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Abstract

State-Space Models (SSMs) have re-emerged as a powerful tool for online function approx-
imation, and as the backbone of machine learning models for long-range dependent data.
However, to date, only a few polynomial bases have been explored for this purpose, and the
state-of-the-art implementations were built upon the best of a few limited options. In this
paper, we present a generalized method for building an SSM with any frame or basis, rather
than being restricted to polynomials. This framework encompasses the approach known as
HiPPO, but also permits an infinite diversity of other possible “species” within the SSM
architecture. We dub this approach SaFARi: SSMs for Frame-Agnostic Representation.

1 Introduction

Modeling sequential data is a cornerstone of modern machine learning, with applications spanning natural
language processing, speech recognition, video analysis, and beyond (Zubi¢ et al.l |2024; |Alemohammad
et al., [2021} Nguyen et al., [2022)). A fundamental challenge in these domains is the efficient representation of
long-range dependence in time-series data, where the goal is to capture and preserve the essential features of
the input signal necessary for downstream tasks over extended time horizons while maintaining computational
tractability (Hochreiter & Schmidhuber} 1997)).

Machine learning approaches, such as recurrent neural networks (RNNs), struggle to learn long-range
dependencies due to limited memory horizons (Elman) |1990; Hochreiter & Schmidhuber| (1997 |Schuster &
Paliwall 1997} [Pascanu et al, |2013). During backpropagation, gradients are repeatedly multiplied by the
same weight matrix, causing them to either shrink exponentially (vanish) or grow exponentially (explode).
Vanishing gradients prevent the network from updating weights effectively, while exploding gradients lead to
unstable training. Although variants like LSTMs (Graves & Schmidhuber} 2005) and GRUs (Cho et al., 2014)
address some of these limitations, they often require task-specific parameterization, and cannot generalize
across different sequence lengths or timescales.

State-space models (SSMs) present a power alternative for online representation of sequential data. By design,
SSMs enable the online computation of compressive representations, maintaining a constant-size memory
footprint regardless of sequence length. The seminal work of |Gu et al.| introduced High-Order Polynomial
Projection Operators (HiPPO), which leverages orthogonal function bases to enable theoretically grounded,
real-time updates of sequence representations. This framework, and its subsequent extensions such as S4
and Mamba, have demonstrated remarkable performance in tasks involving long-range dependencies, such as
language modeling and signal processing (Gu & Dao, 2023 |Gu et al., |2022b; |2023; |Gupta et al., [2024; |Gu
et al.l 2022a; |Smith et al., |2023; |Hasani et all [2023). By formulating sequence representation as an online
function approximation problem, HiPPO provides a unified perspective on memory mechanisms, offering
both theoretical guarantees and practical efficiency.

However, despite its successes, the HIPPO framework has been limited to specific families of orthogonal
polynomials. While these bases are well-suited for certain applications, they are not universally optimal for
all signal classes. Fourier bases, for instance, are optimal for smooth, periodic signals due to their global
frequency representation. Polynomial bases, such as orthogonal polynomials (e.g., Legendre or Chebyshev),
are particularly effective for approximating smooth functions over compact intervals.
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The absence of a more flexible basis selection restricts the adaptability of the HIPPO framework. In this
work, we address this restriction by presenting a generalized method for constructing SSMs using any frame
or basis of choice, which we term SaFARi (SSMs for Frame-Agnostic Representation). Our approach extends
and generalizes the HIPPO framework using a numerical (as opposed to closed-form) method, which enables
us to relax the requirements on the basis (such as orthogonality of the components).

Our key contributions are as follows:

e Generalized SSM construction: We present SaFARI, a frame-agnostic method for deriving SSMs
associated with any basis or frame, generalizing the HIPPO framework to a broader class of function
representations.

e Error Analysis: We provide a comprehensive discussion of SaFARi’s error sources and derive error
bounds, offering theoretical insights into its performance and limitations.

This paper is organized as follows. In Section[2] we review the HiPPO framework and its limitations, motivating
the need for a generalized approach. Section [3] provides the required mathematical preliminaries. Section [4]
introduces our frame-agnostic method for SSM construction, and then Section [5] addresses the implementation
considerations and strategies for SaFARI, including the approximation of its infinite-dimensional representation
in finite dimensions, and provides a rigorous theoretical analysis of the associated errors. Finally, Section [7]
discusses the broader implications of our work and outlines directions for future research.

2 Background

Recent advances in machine learning, computer vision, and LLMs have exploited the ability to collect and
contextualize more and more data over longer time frames. Handling such sequential data presents three
main challenges: 1) generating a compact and low-dimensional representation of the sequence, 2) effectively
preserving information within that representation, and 3) enabling real-time updates for streaming data.

The classic linear method of obtaining the coefficients of a compressed representation of a signal is through a
transform (e.g. Fourier) (Oppenheim)| [1999; |Abbate et al., 2012} Box et all 2015} [Proakis), [2001}; [Prandoni
& Vetterli, 2008). However, a significant limitation of this method is its inefficiency in handling real-time
updates. When new data arrives, the representation must be recalculated in its entirety, necessitating the
storage of all prior data, which is sub-optimal in terms of both computation and storage requirements. This
limits the horizon of the captured dependencies within the sequence.

Nonlinear models, such as recurrent neural networks (RNNs) and their variants, have been introduced
more recently (Elman), [1990; [Hochreiter & Schmidhuber} [1997; (Cho et al., [2014; |Schuster & Paliwal, [1997)).
Since these learned representations are task-specific, they are not easily utilized for other circumstances or
applications. Furthermore, RNNs struggle to capture long-range dependencies due to issues such as vanishing
and exploding gradients.

2.1 State-space models

The state-space representation itself is not new; it was introduced by [Kalman| (1960]) via the eponymous
Kalman Filter. For an input u(t), output y(t), and a state representation called x(t), many systems and their
properties can be described and controlled with the following system of linear equations:

#(t) = Az(t) + Bul(t)

y(t) = Cx(t) + Du(t). @

In many classic applications, we iteratively update the matrices A, B, C, and D to control or predict the
output y based on previous values of u. For online function approximation, however, we instead define the
matrices A and B such that they iteratively update a vector of coefficients ¢ over a particular basis. For the
moment, we can ignore C and D (or, equivalently, consider C to be an identity matrix and D = 0). For
stability, A must have only negative eigenvalues, so we explicitly include a negative sign here. A and B may
or may not be constant over time, so for completeness, we call these A(t), B(t). Eq.[l]is now
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Figure 1: An SSM block-diagram, with the necessary ODE update step included.

¢ = —A(t)c(t) + B(t)u(t). 2)

The challenge in the problem of the approximation of online functions is to derive appropriate matrices A
and B, which was answered by HiPPO (Gu et al.| [2020).

