
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AUTO-ENSEMBLE STRUCTURE LEARNING OF LARGE
GAUSSIAN BAYESIAN NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning the structure of Bayesian networks (BNs) from data is challenging, es-
pecially for datasets involving a large number of variables. The recently proposed
divide-and-conquer (D&D) strategies present a promising approach for learning
large BNs. However, they still face a main issue of unstable learning accuracy
across subproblems. In this work, we introduce the idea of employing struc-
ture learning ensemble (SLE), which combines multiple BN structure learning
algorithms together, to consistently achieve high learning accuracy across vari-
ous problems. We further propose an automatic approach called Auto-SLE for
constructing near-optimal SLEs, addressing the challenge of manually designing
effective SLEs. The automatically constructed SLE is then integrated into a D&D
framework. Extensive experiments firmly show the superiority of our method over
existing methods in learning large BNs, achieving accuracy improvement usually
by 30%∼225% on datasets involving 10,000 variables. Furthermore, our method
generalizes very well to datasets with many more variables and different network
characteristics than those present in the training data for constructing the SLE.
These results indicate the significant potential of employing automatic construc-
tion of SLEs for BN structure learning.

1 INTRODUCTION

Learning the structure of Bayesian networks (BNs) (Pearl, 1985) from data has attracted much re-
search interest, due to its wide applications in machine learning, statistical modeling, and causal
inference (Pearl, 1988; Kitson et al., 2023). Various methods have been proposed to tackle this
problem, including constraint-based methods (Colombo et al., 2014), score-based methods (Ramsey
et al., 2017), and hybrid methods (Tsamardinos et al., 2006). However, most previous studies primar-
ily dealt with a relatively small number of variables. For example, the bnlearn repository (Scutari,
2010), which is widely used in the literature, contains mostly networks with only a few dozen nodes
(variables). In contrast, in real-world applications such as alarm events analysis (Cai et al., 2022),
MRI image interpretation (Ramsey et al., 2017), and human genome analysis (Schaffter et al., 2011),
it is common to generate and collect data from thousands of variables and beyond. Unfortunately,
as the number of variables increases, many of the existing methods would slow down dramatically
and become much less accurate (Zhu et al., 2021).

Recently, Gu and Zhou (2020) introduced a divide-and-conquer (D&D) framework named partition-
estimation-fusion (PEF) for the structure learning of large BNs. Specifically, PEF consists of three
steps: partitioning nodes into clusters (partition), learning a subgraph on each cluster (estimation),
and fusing all subgraphs into a single BN (fusion). It is noteworthy that PEF is flexible as any
existing structure learning algorithm can be used in the estimation step. Additionally, due to the
smaller number of nodes in each cluster compared to the total number of nodes, the overall structure
learning is accelerated. Moreover, the structure learning processes for different subproblems can be
parallelized in a straightforward way, leading to further improvement in computational efficiency.

However, despite the evident advantages provided by PEF, it still faces a main issue of unstable
structure learning accuracy across subproblems. The root cause for this is that the partition step
of PEF tends to yield subproblems with significantly different characteristics, e.g., varying node
numbers. When a single structure learning algorithm is used to solve all subproblems, as in ex-
isting PEF-based methods (Gu & Zhou, 2020), achieving stable learning accuracy across different

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Nodes

cluster cluster

graph graph

cluster

Auto-SLE SLE

Partition

……

Estimation

……

Fusion

Graph

algorithm algorithm ……

graph graph ……

graph

Selection

subproblem solved by SLE

automatic construction

SLE

Figure 1: An overview of P/SLE. The SLE is automatically constructed by Auto-SLE and integrated
into the estimation step of PEF.

subproblems becomes challenging. In fact, even for the same algorithm, different hyperparameter
values can lead to significant variations in its behavior, thereby affecting its suitability for solving
specific subproblems. For instance, when employing the well-known fast greedy equivalence search
(fGES) (Ramsey et al., 2017) algorithm with Bayesian information criterion (BIC) as the score func-
tion, its penalty coefficient should ideally increase with the sparsity of the underlying BN. However,
given a BN structure learning problem, determining the optimal penalty coefficient in advance is
difficult as the underlying BN is unknown.

Inspired by the success of ensemble methods like AutoAttack (Croce & Hein, 2020) in the field of
adversarial robustness, which utilizes an attack ensemble to achieve more reliable robustness evalua-
tion compared to individual attacks, we introduce the idea of employing structure learning ensemble
(SLE) to achieve stable learning accuracy in BN structure learning. Specifically, a SLE comprises
several structure learning algorithms, dubbed member algorithms. When applied to a BN structure
learning problem, a SLE runs its member algorithms individually and chooses the best of their out-
puts. Similar to how AutoAttack integrates diverse attacks, a high-performing SLE should consist
of complementary member algorithms that excel at solving different types of problems. However,
in contrast to AutoAttack where the attacks are manually designed and selected, we propose to auto-
matically construct SLEs. This can significantly reduce the reliance on human expertise and effort,
as manually constructing SLEs typically requires domain experts to explore the vast design space of
SLEs, which can be both laborious and intricate.

Specifically, we first formulate the problem of automatic SLE construction, and then present Auto-
SLE, a simple yet effective approach to address this problem. The approach is implemented with a
design space containing several candidate algorithms; each algorithm has a set of hyperparameters.
To construct a SLE, Auto-SLE starts from an empty ensemble, and repeatedly adds the algorithm
and its associated hyperparameter values to the ensemble such that the ensemble improvement is
maximized. In addition to its conceptual simplicity, Auto-SLE is appealing also because it yields
SLEs provably within a constant factor of optimal for the training problem set. To achieve our goal
of constructing a single SLE that can generalize well across network sizes and characteristics, we
utilize a training set comprising diverse networks of varying sizes. Finally, the constructed SLE is
integrated into the PEF framework, resulting in P/SLE (see Figure 1 for an overview).

From extensive comparisons with the state-of-the-art baselines, it is found that P/SLE consistently
achieves significantly higher accuracy in learning large BNs, and its superiority becomes even more
pronounced as the network size further increases. On datasets involving 10,000 variables, P/SLE
typically achieves accuracy improvement by 30%∼225%. Further experiments show that P/SLE,
without any additional tuning or adaptation, generalizes well to datasets with much larger number
(e.g., 30,000) of variables and possessing different network characteristics than the training data.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

It is worth mentioning that Auto-SLE itself is a general SLE construction approach that can be
applied to various types of BNs (Gaussian and non-Gaussian) and even other types of causal models.
In this work, we focus on Gaussian BNs, which are arguably the most widely studied type of BNs
and have a rich set of baselines, allowing us to thoroughly assess the potential of Auto-SLE. Besides,
it should be noted that PEF-based methods, such as P/SLE, are most suitable for learning BNs with
a block structure to some extent, meaning the connections between subgraphs are relatively weak.
It is quite common for a large network to exhibit such a block structure, due to the underlying
heterogeneity among the nodes (Holland et al., 1983; Airoldi et al., 2008; Abbe et al., 2015). On
the other hand, our results also indicate that, even for large BNs without a block structure, P/SLE
can still achieve competitive learning accuracy. The promising performance of P/SLE not only
demonstrates the potential of applying SLEs to BN structure learning, a largely unexplored area, but
also highlights the effectiveness of Auto-SLE as a simple and easy-to-use approach for constructing
SLEs. This is expected to further facilitate the advancement of SLEs in this field.

2 PRELIMINARIES AND RELATED WORK

2.1 THE BN STRUCTURE LEARNING PROBLEM

The structure of a BN for d random variables X1, ..., Xd is represented by a directed acyclic graph
(DAG), denoted as G = (V,E). Here, V = {1, ..., d} is the set of nodes corresponding to the
random variables and E = {(j, i) ∈ V × V : j → i} is the directed edge set. Define Vpa(i) =
{j ∈ V : (j, i) ∈ E} as the parent node set of node i, and Xpa(i) as the set of corresponding
random variables. The joint probability density function f of X1, ..., Xd is factorized according to
the structure of G:

f (X1, X2, ..., Xd) =

d∏
i=1

f
(
Xi|Xpa(i)

)
, (1)

where f
(
Xi|Xpa(i)

)
is the conditional probability density of Xi given Xpa(i). In this work, we

focus on Gaussian BNs for continuous data. Specifically, the conditional distributions are specified
by the following linear structural equation model:

Xi = φ
(
Xpa(i)

)
+ εi, i = 1, ..., d, (2)

where φ(·) denotes a linear function and εi ∼ N
(
0, σ2

j

)
. Suppose we have obtained m iid ob-

servations of X1, . . . , Xd, denoted as D ∈ Rm×d. Given D, the goal is to learn a DAG structure
G = (V,E) that accurately reflects the conditional dependencies among X1, . . . , Xd. In practice,
accuracy metrics such as F1 score and structural Hamming distance (SHD) are typically used to
assess the quality of the learned BN.

2.2 RELATED WORK

The BN structure learning problem has been proven to be NP-hard (Chickering et al., 2004), leading
to main research efforts on developing approximation methods to solve it. These methods can be
broadly classified into constraint-based, score-based, and hybrid methods. Constraint-based meth-
ods, such as PC (Spirtes et al., 2000), MMPC (Tsamardinos et al., 2003a), and PC-Stable (Colombo
et al., 2014), use conditional independence tests on observations to identify relationships among
variables. In comparison, score-based methods explore the space of DAGs or Markov equivalence
classes (MECs) using search heuristics such as tabu search (TS) (Bouckaert, 1995), genetic algo-
rithm (GA) (Larranaga et al., 1996), and greedy search (Chickering, 2002). These methods also
employ score functions, such as BDeu (Akaike, 1974), BIC (Schwarz, 1978), and K2 (Cooper &
Herskovits, 1992), to guide the search. It is worth mentioning a recent research line of score-based
methods including NOTEARS (Zheng et al., 2018) and LEAST (Zhu et al., 2021) that reformulate
the structure learning as a continuous optimization problem. Finally, hybrid methods integrate both
constraint-based and score-based techniques. For example, MMHC (Tsamardinos et al., 2006) uses
MMPC to build the graph skeleton and utilizes TS to determine the final BN.

However, as the number of variables increases, many of the existing methods would slow down
dramatically and become much less accurate (Zhu et al., 2021). Actually, based on our preliminary
testing of 15 existing methods, fGES (Ramsey et al., 2017), which is a variant of the greedy search

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

algorithm (Chickering, 2002), and PC-Stable (Colombo et al., 2014), are the only methods capable
of maintaining relatively stable learning accuracy (e.g., achieving F1 score of around 0.5) within
reasonable time when the variable number reaches 1000. Moreover, when the number of variables
reaches 10,000, all methods, even after running for a quite long period of time (e.g., 24 hours), are
unable to output solutions.

PEF Framework To address the challenge of learning large BNs, Gu and Zhou (2020) introduced
a partition-estimation-fusion (PEF) framework. It comprises the following three steps.

