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ABSTRACT

Learning the structure of Bayesian networks (BNs) from data is challenging, es-
pecially for datasets involving a large number of variables. The recently proposed
divide-and-conquer (D&D) strategies present a promising approach for learning
large BNs. However, they still face a main issue of unstable learning accuracy
across subproblems. In this work, we introduce the idea of employing struc-
ture learning ensemble (SLE), which combines multiple BN structure learning
algorithms together, to consistently achieve high learning accuracy across vari-
ous problems. We further propose an automatic approach called Auto-SLE for
constructing near-optimal SLEs, addressing the challenge of manually designing
effective SLEs. The automatically constructed SLE is then integrated into a D&D
framework. Extensive experiments firmly show the superiority of our method over
existing methods in learning large BNs, achieving accuracy improvement usually
by 30%~225% on datasets involving 10,000 variables. Furthermore, our method
generalizes very well to datasets with many more variables and different network
characteristics than those present in the training data for constructing the SLE.
These results indicate the significant potential of employing automatic construc-
tion of SLEs for BN structure learning.

1 INTRODUCTION

Learning the structure of Bayesian networks (BNs) (Pearl, [1985) from data has attracted much re-
search interest, due to its wide applications in machine learning, statistical modeling, and causal
inference (Pearl, 1988} Kitson et al., |2023). Various methods have been proposed to tackle this
problem, including constraint-based methods (Colombo et al.,[2014]), score-based methods (Ramsey
et al.,2017), and hybrid methods (T'samardinos et al.,[2006). However, most previous studies primar-
ily dealt with a relatively small number of variables. For example, the bnlearn repository (Scutari,
2010), which is widely used in the literature, contains mostly networks with only a few dozen nodes
(variables). In contrast, in real-world applications such as alarm events analysis (Cai et al.| [2022)),
MRI image interpretation (Ramsey et al.||2017), and human genome analysis (Schaffter et al.,|2011),
it is common to generate and collect data from thousands of variables and beyond. Unfortunately,
as the number of variables increases, many of the existing methods would slow down dramatically
and become much less accurate (Zhu et al.l [2021)).

Recently, Gu and Zhou (2020) introduced a divide-and-conquer (D&D) framework named partition-
estimation-fusion (PEF) for the structure learning of large BNs. Specifically, PEF consists of three
steps: partitioning nodes into clusters (partition), learning a subgraph on each cluster (estimation),
and fusing all subgraphs into a single BN (fusion). It is noteworthy that PEF is flexible as any
existing structure learning algorithm can be used in the estimation step. Additionally, due to the
smaller number of nodes in each cluster compared to the total number of nodes, the overall structure
learning is accelerated. Moreover, the structure learning processes for different subproblems can be
parallelized in a straightforward way, leading to further improvement in computational efficiency.

However, despite the evident advantages provided by PEEF, it still faces a main issue of unstable
structure learning accuracy across subproblems. The root cause for this is that the partition step
of PEF tends to yield subproblems with significantly different characteristics, e.g., varying node
numbers. When a single structure learning algorithm is used to solve all subproblems, as in ex-
isting PEF-based methods (Gu & Zhou, 2020)), achieving stable learning accuracy across different
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Figure 1: An overview of P/SLE. The SLE is automatically constructed by Auto-SLE and integrated
into the estimation step of PEF.

subproblems becomes challenging. In fact, even for the same algorithm, different hyperparameter
values can lead to significant variations in its behavior, thereby affecting its suitability for solving
specific subproblems. For instance, when employing the well-known fast greedy equivalence search
(fGES) (Ramsey et al.,[2017)) algorithm with Bayesian information criterion (BIC) as the score func-
tion, its penalty coefficient should ideally increase with the sparsity of the underlying BN. However,
given a BN structure learning problem, determining the optimal penalty coefficient in advance is
difficult as the underlying BN is unknown.

Inspired by the success of ensemble methods like AutoAttack (Croce & Heinl 2020) in the field of
adversarial robustness, which utilizes an attack ensemble to achieve more reliable robustness evalua-
tion compared to individual attacks, we introduce the idea of employing structure learning ensemble
(SLE) to achieve stable learning accuracy in BN structure learning. Specifically, a SLE comprises
several structure learning algorithms, dubbed member algorithms. When applied to a BN structure
learning problem, a SLE runs its member algorithms individually and chooses the best of their out-
puts. Similar to how AutoAttack integrates diverse attacks, a high-performing SLE should consist
of complementary member algorithms that excel at solving different types of problems. However,
in contrast to AutoAttack where the attacks are manually designed and selected, we propose to auto-
matically construct SLEs. This can significantly reduce the reliance on human expertise and effort,
as manually constructing SLEs typically requires domain experts to explore the vast design space of
SLESs, which can be both laborious and intricate.

Specifically, we first formulate the problem of automatic SLE construction, and then present Auto-
SLE, a simple yet effective approach to address this problem. The approach is implemented with a
design space containing several candidate algorithms; each algorithm has a set of hyperparameters.
To construct a SLE, Auto-SLE starts from an empty ensemble, and repeatedly adds the algorithm
and its associated hyperparameter values to the ensemble such that the ensemble improvement is
maximized. In addition to its conceptual simplicity, Auto-SLE is appealing also because it yields
SLEs provably within a constant factor of optimal for the training problem set. To achieve our goal
of constructing a single SLE that can generalize well across network sizes and characteristics, we
utilize a training set comprising diverse networks of varying sizes. Finally, the constructed SLE is
integrated into the PEF framework, resulting in P/SLE (see Figure for an overview).

From extensive comparisons with the state-of-the-art baselines, it is found that P/SLE consistently
achieves significantly higher accuracy in learning large BNs, and its superiority becomes even more
pronounced as the network size further increases. On datasets involving 10,000 variables, P/SLE
typically achieves accuracy improvement by 30%~225%. Further experiments show that P/SLE,
without any additional tuning or adaptation, generalizes well to datasets with much larger number
(e.g., 30,000) of variables and possessing different network characteristics than the training data.
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It is worth mentioning that Auto-SLE itself is a general SLE construction approach that can be
applied to various types of BNs (Gaussian and non-Gaussian) and even other types of causal models.
In this work, we focus on Gaussian BNs, which are arguably the most widely studied type of BNs
and have a rich set of baselines, allowing us to thoroughly assess the potential of Auto-SLE. Besides,
it should be noted that PEF-based methods, such as P/SLE, are most suitable for learning BNs with
a block structure to some extent, meaning the connections between subgraphs are relatively weak.
It is quite common for a large network to exhibit such a block structure, due to the underlying
heterogeneity among the nodes (Holland et al., |1983} |Airoldi et al., 2008; |Abbe et al.l 2015). On
the other hand, our results also indicate that, even for large BNs without a block structure, P/SLE
can still achieve competitive learning accuracy. The promising performance of P/SLE not only
demonstrates the potential of applying SLEs to BN structure learning, a largely unexplored area, but
also highlights the effectiveness of Auto-SLE as a simple and easy-to-use approach for constructing
SLEs. This is expected to further facilitate the advancement of SLEs in this field.