2.2 HiPPO: High-order Polynomial Projection Operators

The HiPPO framework (Gu et al., [2020) enables online function approximation using pre-determined SSM
parameters derived from a basis of orthogonal polynomials G. It optimizes |ur — g™ (t)||,, for g™ (t) € G,
to find a set of coefficients for the orthogonal polynomials at every time 7', which yields the approximation of
the input function over [0, T.

In addition to choosing the set of polynomials, one must also select a measure: the combination of a weighting
function and a windowing function. The window indicates which samples are included, and the weighting
assigns a weight to each sample. HiPPO (Gu et al.l |2020) considered several possible measures, two of which
(illustrated in Fig. [2)) are:

1 1
p“t?”(t) = gltE[T—Q,T]a Nsc(t) = Tlte[O’T]' (3)

The uniform translated measure, u.(t), gives equal weight to all samples in the most recent window with
a constant length 6, and zero weight to previous samples. The uniform scaled measure, p.(t), gives equal
weight to all the times observed since ¢ = 0. This can be interpreted as squeezing or stretching the basis or
frame to match the current length of the signal at any given time. Thus, the representation produced by
this measure becomes less informative about the finer details of the signal as more history is observed, since
the stretching of the basis will gradually increase the lowest observable frequency. Gu et al. also considered
another weighting function, peq(t), which is a translated exponential decay measure that gives exponentially
less weight to earlier parts of the signal history. This work considers only uniformly weighted measures. We
leave alternative weighting schemes to future work.

For the space of orthogonal polynomials, Hippo ODE update (Gu et al., [2020)) (see Fig. [1)) follows a first-order
linear differential equation:
d -
7T) = —A@)dT) + Beryu(T) (4)
where u(T) is the value of the input signal at the current time T, and &(T) is the vector containing the
representation of the ¢ € [0, T] part of the input signal. A7y and B(ry are also a time-varying matrix and
vector that can be derived for the particular choice of the measure and orthogonal polynomial.

Solving the differential equation to update the SSM: The differential equation (Eq.[]) can be solved
incrementally, and there are several methods to do so |Butcher| (1987)). We use the generalized bilinear
transform (GBT) (Zhang et al., 2007, relying on findings from |Gu et al.| (2020) that the GBT produces the
best numerical error in solving first-order SSMs. The GBT update rule is

c(t+ At) = (I + tadrsy) " (I — 6t(1 — a)Awy)e(t) + (I + Stad psn) " StB(t)u(t), (5)
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where 0 < a < 1 is a chosen constant. (Note that for a = 0, the update rule becomes the same as the forward
Euler method.)

Diagonalizing the transition matrix A: The incremental update given by the GBT requires a matrix
inversion and matrix products at each increment. Having a diagonal A significantly reduces the computational
cost of these operations. If the measure used for the SSM is such that the eigenvectors of A(t) remain
constant (for example, if A(t) is a constant matrix multiplied by an arbitrary function of time), then it is
possible to find a change of basis that makes the SSM matrix diagonal. To do this, one finds the eigenvalue
decomposition of the matrix A(t) = VA(#)V~! and re-write the SSM as

7]

5,6 = AT+ Bu(t), (6)

where ¢ = V¢ and B = V~1B(t). This means that one can solve Eq. |§I instead of Eq. 4] then find the

representation ¢ from ¢ with a single matrix multiplication.

2.3 Limitations of HiPPO

The original HiPPO formulation and a subsequent follow-up (Gu et al., [2023)) included a handful of orthogonal
polynomial bases with specific measures. Measures were chosen heuristically for each basis, so there is no
method in the literature for arbitrary choice of basis and measure (see Table . Moreover, it was found that
many of the bases explored in the early work actually perform quite poorly for function approximation tasks.
Only one, the scaled-Legendre (LegS), empirically performed well, but it introduced additional challenges as
its A matrix is not stably diagonalizable (Gu et al.l 2022a)).

The majority of the follow-up work since HIPPO has abandoned the task of function approximation by SSMs
alone. Instead, most research has employed a diagonal approximation of the best-performing extant version
(LegS) as an initialization for machine learning architectures such as S4 (Gu et al., |2022bj [Smith et al.l |2023])
and Mamba (Gu & Dao}, 2023). Still, the HIPPO framework still holds untapped potential for online function
approximation and better initializations for learning tasks.

3 Mathematical Preliminaries

Prior to introducing SaFARi, we first cover some required theoretical background on the use of frames for
function representation and approximation. This section will cover distinctions between approximations
performed on the full signal all at once, and approximation performed in a sequential (online) fashion.

3.1 Function representation using frames

Given a function u(t) of a time domain ¢ € Dy, we aim to represent u(t) using a collection of functions over
Dr. This representation is performed with respect to a measure that determines the relative importance of
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Figure 2: Two different uniform measures (red) applied to a signal (blue). The red shaded area demonstrates
how the measure changes as time evolves and more samples of the input are observed.
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Measure Scaled Translated

Gu et al] (2020).§4  [Gu et al] (2020),§4]

2 lLegendre Syl  2023)

£ Fourier [Gu et al] (2020), § [Gu et al](2020),
g Laguerre $ *Gu et al, (2020)
#n  Chebychev §4 *HGu et al.| (2020)
n . —

3 Arbitrary §4

Table 1: An overview of the combinations of frames (or bases) and measures covered in the literature to
date. SaFARI fills in missing combinations in this table for the scaled and translated measures in Section
Note that the S4 work and beyond (denoted by *), which is placed in this table under Uniform/Scaled,
technically applies an exponential measure in the ODE; however, the A matrix of the SSM is generated based
on a uniformly weighted scaled Legendre polynomial basis. Some implementations in the translated case
(denoted by **) also apply an exponential decay measure. We consider only the case of uniform weighting
for each measure for this foundational work, but note that there are infinite alternate weighting schemes for
future work to explore.

the function’s value at different times. We formulate the task of function representation using frames via the
definitions below.

Frame: The sequence ® = {¢,, }ner is a frame in the Hilbert space H if there exist two constants A > 0 and
B > 0 such that for any f € H:

Afrarne”f||2 < Z |<fa ¢n>|2 < Bframe||f||2 (7)

nel’

where (-,-) is the inner product of the Hilbert space H, and I" denotes the indices of the frame elements in ®.
If Aframe = Bframe, then the frame is said to be tight (Mallat, 2008} |Christensen, 2003} |Grochenig), 2001)).

Frame operator: If the sequence ® = {¢,, },cr is a frame, then its associated operator Ug is defined as:
Usf =12, T = (f,Pn), YneT. (8)

It can be shown that the frame condition (Eq.[7) is necessary and sufficient for the frame operator (Eq.
to be invertible on its image with a bounded inverse. This makes the frame a complete and stable (though
potentially redundant) framework for signal representation.