• Partition: The d nodes are partitioned into clusters with a hierarchical clustering algorithm.
• Estimation: An existing structure learning algorithm is applied to estimate a subgraph on

each cluster of nodes.
• Fusion: Merge estimated subgraphs into one DAG containing all the d nodes.

The details of PEF can be found in Appendix A. While PEF has dramatically enhanced the capabil-
ities of handling large BNs, it still faces a main issue of unstable structure learning accuracy across
subproblems. In the following we will describe the use of automatically constructed SLE in the
estimation step to address this issue.

3 AUTOMATIC CONSTRUCTION OF SLES

3.1 PROBLEM FORMULATION

We first formulate the SLE construction problem. Formally, a SLE with k member algorithms is
denoted as A = {θ1, . . . , θk}, where θi represents the i-th member algorithm of A. Let T =
{D1, D2, . . . } denote a training problem set, where each Di represents a BN structure learning
problem with known ground truth. When using A to solve a problem D ∈ T , one straightforward
strategy is to run all member algorithms of A individually in parallel, and the best solution among
all the found solutions in terms of a quality measure Q (e.g., F1 score) is returned. Let Q(A, D)
and Q(θi, D) denote the performance of A and θi on D in terms of Q, respectively. Without loss of
generality, we assume a larger value is better for Q. Then we have:

Q(A, D) = max
θi∈A

Q(θi, D). (3)

Then the performance of A on T in terms of Q, denoted as Q(A, T), is the average value of A’s
performance on the training problems in T (Q(A, T) = 0 when A is empty):

Q(A, T) =
1

|T |
∑
D∈T

Q(A, D). (4)

For the automatic construction of A, the member algorithms of A are not manually determined but
automatically selected from an algorithm configuration space Θ. Specifically, suppose we have a
candidate algorithm pool {A1, ...,An}, which can be constructed by collecting existing algorithms.
Each candidate algorithm has some hyperparameters. Let Θi denote the hyperparameter configu-
ration space of Ai, where a configuration θ ∈ Θi refers to a setting of Ai’s hyperparameters, such
that its behaviors is completely specified. Then, the algorithm configuration space Θ is defined as
Θ = Θ1 ∪ Θ2 · · · ∪ Θn, and each θ ∈ Θ represents a specific candidate algorithm along with the
specific values of its hyperparameters. As presented in Definition 1, the SLE construction problem
is to select k member algorithms from Θ to form a SLE A∗, such that its performance on the training
set T in terms of Q is maximized.
Definition 1. Given T,Q,Θ, and k, the SLE construction problem is to find A∗ = {θ∗1 . . . θ∗k} that
maximizes Q(A∗, T), s.t. θ∗i ∈ Θ for i = 1 . . . k.

3.2 AUTO-SLE: A GREEDY APPROACH

We now introduce Auto-SLE, a simple yet effective approach for automatically constructing SLEs.
As shown in Algorithm 1, Auto-SLE starts with an empty ensemble A (line 1) and finds the candidate
algorithm and its hyperparameter values denoted as θ◦ that, if included in A, maximizes ensemble

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1: Auto-SLE
Input: quality measure Q, training set T , algorithm configuration space Θ, ensemble size k
Output: A

1 A← ∅, i← 1;
2 while i ≤ k do
3 θ◦ ← arg maxθ∈ΘQ (A ∪ {θ}, T)−Q (A, T);
4 if Q (A ∪ {θ◦}, T) = Q (A, T) then return A;
5 A← A ∪ {θ◦}, i← i+ 1;
6 end
7 return A

improvement in terms of Q (line 3). Ties are broken arbitrarily here. After this, θ◦ is subject to the
following procedure: if adding it to A does not improve performance, which means the construction
process has converged, Auto-SLE will terminate and return A (line 4); otherwise θ◦ is added to A
(line 5). The above process will be repeated until k member algorithms have been found (line 2).

Let ∆(θ|A) = Q (A ∪ {θ}, T)−Q (A, T) denote the performance improvement brought by adding
θ to A. Noticing that each iteration of Auto-SLE needs to find θ◦ that maximizes ∆(θ|A), when the
algorithm configuration space Θ is large or even infinite (e.g., candidate algorithms have continuous
hyperparameters), using enumeration to find θ◦ is impractical. In practice, we employ hyperparame-
ter optimization procedures, such as Bayesian optimization (Lindauer et al., 2022), to approximately
maximize ∆(θ|A), and the runs of these procedures account for the vast majority of the total com-
putational costs of Auto-SLE.

3.3 THEORETICAL JUSTIFICATIONS

We now theoretically analyze the performance of Auto-SLE on a give training problem set. For
notational simplicity, henceforth we omit the T in Q(·, T) and directly use Q(·). Our analysis is
based on the following key fact that Q(·) is monotone and submodular.
Fact 1. Q(·) is a monotone submodular function, i.e., for any two SLEs A,A′ ⊂ Θ and any θ ∈ Θ,
it holds that Q(A) ≤ Q(A ∪ A′) and Q (A ∪ A′ ∪ {θ})−Q (A ∪ A′) ≤ Q (A ∪ {θ})−Q (A).

The proof is straightforward and can be found in Appendix B. Intuitively, Q exhibits a diminishing
returns property that the marginal gain of adding θ diminishes as the ensemble size increases. Based
on Fact 1, Theorem 1 holds.
Theorem 1. Using a hyperparameter optimization procedure that, in each iteration of Auto-SLE,
returns θ̂ within ε-absolute error of the maximum of ∆(θ|A), i.e., ∆(θ̂|A) ≥ ∆(θ◦|A)− ε, then the
quality Q(A) of the SLE constructed by Auto-SLE is bounded by

Q(A) ≥ (1− 1/e) ·Q(A∗)− kε, (5)

where A∗ is the optimal SLE to the SLE construction problem in Definition 1. Alternatively, if θ̂ is
within ε-relative error of ∆(θ◦|A), i.e., ∆(θ̂|A) ≥ ∆(θ◦|A) · (1 − ε), then the quality Q(A) of the
SLE constructed by Auto-SLE is bounded by

Q(A) ≥ (1− 1/e1−ε) ·Q(A∗). (6)

The proof (see Appendix B) is a slight extension of the classical derivations in maximizing ∆(θ|A)
(Nemhauser et al., 1978). Based on Theorem 1, Auto-SLE achieves (1 − 1/e)-approximation for
the optimal quality when given a perfect hyperparameter optimization procedure with ε = 0. Sub-
optimal hyperparameter optimization procedures result in worse outcomes but small errors ε do not
escalate. This is important because with large algorithm configuration space, it cannot be expected
for blackbox optimization procedures to find θ◦ in realistic time. However, at least for some scenar-
ios with a few parameters, widely-used Bayesian optimization techniques such as SMAC (Lindauer
et al., 2022) have empirically been shown to yield performance close to optimal within reasonable
time budget.

Note that Theorem 1 only provides a performance guarantee for the training problem set used for
constructing the SLE. By employing the same techniques introduced by Liu et al. (2020), we can

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

recover guarantees for an independent test set that is sampled or generated from the same distribution
as the training set, given a sufficiently large training set. Nevertheless, our experimental results (see
Section 4.2) demonstrate that the constructed SLE performs well beyond the training set.

3.4 APPLYING THE CONSTRUCTED SLE TO A NEW PROBLEM

Importantly, when presented with a testing problem to solve, it cannot be assumed that the ground
truth is known. Thus, quality measures that do not require ground truth, such as the BIC score
adopted in our experiments, are used to select the best output from the outputs of member algorithms.
It is worth mentioning that although this work focuses on utilizing the constructed SLE to enhance
PEF, the SLE itself can also serve as a complete and independent BN structure learning method.

4 EXPERIMENTS

Extensive experiments are conducted to answer two research questions (RQs).

• RQ1: Does the SLE constructed by Auto-SLE enhance PEF in learning large BNs?

• RQ2: Can the SLE generalize to larger problem sizes and different network characteristics
than that present in the training set?

4.1 EXPERIMENTAL SETUP

Benchmarks and Evaluation Metrics We generate diverse and large-scale benchmarks follow-
ing the approach in (Gu & Zhou, 2020). Specifically, the approach consists of four steps: (i) select
an existing network structure and replicates it until a predefined variable number is reached; (ii)
connect the replicas by adding 10% of edges between them randomly, while ensuring the final net-
work remains a DAG; (iii) utilize the complete DAG and Eq. (2) to generate observations, where the
weights in the linear function and the standard deviations of Gaussian noises are sampled uniformly
from [−1,−0.5] ∪ [0.5, 1] and [0, 1], respectively; (iv) re-scale the observations such that all data
columns have the same mean and standard deviation. We select 10 networks from the bnlearn repos-
itory (Scutari, 2010) with node numbers ranging from 5 to 441. Based on each of them, we use the
above approach to generate testing problems with around 1000 and 10,000 variables. Following (Gu
& Zhou, 2020), the sample size m in each testing problem is set to 1000.

The widely-used F1 score and SHD are adopted as the metrics for assessing learning accuracy. In
line with previous comparative study (Ramsey et al., 2017), we use two specific variants of F1 score,
i.e., F1 Arrowhead (F1→) that considers direction and F1 Adjacent (F1−) that ignores direction,
since some methods (PC-Stable and fGES) output MECs of DAGs which may contain edges without
directions. Moreover, the wall-clock runtime of the methods is reported. For F1 metrics, a higher
value is better; for SHD and runtime, a lower value is better.

Constructing the SLE with Auto-SLE A diverse training problem set is beneficial for construct-
ing a SLE with good performance across problem sizes and network characteristics. Specifically,
the training set T comprises 100 problems, with variable numbers ranging from 5 to 1000, generated
using the above approach based on a network randomly selected from the 32 networks in bnlearn.
These problems are exclusively used for constructing the SLE and are independent of the testing
problems. For the algorithm configuration space Θ, we consider two algorithms PC-stable (with
two hyperparameters) and fGES (with three hyperparameters) as candidate algorithms, which out-
perform others in our preliminary testing. We use their implementations from the causal discovery
tool box TETRAD (Ramsey et al., 2018). The sum of F1− and F1→ is adopted as the quality mea-
sure Q, and ensemble size k is set to 4 as running more iterations of Auto-SLE brings a negligible
improvement to the SLE’s performance on the training set (see Appendix C.3). SMAC (version
3) (Lindauer et al., 2022), a Bayesian optimization tool, is used to maximize ∆(θ|A) in each it-
eration of Auto-SLE, with a time budget 12 hours per run. Consequently, Auto-SLE consumes
approximately 48 hours in total to construct the SLE. Then, the SLE is integrated into PEF, resulting
in P/SLE, which is evaluated in subsequent experiments without further tuning or adaptation.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Results on testing problems with 1000 variables, in terms of F1 Adjacent (F1−), F1 Arrow-
head (F1→), SHD, and runtime (T). On each network, the mean ± std performance obtained by each
method on 10 problems is reported. The best performance in terms of accuracy metrics is marked
with an underline, and the performance that is not significantly different from the best performance
(according to a Wilcoxon signed-rank test with significance level p = 0.05) is indicated in bold. Let
B be the best performance achieved among the baselines and A be the performance of P/SLE. The
improvement (Impro.) ratio is calculated as (A-B)/B for F1 metrics (a higher value is better), and is
calculated as (B-A)/B for SHD (a lower value is better).

