2)

and B is the complex conjugate of a vector containing members of the main frame evaluated at T' =1 so
we have B = {¢,(T = 1)}ner . One can show that the A operator can also be described using the matrix
multiplication:

1 ~
Aij=0ij +/0 T;(t) ¢ (t)dt (A.3)
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Proof: Taking partial derivative with respect to T, we have:

=4 [ o (1)

Now applying the Leibniz integral rule we have:

T _ . T _ - -
e = [ Dbt () [ D s+ 2y

=0
-1 —1 T 1_ t an(l)
— ot [, 07 (5) o S
e T o (1)
= —ren + o (w o) + 22 (T (A.5)

This is still not an SSM since the second term is not explicitly a linear form of &(T"). To convert this to a
linear form of &(T'), we use the equality given in Eq. |11 to represent v,, using the frame ®

Un(t) =Y (Un, 8505 = D (n, 05)0; (A.6)
Jer jer
= (U vn) = (1Y (U, G)05) = D (n ), 85) =D (vn, ) ¢;(T) (A7)
jer jer jer
Putting Eq.[AT7] in Eq. results in:

o 1 - ?,(1)
GpT) =~ (I + UrUL)AT) +

u(T) (A.8)
This proves the theorem. [

A.2 Derivation of SaFARi with the translated measure

Theorem . Assuming elements in the frame ® and the input signal w are right-continuous, for the
representation defined in Eq. the partial derivative is:

0 1 1
—dT) =—-Ad(T) + =Bu(T A.
S=AlT) =~ AG(T) + 5 Bu(T) (4.9)
where A is a linear operator defined as:
A= U,U% + Qo (A.10)

and B is the complex conjugate of a vector containing members of the main frame evaluated at T =1 so
we have B = {¢,,(T = 1)} ner. One can show that the A operator can also be described using the matrix
multiplication:

o~ Lro_ ~
A5 =5.05,00+ [ |Za0] s (A1)
o L0t t=t’
Proof: We can write the coefficients as:
r - (t—(T—-9
wld) = [t ga, () an (A.12)
T—g 0 0
Taking the partial derivative with respect to T', we have
den(T) -1 (T — (t— (T —0) 1- 1-
oD [ s (G e au) - a0 -0 a)
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Similar to our approach for the previous theorem, we write ¢/ (z) as

G (2) = (3. 0)0i(2) = > Quii ¢i(2) (A.14)
el el
1 —_—
Qn,i = _Ofb’n(zm(Z)dz (A.15)

Now, if we use this expansion, and put it in Eq. [A13] we have

ac(;;T) / [ZQM Z(t— (5—9))

el

detD _ 5 2 [ L T_gu(tm (=52 a

We also write u(T' — 6) as a reconstruction using the current representation (7' —6) =", cids(0)

dt + é&n(l)u(:ﬁ) - é&n(o)u(:ﬁ —0) (A.16)

+ 50, (Du(T) — 53,(0)u(T—6) (A1)

BcS;T) - _71 ZQ" ¢+ %En(l) - *¢ Zcmbz (A.18)
den(T) -1 S (@ + 6:(0)8,,(0) ¢ + 15 (1)u(T) (A.19)
ot = g 2\Gni o000 it 5 .

If we put A; ; = Q, ; + 51-(0)5]-(0), it proves the theorem. [

A.3 Mathematical properties of SaFARi

Proposition. For any scalar 5 > 0, if h(t) = u(Bt) then for the scaled measure we have SaFARi(h)(T) =
SaFARi(u)(5T)

Proof: We start by writing the representation generated by the scaled SaFARi for h(t).

T
SaFARi(h)(T) = / o <t> L (A.20)
=0 )T
_ /T (Bt)dn L2 ldt (A.21)
a t:Ou "\r)T .
T — ([t 1at
u(t), | = | =— = SaFARi(u)(sT A.22
| (55) 15 (w)(5T) (A2
Proposition. For any scalar 8 > 0, if h(t) = u(Bt) then for the translated measure with parameter 6 we

have SaFARig(h)(T) = SaFARigg(u)(6T)

Similar to the previous proposition, we start by writing the representation of the scaled SaFARi:

T —_— —
SarA (D = »/t:T—G h{t)gn (W) %dt (A.23)
’ — (t—(T -0
=/ u(Bt)on <9> 5t (A.24)
t=T-06
_ ng (P (BT =B 1dt' _ oo
— /t/_ﬁT_M u(t )qbn( 50 ) 55 = SaFARigg(u)(8T) (A.25)
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A.4 The closed-form solution for SaFARi differential equations