Dual frame: The set ® = {¢, }ner is the dual of the frame ®, ® = Dual{®} if:

on = (UsUs) ™" (9)
where U}, is the adjoint of the frame operator: (Us f,z) = (f, Uix).

It can be shown that the composition of the dual frame and the frame is the identity operator in the Hilbert
space H: T[%U@f = f (Mallat| |2008; |Christensen, 2003} |Grochenig), [2001). Thus, we can think of the dual

frame as the operator that transforms the signal from frame representation back into the signal space.

Function approximation using frames: The compressive power of frame-based function approximation
lies in its ability to efficiently represent functions using a relatively small number of frame elements. Different
classes of functions exhibit varying effectiveness in capturing the essential features of different signal classes.
This efficiency is closely tied to the decay rate of frame coeflicients, which can differ significantly between
frames for a given input function class. As a result, selecting an appropriate frame is critical for optimal
approximations while minimizing computational resources and storage space.

In the task of online function representation, we aim to represent a function up := {u(t),t € [0,T]} for any
given time 7T, using a frame ® that has the dual ® and the domain ¢ € D. To do so, we need an invertible
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warping function so that the composition of the frame and the warping function ®(™) includes the domain
[0,T]. Without loss of generality, we assume that the frame has the domain Dg = [0, 1], and use the warping
() = ¢ (%). (If this is not the case, then one can easily find another warping function to warp Dg — [0, 1]
and apply it beforehand.) To calculate the representation, the frame operator of @1 acts on urp:

T -
Projection: x=®Dup, x, = (up, o) :/ u(t) & (t)p(t)dt, (10)
t=0

where the overline in ¢(t) is the complex conjugate of ¢(t). Then, the dual frame operator transforms the
discrete representation back to the function ur:

Reconstruction: up = @M Dup,  up(t) = Z(uT, oo I(t) . (11)

n n
nel’
Measures: Throughout this paper, we work with the Hilbert space consisting of all functions over the

domain D with the inner product defined as:

() = /  uOR (e (12)

We will consider both scaling and translating windows with uniformly weighted measures as described in
Eq. [3land Fig. 2| and derive the SSMs for each. We do not implement weighting schemes other than uniform
in this work explicitly, but any other weighting function can be implemented with our method by using Eq. [12]
and the appropriate SSM derivation for a scaled or translated window.

4 SaFARi

We now introduce a generalized method for online function representation using arbitrary frames. We
formulate the update rule for online approximation as a first-order linear differential equation following a
state-space model, and provide templates for the uniform translated and scaled measures.

4.1 Formulation

For the given frame ® (without loss of generality, we assume ® has the domain D = [0, 1]), and an input
function u(T'), the objective is to find the representation of the function using the frame ® similar to Eq.

T -

Projection: ¢cp(T) = (Ugu), = / u(t)(éng) (t)p(t)dt . (13)
t=to

The representation vector ¢(T') is a vector with its n'® component defined as above. We next find the

derivative of the representation with respect to the current time 7', and show that it follows a particular SSM

for a scaled or translated measure.

4.2 Uniform scaled measure p .

When we use the scaled measure (us.(t) in Eq. |3), the representation generated by applying the frame
operator to the observed history of the input up(t) is

en(T) = /:Ou(t)% (;) %dt. (14)

Definition 1. For a given frame ® consisting of functions on D, we define the auxiliary derivative of the
frame Yo = {v, }ner as a collection having v, = t%%(t).

The auxiliary derivative of the frame is the result of the operator t% acting on each individual frame element.
Note that the auxiliary derivative of the frame is not necessarily a frame itself and the frame condition in
Eq. [7] does not necessarily hold for Y.

Theorem 1. For the representation defined in Eq. the partial derivative of ¢ with respect to T is

0 1 1
—dT) =—-=AdT)+ =Bu(T A=1 b 1
a7 cT) = = FAAT) + ZBu(T), +UrU% (15)
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HiPPO-LegS A Matrix, N = 10 : SAFARi-LegS A Matrix Sub-Block, N = 10
: L =250 L =500 L = 1000

e

Figure 3: HiPPO provides a closed-form solution for the scaled Legendre (LegS) SSM. SaFARi provides a
computed solution, where the accuracy depends on the discretization of the N x L frame. Larger L gives a
finer discretization of the basis vectors and thus a better numerical result.

where B is the complex conjugate of a vector containing members of the main frame evaluated at T =1 so
that B = {¢,,(T = 1)}ner. The A operator can also be described as a matrix

1
o_ -
Ay =diy+ [ tga0| S, (16)
o L Ot .
Proof is provided in the Appendix [A:1] We will refer to the SSM with a scaling measure as scaled-SaFARI.

4.3 Uniform translated measure i,

When the translated measure is used (- (t) in Eq. , the representation resulting from applying the frame
operator to the window of recently observed input up(t) is

en(T) = /tT ors (’f_(g_e)) %dt. (17)

=T—-0
Definition 2. For a given frame ¢ = {¢n }ner consisting of functions of time, we define the time derivative
of the frame ® = {¢,, = %qﬁn(t)}nep as a collection of time derivatives of ¢,, components.

Definition 3. For a given frame ® = {¢,, }ner consisting of functions of time, the zero-time frame operator
is similar to the frame operator but only acts on ¢ = 0 instead of the integral over the entire domain:

Qof=27F, x,=[f(t=0)p,(t=0). (18)

Theorem 2. For the representation defined in Eq. the partial derivative of ¢ with respect to T is
aﬂT = 1AﬂT 1B T A =T, Ux X 19
S(T) = — g AAT) + 3 Bu(T),  A=Uyl + QoS (19)

where B is the complex conjugate of a vector containing members of the main frame evaluated at T'=1 so we
have B = {¢,,(T = 1)}ner. The A operator can also be described using the matriz representation

1
_ - o _ -
s =3,05,00+ [ |580| e, (20)
o LOt st
Proof is provided in Appendix[A:2] We will refer to the SSM with a scaling measure as translated-SaFARI.

4.4 SaFARi as generalization of HiPPO

HiPPO provides exact, closed-form solutions for A and B for a few specific basis and measure combinations.
SaFARI replicates these A and B matrices to within some numerical error caused by discretization of the
frame vectors into length L. Increasing L will provide matrices that converge toward the closed-form solution
(see Fig. . When a closed-form solution exists for the desired basis and measure (e.g., HIPPO-LegS for the
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scaled Legendre basis), then it is preferable to use it (see the derivations in |Gu et al.| (2020; 2023))E| SaFARi
provides a method for any basis/measure where the closed-form solution might not exist. We also show that
SaFARI preserves all of HIPPO’s robustness to timescale when applied to a general frame in Appendix [A-4]

5 Implementation Considerations

This section describes the computational efficiency and accuracy concerns of SaFARI, including strategies for
producing the finite-dimensional approximation of the complete infinite-dimensional SaFARi in Section [5.1
We analyze the errors introduced by these approximations in Section [5.2]

5.1 Truncation of frames

Section [4] demonstrates how a particular SSM can be built from an arbitrary frame ®. Since the input space
for the SSM is the class of functions of time, no ® with a finite number of elements can meet the frame
condition (Eq. , since the true representation of the input signal is infinite-dimensional. In practice, the
representation reduces to the truncated representation. In this section, we analyze the theoretical implications
of truncated representation using SaFARI.