Problem Alarm Asia Cancer Child Earthquake Hailfinder Healthcare Mildew Pigs Survey
(|V |, |E|) (1036,1417) (1000,1100) (1000,880) (1000,1375) (1000,880) (1008,1307) (1001,1416) (1015,1468) (1323,1954) (1002,1103)

P/SLE

F1− 0.81±0.02 0.96±0.00 0.98±0.00 0.86±0.01 0.98±0.00 0.80±0.02 0.89±0.01 0.68±0.02 0.70±0.02 0.92±0.01
F1→ 0.68±0.04 0.74±0.01 0.94±0.01 0.60±0.02 0.94±0.01 0.61±0.03 0.59±0.01 0.54±0.03 0.61±0.02 0.79±0.02
SHD 625.7±73.6 125.2±15.2 43.1±6.9 581.1±23.3 46.1±8.1 571.3±62.7 485.0±38.4 1135.4±71.8 1262.8±84.4 309.9±29.8
T (s) 7.4±0.2 5.7±0.1 5.1±0.1 8.4±0.3 5.1±0.1 243.3±249.0 6.4±0.2 8.7±0.6 726.9±1176.6 6.0±0.1

P/SLE(D)

F1− 0.68±0.01 0.78±0.01 0.74±0.01 0.75±0.01 0.74±0.01 0.66±0.01 0.77±0.01 0.56±0.02 0.53±0.01 0.75±0.01
F1→ 0.57±0.03 0.64±0.01 0.73±0.01 0.56±0.01 0.72±0.01 0.57±0.02 0.56±0.01 0.45±0.03 0.47±0.02 0.62±0.02
SHD 1234.3±77.9 710.5±24.7 611.1±31.2 1055.5±39.4 617.5±27.1 1158.4±65.2 1051.6±31.0 1826.2±100.4 2442.4±115.6 871.6±32.0
T (s) 26.0±1.8 20.4±3.0 17.1±2.7 21.6±5.0 15.4±2.3 366.0±287.4 9.7±1.8 14.2±2.2 5697.5±1870.6 7.8±0.1

P/SLE(R)

F1− 0.72±0.02 0.87±0.00 0.77±0.01 0.83±0.01 0.77±0.01 0.66±0.01 0.87±0.01 0.57±0.02 0.58±0.04 0.84±0.01
F1→ 0.42±0.02 0.49±0.01 0.32±0.03 0.51±0.02 0.30±0.02 0.44±0.02 0.44±0.01 0.31±0.01 0.35±0.03 0.46±0.01
SHD 1070.1±56.9 511.7±17.2 697.1±44.0 680.7±34.7 703.7±34.5 1152.3±38.7 750.8±31.6 1647.1±60.2 1934.3±60.6 675.9±28.1
T (s) 19.6±1.1 12.2±1.9 11.4±1.9 13.7±1.7 10.4±1.4 33.3±8.3 12.9±3.1 15.5±1.8 5886.7±1671.0 8.3±2.0

P/PC-Stable

F1− 0.76±0.02 0.91±0.00 0.85±0.01 0.85±0.01 0.85±0.01 0.71±0.01 0.89±0.01 0.62±0.02 0.62±0.05 0.89±0.01
F1→ 0.48±0.02 0.56±0.01 0.47±0.03 0.52±0.02 0.43±0.02 0.48±0.02 0.46±0.01 0.35±0.02 0.40±0.04 0.58±0.03
SHD 883.5±42.2 342.7±9.5 414.8±23.8 585.3±29.1 416.8±16.4 922.3±41.1 648.0±20.3 1382.5±42.3 1627.4±84.8 458.0±26.2
T (s) 5.5±0.8 6.1±0.1 6.0±0.1 6.2±0.9 5.7±0.4 19.1±6.3 2.8±0.2 6.6±0.6 4806.5±2311.3 5.3±0.8

P/fGES

F1− 0.68±0.01 0.78±0.01 0.74±0.01 0.75±0.01 0.74±0.01 0.66±0.01 0.77±0.01 0.56±0.02 0.53±0.01 0.75±0.01
F1→ 0.57±0.03 0.64±0.01 0.73±0.01 0.56±0.01 0.72±0.01 0.57±0.02 0.56±0.01 0.45±0.03 0.47±0.02 0.62±0.02
SHD 1234.3±77.9 710.5±24.7 611.1±31.2 1055.5±39.4 617.5±27.1 1158.4±65.2 1051.6±31.0 1826.2±100.4 2442.4±115.6 871.6±32.0
T (s) 9.3±1.1 9.0±0.4 8.1±0.4 9.0±1.3 7.9±0.4 342.6±283.8 4.4±0.2 11.7±1.7 570.3±1084.5 6.9±0.6

PC-Stable

F1− 0.72±0.01 0.73±0.01 0.54±0.01 0.82±0.01 0.54±0.01 0.67±0.01 0.80±0.01 0.61±0.01 0.45±0.36 0.68±0.01
F1→ 0.50±0.01 0.37±0.01 0.18±0.00 0.53±0.02 0.25±0.00 0.38±0.01 0.61±0.01 0.23±0.01 0.29±0.23 0.44±0.01
SHD 1256.9±26.9 1189.2±37.0 1771.5±42.8 792.2±36.3 1700.1±49.5 1520.4±42.6 724.8±24.7 2144.2±47.3 1718.2±41.7 1165.8±40.2
T (s) 383.4±65.6 167.7±14.5 176.4±19.8 309.2±57.3 165.9±12.4 453.8±103.8 172.6±14.6 569.4±150.5 43121.0±35902.9 169.7±15.3

fGES

F1− 0.57±0.01 0.51±0.00 0.43±0.00 0.55±0.00 0.43±0.00 0.47±0.01 0.58±0.00 0.57±0.01 0.53±0.00 0.50±0.00
F1→ 0.49±0.02 0.42±0.01 0.42±0.00 0.42±0.01 0.42±0.01 0.42±0.01 0.43±0.01 0.48±0.02 0.48±0.01 0.40±0.01
SHD 2226.1±48.7 2301.3±17.7 2320.3±16.1 2337.9±29.4 2326.9±20.0 2512.1±37.0 2331.5±25.1 2259.6±49.2 3143.3±51.1 2396.8±22.3
T (s) 769.1±104.8 823.2±26.6 787.0±19.9 907.6±35.2 813.5±28.0 689.4±44.5 832.4±27.6 646.5±28.6 1257.0±74.2 770.2±22.8

Impro. ratio
F1− 7.4% 4.7% 14.6% 0.2% 14.6% 13.2% -0.1% 10.4% 12.5% 3.2%
F1→ 19.0% 16.3% 29.5% 6.8% 30.0% 6.7% -3.3% 12.3% 28.2% 26.0%
SHD 29.2% 63.5% 89.6% 0.7% 88.9% 38.1% 25.2% 17.9% 22.4% 32.3%

Baselines and Settings Six baselines are considered, including existing state-of-the-art methods
and PEF-based methods. Specifically, given the rich literature on BN structure learning (Kitson
et al., 2023), we collect 15 existing methods, including score-based, constraint-based, and hybrid
methods, and conduct a preliminary testing of them (see Appendix C.2). The results indicate that
fGES and PC-Stable are the only methods capable of maintaining F1 scores of around 0.5 within rea-
sonable time when the variable number reaches 1000. Therefore, we choose these two as baselines.
Besides, fGES and PC-Stable are also integrated into the estimation step of PEF, resulting in two
new baselines: P/fGES and P/PC-Stable. Furthermore, to validate the effectiveness of Auto-SLE,
we consider two alternative ensemble construction approaches: (i) default SLE, which contains the
default fGES and PC-Stable, as well as variants with randomly chosen hyperparameter values for
each of them; (ii) random SLE, which contains two variants with randomly chosen hyperparameter
values for each of fGES and PC-Stable. Both of these SLEs consist of four member algorithms
(same as our constructed SLE) and are integrated into PEF, yielding two baselines P/SLE(D) and
P/SLE(R).

To prevent the compared methods from running prohibitively long, a runtime limit of 24 hours is set
on each testing problem. All the experiments are conducted on a Linux server with an Intel Gold
6336Y CPU @ 2.40GHz, 96 cores, and 768GB of memory. Precise details of the experimental setup,
including the preliminary testing results, SLE construction, benchmarks, metrics, and baselines, are
in Appendix C. The codes for repeating our experiments are available in the supplementary.

4.2 RESULTS AND ANALYSIS

The partition step of PEF typically results in subproblems with 5%∼10% variables of the original
problem. For testing problems with 1000 and 10,000 variables, the subproblems have 50∼100 and
500∼1000 variables, respectively, which are problem sizes covered by training data. However, as
the number of variables increases further (e.g., to 30,000), the subproblems will be much larger than
the training problems. We first examine the performance on testing problems with 1000 and 10,000

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Results on problems with 10,000 variables. “-” means a solution is not found within the
budget of 24 hours. The best performance in terms of accuracy is marked in bold and an underline.