Lemma 1. The closed form solution for the differential equation introduced in Eq. 18:

! t
c= —exp | Aln — | Bu(t)dt. (A.26)
t=0 t T

Proof: We begin by re-writing the differential equation for any time ¢

0 1 1
5,00 + S Adt) = ~ Bu(t) (A.27)

Now we multiply both sides by exp(Aln(t))
0. 1 . 1
exp(A ln(t))ac(t) + EA exp (Aln(t)) e(t) = : exp(Aln(t)) Bu(t) (A.28)

The left side of the equality is now a complete differential

% (exp(Aln(t))e(t)) = %exp (Aln(t)) Bu(t) (A.29)
1

exp (AlIn(T)) &T) = /t:O 7 &P (Aln(t)) Bu(t) (A.30)
"1

AT) =exp(—AIn(T)) /t:O 7 eXP (Aln(t)) Bu(t) (A.31)

This proves Lemma 1. [J

Lemma 2. The closed form solution for the differential equation introduced in Eq. 18:

c= /:;_9 %exp (At_0T> Bu(t). (A.32)

Proof: We begin by re-writing the differential equation for any time ¢ as

0 _ . 1
Now we multiply both sides by exp(A%)
o 1 £\ 1 t
exp (A0> &c(t) + 514 exp (A9> at) = 5 CXP (AG) Bu(t) (A.34)

The left side of the equality is now a complete differential

% (exp (AZ) 6(t)> - éexp (AZ) Bu(t) (A.35)
AT) = exp (—Ag) /f :TT_g % exp (AZ) Bu(t) (A.36)

This proves Lemma 2. [J
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A.5 Truncation of frames

For a sequence of matrix operators to converge, there are different types of convergence, including Operator
norm convergence, Strong Operator Theory (SOT) convergence, and entry-wise convergence.

A sequence of operators A,, is said to converge to A in the Strong Operator convergence sense if A,, — A
strongly if Vax € %
A, Prz — Azx|| — 0 (A.37)

Where P,, projects the vector z into a vector containing only its first n coordinates.

This type of convergence guarantees that for the SSM updates, ||A,¢(T) — AG(T)|| — 0. This means that
the difference between the true infinite dimensional update and the update using truncated A vanishes to
have zero norm-2, guaranteeing that the representation error using SaFARi updates can be diminished to an
arbitrarily small value.

Our implementations and empirical evidence support that the DoT and ToD constructs in Section [5.1] are
SaFARI®) sequences. The fact that our DoT constructs reproduce the closed-form HiPPO derivations for A
and B also provide strong evidence for this framing of the construction. However, a rigorous proof that that
the two introduced structures meet the SOT convergence criteria is still needed, and should be addressed in
follow-up work.

A.6 Error analysis

Theorem . The truncated representation generated by the scaled-SaFARi follows a differential equation
similar to the full representation, with the addition of a perturbation factor.

a%c = —%Ac + %BU(T) - %€(T). (A.38)

where € is defined as
€(T) = (ur, &) (A.39)
E=7(D —I) (A.40)

Proof: Repeat the steps taken in the proof of Theorem [I] until Eq. Truncating the frame results in an
error in this step which can be written as

Un(t) = > (Vn, 6005 + &nlt) (AAL)
jer

In fact, this is how £ is defined. Adding £ as a correction term here changes the SSM derivation:

= (uvn) = (& + D (Un, 85)05) = D (Va3 (&) + (&) = D (s 63) 5(T) + (w,6n)  (A42)

Jjer jer jer
Putting Eq. in Eq. results in:
0 1 1 1
—c=—=Ac+ =Bu(T) — =&T). O A.43
e =~ Act 2 Bu(T) — ZAT) (A43)

Theorem (4). If one finds an upper bound such that ¥Vt < T we have ||€(t)||2 < €n,, then the representation

error can be bound by
1 _
AT 12 < emy | 3z = enll4 Yir (A.44)

Proof: Using the result of Theorem

0
aor°©

= _% Ac + % (Bu(T) — &T)) (A.45)
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We can use Lemma [I] to find the closed form solution of the perturbed SSM above

- /t ! %exp (A In ;) (Bu(t) — &(t)) dt (A.46)

=0
"1 t T t

c= /t:O 7 oxXP (A In T> Bu(t)dt — /t:O 7 oxp (A In T) €(t)dt (A.47)
Size N representation = True representation — Error (A.48)

The last term is indeed the second type error that we have discussed in the error analysis section of the paper.
Using eigenvalue decomposition of A = VAV ~! we re-write the above error term as

T
Error =V —exp (A In t) VLe(t)dt (A.49)
t=0 b T

with a change of variable s = In %

T
V_lError:/ Oexp(As)V_lé(s)ds (A.50)
.

