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ABSTRACT

Out-of-distribution (OOD) detection is a type of technique that aims to detect
abnormal samples that don’t belong to the distribution of training data (or in-
distribution (ID) data). The technique has been applied to various image clas-
sification tasks to identify abnormal image samples for which the abnormality
is caused by semantic shift (from different classes) or covariate shift (from dif-
ferent domains). However, disentangling OOD samples caused by different shifts
remains a challenge in image OOD detection. This paper proposes Contrastive Vi-
sion Transformer (CVT), an attention-based contrastive learning model, for self-
supervised OOD detection in image classification tasks. Specifically, vision trans-
former architecture is integrated as a feature extracting module under a contrastive
learning framework. An empirical ensemble module is developed to extract rep-
resentative ensemble features, from which a balance can be achieved between se-
mantic and covariate OOD samples. The proposed CVT model is tested in various
self-supervised OOD detection tasks, and our approach outperforms state-of-the-
art methods by 5.12% AUROC on CIFAR-10 (ID) vs. CIFAR-100 (OOD), and by
9.77% AUROC on CIFAR-100 (ID) vs. CIFAR-10 (OOD).

1 INTRODUCTION

As many deep neural networks (DNNs) are deployed in real-world applications, the safety and ro-
bustness of the models get more and more attention. Most existing DNNs are trained under the
closed-world assumption, i.e., the test data is assumed to be drawn i.i.d. from the same distribution
as the training data (Yang et al., 2021). Although the deployed DNNs can perfectly deal with such
ID samples, they would blindly classify the data coming from other classes or domains (i.e., OOD
samples) into existing classes in an open-world scenario. Nguyen et al. discovered that neural net-
works can be easily fooled by unrecognizable images, which means that most DNNs are unreliable
when encountering unknown or unseen samples. Such a few mistakes may be tolerable in some sce-
narios (e.g., chatbot, interactive entertainment), whereas they will bring catastrophic damage when
the application area requires great safety benefits, such as automated vehicles, medical imaging and
biometric security system. Therefore, it is essential to equip the model with the ability of detecting
out-of-distribution data and make it more robust and reliable.

Generally, the outlier arises because of the mechanical failure, fraudulent behaviour, human error,
instrument error and natural deviations in populations (Hodge & Austin, 2004). In the field of
machine learning, compared with ID samples, OOD samples are regarded as the outliers due to
distributional shifts. The distributional shifts can be caused by semantic shift (i.e., OOD samples
from different classes) or covariate shift (i.e., OOD samples from different domains) (Yang et al.,
2021). Meanwhile, the OOD samples that are semantically and stylistically very different from ID
samples are referred to as far-OOD samples, and those that are semantically similar to ID samples
but different from ID samples in domains are referred to as near-OOD samples (Ren et al., 2021).
The out-of-distribution detection, also known as outlier detection or novelty detection, is developed
to identify whether a new input belongs to the same distribution as the training data. A natural idea
is to build a classifier to identify the ID and OOD data, using such as Deep Neural Network (DNN)
and Support Vector Machine (SVM). However, the sample space of OOD data is almost infinite as
OOD dataset is the complementary set of ID dataset, which leads to that creating a representative
OOD dataset is impracticable. Moreover, OOD samples are scarce and costly in some industries
(e.g., medical imaging, fraud prevention). These are main issues in the research on OOD detection.
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To address these problems, researchers focus on the latent features of ID data, assuming distin-
guishable distributional shifts exist between ID and OOD samples in the latent feature space. Some
researchers (Nalisnick et al., 2019; Serrà et al., 2019; Xiao et al., 2020) use generative models,
like Variational Auto-encoders (VAE), to extract the latent features for both ID and OOD samples,
and specific OOD socres are designed and used as the metric. As an alternative, contrastive learn-
ing models can be employed to learn the latent features, such as Self-Supervised Outlier Detection
(SSD) (Sehwag et al., 2020) and Contrasting Shifted Instances (CSI) (Tack et al., 2020). However,
in contrastive learning, researchers usually adopt standard convolutional neural network (CNN) and
its variants like ResNet (He et al., 2016) as the encoder. By contrast, the transformer-based architec-
tures (such as the earliest Vision Transformer (ViT) (Dosovitskiy et al., 2020), DeiT (Touvron et al.,
2021) and Swin Transformer (Liu et al., 2021)) gradually outperform CNNs in terms of extract-
ing robust latent features as they can learn global long-range relationships for visual representation
learning, which would facilitate the identification of ID and OOD samples.