Problem Alarm Asia Cancer Child Earthquake Hailfinder Healthcare Mildew Pigs Survey
(|V |, |E|) (10027, 13713) (10000, 11000) (10000, 8800) (10000, 13750) (10000, 8800) (10024, 12996) (10003, 14148) (10010, 14472) (10143, 14978) (10002, 11003)

P/SLE

F1− 0.80 0.94 0.96 0.85 0.96 0.81 0.88 0.69 0.76 0.90
F1→ 0.66 0.72 0.92 0.61 0.92 0.66 0.59 0.55 0.69 0.77
SHD 6366 1717 705 6017 683 5400 5361 10911 7468 3334
T (s) 95.5 35.6 24.4 80.8 24.2 828.6 50.0 360.3 2120.5 39.2

P/SLE(D)

F1− 0.34 0.37 0.29 0.42 0.31 0.34 0.43 0.30 0.33 0.35
F1→ 0.28 0.30 0.28 0.32 0.30 0.30 0.31 0.23 0.29 0.28
SHD 42805 36831 40464 35660 37413 40151 37297 50139 41958 39476
T (s) 4084.4 2754.9 3308.6 3383.0 2810.6 3865.9 3739.6 4532.6 7040.1 2931.4

P/SLE(R)

F1− 0.49 0.59 0.42 0.69 0.43 0.45 0.71 0.38 0.02 0.55
F1→ 0.25 0.25 0.15 0.41 0.14 0.28 0.28 0.19 0.01 0.19
SHD 23673 18141 26652 12844 26065 25024 15483 32409 15551 21367
T (s) 676.8 386.7 667.9 343.2 538.6 628.6 319.6 5563.9 7048.2 379.0

P/PC-Stable

F1− 0.59 0.71 0.54 0.77 0.55 0.55 0.80 0.44 0.12 0.66
F1→ 0.31 0.32 0.20 0.46 0.17 0.34 0.34 0.23 0.06 0.26
SHD 16842 11262 17280 8932 16869 17125 10815 24847 16005 14046
T (s) 210.1 145.0 147.3 145.2 133.3 219.0 156.8 508.7 7005.0 125.4

P/fGES

F1− 0.34 0.37 0.29 0.42 0.31 0.34 0.43 0.30 0.33 0.35
F1→ 0.28 0.30 0.28 0.32 0.30 0.30 0.31 0.23 0.29 0.28
SHD 42805 36831 40464 35660 37413 40151 37297 50139 41958 39476
T (s) 4037.6 2796.0 3331.4 3369.7 2833.4 3669.7 3755.3 4439.0 4179.0 2905.7

PC-Stable

F1− - - - - - - - - - -
F1→ - - - - - - - - - -
SHD - - - - - - - - - -
T (s) 86400.0 86400.0 86400.0 86400.0 86400.0 86400.0 86400.0 86400.0 86400.0 86400.0

fGES

F1− - - - - - - - - - -
F1→ - - - - - - - - - -
SHD - - - - - - - - - -
T (s) 86400.0 86400.0 86400.0 86400.0 86400.0 86400.0 86400.0 86400.0 86400.0 86400.0

Impro. ratio
F1− 36.0% 31.4% 78.8% 10.8% 75.7% 47.6% 10.4% 54.5% 133.0% 36.0%
F1→ 115.6% 127.2% 225.4% 33.9% 208.0% 94.7% 70.9% 135.0% 135.8% 180.0%
SHD 62.2% 84.8% 95.9% 32.6% 96.0% 68.5% 50.4% 56.1% 52.0% 76.3%

variables to answer RQ1. Specifically, based on each network selected from bnlearn, we generate
10 testing problems (with different random seeds), test each method on these problems, and report
the mean ± std in terms of the evaluation metrics as well as stastical test results in Table 1. For the
performance evaluation involving 10,000 variables, due to the very long runtime of the baselines,
we generate one test problem based on each network and report the testing results in Table 2.

The first observation from Table 1 is that P/SLE consistently achieves significantly higher accuracy
across all three metrics compared to the baselines, except for the F1 metrics on Healthcare testing
problems, where P/SLE performs slightly worse than PC-Stable. Table 2 shows that the superior-
ity of P/SLE becomes more pronounced on testing problems with 10,000 variables. In call cases
it achieves substantially higher accuracy than all baselines across all accuracy metrics. Notably,
compared to the best performance achieved by the baselines, P/SLE often achieves improvements
in F1 Adjacent of over 30% and up to 133%, and improvements in F1 Arrowhead and SHD of over
50% and even up to 225%. Since the difference between P/SLE and P/PC-Stable (P/fGES) lies in
the use of a SLE in the estimation step instead of a single algorithm, the consistent advantages of
P/SLE over them confirm that using SLEs can stably achieve high learning accuracy across sub-
problems. On the other hand, we also observe that P/SLE(D) and P/fGES obtain identical learning
accuracy. This is because, in the default ensemble, the output of fGES always has the best BIC score
among all member algorithms, thus making it consistently being chosen as the final output. While
P/SLE(R), with a randomly constructed SLE, can avoid this issue, it fails to achieve satisfactory
learning accuracy, which in some cases is even worse than P/PC-Stable and P/fGES that do not use
SLEs. Therefore, the advantages of P/SLE over P/SLE(D) and P/SLE(R) highlight the effectiveness
of Auto-SLE in producing high-quality SLEs with complementary member algorithms.

The second observation is that on testing problems with 1000 variables, P/PC-Stable and P/fGES
often achieve higher learning accuracy than PC-Stable and fGES, respectively. Moreover, when
the number of variables reaches 10,000, PC-Stable and fGES are unable to find solutions within 24
hours, while P/PC-Stable and P/fGES are able to. These findings show that PEF framework can
indeed enhance the capabilities of handling large BNs, which is consistent with the observations
in (Gu & Zhou, 2020). Finally, all PEF-based methods generally consume much less runtime than
non-PEF-based methods, attributed to the underlying divide-and-conquer strategy. Among PEF-
based methods, P/SLE often has the shortest or close to the shortest runtime, and for most testing
problems, it consistently outputs the final solution within a reasonable time (less than 1000 seconds).
In summary, all the above findings affirmatively answer RQ1, i.e., the SLE constructed by Auto-SLE
substantially improves PEF in learning the structure of large BNs.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

P/SLE P/SLE(D) P/SLE(R) P/PC-Stable P/fGES PC-Stable fGES

0 5000 10000 15000 20000 25000 30000
Number of Nodes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
F1

 A
dj

ac
en

t

0 5000 10000 15000 20000 25000 30000
Number of Nodes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F1
 A

rro
wh

ea
d

0 5000 10000 15000 20000 25000 30000
Number of Nodes

103

104

SH
D

0 5000 10000 15000 20000 25000 30000
Number of Nodes

101

102

103

104

105

Ru
nt

im
e

(s
ec

on
ds

)

(a) Alarm Problem

0 5000 10000 15000 20000 25000 30000
Number of Nodes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F1
 A

dj
ac

en
t

0 5000 10000 15000 20000 25000 30000
Number of Nodes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F1
 A

rro
wh

ea
d

0 5000 10000 15000 20000 25000 30000
Number of Nodes

103

104

SH
D

0 5000 10000 15000 20000 25000 30000
Number of Nodes

101

102

103

104

105

Ru
nt

im
e

(s
ec

on
ds

)

(b) Asia Problem

Figure 2: Performance curves on Alarm and Asia problems with up to 30,000 variables. SHD and
runtime are plotted on log scale.

Table 3: Testing results on Yeast and WS problems. “P/SLE-b” represents the best performance
achieved among P/SLE(R), P/SLE(D), P/fGES, and P/PC-Stable. The best performance in terms of
accuracy metrics is marked with an underline, and the performance that is not significantly different
from the best performance is indicated in bold.

Problem WS WS Yeast
(|V |, |E|) (1000, 2000) (10000, 20000) (4441, 12873)

P/SLE

F1− 0.80±0.01 0.79 0.106
F1→ 0.51±0.01 0.49 0.084
SHD 1240.2±47.7 12611 20912
T (s) 9.8±0.3 83.2 7105.4

P/SLE-b

F1− 0.79±0.01 0.72 0.003
F1→ 0.51±0.01 0.40 0.001
SHD 1252.4±32.2 15760 33162
T (s) 3.7±0.3 363.1 5771.32

PC-Stable

F1− 0.75±0.01 - -
F1→ 0.42±0.01 - -
SHD 1437.4±21.2 - -
T (s) 176.2±6.5 86400.0 86400.0

fGES

F1− 0.67±0.00 - 0.066
F1→ 0.43±0.01 - 0.056
SHD 2401.0±22.3 - 29847
T (s) 1433.3±61.4 86400.0 178257.4

Impro. ratio
F1− 2.2% 10.6% 60.6%
F1→ -0.6% 21.1% 50.0%
SHD 1.0% 20.0% 29.9%

4.3 GENERALIZATION TO LARGER PROBLEMS

We now investigate RQ2. Specifically, we generate Alarm and Asia testing problems with 20,000
and 30,000 variables, and plot in Figure 2 the performance of the compared methods as the variable
number ranges from 1000 to 30,000 (detailed results can be found in Appendix C.5). Note that
when the variable number exceeds 20,000, the subproblems resulted from the partition step of PEF
would be much larger in size than the training problems. It can be seen from Figure 2 that P/SLE
generalizes well to larger problems, maintaining relatively stable learning accuracy. In contrast, the
performance of all baselines deteriorates rapidly as the number of variables increases.

4.4 GENERALIZATION TO PROBLEMS WITH NO BLOCK STRUCTURE

The above results have demonstrated that P/SLE can stably achieve high learning accuracy for net-
works with a block structure. Of course, there are many real-world networks without any block

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

structure (Olesen & Madsen, 2002). Although PEF-based methods are not specifically designed
for such networks, it is worth testing P/SLE on them to provide a complete spectrum of its perfor-
mance. Specifically, we apply P/SLE for gene expression data analysis, a traditional application of
structure leanring for BN. We use the largest publicly available gene dataset Yeast (Schaffter et al.,
2011) involving 4,441 nodes and 12,873 edges, where the underlying networks are commonly re-
ferred to as gene regulatory networks. Besides, we generate small-world networks with 1000 and
10,000 nodes, using igraph (Csardi et al., 2006) based on the Watts-Strogatz (WS) model (Watts &
Strogatz, 1998). We choose the WS model because: (i) it has no block structure, and (ii) it is not
included in the bnlearn repository, thereby enabling evaluation of the generalization of P/SLE to
network characteristics beyond the training set. As before, we generate 10 testing problems based
on the network with 1000 nodes and one testing problem based on the network with 10,000 nodes.
The testing results are presented in Table 3.

One can observe that P/SLE still achieves competitive learning accuracy on these networks. On
WS problems with 1000 variables, it always achieves the best performance or the performance not
significantly different from the best, across all accuracy metrics. On WS problems with 10,000 vari-
ables and Yeast, the advantages of P/SLE become pronounced, similar to the previous observations
on networks with block structures. In summary, these findings show the generalization ability of the
constructed SLE across network characteristics beyond the training problem set.

5 CONCLUSION

In this work, we introduced the idea of using SLEs for BN structure learning and proposed Auto-
SLE, an automatic approach that can largely reduce human efforts in building high-quality SLEs.
Extensive experiments showed that our method P/SLE could consistently achieve high accuracy in
learning large BNs and generalize well across problem sizes and network characteristics.

Limitations There are two main limitations of this work. First, while using an SLE by running its
member algorithms in parallel would not significantly increase the wall-clock runtime compared to
running a single algorithm, executing them sequentially in the absence of multi-core compute leads
to significantly longer runtime. A potential solution is to train a selection model that predicts the
best-performing algorithm in the SLE for a given problem, and runs that algorithm only. Second, the
generalization ability of P/SLE relies on a training set with diverse networks of varying sizes. If such
a set cannot be collected in practice, then it may not generalize well. Moreover, as aforementioned,
PEF-based methods are most suitable for learning BNs with a block structure to some extent. For
BNs with no block structure at all, P/SLE may not be the best choice, and in these cases the SLE is
more suitable as a standalone learning method rather than being integrated into the PEF framework.