According to the assumption of this theorem ||V ~te(t)|l2 = [[e(t)]l2 < em

T
— [V 'Error]; < / exp(sAj)emds = i\—m (A.51)

t=0 J

1
|Error||?* = |V Error|? < €m /Z 2= eml| A7 P (A.52)

Theorem . Suppose a frame ® is given. The Dual of Truncation (DoT) construct introduced in Sec-
tion has optimal representation error when compared to any other SaFARI™N) construct for the same
frame ®.

Proof: The proof for this theorem involves two steps.
1. First, we show that the optimal representation error in the theorem can be reduced to optimal error
of the second type (mixing).
2. Then, we demonstrate that for a given frame ®, and given truncation level N, the construct with the

optimal second type error control is DoT.

As discussed in Sec. [5.2] the first type of error is due to truncating the frame, and is independent of the SSM.
In the scope of this theorem, all the SaFARi(™) constructs use the same frame and the same truncation.
Therefore, comparing the representation error between SaFARi(") in the theorem reduces to comparing the
mixing error.

The mixing error is shown in Theorem [3] to be proportional to
€(T) = (ur, &) (A.53)
To minimize ||(T)| irrespective of the input signal, one has to minimize ||£||%
€ = Yo (BN Do ny — 1) (A.54)

Where T|o.n) and ®jg.n] are the first N elements of T and ®. ®@) is the approximation of the dual frame
that determines the SaFARi(") construction. For the ease of notation, we rewrite Eq. as:

E="(®P 1) (A.55)
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For a fixed T, and ®, we aim to minimize ||¢||2 with respect to ®:
Argming | T(2® — I)|[3 (A.56)
For the optimal &), the partial derivative is zero.

0 1o} ~ ~
Szllelly = <T@ - D = 2007 (@2 - DeT =0 (A57)

o= (@d7) o7 (A.58)

One should note that the described @ is indeed the pseudo-inverse dual for the truncated frame ®(g.nj.

Therefore, among the possible SaFARi(N) constructs for the same frame, the Dual of Truncation (DoT) has
optimal representation error. [

A.7  Parallelization using the convolution kernel

Theorem @ For SaFARi using the scaling measure, if A is diagonalizable, computing the scaled represen-
tation on a sequence with L samples can be done using a kernel multiplication.

a) For the discretization using General Biliniear Transform (GBT) with parameter «, the kernel can be
computed using:

H£:j+1 (1 - };TT)‘%) c RNXL (A.59)
HIS:j (1 + kLH)‘J

b) For long sequences, the kernel K can be approzimated using

KL[iﬂj] =

DY
1 7
Ki(i,j) =~ <J> € RNXL (A.60)
7\ L
For either case a or b, the representation is computed as:
c=MKri, M =Vdiag(V 'B) (A.61)

where V' and \; are the eigenvector matrix and eigenvalues of A.

Proof: a) rewriting the GBT update rule for the diagnoalzied SSM we have:

O+ 1) = (1 + nilA)_l (1 1 aA) Fln] + (I + nilA) ' Bufn] (A.62)

= A,C[n] + Byuln]

— C[L+1] = Bpu|L] + AL Bp_qu[L — 1] + ... + Ap, ... Ay Bou[0] (A.63)

for the ease of computation and notation, we define Ky, such that:

_ _ 1 Tl (155N
Kplij) = A ... Ay (1 + O‘lA) — ’“;”1 ( hH ) (A.64)
i+ Iy (1+ 2250)
C;=B; > Kli, jlulj] = Bi[K pil]; (A.65)
J
¢= B0 (Kpi) = diag(B)KL1 (A.66)
¢ = Ve = Vdiag(B)Kpi = MKy, (A.67)
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Proof: b) Using Lemma [1] for the diagonalized version of Scaled-SaFARi the closed form solution is

I | £ =
c= —exp | Aln — ) Bu(t)dt. (A.68)
t=0 t T
f—/T Lexp (M £) B, (t)dt—é-/T LN e = Bk, (A.69)
Ci = o teXP % nT iU — Dy o n T U = Dy Luj; .
¢=Bo (Kpi) = diag(B)KL 1 (A.70)
¢ =Veé= Vdiag(B)Kpi = MKy i (A.71)