2 PRELIMINARIES AND RELATED WORK

2.1 THE BN STRUCTURE LEARNING PROBLEM

The structure of a BN for d random variables X7, ..., X is represented by a directed acyclic graph
(DAG), denoted as G = (V, E). Here, V = {1,...,d} is the set of nodes corresponding to the
random variables and £ = {(j,i) € V x V : j — i} is the directed edge set. Define V() =
{j € V : (j,i) € E} as the parent node set of node ¢, and X,,(;) as the set of corresponding
random variables. The joint probability density function f of X1, ..., X is factorized according to
the structure of G:

d
f(X17X25"'aXd):Hf(Xi|Xpa(i))a (1)
i=1
where f (Xi\Xpa(i)) is the conditional probability density of X; given X ,,(;). In this work, we
focus on Gaussian BNs for continuous data. Specifically, the conditional distributions are specified
by the following linear structural equation model:

Xi= ¢ (Xpa(z)) +ei, =1, "'1d1 (2)

where ¢(-) denotes a linear function and g; ~ N (0, O'?). Suppose we have obtained m iid ob-

servations of X1, ..., Xy, denoted as D € R™*?. Given D, the goal is to learn a DAG structure
G = (V, E) that accurately reflects the conditional dependencies among X7, ..., X,4. In practice,
accuracy metrics such as F1 score and structural Hamming distance (SHD) are typically used to
assess the quality of the learned BN.

2.2 RELATED WORK

The BN structure learning problem has been proven to be NP-hard (Chickering et al.|[2004), leading
to main research efforts on developing approximation methods to solve it. These methods can be
broadly classified into constraint-based, score-based, and hybrid methods. Constraint-based meth-
ods, such as PC (Spirtes et al., 2000), MMPC (Tsamardinos et al., 2003a), and PC-Stable (Colombo
et al.l 2014), use conditional independence tests on observations to identify relationships among
variables. In comparison, score-based methods explore the space of DAGs or Markov equivalence
classes (MECs) using search heuristics such as tabu search (TS) (Bouckaert, [1995)), genetic algo-
rithm (GA) (Larranaga et al., [1996)), and greedy search (Chickering, |2002). These methods also
employ score functions, such as BDeu (Akaike} [1974), BIC (Schwarz, |1978)), and K2 (Cooper &
Herskovits, |1992), to guide the search. It is worth mentioning a recent research line of score-based
methods including NOTEARS (Zheng et al., |2018) and LEAST (Zhu et al.} 2021) that reformulate
the structure learning as a continuous optimization problem. Finally, hybrid methods integrate both
constraint-based and score-based techniques. For example, MMHC (Tsamardinos et al., 2006) uses
MMPC to build the graph skeleton and utilizes TS to determine the final BN.

However, as the number of variables increases, many of the existing methods would slow down
dramatically and become much less accurate (Zhu et al.,[2021). Actually, based on our preliminary
testing of 15 existing methods, fGES (Ramsey et al.l 2017), which is a variant of the greedy search
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algorithm (Chickering}, 2002), and PC-Stable (Colombo et al.,|2014), are the only methods capable
of maintaining relatively stable learning accuracy (e.g., achieving F1 score of around 0.5) within
reasonable time when the variable number reaches 1000. Moreover, when the number of variables
reaches 10,000, all methods, even after running for a quite long period of time (e.g., 24 hours), are
unable to output solutions.

PEF Framework To address the challenge of learning large BNs, Gu and Zhou (2020) introduced
a partition-estimation-fusion (PEF) framework. It comprises the following three steps.

* Partition: The d nodes are partitioned into clusters with a hierarchical clustering algorithm.

» Estimation: An existing structure learning algorithm is applied to estimate a subgraph on
each cluster of nodes.

» Fusion: Merge estimated subgraphs into one DAG containing all the d nodes.

The details of PEF can be found in Appendix [A] While PEF has dramatically enhanced the capabil-
ities of handling large BN, it still faces a main issue of unstable structure learning accuracy across
subproblems. In the following we will describe the use of automatically constructed SLE in the
estimation step to address this issue.

3 AUTOMATIC CONSTRUCTION OF SLES

3.1 PROBLEM FORMULATION

We first formulate the SLE construction problem. Formally, a SLE with & member algorithms is
denoted as A = {61,...,0;}, where 6; represents the i-th member algorithm of A. Let T =
{D1,Ds, ...} denote a training problem set, where each D; represents a BN structure learning
problem with known ground truth. When using A to solve a problem D € T, one straightforward
strategy is to run all member algorithms of A individually in parallel, and the best solution among
all the found solutions in terms of a quality measure @ (e.g., F1 score) is returned. Let Q(A, D)
and Q(6;, D) denote the performance of A and 6; on D in terms of @, respectively. Without loss of
generality, we assume a larger value is better for ). Then we have:

Q(A, D) = max Q(8;, D). 3)

Then the performance of A on T in terms of (), denoted as Q(A,T), is the average value of A’s
performance on the training problems in 7' (Q(A, T') = 0 when A is empty):

1| > Q(A, D). )

|7
DeT

QA,T) =

For the automatic construction of A, the member algorithms of A are not manually determined but
automatically selected from an algorithm configuration space ®. Specifically, suppose we have a
candidate algorithm pool {A4, ..., A, }, which can be constructed by collecting existing algorithms.
Each candidate algorithm has some hyperparameters. Let ©; denote the hyperparameter configu-
ration space of A;, where a configuration § € O; refers to a setting of 4;’s hyperparameters, such
that its behaviors is completely specified. Then, the algorithm configuration space ® is defined as
® =0,U0B;3---UBO,, and each § € O represents a specific candidate algorithm along with the
specific values of its hyperparameters. As presented in Definition[I] the SLE construction problem
is to select £ member algorithms from © to form a SLE A*, such that its performance on the training
set T in terms of () is maximized.

Definition 1. Given T, (), ®, and k, the SLE construction problem is to find A* = {05 ... 6;} that
maximizes Q(A*,T), s.t. 0 € @ fori =1...k.

3.2 AUTO-SLE: A GREEDY APPROACH

We now introduce Auto-SLE, a simple yet effective approach for automatically constructing SLEs.
As shown in Algorithm[I] Auto-SLE starts with an empty ensemble A (line 1) and finds the candidate
algorithm and its hyperparameter values denoted as 6° that, if included in A, maximizes ensemble
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Algorithm 1: Auto-SLE

Input: quality measure @, training set 7', algorithm configuration space ®, ensemble size k
Output: A

A+ o,i+1;

while i < k do
° +— argmaxyce @ (AU{6},T) — Q (A, T);
ifQ(AU{0°},T) =Q (A, T) then return A;
A—AU{0°},i+—i+1;

end

return A

improvement in terms of @) (line 3). Ties are broken arbitrarily here. After this, 6° is subject to the
following procedure: if adding it to A does not improve performance, which means the construction
process has converged, Auto-SLE will terminate and return A (line 4); otherwise 6° is added to A
(line 5). The above process will be repeated until k£ member algorithms have been found (line 2).

Let A(A|A) = Q (AU {6},T) — Q (A, T) denote the performance improvement brought by adding
6 to A. Noticing that each iteration of Auto-SLE needs to find 6° that maximizes A(6|A), when the
algorithm configuration space @ is large or even infinite (e.g., candidate algorithms have continuous
hyperparameters), using enumeration to find ° is impractical. In practice, we employ hyperparame-
ter optimization procedures, such as Bayesian optimization (Lindauer et al.,|2022)), to approximately
maximize A(f|A), and the runs of these procedures account for the vast majority of the total com-
putational costs of Auto-SLE.