REFERENCES

Emmanuel Abbe, Afonso S Bandeira, and Georgina Hall. Exact recovery in the stochastic block
model. IEEE Transactions on Information Theory, 62(1):471–487, 2015.

Edo M Airoldi, David Blei, Stephen Fienberg, and Eric Xing. Mixed membership stochastic block-
models. Advances in Neural Information Processing Systems, 21, 2008.

Hirotugu Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic
Control, 19(6):716–723, 1974.

Bryon Aragam and Qing Zhou. Concave penalized estimation of sparse gaussian bayesian networks.
The Journal of Machine Learning Research, 16(1):2273–2328, 2015.

Albert-László Barabási and Eric Bonabeau. Scale-free networks. Scientific american, 288(5):60–69,
2003.

Remco Ronaldus Bouckaert. Bayesian Belief Networks: From Construction to Inference. PhD
thesis, 1995.

Ruichu Cai, Siyu Wu, Jie Qiao, Zhifeng Hao, Keli Zhang, and Xi Zhang. Thps: Topological hawkes
processes for learning causal structure on event sequences. IEEE Transactions on Neural Net-
works and Learning Systems, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

David Maxwell Chickering. Learning equivalence classes of bayesian-network structures. Journal
of Machine Learning Research, 2:445–498, 2002.

Max Chickering, David Heckerman, and Chris Meek. Large-sample learning of bayesian networks
is np-hard. Journal of Machine Learning Research, 5:1287–1330, 2004.

Diego Colombo, Marloes H Maathuis, et al. Order-independent constraint-based causal structure
learning. Journal of Machine Learning Research, 15(1):3741–3782, 2014.

Gregory F Cooper and Edward Herskovits. A bayesian method for the induction of probabilistic
networks from data. Machine learning, 9:309–347, 1992.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensem-
ble of diverse parameter-free attacks. In Proceedings of the 37th International Conference on
Machine Learning, pp. 2206–2216, 2020.

Gabor Csardi, Tamas Nepusz, et al. The igraph software package for complex network research.
InterJournal, complex systems, 1695(5):1–9, 2006.

Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. Publ. math. inst. hung. acad.
sci, 5(1):17–60, 1960.

Nir Friedman, Iftach Nachman, and Dana Pe’er. Learning bayesian network structure from massive
datasets: The” sparse candidate” algorithm. arXiv preprint arXiv:1301.6696, 2013.

Maxime Gasse, Alex Aussem, and Haytham Elghazel. A hybrid algorithm for bayesian network
structure learning with application to multi-label learning. Expert Systems with Applications, 41
(15):6755–6772, 2014.

Jiaying Gu and Qing Zhou. Learning big gaussian bayesian networks: Partition, estimation and
fusion. Journal of Machine Learning Research, 21(1):6340–6370, 2020.

Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First
steps. Social Networks, 5(2):109–137, 1983.

Neville Kenneth Kitson, Anthony C Constantinou, Zhigao Guo, Yang Liu, and Kiattikun Chobtham.
A survey of bayesian network structure learning. Artificial Intelligence Review, pp. 1–94, 2023.

Pedro Larranaga, Cindy MH Kuijpers, Roberto H Murga, and Yosu Yurramendi. Learning bayesian
network structures by searching for the best ordering with genetic algorithms. IEEE Transactions
on Systems, Man, and Cybernetics, 26(4):487–493, 1996.

Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Car-
olin Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. Smac3: A versatile bayesian opti-
mization package for hyperparameter optimization. Journal of Machine Learning Research, 23
(1):2475–2483, 2022.

Shengcai Liu, Ke Tang, Yunwei Lei, and Xin Yao. On performance estimation in automatic al-
gorithm configuration. In Proceedings of the 34th AAAI Conference on Artificial Intelligence,
AAAI’2020, pp. 2384–2391, New York, NY, Feb 2020.

Dimitris Margaritis et al. Learning Bayesian network model structure from data. PhD thesis, School
of Computer Science, Carnegie Mellon University Pittsburgh, PA, USA, 2003.

George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of approximations
for maximizing submodular set functions - I. Mathmatical Programming, 14(1):265–294, 1978.

Kristian G. Olesen and Anders L. Madsen. Maximal prime subgraph decomposition of bayesian
networks. IEEE Transactions on Systems, Man, and Cybernetics. Part B, 32(1):21–31, 2002.

Judea Pearl. Bayesian networks: a model of self-activated memory for evidential reasoning. In
Proceedings of the 7th Conference of the Cognitive Science Society, pp. 329–334, 1985.

Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. 1988.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jose M Pena. Learning gaussian graphical models of gene networks with false discovery rate con-
trol. In European conference on evolutionary computation, machine learning and data mining in
bioinformatics, pp. 165–176. Springer, 2008.

Joseph Ramsey, Madelyn Glymour, Ruben Sanchez-Romero, and Clark Glymour. A million vari-
ables and more: The fast greedy equivalence search algorithm for learning high-dimensional
graphical causal models, with an application to functional magnetic resonance images. Interna-
tional Journal of Data Science and Analytics, 3:121–129, 2017.

Joseph D Ramsey, Kun Zhang, Madelyn Glymour, Ruben Sanchez Romero, Biwei Huang, Imme
Ebert-Uphoff, Savini Samarasinghe, Elizabeth A Barnes, and Clark Glymour. Tetrad — a toolbox
for causal discovery. In Proceedings of the 8th International Workshop on Climate Informatics,
2018.

Thomas Schaffter, Daniel Marbach, and Dario Floreano. Genenetweaver: in silico benchmark gen-
eration and performance profiling of network inference methods. Bioinformatics, 27(16):2263–
2270, 2011.

Gideon Schwarz. Estimating the dimension of a model. The Annals of Statistics, pp. 461–464, 1978.

Marco Scutari. Learning bayesian networks with the bnlearn r package. Journal of Statistical
Software, 35:1–22, 2010.

Peter Spirtes, Clark N Glymour, and Richard Scheines. Causation, Prediction, and Search. MIT
Press, 2000.

Ioannis Tsamardinos, Constantin F Aliferis, and Alexander Statnikov. Time and sample efficient
discovery of markov blankets and direct causal relations. In Proceedings of the 9th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 673–678, 2003a.

Ioannis Tsamardinos, Constantin F Aliferis, Alexander R Statnikov, and Er Statnikov. Algorithms
for large scale markov blanket discovery. In FLAIRS conference, volume 2, pp. 376–380. St.
Augustine, FL, 2003b.

Ioannis Tsamardinos, Laura E Brown, and Constantin F Aliferis. The max-min hill-climbing
bayesian network structure learning algorithm. Machine learning, 65:31–78, 2006.

Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature, 393
(6684):440–442, 1998.

Sandeep Yaramakala and Dimitris Margaritis. Speculative markov blanket discovery for optimal
feature selection. In Fifth IEEE International Conference on Data Mining (ICDM’05), pp. 4–pp.
IEEE, 2005.

Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. Dags with no tears: Continuous
optimization for structure learning. Advances in Neural Information Processing Systems, 31,
2018.

Rong Zhu, Andreas Pfadler, Ziniu Wu, Yuxing Han, Xiaoke Yang, Feng Ye, Zhenping Qian, Jingren
Zhou, and Bin Cui. Efficient and scalable structure learning for bayesian networks: Algorithms
and applications. In Proceedings of the 37th IEEE International Conference on Data Engineering,
pp. 2613–2624, 2021.

A THE PARTITION-ESTIMATION-FUSION (PEF) FRAMEWORK

This section presents the implementation details of the partition-estimation-fusion (PEF) Gu & Zhou
(2020) framework. PEF consists of the following three steps.

• Partition: The nodes are divided into clusters using a modified hierarchical clustering
(MHC) algorithm.

• Estimation: An existing structure learning method is applied to estimate a subgraph on
each cluster of nodes.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Algorithm 2: Modified Hierarchical Clustering
Hierarchical clustering given the dissimilarity matrix D = (d(i, j))d×d;
Generate the dendrogram TD of the hierarchical clustering;
Choose p by Eq. (9) and l by Eq. (10);
Relabel clusters in C ← Cl so that S1 ≤ · · · ≤ Sd−l;
while |C| > p do

(i∗, j∗)← arg min(i,j){d(Ci, Cj) : i < j ∧ j > p};
Ci∗ ← Ci∗ ∪ Cj∗ , C ← C\{Cj∗};

end
return C = {C1, C2, . . . , Cp};

• Fusion: Merge estimated subgraphs into one DAG containing all the nodes.

Suppose we have observed m iid observations of random variables X1, . . . , Xd, denoted as D ∈
Rm×d. Denote the i-th column ofD as xi. GivenD, the goal is to learn a DAG structure G = (V,E)
that accurately reflects the conditional dependencies among X1, . . . , Xd.

A.1 PARTITION

The partition step (P-step) of the PEF involves partitioning nodes into clusters. From this procedure,
p clusters, denoted asCi for i = 1, 2, . . . , p, are generated. This utilizes a modified hierarchical clus-
tering (MHC) approach, equipped with average linkage, that autonomously determines the number
of clusters p. The distance between two nodes i and j in PEF is defined by a specific equation,

d(i, j) = 1− |rij | ∈ [0, 1] (7)

where rij = cor(Xi, Xj) represents the correlation between Xi and Xj for i, j = 1, 2, . . . , d.
The correlation is calculated using covariance cov(xi,xj) and standard deviations σxi

, σxj
, and the

following equation.

cor(Xi, Xj) =
cov(xi,xj)

σxi
σxj

(8)

PEF mandates that the minimum cluster size should be 0.05d. For each h = 0, 1, ..., d−1, Ch desig-
nates the clusters formed during the h−th iteration of bottom-up hierarchical clustering. Specifically,
C0 = {{1}, {2}, . . . , {d}} consists of p singleton clusters, while Cp−1 = {{1, 2, . . . , d}} denotes a
single cluster encompassing all d nodes. Let pi signify the count of big clusters in Ci. PEF selects a
particular p according to the following equation:

p = min{pmax, max
0≤i≤d−1

pi} (9)

where pmax ≤ 20 represents a user-defined maximum count of big clusters.

Let l represent the topmost level on the dendrogram housing p big clusters, expressed as the follow-
ing equation:

l = arg max
0≤i≤d−1

{i : pi = p} (10)

Clusters in Cl are then relabeled in descending order based on their size, so S1 ≥ S2 ≥ · · · ≥ Sd−l,
with Si = |Ci|. The first p clusters are subsequently identified as the primary big clusters of interest.
PEF proceeds to allocate the leftover small clusters to these p big clusters, which is accomplished
by repetitively merging the two nearest clusters, provided one is a small cluster. The pseudocode of
the MHC algorithm is detailed in Algorithm 2, where the dissimilarity matrix D = (d(i, j))d×d is
calculated by Eq. (7). In the experiments, we limit the size of the cluster to be less than 10% of the
original problem to prevent the occurrence of excessively large subproblems.