Theorem . For SaFARi using translated measure with 6, samples long sliding window,if A is diagonalizable,
computing the translated representation on a sequence with L samples can be done using a kernel multiplication.

a) for the discretization using General Bilinear Transform(GBT) with parameter a., the kernel can be computed

using:
_ L—j
1 — 1zl
Kili,j) = 6 A2
il = e () (A72)
b) For long sequences, the kernel K can be approximated using
1 L—j
Kp(i,j) = —exp [ —Ai——2 ) e RN*E (A.73)
0r, 01,
For either of case a or b, the representation is computed by
c=MKpi, M =Vdiag(V'B). (A.74)

where V' and \; are the eigenvectors matriz, and eigenvalues of A.
Proof: a) rewriting the GBT update rule for the diagonalized SSM we have:
- —1 1— - 1 - o _
Cln+1] = (1 + %A) <I - 9“A> Cln] + (I + %A) Buln] = AC[n] + Buln] (A.75)

we take a similar approach to the previous theorem. The only difference is that A and B remain the same for
all the time indices. B - o o
C[L +1] = Bu[L] + ABu[L — 1] + ... + AV Bu[0] (A.76)

for the ease of computation and notation, we define Ky, such that:

1 1— e\ "
K . . _ 9 1 A‘
il = () (A7)
C;=DB; > Kpli, jlulj] = Bi[K pil]; (A.78)
J
¢=Bo (Kpi) = diag(B)KL1 (A.79)
¢ = V&= Vdiag(B)KLi = MKy i (A.80)

Proof: b) Using Lemma [2| for the diagonalized version of Translated-SaFARi, the closed-form solution is:

¢ = /tT 1exp (AT) Bu(t). (A.81)

T
1 —T\ ~ ~
G = / Lep (M=) Buug) = Bk Ll (A.82)
t=T—0 Y 0
¢=Bo (Kpi) = diag(B)KL (A.83)
¢ =Veé=Vdiag(B)Kpi = MKy i (A.84)
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Figure 10: Fast Legs numerically diverges. left: For a system with N = 500, 10g| | for different values of
k € [1, N] is plotted at different iterations t = 20,40, 60, 80. right: log of the cumulatlve product which is
equal to the cumulative sum of the left plot is plotted for different iterations. In the right plot, it is notable
that for ¢ = 80, the cumulative product reaches to 103%° for a k& < 500 which is the largest value that a
float-64 variable can handle. The studied Fast-LegS method for an SSM having more then 500 coefficients
diverges after only 80 sequential updates.

A.7.1 Numerical instability of the fast sequential LegS solver

As part of our experimental findings, we realized that the proposed method for sequential updates for LegS
SSM( in (2020)), Appendix E) suffers from numerical instability when working with larger SSMs.

cumsum(Scumprod)

(A.85)

cumprodé

where the introduced oy = is a decreasing function. One can confirm that in the #*" iteration, and for

d
1+4+dpg
the k' degree Legendre polynomial

dy, 2(t+1)—k
= = A.86
T T d, 2t +k+1 (A.86)
Then the proposed solution requires finding cumulative product of —- for k € [1, N] in each step.
1 A(t4+1)+1
log |cumprod,, ( > ‘ Z log o ‘ Z log m (A.87)
k=1 k=1
2(t+1) K
4t+1)+1 4t +1)+1
Z log ( 7/ + Z log (14 ——F——— (A.88)
v 2(t+1)—k WS k' —2(t+1)
2(t+1) K—2(t+1)
4t +1)+1 4t +1)+1
= 1 14+ —=-— 1 1+ ——F— A.89
k; Og( +2(t+1)_kl>+ kzzl Og(+ K (4.89)

For any specific iteration (fixed t), as K grows(higher representation index), the second summation above
grows to infinity. Thus, for large enough N, cumprod ) dlverges beyond machine precision. As a result,
the proposed fast sequential legS solver proposed in M Appendix E) fails. Figure. [L0] Shows
an example where for N = 500, fast LegS numerlcally dlverges for any sequence longer than 80 samples. It
is crucial to note that this numerical instability is fundamental to legS, and does not depend on the input
signal at all.
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Figure 11: As the given LegS size N grows, the longest sequence length before observing numerical diversion
is given in the above plot. For N < 400 we did not observe the numerical diversion. for N > 400 , the
fast legS sequential update method cannot handle sequences longer than a limited length before it becomes
numerically unstable.