In this paper, a Contrastive Vision Transformer (CVT) model is proposed for OOD detection under
self-supervised regime for image classification tasks. The framework of contrastive learning, in-
cluding data augmentation and contrastive loss, is adopted to learn the representation for all inputs,
which has been shown to be reasonably effective for detecting OOD samples (Tack et al., 2020).
On this basis, four extra modules are introduced into this framework: (i) To improve the distin-
guishability between ID and OOD samples in the latent space, vision transformer architecture rather
than CNN is embedded as a feature extracting module; (ii) Since the collapse of representation is a
noteworthy problem in self-supervised and unsupervised scenarios, an additional predictor structure
(inspired by BYOL (Grill et al., 2020)) is employed to avoid collapsed solutions. (iii) Considering
that the size of negative samples plays an important role in contrastive learning, a memory queue
scheme from MoCo (He et al., 2020) is integrated to maintain the model’s performance especially
when the batch size is extremely small. (iv) An ensemble module is developed to build representa-
tive ensemble features for achieving the balance between semantic and covariate OOD detection, as
we observe that in our experiments the latent features from the encoder perform better on semantic
OOD samples but on the contrary the latent features from the predictor perform better on covariate
OOD samples. To further improve performance, a Mahalanobis distance-based OOD score func-
tion is utilised for the OOD detection, the effectiveness of which has been shown in recent papers
(Sehwag et al., 2020; Ren et al., 2021).

To conclude, the key contributions of the paper are as follows:

• We integrate vision transformer architecture into a contrastive learning framework and de-
velop a new paradigm specifically for self-supervised OOD detection in image classifica-
tion tasks, results outperform state-of-the-art algorithms

• We develop an ensemble module to compute representative features that balance OOD
samples from different types of data shifts

• We conduct extensive ablation studies to report the influences of various hyper-parameters
on OOD detection tasks and benchmark the performance of CVT using different vision
transformer modules including ViT, ResNet50, and Swin transformer

In the rest of the paper, related work is described in Section 2 and the main CVT model is introduced
in Section 3. Followed by numerical results in Section 4 and the paper is concluded in Section 5.

2 RELATED WORK

Contrastive learning is a self-supervised technique that has seen fast development in recent years.
Chen et al. (2020) proposed a contrastive learning framework consists of four components: data
augmentation module, neural network base encoder, MLP (multilayer perceptron) projection head,
and contrastive loss. It incorporated a strong inductive bias by gathering samples from the same
class and repelling others and achieved promising results in visual representation learning. Under a
similar paradigm, many influential variants were develooped in recent years, such as SimCLR (Chen
et al., 2020), MoCo, SwAV (Caron et al., 2020), BYOL and MoCo-v3 (Chen et al., 2021). MoCo
introduced a queue module to store the key representations of negative samples since the number of
negative samples can effectively improve performance. To maintain the consistency of keys in the
queue, a momentum strategy was developed for MoCo to update the parameters of the key encoder.
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BYOL adopted an asymmetric structure to prevent the model from collapsing by adding a extra
predictor module after the projector for the online networks.

Current practice in contrastive learning adopts standard convolutional neural networks (CNN) like
ResNet(He et al., 2016) as the encoder for image feature extraction. However, the attention-based
architectures has recently outperformed CNN architectures in major vision tasks such as image
classification, object detection, and semantic segmentation. It has been shown that attention mod-
ule is capable of extracting global long-range relationships for visual representation learning. For
example, ViT(Dosovitskiy et al., 2020) applied standard Transformer encoder to images classifica-
tion tasks and reported good performance. It chopped a image into sequences of patches to fit the
sequence-based Transformer model. It also demonstrated that the multi-head self-attention (MSA)
was beneficial for representation learning in images classification. To achieve excellent results, ViT
required large training data and extensive computing resources. DeiT(Touvron et al., 2021) intro-
duced a distillation procedure (a teacher-student strategy) to enable Transformer learning from a
convnet and shrinking the training time. To bring the benefit of self-attention to object detection
and semantic segmentation tasks, Swin Transformer(Liu et al., 2021) employed a hierarchical ar-
chitecture to produce features at various scales. It is worth to mention that, the shifted windowing
approach in Swin Transformer brought a linear computational complexity compared to standard
self-attention.