A.2 ESTIMATION

During the estimation step (E-step), the PEF determines the structure of each subgraph individually.
Within the PEF framework, this step acts like a blackbox, allowing users to employ any structure

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

learning algorithm to estimate subgraphs without needing in-depth knowledge of its technical de-
tails. Typically, this step yields p partial DAGs (PDAGs). It is noteworthy that both DAGs and
complete PDAGs (CPDAGs) are subsets of PDAGs. If the time complexity of a structure learning
technique surpasses O(d2), the time required to learn small subgraphs during the E-step becomes
considerably less than that needed to estimate an entire DAG. Assuming that during the partition
step nodes were divided into p clusters C1, C2, . . . , Cp and the duration to learn a PDAG on Ci
is ti, parallelizing the learning of p subgraphs across p cores can reduce the E-step duration to
max{ti : i = 1, 2, . . . , p}.

A.3 FUSION

In the fusion step (F-step), a hybrid methodology is employed to learn the full DAG structure from
the estimated subgraphs (obtained in the E-step). This step unfolds in two stages. First, PEF gen-
erates a candidate edge set A to restrict the search space. Through a series of statistical tests, PEF
discerns a subset, A∗, comprising candidate edges between subgraphs. Consequently, the candidate
edge set A consists of A∗ and all edges learned in each subgraph from the E-step. Second, PEF
optimize the DAG structure by iteratively updating edges within set A based on a modified BIC
score. The final output of the F-step is a DAG.

B PROOFS

B.1 PROOF OF FACT 1

Fact 2. Q(·) is a monotone submodular function, i.e., for any two SLEs A,A′ ⊂ Θ and any θ ∈ Θ,
it holds that Q(A) ≤ Q(A ∪ A′) and Q (A ∪ A′ ∪ {θ})−Q (A ∪ A′) ≤ Q (A ∪ {θ})−Q (A).

Proof. By definition, Q(A, D) = maxθ∈AQ(θ,D), then it holds that Q(A ∪ A′, D) =
maxθ∈A∪A′ Q(θ,D) ≥ maxθ∈A,Q(θ,D). The monotonicity holds.

To prove submodularity, we have

Q (A ∪ {θ})−Q (A) =
1

|T |
∑
D∈T

[Q(A ∪ {θ}, D)−Q(A, D)] by definition of Q(·)

=
1

|T |
∑
D∈T

[Q(θ,D)−Q(A, D)]+

≥ 1

|T |
∑
D∈T

[Q(θ,D)−Q(A ∪ A′, D)]+ by monotonicity

= Q (A ∪ A′ ∪ {θ})−Q (A ∪ A′) .

(11)

The proof is complete.

B.2 PROOF OF THEOREM 1

Theorem 2. Using a hyperparameter optimization procedure that, in each iteration of Auto-SLE,
returns θ̂ within ε-absolute error of the maximum of ∆(θ|A), i.e., ∆(θ̂|A) ≥ ∆(θ◦|A)− ε, then the
quality Q(A) of the SLE constructed by Auto-SLE is bounded by

Q(A) ≥ (1− 1/e) ·Q(A∗)− kε, (12)

where A∗ is the optimal SLE to the SLE construction problem in Definition 1. Alternatively, if θ̂ is
within ε-relative error of ∆(θ◦|A), i.e., ∆(θ̂|A) ≥ ∆(θ◦|A) · (1 − ε), then the quality Q(A) of the
SLE constructed by Auto-SLE is bounded by

Q(A) ≥ (1− 1/e1−ε) ·Q(A∗). (13)

Proof. Order the candidate algorithms in A∗ as {θ∗1 . . . θ∗k}. We denote A = {θ1, θ2, . . . , θk}
where θi is the algorithm added to A in the i-th iteration of Auto-SLE. Let Ai = {θ1, . . . , θi} and

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

let ∆(θ|A) = Q (A ∪ {θ}) − Q (A) denote the performance improvement brought by adding θ to
A.

In the first case where ∆(θ̂|A) ≥ ∆(θ◦|A)− ε, for all positive integers i < l ≤ k, we have:

Q(A∗) ≤ Q(A∗ ∪ Ai) by monotonicity

= Q(Ai) +

k∑
j=1

∆(θ∗j |Ai ∪ {θ∗1 , . . . , θ∗j−1}) by telescoping sum

≤ Q(Ai) +
∑
θ∈A∗

∆(θ|Ai) by submodularity

≤ Q(Ai) +
∑
θ∈A∗

∆(θ◦|Ai) by definition of θ◦

≤ Q(Ai) +
∑
θ∈A∗

(Q(Ai+1)−Q(Ai) + ε) by ∆(θ◦|A) ≤ ∆(θ̂|A) + ε

≤ Q(Ai) + k (Q(Ai+1)−Q(Ai) + ε) .

(14)

Let δi = Q(A∗)−Q(Ai), which allows us to rewrite the above equation as δi ≤ k(δi − δi+1 + ε),
then δi+1 ≤ (1− 1

k)δi + ε. Hence, we have

δl ≤ (1− 1

k
)lδ0 + kε · [1− (1− 1

k
)l]

≤ e−l/kδ0 + kε by 1− x ≤ e−x for all x ∈ R
= e−l/k(Q (A∗)−Q(A0)) + kε

= e−l/kQ(A∗) + kε by that A0 = ∅ and Q(A0) = 0

(15)

Rearranging δl = Q(A∗)−Q(Al) ≤ e−l/kQ(A∗) + kε, we have

Q(Al) ≥ (1− e−l/k) ·Q(A∗)− kε. (16)

Since the SLE found by Auto-SLE is Ak, then we have

Q(Ak) ≥ (1− 1/e) ·Q(A∗)− kε. (17)

In the second case where ∆(θ̂|A) ≥ ∆(θ◦|A) · (1− ε). Similarly, for all positive integers i < l ≤ k,
we have:

Q(A∗) ≤ Q(Ai) +
∑
θ∈A∗

(Q(Ai+1)−Q(Ai)) /(1− ε) by ∆(θ◦|A) ≤ ∆(θ̂|A)/(1− ε)

= Q(Ai) +
k

1− ε
(Q(Ai+1)−Q(Ai)) .

(18)

Similarly, let δi = Q(A∗)−Q(Ai) and use the above procedure, we have

Q(Al) ≥ (1− e−l(1−ε)/k) ·Q(A∗). (19)

Let l = k, we have
Q(Ak) ≥ (1− 1/e1−ε) ·Q(A∗). (20)

The proof is complete.

C DETAILS OF THE EXPERIMENTS

Throughout the experiments, we set a random seed as 1024, ensuring the reproducibility of our
experiments. The codes for repeating our experiments can be found in the supplementary.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C.1 EVALUATION METRICS

Let M1 be the true MEC of the DAG and M2 be the estimated MEC, the F1 score for adjacencies
(F1 Adjacent) is calculated as the harmonic mean of precision and recall: 2TP/(2TP+FP+FN), where
TP is the number of adjacencies shared by M1 and M2, FP is the number of adjacencies in M2 but
not in M1, and FN is the number of adjacencies in M1 but not in M2. The F1 score for arrowhead
(F1 Arrowhead) is calculated in a similar way. An arrowhead is taken to be in M1 and M2 for each
variable A and B such that A → B in both M1 and M2, and an arrowhead is taken to be in one MEC
but not the other when for each variable A and B such that A → B in one but A ← B in the other, or
A–B (no directions) in the other, or A and B are not adjacent in the other.

The structural Hamming distance (SHD) is defined as the number of edge insertions, deletions or
flips in order to transform the learned DAG to the ground truth.

C.2 PRELIMINARY TESTING

We collect 15 existing methods, listed below.

• Score-based combinatorial search methods: HC Chickering et al. (2004), TABU Bouckaert
(1995), CCDr Aragam & Zhou (2015), fGES Ramsey et al. (2017)

• Score-based continuous optimization methods: NOTEARS Zheng et al. (2018),
GOLEM Zhu et al. (2021)

• Constraint-based methods: PC-Stable Colombo et al. (2014), GS Margaritis et al. (2003),
IAMB Tsamardinos et al. (2003b), Fast-IAMB Tsamardinos et al. (2003b), IAMB-
FDR Pena (2008), Inter-IAMB Yaramakala & Margaritis (2005)

• Hybrid methods: MMHC Tsamardinos et al. (2006), RSMAX2 Friedman et al. (2013),
H2PC Gasse et al. (2014)

We collect the open-source implementations of these methods. Most of the implementations are col-
lected from the bnlearn Scutari (2010) repository 1; CCDr 2, NOTEARS 3, GOLEM 4 are collected
from Github; fGES and PC-Stable are collected from TETRAD Ramsey et al. (2018) 5.

We generate testing problems based on two random graph models, Erdös-Rényi (ER) Erdős et al.
(1960) and scale-free (SF) Barabási & Bonabeau (2003), where the edge number is set to be two
times the node number. Specifically, each testing problem involves 1000 variables, has Gaussian
noise, and the observation number m = 1000. Based on each graph model, 10 different testing
problems are generated, resulting in a total of 20 testing problems. Each method is then applied to
these testing problems, with a runtime limit of 3600 seconds for each problem. Table 4 presents the
average performance of these methods on all 20 testing problems, measured by F1 score (Adjacent)
and runtime. The results indicate that fGES and PC-Stable are the top-performing methods, consis-
tently maintaining F1 scores above 0.5 when the variable count reaches 1000. While HC and TABU
also achieve F1 scores above 0.5, their runtime is significantly longer, making them impractical for
testing problems involving 10,000 variables. As a result, they are excluded from the comparison
experiments.

C.3 AUTOMATIC CONSTRUCTION OF THE SLE

Algorithm Configuration Space During the SLE construction process, the algorithm configura-
tion space is defined by two candidate algorithms and their hyperparameters.

• PC-Stable Colombo et al. (2014) with two hyperparameters: significance threshold of CI
tests within the interval α ∈ [0.01, 0.2] and the search’s maximum depth interval m ∈
[1, 1000]

1https://www.bnlearn.com/bnrepository (Creative Commons Attribution-Share Alike Li-
cense).

2https://github.com/itsrainingdata/ccdrAlgorithm (license not specified)
3https://github.com/xunzheng/notears (Apache-2.0 license)
4https://github.com/ignavierng/golem (Apache-2.0 license)
5https://www.ccd.pitt.edu/tools (GNU General Public License (GPL) v2 license)

16

https://www.bnlearn.com/bnrepository
https://github.com/itsrainingdata/ccdrAlgorithm
https://github.com/xunzheng/notears
https://github.com/ignavierng/golem
https://www.ccd.pitt.edu/tools

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 4: Preliminary testing results. “-” means not returning solutions within a time budget of 3600s.