3.3 THEORETICAL JUSTIFICATIONS

We now theoretically analyze the performance of Auto-SLE on a give training problem set. For
notational simplicity, henceforth we omit the 7" in (-, 7") and directly use ((-). Our analysis is
based on the following key fact that Q(-) is monotone and submodular.

Fact 1. Q(+) is a monotone submodular function, i.e., for any two SLEs A, A’ C © and any 6 € O,
it holds that Q(A) < Q(AUA ) and Q(AUA'U{0}) —Q(AUA) <Q(AU{0}) — Q (A).

The proof is straightforward and can be found in Appendix [B| Intuitively, ) exhibits a diminishing
returns property that the marginal gain of adding § diminishes as the ensemble size increases. Based
on Fact[I] Theorem[I] holds.

Theorem 1. Using a hyperparameter optimization procedure that, in each iteration of Auto-SLE,

returns 0 within e-absolute error of the maximum of A(0)A), i.e., A(|A) > A(6°|A) — ¢, then the
quality Q(A) of the SLE constructed by Auto-SLE is bounded by

Q(A) = (1—1/e) - Q(A™) — ke, (5)

where A* is the optimal SLE to the SLE construction problem in Deﬁnition Alternatively, if 0 is
within e-relative error of A(6°|A), i.e., A(O]A) > A(6°]A) - (1 — €), then the quality Q(A) of the
SLE constructed by Auto-SLE is bounded by

Q(A) > (1—1/e'7) - Q(AY). (6)

The proof (see Appendix [B) is a slight extension of the classical derivations in maximizing A(6|A)
(Nembhauser et al.l [1978). Based on Theorem 1| Auto-SLE achieves (1 — 1/e)-approximation for
the optimal quality when given a perfect hyperparameter optimization procedure with € = 0. Sub-
optimal hyperparameter optimization procedures result in worse outcomes but small errors € do not
escalate. This is important because with large algorithm configuration space, it cannot be expected
for blackbox optimization procedures to find 8° in realistic time. However, at least for some scenar-
ios with a few parameters, widely-used Bayesian optimization techniques such as SMAC (Lindauer
et al., 2022) have empirically been shown to yield performance close to optimal within reasonable
time budget.

Note that Theorem [I] only provides a performance guarantee for the training problem set used for
constructing the SLE. By employing the same techniques introduced by Liu et al. (2020), we can
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recover guarantees for an independent test set that is sampled or generated from the same distribution
as the training set, given a sufficiently large training set. Nevertheless, our experimental results (see
Section[4.2)) demonstrate that the constructed SLE performs well beyond the training set.

3.4 APPLYING THE CONSTRUCTED SLE TO A NEW PROBLEM

Importantly, when presented with a testing problem to solve, it cannot be assumed that the ground
truth is known. Thus, quality measures that do not require ground truth, such as the BIC score
adopted in our experiments, are used to select the best output from the outputs of member algorithms.
It is worth mentioning that although this work focuses on utilizing the constructed SLE to enhance
PEF, the SLE itself can also serve as a complete and independent BN structure learning method.

4 EXPERIMENTS

Extensive experiments are conducted to answer two research questions (RQs).

* RQ1: Does the SLE constructed by Auto-SLE enhance PEF in learning large BNs?

* RQ2: Can the SLE generalize to larger problem sizes and different network characteristics
than that present in the training set?

4.1 EXPERIMENTAL SETUP

Benchmarks and Evaluation Metrics We generate diverse and large-scale benchmarks follow-
ing the approach in (Gu & Zhoul 2020). Specifically, the approach consists of four steps: (i) select
an existing network structure and replicates it until a predefined variable number is reached; (ii)
connect the replicas by adding 10% of edges between them randomly, while ensuring the final net-
work remains a DAG; (iii) utilize the complete DAG and Eq. (Z)) to generate observations, where the
weights in the linear function and the standard deviations of Gaussian noises are sampled uniformly
from [—1, —0.5] U [0.5,1] and [0, 1], respectively; (iv) re-scale the observations such that all data
columns have the same mean and standard deviation. We select 10 networks from the bnlearn repos-
itory (Scutari, [2010) with node numbers ranging from 5 to 441. Based on each of them, we use the
above approach to generate testing problems with around 1000 and 10,000 variables. Following (Gu
& Zhou, [2020), the sample size m in each testing problem is set to 1000.

The widely-used F1 score and SHD are adopted as the metrics for assessing learning accuracy. In
line with previous comparative study (Ramsey et al.,|2017), we use two specific variants of F1 score,
i.e., F1 Arrowhead (F17) that considers direction and F1 Adjacent (F17) that ignores direction,
since some methods (PC-Stable and fGES) output MECs of DAGs which may contain edges without
directions. Moreover, the wall-clock runtime of the methods is reported. For F1 metrics, a higher
value is better; for SHD and runtime, a lower value is better.

Constructing the SLE with Auto-SLE A diverse training problem set is beneficial for construct-
ing a SLE with good performance across problem sizes and network characteristics. Specifically,
the training set 7' comprises 100 problems, with variable numbers ranging from 5 to 1000, generated
using the above approach based on a network randomly selected from the 32 networks in bnlearn.
These problems are exclusively used for constructing the SLE and are independent of the testing
problems. For the algorithm configuration space ®, we consider two algorithms PC-stable (with
two hyperparameters) and fGES (with three hyperparameters) as candidate algorithms, which out-
perform others in our preliminary testing. We use their implementations from the causal discovery
tool box TETRAD (Ramsey et al., [2018). The sum of F1~ and F17 is adopted as the quality mea-
sure (), and ensemble size k is set to 4 as running more iterations of Auto-SLE brings a negligible
improvement to the SLE’s performance on the training set (see Appendix [C.3). SMAC (version
3) (Lindauer et al. [2022), a Bayesian optimization tool, is used to maximize A(f|A) in each it-
eration of Auto-SLE, with a time budget 12 hours per run. Consequently, Auto-SLE consumes
approximately 48 hours in total to construct the SLE. Then, the SLE is integrated into PEF, resulting
in P/SLE, which is evaluated in subsequent experiments without further tuning or adaptation.
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Table 1: Results on testing problems with 1000 variables, in terms of F1 Adjacent (F17), F1 Arrow-
head (F17), SHD, and runtime (T). On each network, the mean + std performance obtained by each
method on 10 problems is reported. The best performance in terms of accuracy metrics is marked
with an underline, and the performance that is not significantly different from the best performance
(according to a Wilcoxon signed-rank test with significance level p = 0.05) is indicated in bold. Let
B be the best performance achieved among the baselines and A be the performance of P/SLE. The
improvement (Impro.) ratio is calculated as (A-B)/B for F1 metrics (a higher value is better), and is
calculated as (B-A)/B for SHD (a lower value is better).