The generalised OOD detection operations were proposed by Yang et al. (2021) where they di-
vided the methodology into four categories: classification-based, density-based, distance-based and
reconstruction-based methods. The classification-based method usually applies a softmax func-
tion to the output layer, which enables the model producing a probabilistic result for all classes.
Hendrycks & Gimpel (2016) observed that a well-trained model can give higher probability to ID
samples than OOD ones. Based on the findings, ODIN (Liang et al., 2017) adopted temperature scal-
ing in softmax function to separate ID/OOD softmax scores under standard classification models.
However, the model may sometimes assign a high probability on known classes for OOD samples.
To address this issue, Dirichlet-based uncertainty (DBU) (Kopetzki et al., 2021) incorporated uncer-
tainty estimates by predicting the parameters of a Dirichlet distribution. An outstanding advantage
of DBU models is that it can effectively compute epistemic distribution, aleatoric distribution, and
class labels. With respect to density-based method, it established probability distribution of ID ex-
amples and placed the OOD samples in low-density areas. Pidhorskyi et al. (2018) utilised autoen-
coder network to capture underlying structure of data distribution and computed novelty probability.
Compared to classification-based approaches, generative models usually had a worse performance
(Yang et al., 2021). The idea of distance-based methods was that the distance from OOD input to
ID samples may be relatively farther than distance from ID input to ID samples. People can lever-
age distances with Euclidean distance, geodesic distance, cosine similarity, or Mahalanobis distance
between the feature embeddings of input and the centroids of all classes. SSD (Sehwag et al., 2020)
showed that the Mahalanobis distance is effective in OOD detection based on a contrastive learning
framework. Another OOD detector, CSI Tack et al. (2020) was also based on contrastive learning
and it used distribution-shifting augmentations (e.g., rotations) to promote OOD detection.

3 METHODOLOGY

This section details the architecture of the proposed CVT model, a simple yet efficient self-
supervised OOD detector, followed by the design of loss functions and evaluation metrics.

3.1 MODEL ARCHITECTURE

In some previous research (Tack et al., 2020; Ren et al., 2021; Yang et al., 2021), OOD detection is
divided into two stages: first, a representation learner is built and trained to extract latent features;
second, an OOD score (e.g., softmax probability and distance-based score) is computed as the metric
to indicate whether a sample is an OOD one. As shown in Fig. 1, the general architecture of our
CVT model is composed by two parts: (i) a contrastive representation learner based on contrastive
learning framework, and (ii) a Mahalanobis distance-based OOD score function.

The contrastive representation learner consists of two parallel networks: an online network, whose
parameters are updated by contrastive loss and back-propagation, and a target network, where a
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moving average of the corresponding online parameters is used as its own parameters (Grill et al.,
2020). Unlike the traditional contrastive learning model, all the encoder modules in our CVT are
flexible and can be replaced by any DNN designed for extracting latent features. Here, the ViT
(Fig. 2) is given as an example for the encoder module, and a pre-trained version is preferrd since
the training of it requires a lot of samples. Furthermore, an additional predictor structure in BYOL
is employed in the online network to avoid collapsed solutions, as well as a memory queue scheme
in MoCo is integrated into the target network to maintain the model’s performance under different
batch size settings. Although MoCo-v3 abandoned the memory queue design and used a large batch
size to train the model, we still keep it available especially on low-memory computing infrastructure.

Figure 1: Architecture of the CVT model, in which the left part is a contrastive representation learner
composed by two parallel deep networks (online and target networks highlighted in blue and grey
respectively) with attention-based encoder f (·), projector g(·), and/or predictor q(·). The ensemble
module computes output features from Encoder (h1) and Predictor (z1), then send ensemble features
for OOD score computation on the right of the figure.

Figure 2: Design of the contrastive representation learner in Fig. 1. CLS is a placeholder to be used
for prediction in downstream tasks and fc represents fully connected layer. Numbers in the figure
indicate the dimension of the corresponding input/output. The encoder block highlighted in green
is detailed on the right panel of the figure. Here we take a standard Transformer encoder as an
example, however, the encoder block is flexible for other (non) attention-based architectures.