Method F1 runtime (s)

PC-Stable 0.71 576.21

fGES 0.66 625.86

HC 0.528 3170.22

TABU 0.528 3181.777

CCDr 0.392 834.781

MMHC 0.331 1210.805

RSMAX2 0.326 1416.733

GOLEM 0.32 3622.433

IAMB-FDR 0.271 2021.871

Inter-IAMB 0.189 2865.472

IAMB 0.157 2943.536

Fast-IAMB 0.107 3351.702

NOTEARS 0.099 3604.744

GS - 3600.32

H2PC - 3610.257

• fGES Ramsey et al. (2017) with three hyperparameters: structural penalty of the BIC score
within interval λ ∈ [1.0, 1000.0], the maximum number of parents for a single node during
the search process within interval m ∈ [1, 1000], and the option to use the faithfulness
assumption or not.

We use the implementations of them from the causal discovery tool box TETRAD Ramsey et al.
(2018) 6. SMAC (version 3) Lindauer et al. (2022) 7 is used as the hyperparameter optimization
procedure.

Training Problem Set For Auto-SLE, we used the data generation method and randomly pro-
duced 100 training problem instances. In order to ensure that the training data is diverse, compre-
hensive, and representative, each instance was derived by the following steps: (i) selecting a base
network at random from the bnlearn Scutari (2010) repository 8; (ii) replicating it a random num-
ber of times, while making sure the total node count is less than or equal to 1000, and connecting
the replicas by adding 10% of edges between them randomly, ensuring the final network remains a
DAG; (iii) utilizing the complete DAG and Xi = φ

(
Xpa(i)

)
+ εi, to produce 1,000 observational

data records. Here the weights in the linear function φ and the standard deviations of Gaussian
noises are sampled uniformly from [−1,−0.5] ∪ [0.5, 1] and [0, 1], respectively; (iv) re-scaling the
observation data so that all data columns possess the same mean and standard deviation. These 100
training problem instances are independent of testing data and are exclusively for the construction
of the SLE.

The Constructed SLE The constructed SLE contains four member algorithms, as running more
iterations of Auto-SLE brings negligible improvement (smaller than 0.1) in SLE’s performance on
the training set. Specifically, the training performance ()in terms of the sum of F1 Adjacent and
F1 Arrowhead) progress is: ite 1 (143.4) → ite 2 (156.1) → ite 3 (158.1) → ite 4 (158.5) → ite 5
(158.5). The SLE is detailed in Table 5. It is interesting to find that the SLE only contains fGES,
meaning PC-Stable has not defeated fGES in the construction process.

6https://www.ccd.pitt.edu/tools (GNU General Public License (GPL) v2 license)
7https://automl.github.io/SMAC3/main (3-clause BSD license)
8https://www.bnlearn.com/bnrepository (Creative Commons Attribution-Share Alike Li-

cense)

17

https://www.ccd.pitt.edu/tools
https://automl.github.io/SMAC3/main
https://www.bnlearn.com/bnrepository

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 5: The SLE contructed by Auto-SLE.

Member Algorithm Candidate Algorithm Hyperparameter Values

1 fGES λ = 5.872727477498224, m = 185, and without faithfulness assumption
2 fGES λ = 20.60452402709974, m = 17, and without faithfulness assumption
3 fGES λ = 2.537674798471765, m = 91, and without faithfulness assumption
4 fGES λ = 5.624595350676138, m = 11, and without faithfulness assumption

C.4 DEFAULT SLE AND RANDOM SLE

Default SLE and random SLEs are constructed in alternative ways other than Auto-SLE. The former
contains the default fGES and PC-Stable, as well as variants with randomly chosen hyperparameter
values for each of them; The latter contains two variants with randomly chosen hyperparameter
values for each of fGES and PC-Stable. According to the causal discovery toolbox TETRAD Ramsey
et al. (2018), the default hyperparameter values for PC-Stable is: α = 0.05 and m = 1000; the
default hyperparameter values for fGES is λ = 1.0,m = 1000, and without faithfulness assumption.
Finally, SLE (Default) and SLE (Random) are shown in Table 6 and Table 7.

Table 6: Default SLE

Member Algorithm Candidate Algorithm Hyperparameter Values

1 PC-Stable α = 0.05, and m = 1000
2 fGES λ = 1.0, m = 1000, and without faithfulness assumption
3 PC-Stable α = 0.08399128452994686, and m = 850
4 fGES λ = 797.254519880674, m = 871, and without faithfulness assumption

Table 7: Random SLE.

Member Algorithm Candidate Algorithm Hyperparameter Values

1 PC-Stable α = 0.08399128452994686, and m = 850
2 fGES λ = 797.254519880674, m = 871, and without faithfulness assumption
3 PC-Stable α = 0.10744707122087944, and m = 980
4 fGES λ = 792.8350933385117, m = 456, and with faithfulness assumption

C.5 TESTING RESULTS ON LARGER ALARM PROBLEMS AND ASIA PROBLEMS

Table 8 and Table 9 present the testing results of the compared methods on the Alarm and Asia
problems with up to 30,000 variables, respectively.

C.6 COMPUTE RESOURCE

Unless otherwise indicated, all experiments in this work are conducted on a Linux server equipped
with an Intel(R) Xeon(R) Gold 6336Y CPU @ 2.40GHz, 96 cores, and 768GB of main memory.
The system version is Ubuntu 22.04.2 LTS.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Ta
bl

e
8:

Te
st

in
g

re
su

lts
on

A
la

rm
pr

ob
le

m
s

w
ith

up
to

30
00

0
va

ri
ab

le
s,

in
te

rm
s

of
F1

A
dj

ac
en

t,
F1

A
rr

ow
he

ad
,S

H
D

,a
nd

ru
nt

im
e.

O
n

ea
ch

ne
tw

or
k,

th
e

m
ea

n
±

st
d

pe
rf

or
m

an
ce

ob
ta

in
ed

by
ea

ch
m

et
ho

d
on

10
pr

ob
le

m
s

is
re

po
rt

ed
.

T
he

be
st

pe
rf

or
m

an
ce

in
te

rm
s

of
ac

cu
ra

cy
m

et
ri

cs
is

m
ar

ke
d

w
ith

an
un

de
rl

in
e,

an
d

th
e

pe
rf

or
m

an
ce

th
at

is
no

ts
ig

ni
fic

an
tly

di
ff

er
en

tf
ro

m
th

e
be

st
pe

rf
or

m
an

ce
(a

cc
or

di
ng

to
a

W
ilc

ox
on

si
gn

ed
-r

an
k

te
st

w
ith

si
gn

ifi
ca

nc
e

le
ve

lp
=

0.
0
5

)i
s

in
di

ca
te

d
in

bo
ld

.

Pr
ob

le
m

A
la

rm
-1

00
0

A
la

rm
-2

00
0

A
la

rm
-3

00
0

A
la

rm
-4

00
0

A
la

rm
-5

00
0

A
la

rm
-6

00
0

A
la

rm
-7

00
0

A
la

rm
-8

00
0

A
la

rm
-9

00
0

A
la

rm
-1

00
00

A
la

rm
-2

00
00

A
la

rm
-3

00
00

(|V
|,
|E
|)

(1
03

6,
14

17
)

(2
03

5,
27

83
)

(3
03

4,
41

50
)

(4
03

3,
55

16
)

(5
03

2,
68

82
)

(6
03

1,
82

48
)

(7
03

0,
96

14
)

(8
02

9,
10

98
1)

(9
02

8,
12

34
7)

(1
00

27
,1

37
13

)
(2

00
17

,2
73

75
)

(3
00

07
,4

10
37

)

P/
SL

E

F1
A

dj
ac

en
t

83
.8

80
.3

79
.4

80
.2

80
.4

80
.7

80
.3

80
.0

78
.9

79
.7

78
.8

78
.2

F1
A

rr
ow

he
ad

74
.5

65
.8

64
.6

65
.1

66
.1

65
.9

66
.7

66
.8

63
.6

66
.2

64
.8

64
.1

SH
D

47
8.

0
13

26
.0

20
30

.0
26

38
.0

31
17

.0
38

17
.0

44
09

.0
49

99
.0

62
72

.0
63

66
.0

13
49

1.
0

20
65

8.
0

R
un

tim
e

(s
)

7.
2

12
.0

18
.6

21
.1

35
.2

34
.9

44
.0

65
.7

91
.0

98
.6

34
5.

6
56

3.
6

P/
SL

E
(D

)

F1
A

dj
ac

en
t

69
.5

59
.5

51
.9

50
.4

46
.2

43
.6

42
.1

39
.5

35
.9

34
.1

29
.4

25
.9

F1
A

rr
ow

he
ad

62
.3

49
.2

42
.1

41
.3

38
.2

35
.5

35
32

.9
29

28
.3

15
.7

13
SH

D
10

86
33

61
65

49
93

57
13

37
1

18
04

3
21

89
2

27
49

5
36

10
8

42
80

5
34

55
7

50
31

9
R

un
tim

e
(s

)
12

.9
40

.6
76

.5
16

2.
3

45
5.

9
67

0.
4

86
8.

5
17

55
28

74
.8

52
62

.8
76

03
.4

72
63

P/
SL

E
(R

)

F1
A

dj
ac

en
t

72
.2

68
.0

60
.5

60
.2

55
.6

55
.2

53
.8

52
.0

50
.1

49
.2

32
.5

11
.8

F1
A

rr
ow

he
ad

42
.8

38
.9

32
.0

31
.9

29
.5

28
.7

28
.1

27
.1

26
.0

25
.3

16
.5

6.
0

SH
D

10
46

.0
24

70
.0

48
02

.0
66

26
.0

95
01

.0
11

93
1.

0
14

22
1.

0
17

34
9.

0
20

81
7.

0
23

67
3.

0
45

08
5.

0
47

18
4.

0
R

un
tim

e
(s

)
6.

1
9.

5
14

.9
24

.6
49

.9
74

.8
14

0.
2

21
9.

8
37

1.
6

68
4.

6
71

66
.5

72
29

.8

P/
PC

-S
ta

bl
e

F1
A

dj
ac

en
t

75
.1

73
.2

68
.1

68
.1

64
.9

64
.8

62
.9

61
.3

59
.3

58
.6

50
.6

32
.5

F1
A

rr
ow

he
ad

46
.6

45
.9

39
.1

38
.0

35
.9

35
.2

34
.2

32
.6

31
.7

30
.7

26
.1

16
.8

SH
D

89
9.

0
19

13
.0

35
12

.0
48

69
.0

66
70

.0
83

06
.0

10
16

3.
0

12
26

9.
0

14
83

0.
0

16
84

2.
0

44
49

1.
0

54
59

9.
0

R
un

tim
e

(s
)

3.
3

5.
5

8.
4

12
.2

29
.7

33
.7

52
.7

88
.6

17
8.