5.1.1 Finite-dimensional approximation of SaFARi

In the finite-dimensional case, we will use only N elements of a frame. Partial representation of size IV
requires that the resulting representation approximates the infinite-dimensional representation. We call the
SSM with its ¢ having N coefficients SaFARI™).

Definition 4. A SaFARi?") sequence is a sequence of the pairs [AN) BIN] where ANY) € CN*N and
BW) € CN such that sequence converges to [A, B] of SaFARi as

lim AW = A4, lim BN = B. (21)

N —o00 N—o00

It’s trivial that this results in a finite-dimensional approximation of the infinite-dimensional representation.
Thus, any arbitrary precision can be achieved by selecting the appropriate truncation level.

Definition [4| is not a constructive definition; that is, it does not uniquely determine [AN), BV, In fact,
there are many such sequences that all converge to [A, B] of SaFARi. Of course, this does not mean that all
such sequences produce equal representation error. We present and analyze two different constructions below.

5.1.2 Truncation of dual (ToD)

The first construct of a SaFARiY) sequence is through finding the infinite dimensional A and B, then
truncate to size NV

AN = Ag.vong, B™Y) =By (22)

This construction results in a sequence that approximates the infinite-dimensional SaFARi according to
Definition @ The practical way of finding the truncated A, B involves finding A; ; as introduced in Eq.
and Eq. [20] for 7, j < N.

Note that calculating A; ; requires finding ®, the dual of the (infinite-dimensional) frame ®. For certain families
of functions, the dual frame can be found analytically. However, if an analytical way of finding ® is not known,
then one must use a numerical approximation of the dual frame. In this case, the construction for [AXN) B(V)]
involves forming the truncated frame for a much bigger size Ny > N, then finding dNV2) — Dual{®o.n,) }
numerically as an approximation for dual frame (@N 2) & 5) Next, we truncate the approximate dual and
use its first IV elements as an approximation for the first IV elements of the dual frame in constructions in

Eq. [16] and Eq. 20}

INote that HiPPO used the convention of absorbing a negative sign from the ODE in Eq. [4]into the A matrix, where we do
not. Additionally, authors in|Gu et al|(2020; 2023) derived multiple versions for some A matrices (e.g., FouT), and we find some
minor discrepancies with our derivation. See Appendix@ for details.
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5.1.3 Dual of truncation (DoT)

The ToD construction becomes numerically intractable for cases where the dual frame is not analytically
known; this motivates the need for an alternate constructor for SaFARi(N). To construct this sequence:

1. Truncate the frame at level N and form ®®) = {¢;};cn.

2. Numerically approximate the dual of the truncated frame o) = Dual{‘IJ(N)} using the pseudo-
inverse.

3. Use @™ and &™) in Eq. [16|or Eq. to compute [AN) BIV)].

The constructed [AN), BV)] is a SaFARi(") sequence according to Definition

DoT and ToD approximate SaFARi with different rates. In the next sections, we provide a thorough error
analysis of SaFARi("™) that enables us to compare the usage of different frames, as well as different construction
methods for size N constructs. We then demonstrate that the DoT construction always has a minimum
reconstruction error, and is the optimal choice for implementing SaFARi.

5.2 Error analysis

Using truncated representations for online function approximation will result in some reconstruction error,
regardless of basis. We focus here on errors emanating from truncation of the representation in an SSM,
rather than those caused by sampling, which have been extensively studied in the digital signal processing
literature (Oppenheim), [1999)).

Let ¢(°) denote the infinite-dimensional representation obtained from an SSM without truncating its associated
A, B matrices. When the associated A, B matrices for the SSM are truncated to the first N levels, it produces
a truncated representation ¢(™). This truncation causes two distinct types of error, which we outline below.

5.2.1 Truncation errors

Truncation errors are due to the fact that the truncated frame of size
N cannot represent any part of the signal contained in indices n > N.
This is not limited to SSMs, but is true for any basis representation
of a signal. In SaFARI, truncation errors correspond to discarding
the green shaded region in the A illustrated in Fig.

5.2.2 Mixing errors

I

Mixing errors arise from error propagation in the SSM update rule.
Specifically, this update involves computing A ¢ (as in Eq. and
Eq. , where the matrix A introduces unwanted mixing between the Figure 4: Illustration of error types
omitted components (n > N) and the retained components (n < N) iy an SSM due to frame truncation.
of the representation. Consequently, errors from the truncated portion Tyuncation errors arise from signal en-
of the representation propagate into the non-truncated portion. This ergy in coefficients of index n > N,
is illustrated by the blue shaded regions in Fig. [@] For the operator while mixing errors result from energy
A and truncation level N, the contaminating part of operator is blending during the operation A c.
Ai,j V(ZSN,]>N)

In the case of a translated measure, this mixing error is exacerbated
since each update step requires estimating the initial value in that window (recall Eq. . A key insight from
our analysis below is that mixing errors have two sources:

1. nonzero components in the upper right quadrant of A, and

2. nonzero coeflicients in ¢ at indices greater than N.
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(a) HiPPO-LegS (b) HiIPPO-LegT (c) HiPPO-FouS (d) HiPPO-FouT

..! f.! —50

n N

Figure 5: Examples of the A matrices of the HIPPO SSM for several basis/measure combinations: (a) Scaled
Legendre, (b) Translated Legendre, (c) Scaled Fourier, (d) Translated Fourier. The dense non-zero elements
in the upper right of (b) explain its poor performance compared to (a). The numerous small nonzero elements
above the diagonal in (c¢) and (d) contribute to mixing errors over long sequences.

5.2.3 Mitigating errors

Truncation errors can never be eliminated, but may be alleviated by using a frame that exhibits a rapid decay
in the energy carried by higher-order levels of representation.

To counter mixing errors, we should ensure that values in the upper right quadrant of A are as close to zero
as possible, and/or that coefficents of ¢ in the blue region of Fig. EI are as close to zero as possible. If the
matrix A is lower-triangular, then any arbitrary truncation results in the contaminating part of A being zero,
which guarantees the second type of error is always zero, regardless of any coefficients in c¢. This is the case
for the HiPPO-LegS (scaled Legendre) A matrix, as shown in Fig. [f(a). Indeed, the zero coefficents in the
upper right quadrant of A were considered strictly necessary in prior work (Gu et al., [2020; 2023)). This
restriction explains the continued use of HiPPO-LegS in follow-up works, regardless of whether or not scaled
Legendre polynomials are an optimal choice for a given application.