Given a dataset {xi}Ni=1 without labels, two views {x̃(1)
i }

N

i=1 and {x̃(2)
i }

N

i=1 of each sample are
generated with data augmentation by using random ensemble transformations (Grill et al., 2020),
and 2N samples are obtained in total. Then, the augmented data will be fed into the model in
batches. For each view pair of the sample, (x̃(1), x̃(2)), the representation pairs of (z(1)1 , z

(2)
1 ) and

(z
(1)
2 , z

(2)
2 ) are produced by the predictor q(·) in the online network and the projector g(·) in the

target network respectively. Meanwhile, two memory queues, Q1 and Q2, are created in the target
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network to store the presentations z
(1)
2 and z

(2)
2 respectively. The contrastive loss is calculated

among the representations given by the two networks (Section 3.2). While predicting, only the
online network is used to generate the representations for each sample (no data augmentation).

For the OOD score function, we use the ensemble features to compute the maximum Mahalanobis
distance between a new input and the clusters of the training set in latent space. The high-level
features (e.g., from the predictor) usually contain more semantic information and low-level features
(e.g., from the encoder) have more general properties. The semantic information helps distinguish
near-OOD samples but fails on far-OOD samples. General properties can contribute to the identi-
fication of samples from different domains. Therefore, an ensemble module in the online network,
where the element-wise mean of features/representations from the encoder and predictor is com-
puted, is developed to build representative ensemble features for achieving the balance between se-
mantic and covariate OOD detection. To keep the ensemble module feasible, we set the dimension
of the output from the predictor to be the same as that from the encoder.

3.2 LOSS FUNCTION DESIGN

For unlabeled training data, the representations can be extracted by contrastive learning models. Our
model absorbs the strengths of MoCo, MoCo-v3, and BYOL, and employs InfoNCE (Oord et al.,
2018) as our training objective. The total loss is described as follows:

Ltotal = L
z
(1)
1

+ L
z
(2)
1

(1)

L
z
(1)
1

= − log
exp(z

(1)
1 · z (2)2 /τ)∑K

i=0 exp(z
(1)
1 · z i2/τ))

(2)

L
z
(2)
1

= − log
exp(z

(2)
1 · z (1)2 /τ)∑K

i=0 exp(z
(2)
1 · z i2/τ))

(3)

where z i2 is the embedding stored in queue1 and queue2 , K is the sum of the size of both queues
and τ is hyper-parameter temperature.

After the training, we just use the online network to extract embeddings from new inputs. Given
another two dataset {x id

i }Mi=1 and {xood
i }Mi=1 , our OOD score function should assign a value to

each input. we choose distance-based method to compute the scores, which is the Mahalanobis
distance from input to centroids in training dataset. Therefore we have to divide training data into C
clusters. Here we use k-means clustering approach to classify every training samples to a particular
class. Finally, we consider the maximum Mahalanobis distance as the OOD score, show in Eq. (4).

score(x) = max
c∈C

−(x− µc)Σ̂
−1
c (x− µc)

T (4)

where c is the class of training data, x is the embedding of input samples,µc is the mean of training
data from class c.

3.3 EVALUATION METRICS

As shown in Fig. 1, we define an OOD score based threshold to classify whether a new sample
belongs to OOD or not. Specifically, a sample is regarded as an OOD sample if its OOD score is
larger than the predefined threshold, otherwise it is treated as an ID sample.

We adopt three commonly used metrics to evaluate the performanc eof OOD detector. AUROC,
which is a threshold-independent evaluation method and can reflect the ability of model to discrimi-
nate between positive examples and negative examples. A high AUROC value means the model has
good discriminatory ability and an AUROC of 0.5 corresponds to a random guess (useless model).
Area Under the Precision-Recall (AUPR) is another evaluation metric that represents the ability to
correctly distinguish positive samples without treating positives as negatives. The third one, FPR95
represents the false positive rate (FPR) when the true positive rate (TPR) equals to 95%. It measures
the size of OOD samples that are not correctly recognised when 95% of ID samples are correctly
classified.
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4 EXPERIMENTS

We follow commonly used benchmarks from previous work and consider CIFAR-10 and CIFAR-
100 (Krizhevsky et al., 2009) as ID datasets. For the OOD dataset, we choose Describable Textures
Dataset (DTD) (Cimpoi et al., 2014) and SVHN (Netzer et al., 2011) in order to compare the CVT
model with other competing OOD detectors. ID samples are divided into ID training set and ID test
set, with data leakage issue considered. For all experiments, models are trained with the ID training
set in the training phase, and tested with both ID test set and OOD set in the evaluation phase. All
the experiments are repeated 5 times by using different random seeds. We evaluate our model by
three metrics: AUROC, AUPR, and FPR95.