5
21

0.
8

36
49

.3
68

53
.3

P/
fG

E
S

F1
A

dj
ac

en
t

69
.5

59
.5

51
.9

50
.4

46
.2

43
.6

42
.1

39
.5

35
.9

34
.1

5.
9

/
F1

A
rr

ow
he

ad
62

.3
49

.2
42

.1
41

.3
38

.2
35

.5
35

.0
32

.9
29

.0
28

.3
4.

8
/

SH
D

10
86

.0
33

61
.0

65
49

.0
93

57
.0

13
37

1.
0

18
04

3.
0

21
89

2.
0

27
49

5.
0

36
10

8.
0

42
80

5.
0

30
06

5.
0

41
03

7.
0

R
un

tim
e

(s
)

4.
8

20
.4

60
.3

13
1.

7
40

6.
7

60
4.

0
80

1.
4

16
00

.0
25

85
.5

38
96

.7
65

49
.9

67
92

.9

PC
-S

ta
bl

e

F1
A

dj
ac

en
t

72
.6

64
.8

58
.4

55
.7

/
/

/
/

/
/

/
/

F1
A

rr
ow

he
ad

50
.3

42
.5

37
.9

36
.5

/
/

/
/

/
/

/
/

SH
D

12
61

.0
33

60
.0

61
92

.0
91

15
.0

/
/

/
/

/
/

/
/

R
un

tim
e

(s
)

27
3.

5
29

97
.3

19
09

1.
2

85
19

7.
4

86
40

0.
0

86
40

0.
0

86
40

0.
0

86
40

0.
0

86
40

0.
0

86
40

0.
0

86
40

0.
0

86
40

0.
0

fG
E

S

F1
A

dj
ac

en
t

58
.2

55
.7

53
.9

54
.2

53
.9

53
.8

53
.8

53
.7

53
.6

/
/

/
F1

A
rr

ow
he

ad
52

.8
47

.2
44

.9
45

.9
46

.2
45

.5
46

.0
46

.4
45

.2
/

/
/

SH
D

21
07

.0
46

97
.0

73
64

.0
97

07
.0

12
12

3.
0

14
67

8.
0

17
04

5.
0

19
42

3.
0

22
12

8.
0

/
/

/
R

un
tim

e
(s

)
60

0.
9

23
69

.1
54

53
.8

10
33

6.
8

16
62

3.
9

26
76

0.
6

40
46

5.
7

60
30

5.
9

84
88

9.
9

86
40

0.
0

86
40

0.
0

86
40

0.
0

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Ta
bl

e
9:

Te
st

in
g

re
su

lts
on

A
si

a
pr

ob
le

m
s

w
ith

up
to

30
00

0
va

ri
ab

le
s,

in
te

rm
s

of
F1

A
dj

ac
en

t,
F1

A
rr

ow
he

ad
,S

H
D

,a
nd

ru
nt

im
e.

O
n

ea
ch

ne
tw

or
k,

th
e

m
ea

n
±

st
d

pe
rf

or
m

an
ce

ob
ta

in
ed

by
ea

ch
m

et
ho

d
on

10
pr

ob
le

m
s

is
re

po
rt

ed
.

T
he

be
st

pe
rf

or
m

an
ce

in
te

rm
s

of
ac

cu
ra

cy
m

et
ri

cs
is

m
ar

ke
d

w
ith

an
un

de
rl

in
e,

an
d

th
e

pe
rf

or
m

an
ce

th
at

is
no

ts
ig

ni
fic

an
tly

di
ff

er
en

tf
ro

m
th

e
be

st
pe

rf
or

m
an

ce
(a

cc
or

di
ng

to
a

W
ilc

ox
on

si
gn

ed
-r

an
k

te
st

w
ith

si
gn

ifi
ca

nc
e

le
ve

lp
=

0.
0
5

)i
s

in
di

ca
te

d
in

bo
ld

.

Pr
ob

le
m

A
si

a-
10

00
A

si
a-

20
00

A
si

a-
30

00
A

si
a-

40
00

A
si

a-
50

00
A

si
a-

60
00

A
si

a-
70

00
A

si
a-

80
00

A
si

a-
90

00
A

si
a-

10
00

0
A

si
a-

20
00

0
A

si
a-

30
00

0
(—

V
—

,—
E

—
)

(1
00

0,
11

00
)

(2
00

0,
22

00
)

(3
00

0,
33

00
)

(4
00

0,
44

00
)

(5
00

0,
55

00
)

(6
00

0,
66

00
)

(7
00

0,
77

00
)

(8
00

0,
88

00
)

(9
00

0,
99

00
)

(1
00

00
,1

10
00

)
(2

00
00

,2
20

00
)

(3
00

00
,3

30
00

)

P/
SL

E

F1
A

dj
ac

en
t

95
.4

94
.1

94
.7

94
.7

94
.1

94
.4

94
.5

94
.2

94
.3

93
.8

92
.8

92
.5

F1
A

rr
ow

he
ad

73
.7

72
.6

73
.0

73
.4

72
.4

72
.8

72
.9

72
.6

72
.8

71
.8

71
.1

70
.9

SH
D

12
5.

0
32

4.
0

44
0.

0
57

1.
0

82
9.

0
93

1.
0

10
61

.0
13

02
.0

14
49

.0
17

17
.0

41
03

.0
62

87
.0

R
un

tim
e

5.
4

8.
1

10
.6

12
.3

14
.4

17
.3

19
.8

24
.3

28
.7

35
.2

11
5.

3
28

7.
8

P/
SL

E
(D

)

F1
A

dj
ac

en
t

77
.7

67
.3

61
53

.4
51

.8
47

41
.7

41
38

.1
36

.8
57

.1
0.

2
F1

A
rr

ow
he

ad
62

.9
55

.2
50

.8
43

.8
42

.4
38

.4
34

.3
33

.4
31

.2
29

.9
24

.3
/

SH
D

72
9

23
07

44
39

78
90

10
41

6
15

02
1

21
30

8
25

17
8

31
71

8
36

83
1

30
18

0
32

96
3

R
un

tim
e

12
.4

24
.8

52
.8

14
1.

6
25

0.
9

52
4.

2
98

4.
1

15
38

.6
22

10
.7

30
83

72
30

.6
85

71
.3

P/
SL

E
(R

)

F1
A

dj
ac

en
t

86
.4

79
.5

77
.2

70
.4

70
.0

65
.4

63
.3

61
.6

60
.4

58
.8

45
.7

0.
2

F1
A

rr
ow

he
ad

48
.1

40
.4

37
.5

30
.9

31
.5

29
.1

27
.5

26
.2

26
.2

25
.1

19
.4

/
SH

D
50

8.
0

15
77

.0
26

97
.0

48
32

.0
61

10
.0

86
88

.0
11

01
2.

0
13

36
6.

0
15

71
2.

0
18

14
1.

0
45

26
0.

0
32

96
2.

0
R

un
tim

e
5.

0
7.

1
10

.2
16

.9
24

.2
51

.4
91

.5
14

1.
2

21
4.

5
37

4.
8

71
53

.0
72

20
.1

P/
PC

-S
ta

bl
e

F1
A

dj
ac

en
t

90
.5

86
.1

85
.2

81
.5

80
.0

77
.5

75
.0

73
.9

72
.9

71
.4

61
.0

35
.1

F1
A

rr
ow

he
ad

55
.7

49
.5

46
.4

41
.2

39
.4

36
.6

34
.9

33
.7

33
.0

31
.6

26
.1

14
.6

SH
D

35
2.

0
10

31
.0

17
00

.0
28

63
.0

38
59

.0
53

08
.0

68
89

.0
83

01
.0

97
45

.0
11

26
2.

0
33

24
5.

0
41

13
1.

0
R

un
tim

e
2.

7
3.

4
4.

9
8.

0
11

.6
24

.4
46

.7
68

.3
92

.7
14

3.
0

25
21

.7
70

36
.3

P/
fG

E
S

F1
A

dj
ac

en
t

77
.7

67
.3

61
.0

53
.4

51
.8

47
.0

41
.7

41
.0

38
.1

36
.8

8.
2

/
F1

A
rr

ow
he

ad
62

.9
55

.2
50

.8
43

.8
42

.4
38

.4
34

.3
33

.4
31

.2
29

.9
6.

5
/

SH
D

72
9.

0
23

07
.0

44
39

.0
78

90
.0

10
41

6.
0

15
02

1.
0

21
30

8.
0

25
17

8.
0

31
71

8.
0

36
83

1.
0

27
11

9.
0

33
00

0.
0

R
un

tim
e

3.
4

11
.4

34
.7

12
5.

5
21

4.
3

46
6.

5
86

7.
3

13
70

.8
19

73
.2

28
38

.6
66

17
.6

66
29

.0

PC
-S

ta
bl

e

F1
A

dj
ac

en
t

73
.1

62
.5

56
.8

/
/

/
/

/
/

/
/

/
F1

A
rr

ow
he

ad
36

.6
29

.9
27

.2
/

/
/

/
/

/
/

/
/

SH
D

11
74

.0
34

57
.0

63
21

.0
/

/
/

/
/

/
/

/
/

R
un

tim
e

99
2.

5
99

84
.5

38
95

6.
1

86
40

0.
0

86
40

0.
0

86
40

0.
0

86
40

0.
0

86
40

0.
0

86
40

0.
0

86
40

0.
0

86
40

0.
0

86
40

0.
0

fG
E

S

F1
A

dj
ac

en
t

50
.5

48
.5

48
.0

47
.9

47
.6

/
/

/
/

/
/

/
F1

A
rr

ow
he

ad
41

.7
40

.2
39

.8
39

.8
39

.4
/

/
/

/
/

/
/

SH
D

23
17

.0
49

82
.0

76
11

.0
10

20
8.

0
12

87
8.

0
/

/
/

/
/

/
/

R
un

tim
e

22
02

.0
77

62
.0

19
45

2.
0

41
56

7.
9

68
22

9.
9

86
40

0.
0

86
40

0.
0

86
40

0.
0

86
40

0.
0

86
40

0.
0

86
40

0.
0

86
40

0.
0

20

	Introduction
	Preliminaries and Related Work
	The BN Structure Learning Problem
	Related Work

	Automatic Construction of SLEs
	Problem Formulation
	Auto-SLE: A Greedy Approach
	Theoretical Justifications
	Applying the Constructed SLE to a New Problem

	Experiments
	Experimental Setup
	Results and Analysis
	Generalization to Larger Problems
	Generalization to Problems with no Block Structure

	Conclusion
	The Partition-Estimation-Fusion (PEF) Framework
	Partition
	Estimation
	Fusion

	Proofs
	Proof of Fact 1
	Proof of Theorem 1

	Details of the Experiments
	Evaluation Metrics
	Preliminary Testing
	Automatic Construction of the SLE
	Default SLE and Random SLE
	Testing results on Larger Alarm Problems and Asia Problems
	Compute Resource