Problem Alarm Asia Cancer Child Earthquake Hailfinder Healthcare Mildew Pigs Survey
V[, |ED (1036,1417) ~ (1000,1100) ~ (1000,880)  (1000,1375)  (1000,880)  (1008,1307) (1001,1416)  (1015,1468) (1323.1954) (1002,1103)
F1~ 0.81+0.02 0.96+0.00 0.98+0.00 0.86+0.01 0.98+0.00 0.80+0.02 0.89+0.01 0.68+0.02 0.70+0.02 0.92+0.01

F17  0.68+0.04 0.74+0.01 0.9420.01 0.60+0.02 0.94+0.01 0.61+0.03 0.59+0.01 0.54+0.03 0.61+0.02 0.79+0.02

P/SLE SHD  625.7+73.6  125.2+15.2 43.1+6.9 581.1+23.3 46.1+8.1 571.3+62.7  485.0+384  1135.4+71.8 1262.8+84.4 309.9+29.8
T (s) 7.4+0.2 5.7%0.1 5.1£0.1 8.4+0.3 5.120.1 243.3+249.0 6.4+0.2 8.7x0.6 726.9£1176.6 6.0£0.1
F1™ 0.68+0.01 0.78+0.01 0.74+0.01 0.75+0.01 0.74+0.01 0.66x0.01 0.77£0.01 0.56+0.02 0.53x0.01 0.75x0.01
P/SLE(D) F17 0.57+0.03 0.64+0.01 0.73+0.01 0.56+0.01 0.72+0.01 0.57+0.02 0.56+0.01 0.45+0.03 0.47+0.02 0.62+0.02
SHD 1234.3+77.9  710.54#24.7  611.1£31.2  1055.5+39.4  617.5427.1  1158.4+65.2 1051.6+31.0 1826.2+100.4 2442.4+115.6 871.6+32.0
T (s) 26.0+1.8 20.4+3.0 17.1x2.7 21.6£5.0 15.4£2.3 366.0+287.4 9.7£1.8 14.2+2.2 5697.5£1870.6 7.8+0.1
F1~ 0.72£0.02 0.87£0.00 0.77x0.01 0.83x0.01 0.77x0.01 0.66x0.01 0.87x0.01 0.57x0.02 0.58+0.04 0.84+0.01
PISLER) F17 0.42+0.02 0.49+0.01 0.32+0.03 0.51+0.02 0.30+0.02 0.44+0.02 0.44+0.01 0.31£0.01 0.35+0.03 0.46+0.01
SHD 1070.1£56.9  511.7£17.2  697.1£44.0 ~ 680.7+34.7  703.7£34.5  1152.3%38.7  750.8+31.6 1647.1x60.2 1934.3+60.6 675.9+28.1
T (s) 19.6£1.1 12.2£1.9 11.4£1.9 13.7£1.7 10.4+1.4 33.348.3 12.943.1 15.5£1.8 5886.7£1671.0 8.3+2.0
F1 0.76x0.02 0.91£0.00 0.85£0.01 0.71£0.01 0.89+0.01 0.62+0.02 0.62+0.05 0.89+0.01
P/PC-Stable F17 0.56+0.01 0.47+0.03 0.46+0.01 0.35+0.02 0.40£0.04 .
~Sable sHp 342.749.5 414.8+23.8 648.0+20.3 382.5+42.3 1627.4+84.8
T (s) 6.120.1 6.020.1 2.8+0.2 6.6+0.6 4806.5+2311.3
F1~ 0.78+0.01 0.74£0.01 0.75+0.01 0.74£0.01 0.77+0.01 0.56+0.02 0.53+0.01
P/fGES F17 0.57+0.03 0.64+0.01 0.73+0.01 0.56+0.01 0.72+0.01 0.57£0.02 0.56+0.01 0.45+0.03 0.47£0.02 0.62+0.02
SHD 1234.3%77.9  710.5£24.7  611.1£31.2  1055.5+39.4  617.5£27.1 = 1158.4+65.2 1051.6+31.0 1826.2+100.4 2442.4+115.6 871.6+£32.0
T (s) 9.3£1.1 9.0£0.4 8.1£0.4 9.0+£1.3 7.940.4 342.6+283.8 4.440.2 11.7+1.7 570.3+1084.5 6.9£0.6
F1~ 0.72+0.01 0.73+0.01 0.54+0.01 0.82+0.01 0.54+0.01 0.67+0.01 0.80+0.01 0.61+0.01 0.45+0.36 0.68+0.01
PC-Stable F17 0.50£0.01 0.37£0.01 0.18+0.00 0.53+0.02 0.25+0.00 0.38+0.01 0.61+0.01 0.23+0.01 0.29+0.23 0.44+0.01
SHD  1256.9+26.9 1189.2+37.0 1771.5¢42.8  792.2436.3  1700.1+49.5 1520.4+42.6  724.8+24.7  2144.2+47.3 1718.2+41.7 1165.8+40.2
T(s) 383.4+65.6 167.7£14.5 176.4£19.8  309.2457.3 165.9£12.4  453.8+103.8  172.6£14.6  569.4£150.5  43121.0+£35902.9  169.7+15.3
F1~ 0.57+0.01 0.51£0.00 0.43+0.00 0.55+0.00 0.43+0.00 0.47+0.01 0.58+0.00 0.57+0.01 0.53+0.00 0.50+0.00
fGES F17 0.49+0.02 0.42£0.01 0.42+0.00 0.42+0.01 0.42+0.01 0.42+0.01 0.43+0.01 0.48+0.02 0.48+0.01 0.40+0.01
SHD  2226.1+48.7 2301.3x17.7 2320.3x16.1 2337.9+29.4 2326.9+20.0 2512.1£37.0 2331.5£25.1  2259.6+49.2 3143.3+51.1 2396.8+22.3
T(s) 769.1£104.8 823.2426.6  787.0+19.9  907.6+352  813.5+28.0  689.4+44.5  832.4+27.6 646.5+28.6 1257.0£74.2 770.2422.8
F1~ 7.4% 4.7% 14.6% 0.2% 14.6% 13.2% -0.1% 10.4% 12.5% 3.2%
Impro. ratio  F17* 19.0% 16.3% 29.5% 6.8% 30.0% 6.7% -3.3% 12.3% 28.2% 26.0%
SHD 29.2% 63.5% 89.6% 0.7% 88.9% 38.1% 25.2% 17.9% 22.4% 32.3%

Baselines and Settings Six baselines are considered, including existing state-of-the-art methods
and PEF-based methods. Specifically, given the rich literature on BN structure learning (Kitson
et al., |2023), we collect 15 existing methods, including score-based, constraint-based, and hybrid
methods, and conduct a preliminary testing of them (see Appendix [C.2). The results indicate that
fGES and PC-Stable are the only methods capable of maintaining F1 scores of around 0.5 within rea-
sonable time when the variable number reaches 1000. Therefore, we choose these two as baselines.
Besides, fGES and PC-Stable are also integrated into the estimation step of PEF, resulting in two
new baselines: P/fGES and P/PC-Stable. Furthermore, to validate the effectiveness of Auto-SLE,
we consider two alternative ensemble construction approaches: (i) default SLE, which contains the
default fGES and PC-Stable, as well as variants with randomly chosen hyperparameter values for
each of them; (ii) random SLE, which contains two variants with randomly chosen hyperparameter
values for each of fGES and PC-Stable. Both of these SLEs consist of four member algorithms
(same as our constructed SLE) and are integrated into PEF, yielding two baselines P/SLE(D) and
P/SLE(R).

To prevent the compared methods from running prohibitively long, a runtime limit of 24 hours is set
on each testing problem. All the experiments are conducted on a Linux server with an Intel Gold
6336Y CPU @ 2.40GHz, 96 cores, and 768GB of memory. Precise details of the experimental setup,
including the preliminary testing results, SLE construction, benchmarks, metrics, and baselines, are
in Appendix [Cl The codes for repeating our experiments are available in the supplementary.