To summarize, there are two primary concerns when finding an appropriate frame for use in an SSM:

1. compatibility between the frame and the given class of input signals, and
2. the operator A that results from a given frame has a small contaminating part.

Truncation and mixing errors have different sources but are linked. The optimal strategy to reduce both at
the same time is to choose a basis that results in a representation where the energy is concentrated in the
first NV coefficients. This can only be achieved, however, if we have some prior knowledge of the input signal
in order to choose the right basis and truncation level. In cases where little is known about the input signal
or correct truncation level, it is advisable to instead choose an SSM that is zero in the upper right quadrant,
such as HiPPO-LegS, as it will inherently negate mixing errors.

5.2.4 Error bound

In order to quantify the mixing error, we show that the truncated representation follows the same differential
equation with a perturbation defined by the theorem below.

Theorem 3. (Poof in Appendz':c The truncated representation generated by scaled-SaFARi follows a
differential equation similar to the full representation, with the addition of a perturbation factor:

B
o= _%AH %BU(T) _ %g(T), (23)
where ~
&(T) := (ur, £), E=7(D - I). (24)

The mixing error term €(T") cannot be directly calculated; however, we can derive an upper bound for the
mixing error and demonstrate that this bound can be made arbitrarily small with appropriate truncation.
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Theorem 4. If one finds an upper bound such that for all the times before T we have ||€(T)|l2 < €m, then
the representation error is bound by

— 1 _
AT 2 < €my [ = = emll A7 (25)

where \; are the eigenvalues of A, and F indicates the Frobenius norm. See proof in Appendiz[A.60

5.2.5 Error analysis for different SaFARi("") constructs

In Section we define SaFARi(M) as a finite dimensional approximation for SaFARI, and provide two
particular constructions, DoT and ToD. Armed with the quantification of representation error, we compare
these different constructs. We provide Theorem [5] to demonstrate DoT has the optimal representation error
between different choices for SaFARi(Y) using the same frame.

Theorem 5. Given a frame ®, the Dual of Truncation (DoT) construct introduced in Sectzonn 5.1.5 has
optimal representation error when compared to any other SaFARIN) construct for the same frame ®. See

proof in Appendiz[A.6

As established by the result of Theorem |5, SaFARi(™) should be constructed with the DoT method.

6 Computational efficiency and runtime complexity

This section develops the computational methods for obtaining sequence representations with SaFARi,
emphasizing its efficiency in both training and inference phases. We analyze the computational complexity of
different update methods, and highlight the benefit of parallel computation with diagonalizable SSMs. These
discussions provide a foundation for understanding the scalability of SaFARI in practical applications.

6.1 Computational complexity for sequential updates

To compute representations using scaled-SaFARi, the GBT update requires solving an N x N linear system
at each step, leading to O(N3L) complexity for a sequence of length L. In contrast, translated-SaFARi reuses
the same inverse across all steps, reducing the complexity to O(N2L).

If the state matrix A is diagonalizable, both scaled and translated variants can be accelerated via diagonaliza-
tion. The sequence representation C' is computed for the diagonal SSM and transformed back via C' =V C,
reducing the complexity to O(NL). On parallel hardware, such diagonalized systems decompose into N
independent scalar SSMs, yielding O(L) runtime with sufficient parallel resources.

Diagonalizability of an SSM depends on the frame or basis used in its construction. One limitation of Legendre-
based SSMs such as HiPPO is that its A matrix cannot be stably diagonalized, even for representation sizes as
small as N = 20 (Gu et al., 2022al), leading to significantly higher cost. To address this limitation, (Gu et al.|
2023) proposed a fast sequential update method for HiPPO-LegS, claiming O(N) computational complexity
and O(1) runtime complexity per update on parallel processors. However, we observe that this method
becomes numerically unstable at larger N, as discussed in Appendix [A77.1] To resolve this, we suggest a
simple modification: computing lower-degree representations before higher-degree ones. While the modified
approach preserves the O(N) overall computational cost, it increases runtime to O(N) per sequential update,
as it is no longer parallelizable.

Similar to HiPPO-LegS for the scaled measure, HIPPO-LegT for the translated measure also cannot be stably
diagonalized. To our knowledge, LegT has no analogue for the fast LegS update method in |Gu et al.| (2020).
Therefore, the computational complexity remains considerably higher than for diagonalizable SSMs.

6.2 Convolution kernels and diagonalization

When using an SSM for a recognition or learning task, a training phase is required in which the downstream
model is trained on the generated representation. Using sequential updates for training is prohibitively taxing
on computational and time resources as the whole sequence is available in the training time. Ideally, we

11
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would perform computations of the sequential SSM in parallel. However, this is a challenge since each new
update depends on the result of the previous. The authors of |Gu et al.| (2022b) discussed how to implement a
parallel computation algorithm for SSMs produced by HiPPO. To do so, one “unrolls” the SSM as:

Ck sz...21§0u0+---+zk§k_1uk_1 —|—§kuk , c=K=xu (26)

Zi = (I + (51&0(142)71(] - 5t(1 — Oé)Ai), Ei = (I + (StO(Ai+1)7lBi. (27)

The convolution kernel K in Eq. [26] removes the sequential dependency, enabling parallel computation on
hardware such as GPUs, and significantly reducing training time.

6.3 Runtime complexity of scaled-SaFARi

For scaled-SaFARI, if the SSM is not diagonalizable, then the kernel can still be computed in parallel by
framing the problem as a scan over the associative prefix product. Since matrix multiplication is associative,
all such prefix products can be computed efficiently using parallel scan algorithms (Blelloch, (1990; [Hillis &
Jr., [1986). When implemented on parallel hardware such as GPUs, this strategy achieves a time complexity
of O(N?3logL) if enough parallel processors are available.

However, if the SSM is diagonalizable, all the matrix products A; matrices in the matrix products appearing
in the kernel expression become diagonal. As a result, the convolution kernel can be calculated with the time
complexity of O(NlogL). Furthermore, the below theorem suggests how to find the kernel in closed form.

Theorem 6. For scaled-SaFARi, if A is diagonalizable, then the convolution kernel K that computes the
representations can be found in closed form. See the appendiz for the closed form formula. See Appendiz[A7]

As noted above, HiIPPO-LegS is not diagonalizable, complicating kernel computation. A heuristic method
proposed by |Gu et al.| (2023) enables approximate kernel evaluation with time complexity O(N log L), but it
introduces additional computation and lacks a closed-form solution.