We also investigate the longest sequence length that the given fast legS sequential solution can handle without
numerical diversion. Figure [I1] shows that as N grows, then length of sequence that fast legS sequential
solver can handle before becoming numerically unstable decrease to a limited length.

A stable version of solving LegS would be a similar approach as fast-LegS, but in the last step, instead of
introducing the proposed « and [, we find 1, then recursively find z; after finding all the pervious x;s. This
way, the overall computation complexity remains the same, while the run-time complexity increases, as one
cannot compute x; until zg,...,r;_1 computed.

A.8 Bases and frames

Legendre Polynomials: Legendre polynomials form an orthonormal basis for square-integrable functions on
the compact interval [—1,1]. Their recurrence relations and bounded values make them well-suited for tasks
such as Gaussian quadrature, spectral methods for solving differential equations, and polynomial interpolation.
However, SSMs built from Legendre polynomials can suffer from numerical instability for high degrees, require
global support (making them less effective for localized features), and may produce oscillations near interval
boundaries, limiting their practicality in approximating functions with sharp variations or discontinuities.

Fourier Series: The familiar Fourier series is an orthonormal basis, and with integer n elements have
the form:v/2 cos(2mnt), v/2sin(2wnt). The Fourier series represents functions as infinite sums of sines and
cosines, which form an orthonormal basis for square-integrable functions on a compact interval, making
them highly effective for approximating periodic functions.However, they have important limitations for
function approximation: they assume periodicity, and can exhibit the Gibbs phenomenon when approximating
non-periodic or sharply varying functions; they provide global support, making them inefficient for capturing
localized features; and high-frequency components are often needed to approximate functions with sharp
transitions, which can be computationally expensive.

Random Harmonics: Similar to the Fourier series, these functions have the form v/2 cos(27at), v/2sin(2rat),
where a is a real number sampled from a uniform distribution, not integers. A random collection of these
functions is not guaranteed to span L2, and therefore is not a frame or basis. In general, using random
vectors in place of a frame or basis is a poor choice. We include it separately only as a counter-example to
orthogonal bases and redundant frames. We can also use this set to augment a Fourier basis: since a Fourier
basis spans L2, concatenating additional vectors introduces redundancy, and we have a frame.

Laguerre Polynomials: Laguerre polynomials form an orthonormal basis for square-integrable functions
on the semi-infinite interval [0, co] with respect to the weight function e~*. These properties make them
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well-suited for approximating functions defined on unbounded domains, particularly when the function decays
exponentially, and they are widely used in quantum mechanics, numerical analysis, and differential equations.
Laguerre polynomials are less effective for approximating functions on compact intervals, as they exhibit
increasingly oscillatory behavior for large degrees, and their reliance on a specific weight function limits their
flexibility for approximating functions that do not exhibit exponential decay.

Chebyshev Polynomials: Chebyshev polynomials form an orthonormal (or orthogonal, depending on
normalization) basis for square-integrable functions on the compact interval [—1,1] with respect to the
weight \/117? They are known for their near-minimax property, meaning polynomial approximations using
Chebyshev nodes minimize the maximum error. This makes them highly effective in polynomial interpolation,
spectral methods for solving differential equations, and numerical approximation schemes that need high
accuracy with fewer terms. However, Chebyshev polynomials are global basis functions, so they are less
effective for functions with localized features or sharp discontinuities. They also require transformations or
rescaling for domains other than [—1, 1], and like other polynomial bases, they can be inefficient for very
high-dimensional or highly irregular function approximations.

Bernstein Polynomials: Bernstein polynomials form a basis for continuous functions on the compact interval
[0,1]. They are non-negative, form a partition of unity, and have excellent shape-preserving properties, making
them particularly useful in computer graphics, geometric modeling (e.g., Bézier curves), and approximation
theory. Bernstein polynomials are not orthogonal, which limits their efficiency in some numerical computations,
and achieving high accuracy often requires large polynomial degrees, leading to higher computational cost.
They are also less suitable for capturing oscillatory behavior or sharp transitions, as compared to orthogonal
polynomial bases like Chebyshev or Legendre.

Gabor: Gabor filters (or Morlets) capture localization in both time and frequency, making them popular for
use in biomedical signal processing and image texture analéysis. They can be constructed by modulating a
complex sinusoid with a Gaussian as: fi(z) = e~ (@=br)?/w e~ ok (r=b) \where by, are shifts in time, aj, are
frequencies, and w is the scaling of a Gaussian envelope. To ensure that the resulting set of functions creates
an oversampled lattice, we ensure that the time-frequency sampling overlaps; that is, AaAb < 1.
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