4.2 RESULTS AND ANALYSIS

The partition step of PEF typically results in subproblems with 5%~10% variables of the original
problem. For testing problems with 1000 and 10,000 variables, the subproblems have 50~100 and
500~1000 variables, respectively, which are problem sizes covered by training data. However, as
the number of variables increases further (e.g., to 30,000), the subproblems will be much larger than
the training problems. We first examine the performance on testing problems with 1000 and 10,000
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Table 2: Results on problems with 10,000 variables. “-” means a solution is not found within the
budget of 24 hours. The best performance in terms of accuracy is marked in bold and an underline.

Problem Alarm Asia Cancer Child Earthquake Hailfinder Healthcare Mildew Pigs Survey
(VI |IE] (10027, 13713) (10000, 11000) (10000, 8800) (10000, 13750) (10000, 8800) (10024, 12996) (10003, 14148) (10010, 14472) (10143, 14978) (10002, 11003)
FI~ 0.80 0.94 0.96 0.85 0.96 0.81 0.88 0.69 0.76 0.90
PISLE FI™ 0.66 072 0.92 0.61 0.92 0.66 0.59 0.55 0.69 077
: SHD 6366 1717 705 6017 683 5400 5361 10911 7468 3334
T(s) 95.5 356 244 80.8 242 828.6 50.0 360.3 2120.5 392
FI™ 0.34 037 0.29 042 031 034 043 030 033 035
psLEDy  FL7 0.28 030 0.28 032 030 030 031 023 0.29 028
SHD 42805 36831 40464 35660 37413 40151 37297 50139 41958 39476
T(s) 4084.4 2754.9 3308.6 3383.0 2810.6 3865.9 3739.6 45326 7040.1 2931.4
FI™ 049 059 042 0.69 043 045 071 038 0.02 055
psLE®  FL 025 025 0.15 041 0.14 028 0.28 0.19 0.01 0.19
- SHD 23673 18141 26652 12844 26065 25024 15483 32409 15551 21367
T(s) 676.8 386.7 667.9 3432 538.6 628.6 319.6 5563.9 7048.2 379.0
FlI 059 071 054 077 055 055 0.80 044 0.12 0.66
[T 031 032 0.20 046 0.17 034 034 023 0.06 026
Sble sHp 16842 11262 17280 8932 16869 17125 10815 24847 16005 14046
T(s) 210.1 145.0 147.3 145.2 1333 219.0 156.8 508.7 7005.0 1254
FI™ 034 037 029 042 031 034 043 030 033 035
PIGES FI~ 0.28 030 0.28 032 0.30 030 031 023 0.29 0.28
” SHD 42805 36831 40464 35660 37413 40151 37297 50139 41958 39476
T(s) 4037.6 2796.0 33314 3369.7 28334 3669.7 37553 4439.0 4179.0 2905.7
Fl
FI7
PCSwble - - . - . - . - . .
T(s) 86400.0 86400.0 86400.0 86400.0 86400.0 86400.0 86400.0 86400.0 86400.0 86400.0
FI™
FI
fGES SHD . . . - . i . . . .
T(s) 86400.0 86400.0 86400.0 86400.0 86400.0 86400.0 86400.0 86400.0 86400.0 86400.0
FI~ 36.0% 31.4% 78.8% 10.8% 75.7% 47.6% 10.4% 54.5% 133.0% 36.0%
Impro. ratio  FI™ 115.6% 127.2% 225.4% 33.9% 208.0% 94.7% 70.9% 135.0% 135.8% 180.0%
SHD 62.2% 84.8% 95.9% 32.6% 96.0% 68.5% 50.4% 56.1% 52.0% 76.3%

variables to answer RQ1. Specifically, based on each network selected from bnlearn, we generate
10 testing problems (with different random seeds), test each method on these problems, and report
the mean =+ std in terms of the evaluation metrics as well as stastical test results in Table[Il For the
performance evaluation involving 10,000 variables, due to the very long runtime of the baselines,
we generate one test problem based on each network and report the testing results in Table 2]

The first observation from Table [I]is that P/SLE consistently achieves significantly higher accuracy
across all three metrics compared to the baselines, except for the F1 metrics on Healthcare testing
problems, where P/SLE performs slightly worse than PC-Stable. Table 2] shows that the superior-
ity of P/SLE becomes more pronounced on testing problems with 10,000 variables. In call cases
it achieves substantially higher accuracy than all baselines across all accuracy metrics. Notably,
compared to the best performance achieved by the baselines, P/SLE often achieves improvements
in F1 Adjacent of over 30% and up to 133%, and improvements in F1 Arrowhead and SHD of over
50% and even up to 225%. Since the difference between P/SLE and P/PC-Stable (P/fGES) lies in
the use of a SLE in the estimation step instead of a single algorithm, the consistent advantages of
P/SLE over them confirm that using SLEs can stably achieve high learning accuracy across sub-
problems. On the other hand, we also observe that P/SLE(D) and P/fGES obtain identical learning
accuracy. This is because, in the default ensemble, the output of f{GES always has the best BIC score
among all member algorithms, thus making it consistently being chosen as the final output. While
P/SLE(R), with a randomly constructed SLE, can avoid this issue, it fails to achieve satisfactory
learning accuracy, which in some cases is even worse than P/PC-Stable and P/fGES that do not use
SLEs. Therefore, the advantages of P/SLE over P/SLE(D) and P/SLE(R) highlight the effectiveness
of Auto-SLE in producing high-quality SLEs with complementary member algorithms.

The second observation is that on testing problems with 1000 variables, P/PC-Stable and P/fGES
often achieve higher learning accuracy than PC-Stable and fGES, respectively. Moreover, when
the number of variables reaches 10,000, PC-Stable and fGES are unable to find solutions within 24
hours, while P/PC-Stable and P/fGES are able to. These findings show that PEF framework can
indeed enhance the capabilities of handling large BNs, which is consistent with the observations
in (Gu & Zhou, 2020). Finally, all PEF-based methods generally consume much less runtime than
non-PEF-based methods, attributed to the underlying divide-and-conquer strategy. Among PEF-
based methods, P/SLE often has the shortest or close to the shortest runtime, and for most testing
problems, it consistently outputs the final solution within a reasonable time (less than 1000 seconds).
In summary, all the above findings affirmatively answer RQl1, i.e., the SLE constructed by Auto-SLE
substantially improves PEF in learning the structure of large BNs.
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--- P/SLE P/SLE(D) -+- P/SLE(R) -+~ P/PC-Stable -—<- P/fGES PC-Stable -+- fGES

¥
1

08

07

Zoo] L

Tos

-
o3

02

F1 Arrowhead

Runtime (seconds)

01 v o1

6 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000 6 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
Number of Nodes Number of Nodes Number of Nodes Number of Nodes

(a) Alarm Problem

1
1

Eos

F1 Arrowhead

Runtime (seconds)

G
Lo

O

0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
Number of Nodes Number of Nodes Number of Nodes Number of Nodes

(b) Asia Problem

Figure 2: Performance curves on Alarm and Asia problems with up to 30,000 variables. SHD and
runtime are plotted on log scale.

Table 3: Testing results on Yeast and WS problems. “P/SLE-b” represents the best performance
achieved among P/SLE(R), P/SLE(D), P/fGES, and P/PC-Stable. The best performance in terms of
accuracy metrics is marked with an underline, and the performance that is not significantly different
from the best performance is indicated in bold.