6.4 Runtime complexity of translated-SaFARi

Similar to the scaled case, all the matrix products Ay ... Ag_,, can be computed efficiently using parallel
scan algorithms (Blelloch, [1990; [Hillis & Jr., [1986). As a result, the convolution kernel K can be computed
with an overall time complexity of O(N?log(L)) since Ay remains the same for all values of k. Similarly
to the scaled case, if the A matrix is diagonalizable, then the A matrices become diagonal. With access to
parallel processors, the runtime complexity can be reduced to O(N2log(L)).

Furthermore, for diagonalizable SSMs, the convolution kernel for the translated measure has a closed form.

Theorem 7. For translated-SaFARi, if A is diagonalizable, then the convolution kernel K that computes the
representations can be found in closed form. See Appendiz[A.7]

7 Conclusions

In this work, we demonstrate how function approximation with SSMs, originally introduced by |Gu et al.
(2020)), can be extended to general frames through SaFARi. Our method generalizes the HiPPO framework
to accommodate bases or frames where closed-form solutions are unavailable, paving the way for broader
applicability in sequential modeling tasks. We provide guidelines for frame selection and SSM construction in
Sec. [5} highlighting the importance of both the representational power of the chosen frame and the structural
properties of the A matrix in the SSM.

The versatility of SaFARi unlocks new opportunities for exploring novel SSM-based architectures in machine
learning and signal processing. Future directions include the evaluation of wavelet and other structured
frames within SaFARI, aiming to enhance localized and sparse representations beyond the capabilities of
polynomial or Fourier methods. Moreover, integrating SaFARi into advanced SSM architectures like S4 and
Mamba offers promising avenues for improving long-range sequence modeling. By extending SSM construction
beyond specific bases, SaFARi provides a flexible foundation for efficient state-space representations, linking
theoretical advancements to practical applications in sequential data processing.
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A Appendix

A.1 Derivation of SaFARi with the scaled measure

Theorem . Assuming elements in the frame ® and the input signal w are right-continuous, for the
representation defined in Eq. the partial derivative is:

a 1. 1
where A is a linear operator defined as:
A=1+ UT[[% (A.2)

and B is the complex conjugate of a vector containing members of the main frame evaluated at T =1 so
we have B = {¢,(T = 1)}ner . One can show that the A operator can also be described using the matrix
multiplication:

1 ~
Aij=0; +/0 T (), (t)dt (A.3)

Proof: Taking partial derivative with respect to T, we have:

=3y oo (5
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Now applying the Leibniz integral rule we have:

T . T -
gren@ = [ Tuts, (1) s [ Do zapaes elu

=0 t=C(

p— — T s
= et g [ a0 (5 ) de P
_ -1 -1 an(l)

This is still not an SSM since the second term is not explicitly a linear form of ¢(T). To convert this to a
linear form of &(T"), we use the equality given in Eq. |11 to represent v,, using the frame ®

Un(t) =Y (Un, 0505 = > (Un, 65); (A.6)

Jjer jer
= (u,vp) = <uvz<vna§gj>¢j> = Z (Un, &) (u, ¢7) = Z (Un, 65) ¢;(T) (A7)
jer jer jer
Putting Eq. in Eq. results in:
0 1 6 (1
8—T€(T) = _T(I +UxU%)e(T) + d)"T( )u(T) (A.8)

This proves the theorem. [J

A.2 Derivation of SaFARi with the translated measure

Theorem . Assuming elements in the frame ® and the input signal u are right-continuous, for the
representation defined in Eq. the partial derivative is:

0 1 1
—(T) = —-A&(T) + —Bu(T A.
SA(T) = — g AG(T) + 5 Bu(T) (A.9)
where A is a linear operator defined as:
A = Uyl + Q@3 (A.10)

and B is the complex conjugate of a vector containing members of the main frame evaluated at T =1 so
we have B = {¢,,(T = 1)}ner. One can show that the A operator can also be described using the matriz
multiplication:

hy=s030+ [ [2a0]

t=t

b, (t")dt' (A.11)

Proof: We can write the partial derivative as:
T
1— —(T -
cwmz/ Mﬂ@«t(evﬁ (A.12)
-9 0 0

Taking the partial derivative with respect to T', we have

C - T — — — — _
0 S;T) _ 9721 /T_e u(t)o, (t(g&)) dt + %d)n(l)u(T) - %q&n(o)u(T —0) (A.13)

Similar to our approach for the previous theorem, we write ¢/ (z) as

3 (2) =D (D, 0)0i(2) = Y Qni $i(2) (A.14)

el i€l
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1

Qui= [ G (2)di(2)dz (A.15)

z=0

Now, if we use this expansion, and put it in Eq. we have

Ien(T) _ t—(T-0) 1— 1—
dcn(T) T — (t—(T -0 1— 1—
01 ;Qn ; [ L wws () a4 e - a0 -0 ()
We also write u(T" — 6) as a reconstruction using the current representation (7" —6) =", ci¢(0)
Oc, (T — — — — ~
S = 2 Qe g O) ~ 3,0 S eidi0 (A18)
tl) = @i+ FOB,O) i + 55, ()uT) (A19)

If we put A; ; = Q, ; + %(O)%(O), it proves the theorem. O

A.3 Comparison of SaFARi and HiPPO A matrices

Our results with SaFARI converge to HiPPO for LegS, and for the version of LegT given in |Gu et al.| (2023)).
We noted that there were some discrepancies with published versions of FouT. In |Gu et al.| (2023)), a complete
closed-form solution is given as follows (flipping negative signs to be consistent with our notation):

2 n=k=0

2v2  n=0,kodd

2v2  k=0,no0dd

Ankr =14 n, k odd (A.20)
27k n—k=1,k odd

2mn k—n=1,nodd

0 otherwise

Our derivation for a closed-form solution is different by a factor of 2, and has different values on the
off-diagonals:

1 n=k=0
V2 n =0,k odd
V2 k=0,nodd
Apr =142 n, k odd (A.21)

mk+1) n—k=1kodd
—7m(n+1) k—n=1nodd
otherwise

o

The discrepancy may be due to |Gu et al.| using a Fourier basis other than the DFT over the range [0, 1]
normalized to unit energy.
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A.4 Mathematical properties of SaFARi

Proposition. For any scalar 5 > 0, if h(t) = u(Bt) then for the scaled measure we have SaFARi(h)(T) =
SaFARi(u)(5T)

Proof: We start by writing the representation generated by the scaled SaFARi for h(t).