Problem WS WS Yeast

(v, 1ED (1000, 2000) (10000, 20000) (4441, 12873)
FI-  0.800.01 0.79 0.106

PISLE FI” 051001 0.49 0.084
SHD  1240.2+47.7 12611 20912
T(s)  9.8+03 83.2 7105.4
FI-  0.79:0.01 0.72 0.003
FI° 051001 0.40 0.001

PISLED  gyp 125042322 15760 33162
T(s) 3703 363.1 5771.32
FI-  0.75:0.01 -
FI7 0424001 .

PC-Stable gy 143742210 N .
T(s)  176.246.5 86400.0 86400.0
FI-  0.67+0.00 - 0.066
FI7 043001 . 0.056

fGES SHD  2401.0+22.3 ) 20847
T(s) 1433.3%61.4 86400.0 178257.4
FI- 2.2% 10.6% 60.6%

Impro. ratio F17 -0.6% 21.1% 50.0%
SHD 1.0% 20.0% 29.9%

4.3 GENERALIZATION TO LARGER PROBLEMS

We now investigate RQ2. Specifically, we generate Alarm and Asia testing problems with 20,000
and 30,000 variables, and plot in Figure[2]the performance of the compared methods as the variable
number ranges from 1000 to 30,000 (detailed results can be found in Appendix [C.3). Note that
when the variable number exceeds 20,000, the subproblems resulted from the partition step of PEF
would be much larger in size than the training problems. It can be seen from Figure [2] that P/SLE
generalizes well to larger problems, maintaining relatively stable learning accuracy. In contrast, the
performance of all baselines deteriorates rapidly as the number of variables increases.

4.4 GENERALIZATION TO PROBLEMS WITH NO BLOCK STRUCTURE

The above results have demonstrated that P/SLE can stably achieve high learning accuracy for net-
works with a block structure. Of course, there are many real-world networks without any block
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structure (Olesen & Madsen| 2002). Although PEF-based methods are not specifically designed
for such networks, it is worth testing P/SLE on them to provide a complete spectrum of its perfor-
mance. Specifically, we apply P/SLE for gene expression data analysis, a traditional application of
structure leanring for BN. We use the largest publicly available gene dataset Yeast (Schaffter et al.,
2011) involving 4,441 nodes and 12,873 edges, where the underlying networks are commonly re-
ferred to as gene regulatory networks. Besides, we generate small-world networks with 1000 and
10,000 nodes, using igraph (Csardi et al., 2006) based on the Watts-Strogatz (WS) model (Watts &
Strogatz, |1998). We choose the WS model because: (i) it has no block structure, and (ii) it is not
included in the bnlearn repository, thereby enabling evaluation of the generalization of P/SLE to
network characteristics beyond the training set. As before, we generate 10 testing problems based
on the network with 1000 nodes and one testing problem based on the network with 10,000 nodes.
The testing results are presented in Table 3]

One can observe that P/SLE still achieves competitive learning accuracy on these networks. On
WS problems with 1000 variables, it always achieves the best performance or the performance not
significantly different from the best, across all accuracy metrics. On WS problems with 10,000 vari-
ables and Yeast, the advantages of P/SLE become pronounced, similar to the previous observations
on networks with block structures. In summary, these findings show the generalization ability of the
constructed SLE across network characteristics beyond the training problem set.

5 CONCLUSION

In this work, we introduced the idea of using SLEs for BN structure learning and proposed Auto-
SLE, an automatic approach that can largely reduce human efforts in building high-quality SLEs.
Extensive experiments showed that our method P/SLE could consistently achieve high accuracy in
learning large BNs and generalize well across problem sizes and network characteristics.

Limitations There are two main limitations of this work. First, while using an SLE by running its
member algorithms in parallel would not significantly increase the wall-clock runtime compared to
running a single algorithm, executing them sequentially in the absence of multi-core compute leads
to significantly longer runtime. A potential solution is to train a selection model that predicts the
best-performing algorithm in the SLE for a given problem, and runs that algorithm only. Second, the
generalization ability of P/SLE relies on a training set with diverse networks of varying sizes. If such
a set cannot be collected in practice, then it may not generalize well. Moreover, as aforementioned,
PEF-based methods are most suitable for learning BNs with a block structure to some extent. For
BNs with no block structure at all, P/SLE may not be the best choice, and in these cases the SLE is
more suitable as a standalone learning method rather than being integrated into the PEF framework.
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A THE PARTITION-ESTIMATION-FUSION (PEF) FRAMEWORK

This section presents the implementation details of the partition-estimation-fusion (PEF)|Gu & Zhou
(2020) framework. PEF consists of the following three steps.

* Partition: The nodes are divided into clusters using a modified hierarchical clustering
(MHC) algorithm.

» Estimation: An existing structure learning method is applied to estimate a subgraph on
each cluster of nodes.
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Algorithm 2: Modified Hierarchical Clustering

Hierarchical clustering given the dissimilarity matrix D = (d(, j))axd;
Generate the dendrogram 7'p of the hierarchical clustering;
Choose p by Eq. (9) and [ by Eq. (I0);
Relabel clusters in C' <— Cy sothat S; < --- < Sy_;;
while |C| > p do
(¢%,5%) <= argmin; ;{d(C;,Cy) i < jAj > p);
Ci* «— Oq* U Cj*,C — O\{Oj*},
end
return C = {C1,Cs,...,Cp};

* Fusion: Merge estimated subgraphs into one DAG containing all the nodes.

Suppose we have observed m iid observations of random variables X7, ..., X4, denoted as D &
R™*4_ Denote the i-th column of D as x;. Given D, the goal is to learn a DAG structure G = (V, E)
that accurately reflects the conditional dependencies among X1, ..., X4.

A.1 PARTITION

The partition step (P-step) of the PEF involves partitioning nodes into clusters. From this procedure,
p clusters, denoted as C; fori = 1,2, ..., p, are generated. This utilizes a modified hierarchical clus-
tering (MHC) approach, equipped with average linkage, that autonomously determines the number
of clusters p. The distance between two nodes ¢ and j in PEF is defined by a specific equation,

d(i,j) =1—1ri | € [0,1] @)

where 7;; = cor(X;, X;) represents the correlation between X; and X, for ¢,j = 1,2,...,d.
The correlation is calculated using covariance cov(x;, x;) and standard deviations o, , o, and the
following equation.

cov(x;,X;)

cor(X;, X;) = (8)

Ox;0x;

PEF mandates that the minimum cluster size should be 0.05d. Foreach h = 0,1, ...,d—1, C}, desig-
nates the clusters formed during the h—th iteration of bottom-up hierarchical clustering. Specifically,
Co = {{1},{2},...,{d}} consists of p singleton clusters, while C;,_; = {{1,2,...,d}} denotes a
single cluster encompassing all d nodes. Let p; signify the count of big clusters in C;. PEF selects a
particular p according to the following equation:

p = Win{pmaz, max pi} ©)

where ppq; < 20 represents a user-defined maximum count of big clusters.

Let [ represent the topmost level on the dendrogram housing p big clusters, expressed as the follow-
ing equation:

[ = argmax{i : p; = p} (10)

0<i<d—1

Clusters in C are then relabeled in descending order based on their size, so S; > Sy > -+ >S4y,
with S; = |C;|. The first p clusters are subsequently identified as the primary big clusters of interest.
PEF proceeds to allocate the leftover small clusters to these p big clusters, which is accomplished
by repetitively merging the two nearest clusters, provided one is a small cluster. The pseudocode of
the MHC algorithm is detailed in Algorithm [2] where the dissimilarity matrix D = (d(i, j))axa is
calculated by Eq. (7). In the experiments, we limit the size of the cluster to be less than 10% of the
original problem to prevent the occurrence of excessively large subproblems.

A.2 ESTIMATION

During the estimation step (E-step), the PEF determines the structure of each subgraph individually.
Within the PEF framework, this step acts like a blackbox, allowing users to employ any structure
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learning algorithm to estimate subgraphs without needing in-depth knowledge of its technical de-
tails. Typically, this step yields p partial DAGs (PDAGs). It is noteworthy that both DAGs and
complete PDAGs (CPDAGs) are subsets of PDAGs. If the time complexity of a structure learning
technique surpasses O(d?), the time required to learn small subgraphs during the E-step becomes
considerably less than that needed to estimate an entire DAG. Assuming that during the partition
step nodes were divided into p clusters C;,Cy, ..., C, and the duration to learn a PDAG on Cj
is t;, parallelizing the learning of p subgraphs across p cores can reduce the E-step duration to
max{t; :i=1,2,...,p}.

A.3 FUSION

In the fusion step (F-step), a hybrid methodology is employed to learn the full DAG structure from
the estimated subgraphs (obtained in the E-step). This step unfolds in two stages. First, PEF gen-
erates a candidate edge set A to restrict the search space. Through a series of statistical tests, PEF
discerns a subset, A*, comprising candidate edges between subgraphs. Consequently, the candidate
edge set A consists of A* and all edges learned in each subgraph from the E-step. Second, PEF
optimize the DAG structure by iteratively updating edges within set A based on a modified BIC
score. The final output of the F-step is a DAG.

B PROOFS

B.1 PROOF OF FACT 1

Fact 2. Q(+) is a monotone submodular function, i.e., for any two SLEs A, A’ C © and any 0 € O,
it holds that Q(A) < Q(AUA") and Q (AUA’ U {8)) — Q (AUA') < Q (AU {6}) — Q (A).

Proof. By definition, Q(A,D) = maxges Q(0,D), then it holds that Q(A U A", D) =
maxgeaua’ Q(0, D) > maxgpen, Q(6, D). The monotonicity holds.

To prove submodularity, we have

QAU -QA) = |1?| Y [Q(AU{6}, D) = Q(A, D)] by definition of Q")
DeT
1
— 0,D) — Q(A,D)|"
77 21900.5) - @, D) .
> % Z [Q(0, D) — Q(AUA’, D)]" by monotonicity
DeT
=QAUA U{0}) —Q(AUA).
The proof is complete. O

B.2 PROOF OF THEOREM 1

Theorem 2. Using a hyperparameter optimization procedure that, in each iteration of Auto-SLE,
returns 6 within e-absolute error of the maximum of A(0|A), i.e., A(0|A) > A(0°]|A) — ¢, then the
quality Q(A) of the SLE constructed by Auto-SLE is bounded by

Q(A) = (1 —1/e) - Q(A) — ke, (12)

where A* is the optimal SLE to the SLE construction problem in Definition 1. Alternatively, if 0 is
within e-relative error of A(6°]A), i.e., A(O|A) > A(0°|A) - (1 — €), then the quality Q(A) of the
SLE constructed by Auto-SLE is bounded by

QA) > (1—1/e'") - Q(A"). (13)

Proof. Order the candidate algorithms in A* as {0} ... 6;}. We denote A = {61,602,...,0;}
where 0; is the algorithm added to A in the i-th iteration of Auto-SLE. Let A; = {61,...,6;} and

14



Under review as a conference paper at ICLR 2025

let A(G]1A) = Q (AU {6}) — Q (A) denote the performance improvement brought by adding 6 to
A.

In the first case where A(A]A) > A(0°|A) — e, for all positive integers i < | < k, we have:
QA") < QAT UA,) by monotonicity

k
=Q(A;) + Z A(07|1A; u{07,...,0;_1}) by telescoping sum

)+ Z A(0]A) by submodularity

(I (14)
+ Z A(0°|A;) by definition of 6°

0cA*

+ ) (QAis1) — Q(Ay) +€) by A(6°|A) < A(O]A) + €

fcA*

Ai) +E(Q(Air1) — Q(A:) +e).

< Q(
Let 6; = Q(A*) — Q(A;), which allows us to rewrite the above equation as 0; < k(d; — J;+1 + €),
then ;11 < (1 — £)d; + €. Hence, we have

1 1
o <(1- E)l% +ke-[1—(1— %)l]
Se_l/k(50+k€ byl—.’l’,‘ge_Jc forallz € R (15)
= e R(Q(AY) — Q(Ag)) + ke

Rearranging §; = Q(A*) — Q(A;) < e “/*Q(A*) + ke, we have

Q(A) > (1 —e k). Q(A*) — ke. (16)
Since the SLE found by Auto-SLE is A, then we have

Q(Ar) = (1 - 1/e) - Q(AT) — ke, (17)

In the second case where A(A|A) > A(6°|A) - (1 — ). Similarly, for all positive integers i < | < k,
we have:

QA") < Q(A) + Y (Q(Ait1) — Q(A)) /(1 —e) by A(6°|A) < A(BA)/(1—e)

96‘2* (18)
=Q(A;) + 1T—« (Q(A1+1) — Q(AY)) .
Similarly, let §; = Q(A*) — Q(A;) and use the above procedure, we have
QA1) > (1= e71798) - Q(A"). (19)
Let ! = k, we have
Q(Ar) = (1 -1/ - Q(A7). (20)
The proof is complete. O

C DETAILS OF THE EXPERIMENTS

Throughout the experiments, we set a random seed as 1024, ensuring the reproducibility of our
experiments. The codes for repeating our experiments can be found in the supplementary.
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C.1 EVALUATION METRICS

Let M1 be the true MEC of the DAG and M2 be the estimated MEC, the F1 score for adjacencies
(F1 Adjacent) is calculated as the harmonic mean of precision and recall: 2TP/(2TP+FP+FN), where
TP is the number of adjacencies shared by M1 and M2, FP is the number of adjacencies in M2 but
not in M1, and FN is the number of adjacencies in M1 but not in M2. The F1 score for arrowhead
(F1 Arrowhead) is calculated in a similar way. An arrowhead is taken to be in M1 and M2 for each
variable A and B such that A — B in both M1 and M2, and an arrowhead is taken to be in one MEC
but not the other when for each variable A and B such that A — B in one but A < B in the other, or
A-B (no directions) in the other, or A and B are not adjacent in the other.

The structural Hamming distance (SHD) is defined as the number of edge insertions, deletions or
flips in order to transform the learned DAG to the ground truth.

C.2 PRELIMINARY TESTING
We collect 15 existing methods, listed below.