T
SaFARi(h)(T) = /t R <;> %dt (A.22)
T —[t\ 1
— /tzou(m)% <T> it (A.23)
o=t 1dt ,
/t:O u(t ) pn (,6’T T5 SaFARi(u)(5T) (A.24)

Proposition. For any scalar 5 > 0, if h(t) = u(Bt) then for the translated measure with parameter 6 we
have SaFARig(h)(T) = SaFARigg(u)(5T)

Similar to the previous proposition, we start by writing the representation of the scaled SaFARi:

T
SaFARig(h)(T) = /t e, (t—(iﬂ) L .
_[ S (=T 1
- »/t:T—a u(Bt)pn ( 9 > edt (A.26)
_ o (V= (BT —BO)\ 1dt ,
= /t,=5T_@a u(t')n <59> 5? = SaFARigg(u)(58T) (A.27)

A.5 The closed-form solution for SaFARi differential equations

Lemma 1. The closed form solution for the differential equation introduced in Eq. 1s:

1 t
c= —exp | Aln — | Bu(t)dt. (A.28)
t=0 1 T

Proof: We begin by re-writing the differential equation for any time ¢

o0 1 1
5,00 + S Adt) =~ Bult) (A.29)

Now we multiply both sides by exp(A1n(t))

exp(A ln(t))%é’(t) + %A exp (Aln(t)) e(t) = %exp(A In(t))Bu(t) (A.30)

The left side of the equality is now a complete differential

% (exp(Aln(¢))e(t)) = %exp (Aln(t)) Bu(t) (A.31)
1

exp (AIn(T)) &T) = /tf() —exp (Aln(t)) Bu(t) (A.32)
T

&T) =exp (—Aln(T)) /t:O 7 €XP (Aln(t)) Bu(t) (A.33)

This proves Lemma 1. [J
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Lemma 2. The closed form solution for the differential equation introduced in Eq. 18:

T
1 t—T
c= / — exp <A> Bu(t). (A.34)
t=—0 0 0
Proof: We begin by re-writing the differential equation for any time ¢ as
0 1 1
—l —Ac(t) = = Bu(t). A.
5 at) + 7 é(t) 7 u(t) (A.35)

Now we multiply both sides by exp(A%)

exp <A2> %5@) 4 %Aexp (Aé) &t) = %exp (A:)) Bu(t) (A.36)

The left side of the equality is now a complete differential

% (exp (Aé) €(t)> - %exp (Aé) Bu(t) (A.37)

&(T) = exp (—Ag) /t i_a % exp (Aé) Bu(t) (A.38)

This proves Lemma 2. [J

A.6 Error analysis

Theorem . The truncated representation generated by the scaled-SaFARi follows a differential equation
similar to the full representation, with the addition of a perturbation factor.

0 1 1 1

ﬁc = —TAC + TBu(T) - T€(T). (A.39)

where € is defined as
eT) = (ur,§) (A.40)
E=7(PD — ) (A.41)

Proof: Repeat the steps taken in the proof of Theorem [I] until Eq. [AZ6] Truncating the frame results in an
error in this step which can be written as

Un(t) = > (Un, 606 + &n(t) (A42)
jer

In fact, this is how ¢ is defined. Adding £ as a correction term here changes the SSM derivation:

= (1, 05) = (& + Y (00, 05)05) = D (0ns G3) (1, 85) + (,60) = D (0n, 83) 5 (1) + (w,&)  (A43)

jer jer jer
Putting Eq. [A743]in Eq. [A-5] results in:
0 1 1 1.

Theorem (). If one finds an upper bound such that Vt < T we have ||e(t)||2 < €, then the representation

error can be bound by
1 _
[AT)ll2 < emy [D 5z = emll A Ir (A.45)
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Proof: Using the result of Theorem
0 1

1 .
Sr¢= —pAct 5 (Bu(T) — &T) (A.46)

We can use Lemma [I] to find the closed form solution of the perturbed SSM above

= /t ! %exp (Aln ;) (Bu(t) — &) dt (A.47)

=0
"1 t 1 t
c= /t:O 7 oxXP (A In T> Bu(t)dt — /t:o 7 oxp (A In T) (t)dt (A.48)
Size N representation = Truerepresentation — Error (A.49)

The last term is indeed the second type error that we have discussed in the error analysis section of the paper.
Using eigenvalue decomposition of A = VAV ™! we re-write the above error term as

T
1 t
Error = V/ —exp <A In > VLE(t)dt (A.50)
t=0 b T
with a change of variable s = In %
T
V~'Error = / exp(As)VLE(s)ds (A.51)
t=0
According to the assumption of this theorem ||V ~te(t)|l2 = [[e(t)]l2 < em
T

— [V Error]; < / exp(sAj)emds = i\—m (A.52)
t=0 j

1
|Error|? = |V~ Error|* < e, /Z sthn emll A7 P (A.53)

Theorem . Suppose a frame ® is given. The Dual of Truncation (DoT) construct introduced in Sec-
tion has optimal representation error when compared to any other SaFARI™N) construct for the same
frame ®.

Proof: The proof for this theorem involves two steps.
1. First, we show that the optimal representation error in the theorem can be reduced to optimal error
of the second type (mixing).

2. Then, we demonstrate that for a given frame @, and given truncation level N, the construct with the
optimal second type error control is DoT.

As discussed in Sec. the first type of error is due to truncating the frame, and is independent of the SSM.
In the scope of this theorem, all the SaFARi(™) constructs use the same frame and the same truncation.
Therefore, comparing the representation error between SaFARi(") in the theorem reduces to comparing the
mixing error.

The mixing error is shown in Theorem [3| to be proportional to
€T) = (ur, ) (A.54)

To minimize ||(T)|| irrespective of the input signal, one has to minimize ||£||%
&= Yo.n (@ o.n) — 1) (A.55)
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Where T|o.n) and ®jg.n) are the first N elements of T and ®. ®M) is the approximation of the dual frame
that determines the SaFARi(™) construction. For the ease of notation, we rewrite Eq. as:

£=T(3d - 1) (A.56)
For a fixed T, and ®, we aim to minimize ||¢||% with respect to P:
Argming | T (2P — D% (A.57)
For the optimal (5, the partial derivative is zero.

0 0 ~ ~
£|\£||% = £||T(‘1>‘1> — Dl =207 (22— 1)d" =0 (A.58)

o = (@d7) o7 (A.59)

One should note that the described @ is indeed the pseudo-inverse dual for the truncated frame @,y
Therefore, among the possible SaFARi(N) constructs for the same frame, the Dual of Truncation (DoT) has
optimal representation error. [

A.7 Parallelization using the convolution kernel

Theorem @ For SaFARi using the scaling measure, if A is diagonalizable, computing the scaled represen-
tation on a sequence with L samples can be done using a kernel multiplication.

a) For the discretization using General Biliniear Transform (GBT) with parameter «, the kernel can be
computed using:

Hﬁzj-i—l (1 - };T?/\Z) c RVXL (A.60)
Iy (14 5300)

b) For long sequences, the kernel K can be approzimated using

KL[ivj] =

S N 1 -7 . NXxL
K (i,j) = 7 <L> eR (A.61)

For either case a or b, the representation is computed as:
c=MKri, M =Vdiag(V 'B) (A.62)
where V' and \; are the eigenvector matriz and eigenvalues of A.