* Score-based combinatorial search methods: HC|Chickering et al.|(2004), TABU Bouckaert
(1995)), CCDr|Aragam & Zhou|(2015), fGES |[Ramsey et al.[(2017)

» Score-based continuous optimization methods: NOTEARS [Zheng et al| (2018),
GOLEM [Zhu et al.| (2021))

* Constraint-based methods: PC-Stable |Colombo et al.|(2014), GS |[Margaritis et al.| (2003),
TAMB |[Tsamardinos et al| (2003b)), Fast-IAMB [Tsamardinos et al.| (2003b), TAMB-
FDR |Penal (2008)), Inter-IAMB |Yaramakala & Margaritis| (2005)

» Hybrid methods: MMHC |[Tsamardinos et al.| (2006), RSMAX2 [Friedman et al.| (2013),
H2PC|Gasse et al. (2014)

We collect the open-source implementations of these methods. Most of the implementations are col-
lected from the bnlearn|Scutari| (2010) repository [1_-]; CCDrﬂ NOTEARS E[, GOLEM [*|are collected
from Github; fGES and PC-Stable are collected from TETRAD [Ramsey et al.[(2018)

We generate testing problems based on two random graph models, Erdos-Rényi (ER) |[Erdos et al.
(1960) and scale-free (SF) |Barabasi & Bonabeau| (2003), where the edge number is set to be two
times the node number. Specifically, each testing problem involves 1000 variables, has Gaussian
noise, and the observation number m = 1000. Based on each graph model, 10 different testing
problems are generated, resulting in a total of 20 testing problems. Each method is then applied to
these testing problems, with a runtime limit of 3600 seconds for each problem. Table ] presents the
average performance of these methods on all 20 testing problems, measured by F1 score (Adjacent)
and runtime. The results indicate that f{GES and PC-Stable are the top-performing methods, consis-
tently maintaining F1 scores above 0.5 when the variable count reaches 1000. While HC and TABU
also achieve F1 scores above 0.5, their runtime is significantly longer, making them impractical for
testing problems involving 10,000 variables. As a result, they are excluded from the comparison
experiments.

C.3 AUTOMATIC CONSTRUCTION OF THE SLE

Algorithm Configuration Space During the SLE construction process, the algorithm configura-
tion space is defined by two candidate algorithms and their hyperparameters.

* PC-Stable (Colombo et al.[(2014) with two hyperparameters: significance threshold of CI
tests within the interval o € [0.01,0.2] and the search’s maximum depth interval m €
[1,1000]

'"https://www.bnlearn.com/bnrepository| (Creative Commons Attribution-Share Alike Li-
cense).

https://github.com/itsrainingdata/ccdrAlgorithm (license not specified)

*https://github.com/xunzheng/notears (Apache-2.0 license)

*nttps://github.com/ignavierng/golem (Apache-2.0 license)

*https://www.ccd.pitt.edu/tools (GNU General Public License (GPL) v2 license)
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@ 9

Table 4: Preliminary testing results. means not returning solutions within a time budget of 3600s.

Method F1 runtime (s)
PC-Stable 0.71 576.21
fGES 0.66 625.86
HC 0.528 3170.22

TABU 0.528  3181.777
CCDr 0.392 834.781
MMHC 0.331  1210.805
RSMAX2 0326 1416.733
GOLEM 0.32 3622.433
IAMB-FDR 0.271  2021.871
Inter-IAMB  0.189  2865.472
IAMB 0.157  2943.536
Fast-JAMB  0.107  3351.702
NOTEARS 0.099 3604.744
GS - 3600.32
H2PC - 3610.257

» fGES Ramsey et al.|(2017)) with three hyperparameters: structural penalty of the BIC score
within interval A € [1.0,1000.0], the maximum number of parents for a single node during
the search process within interval m € [1,1000], and the option to use the faithfulness
assumption or not.

We use the implementations of them from the causal discovery tool box TETRAD Ramsey et al.
(2018) ﬂ SMAC (version 3) |[Lindauer et al.| (2022) || is used as the hyperparameter optimization
procedure.

Training Problem Set For Auto-SLE, we used the data generation method and randomly pro-
duced 100 training problem instances. In order to ensure that the training data is diverse, compre-
hensive, and representative, each instance was derived by the following steps: (i) selecting a base
network at random from the bnlearn |Scutari| (2010) repository ﬁ; (ii) replicating it a random num-
ber of times, while making sure the total node count is less than or equal to 1000, and connecting
the replicas by adding 10% of edges between them randomly, ensuring the final network remains a
DAG:; (iii) utilizing the complete DAG and X; = ¢ (Xpa(i)) + &4, to produce 1,000 observational
data records. Here the weights in the linear function ¢ and the standard deviations of Gaussian
noises are sampled uniformly from [—1, —0.5] U [0.5, 1] and [0, 1], respectively; (iv) re-scaling the
observation data so that all data columns possess the same mean and standard deviation. These 100
training problem instances are independent of testing data and are exclusively for the construction
of the SLE.

The Constructed SLE The constructed SLE contains four member algorithms, as running more
iterations of Auto-SLE brings negligible improvement (smaller than 0.1) in SLE’s performance on
the training set. Specifically, the training performance ()in terms of the sum of F1 Adjacent and
F1 Arrowhead) progress is: ite 1 (143.4) — ite 2 (156.1) — ite 3 (158.1) — ite 4 (158.5) — ite 5
(158.5). The SLE is detailed in Table E} It is interesting to find that the SLE only contains fGES,
meaning PC-Stable has not defeated fGES in the construction process.

®https://www.ccd.pitt.edu/tools|(GNU General Public License (GPL) v2 license)

"nttps://automl.github.io/SMAC3/main (3-clause BSD license)

8https://www.bnlearn.com/bnrepository (Creative Commons Attribution-Share Alike Li-
cense)
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Table 5: The SLE contructed by Auto-SLE.

Member Algorithm  Candidate Algorithm Hyperparameter Values
1 fGES A = 5.872727477498224, m = 185, and without faithfulness assumption
2 fGES A = 20.60452402709974, m = 17, and without faithfulness assumption
3 fGES A = 2.537674798471765, m = 91, and without faithfulness assumption
4 fGES A = 5.624595350676138, m = 11, and without faithfulness assumption

C.4 DEFAULT SLE AND RANDOM SLE

Default SLE and random SLEs are constructed in alternative ways other than Auto-SLE. The former
contains the default f{GES and PC-Stable, as well as variants with randomly chosen hyperparameter
values for each of them; The latter contains two variants with randomly chosen hyperparameter
values for each of f{GES and PC-Stable. According to the causal discovery toolbox TETRAD Ramsey
et al.| (2018)), the default hyperparameter values for PC-Stable is: o = 0.05 and m = 1000; the
default hyperparameter values for f{GES is A = 1.0, m = 1000, and without faithfulness assumption.
Finally, SLE (Default) and SLE (Random) are shown in Table[6|and Table

Table 6: Default SLE

Member Algorithm  Candidate Algorithm Hyperparameter Values
1 PC-Stable a = 0.05, and m = 1000
2 fGES A = 1.0, m = 1000, and without faithfulness assumption
3 PC-Stable o = 0.08399128452994686, and m = 850
4 fGES A = 797.254519880674, m = 871, and without faithfulness assumption

Table 7: Random SLE.

Member Algorithm  Candidate Algorithm Hyperparameter Values
1 PC-Stable a = 0.08399128452994686, and m = 850
2 fGES A = 797.254519880674, m = 871, and without faithfulness assumption
3 PC-Stable a = 0.10744707122087944, and m = 980
4 fGES A = 792.8350933385117, m = 456, and with faithfulness assumption

C.5 TESTING RESULTS ON LARGER ALARM PROBLEMS AND ASIA PROBLEMS

Table [§] and Table [9] present the testing results of the compared methods on the Alarm and Asia
problems with up to 30,000 variables, respectively.

C.6 COMPUTE RESOURCE

Unless otherwise indicated, all experiments in this work are conducted on a Linux server equipped
with an Intel(R) Xeon(R) Gold 6336Y CPU @ 2.40GHz, 96 cores, and 768GB of main memory.
The system version is Ubuntu 22.04.2 LTS.
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