Proof: a) rewriting the GBT update rule for the diagnoalzied SSM we have:

-1 —1
~ « 11—« ~ a ~
1= (1 A I—- A I A B A.
Cln +1] (+n—|—1 ) ( 1 )C’[n]+<+n+1 ) uln] (A.63)
= A,C[n] + Byuln]
— C[L+1] = BrulL] + AL By _yu[L — 1] + ... + Af, ... Ay Bou[0] (A.64)
for the ease of computation and notation, we define K, such that:
- - -1 Hf: (1= Lay,
Kpli,jl=Ar... Aj <1 + j‘_lAz> = LJ+ ( z+1 ) (A.65)
J Hk:j (1 + m/\1>
Ci=Bi Y _ Kili, jlulj] = Bi[K i, (A.66)

J
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¢= B0 (Kpi) = diag(B)KL1 (A.67)

¢ = Ve = Vdiag(B)Kri = MKy i (A.68)

Proof: b) Using Lemma [1] for the diagonalized version of Scaled-SaFARi the closed form solution is

I | £ =
c= —exp | Aln — | Bu(t)dt. (A.69)
t=0 t T
E-—/T Lexp (L E-u(t)dt—é/T LY it = Bufodl (A.70)
T t:otxp % T [ - 1t:0t T — Dy LUjs .
¢= B0 (KLi) = diag(B)KL1 (A.71)
¢ = Ve = Vdiag(B)Kpi = MK i (A.72)

Theorem (7). For SaFARi using translated measure with 0, samples long sliding window,if A is diagonalizable,
computing the translated representation on a sequence with L samples can be done using a kernel multiplication.

a) for the discretization using General Bilinear Transform(GBT) with parameter a., the kernel can be computed

using: L
. 1 > A
Kiligl = =y ( 1+§/\_ ) (A.73)
0 2 9 1

b) For long sequences, the kernel K can be approximated using
1 L—j
Ki(i,j) = —exp [ —A\——2 ) € RN*E (A.74)
0L, 01
For either of case a or b, the representation is computed by
c=MKrpi, M =Vdiag(V 'B). (A.75)

where V' and \; are the eigenvectors matriz, and eigenvalues of A.

Proof: a) rewriting the GBT update rule for the diagonalized SSM we have:

Cln+1] = (1 + %A)A (1 - 1;%) Cln] + (1 + %A) " Buln] = AC[n] + Bu[n] (A.76)

we take a similar approach to the previous theorem. The only difference is that A and B remain the same for
all the time indices.

CIL +1] = Bu[L] + ABu[L — 1] + ... + A" Bu0] (A.77)

for the ease of computation and notation, we define Ky, such that:

1 — loay L—=j
Kili,j] = 6 " A.
il = e () (A7)
Ci=B; Y Kili, jlulj] = Bi[Ki; (A.79)
J
¢=Bo (Kpi) = diag(B)KL1 (A.80)
¢ =Vé = Vdiag(B)Kpi = MKy i (A.81)
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Proof: b) Using Lemma 2| for the diagonalized version of Translated-SaFARi, the closed-form solution is:

¢ = /tT 1exp (AT) Bu(t). (A.82)

T _— ~
- / Lo (WL Boute) = Bilkals (A.83)
t=r—0 0 0
¢=Bo (Kpi) = diag(B)KL 1 (A.84)
¢ =Vé= Vdiag(B)Kpi = MKy i (A.85)

A.7.1 Numerical instability of the fast sequential legS solver

As part of our experimental findings, we realized that the proposed method for sequential updates for LegS
SSM( in |Gu et al.| (2020),Appendix E) suffers from numerical instability when working with larger SSMs.

dt
. cumsum(ﬁcumll)ro =) (A.86)
cumprod -

dy;
1+dy
the k' degree Legendre polynomial

where the introduced ay, = is a decreasing function. One can confirm that in the t* iteration, and for

dy, 2(t+1) -k
= = A.87
T T dy 2+ )+ k41 (A-87)
Then the proposed solution requires finding cumulative product of (le for k € [1, N] in each step.
K K
1 1 At +1)+1
1 d k)| = log|—| = log|-1+ ——F—— A.88
0g |cumprody, (ak,>( )‘ k/z::l 0g . I;:l 0g 2t+1)— K ( )
2(t+1) K
At +1)+1 At +1)+1
= 3 log (—1 + ,) + Y log (1 o= (A.89)
k'=1 20t +1) —k k' =2(t+1)+1 k=20t +1)
2(t+1) K—2(t+1)
At+1)+1 At+1)+1
= 1 14+ —=— 1 14 ——F— A.90
Zoe(rame) s X (e o

For any specific iteration (fixed t), as K grows(higher representation index), the second summation above
grows to infinity. Thus, for large enough N, cumprod(aik_) diverges beyond machine precision. As a result,
the proposed fast sequential legS solver proposed in (Gu et al|(2020), Appendix E) fails. Figure. |§| Shows
an example where for N = 500, fast LegS numerically diverges for any sequence longer than 80 samples. It
is crucial to note that this numerical instability is fundamental to legS, and does not depend on the input

signal at all.

We also investigate the longest sequence length that the given fast legS sequential solution can handle without
numerical diversion. Figure [7] shows that as N grows, then length of sequence that fast legS sequential solver
can handle before becoming numerically unstable decrease to a limited length.

The stable version of solving legS would be to take the similar approach as the fast legS, but in the last step,
instead of introducing the proposed « and (3, we find x1, then recursively find x; after finding all the pervious
x;8. This way, the overall computation complexity remains the same, while the run-time complexity becomes
longer as one has to compute z; after zg,...,z;_1 are all computed.
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Figure 6: Fast Legs numerically diverges. left: For a system with N = 500, log |a—1k| for different values of
k € [1, N] is plotted at different iterations ¢ = 20, 40, 60, 80. right: log of the cumulative product which is
equal to the cumulative sum of the left plot is plotted for different iterations. In the right plot, it is notable
that for ¢ = 80, the cumulative product reaches to 103%° for a k < 500 which is the largest value that a
float-64 variable can handle. The studied Fast-LegS method for an SSM having more then 500 coefficients

diverges after only 80 sequential updates.

1440

120 1

100 1

1000 2000 3000 4000 5000

Figure 7: As the given LegS size IV grows, the longest sequence length before observing numerical diversion
is given in the above plot. For N < 400 we did not observe the numerical diversion. for N > 400 , the
fast legS sequential update method cannot handle sequences longer than a limited length before it becomes
numerically unstable.
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