In our benchmarking and ablation studies, we benchmark the performance of different representative
base encoder networks under the CVT model, including ViT-B-16 (Dosovitskiy et al., 2020), a pre-
trained ViT variant on Imagenet2012 (Russakovsky et al., 2015); Swin Transformer, the popular and
powerful transformer architecture; and ResNet50, the basic but widely used CNN architecture. We
train the proposed CVT model using optimizer AdamW(Loshchilov & Hutter, 2018) with an initial
learning rate 1e-6, half-cycle cosine decay, weight decay 0.1, and batch size equals to 64. Following
the setup in literature SSD (Sehwag et al., 2020), we set the default temperature to 0.5 and ablate
different temperature and number of clusters pairs, see Section 4.5 for more details. All experiments
are run on Ubuntu 12.04 with two NVIDIA RTX A4000 GPU cards. We use Python 3.8.10 and the
single queue size in CVT is set to 4096.

4.1 CVT MODEL PERFORMANCE

As shown in the first row of Table 1, we test 6 pairs of combinations of ID and OOD datasets. Both
CIFAR-10 and CIFAR-100 datasets shares common image characteristics (e.g., format, quality, style
etc.), while SVHN dataset and Describable Texture dataset are more dissimilar to them.

We first compare CVT performance in self-supervised OOD detection tasks, where models are
trained with unlabeled training data. We compare AUROC performance (higher score is better)
across 6 different models including PixelCNN++(Salimans et al., 2017), Deep-SVDD(Ruff et al.,
2018), Rotation-loss(Komodakis & Gidaris, 2018), CSI(Tack et al., 2020), and SSD(Sehwag et al.,
2020) (shown in the top part of Table 1). The results demonstrates that the proposed CVT model
clearly outperforms all other competing models. The averaged AUROC of CVT model has improved
by 6.6% when comparing with the the 2nd best one (i.e., SSD). In the challenging scenario where
CIFAR-100 is the ID set and CIFAR-10 serves as the OOD set, most existing OOD detectors per-
form poorly due to the similarity and size of CIFAR-100 over CIFAR-10. Our CVT model achieves
a noteable score of 79.37%, which is almost 10% improvement from that of the 2nd best model.

Table 1: Model comparison in AUROC with 6 self-supervised OOD detectors using unlabelled
training data and 5 supervised OOD detectors using labelled training data. The best performed
number is highlighted in bold for each ID/OOD pair. The last column reports the averaged AUROC
over all available tests (when the number of tests is no less than 4).

Method ID ACC ID: CIFAR-10 vs. OOD: ID: CIFAR-100 vs. OOD: Average(on CIFAR-10) SVHN CIFAR-100 Texture SVHN CIFAR-10 Texture

PixelCNN++ - 15.8% 52.4% - - - - -
Deep-SVDD - 14.5% 52.1% - 16.3% 51.4% - 33.6%
Rotation-loss - 97.9% 81.2% - 94.4% 50.1% - 80.9%
CSI 94.38% 99.8% 89.2% - - - - -
SSD 95.07% 99.6% 90.6% 97.6% 94.9% 69.6% 82.9% 89.2%
CVT (ours) 97.92±0.15% 99.90±0.004% 96.72±0.001% 100±0%

∗ 98.78±0.001% 79.37±0.002% 100±0%
∗ 95.80%

CE+SimCLR† - 99.5% 92.9% - 95.6% 78.3% - 91.6%
CSI† 96.1±0.1% 97.9±0.1% 92.2±0.1% - - 70.74% - -
SSD+† 94.55% 99.9% 93.4% 98.5 98.2% 78.3% 81.2% 91.6%
CIDER† 94.63% 99.73% 93.04% 97.44% 97.75% 77.02% 91.96% 92.82%
Fort et al.† 98.70% - 98.52% - - 96.23% - -
∗ The 5 repeated results using different random seeds are all 100%. † The supervised OOD detection method that uses ID labels for training.

We also compares CVT model against supervised OOD detectors, where models are trained with
labelled ID training set and tested by both unseen ID test set and OOD set. This is an unfair com-
parison to the CVT model as it is still trained by unlabelled (but the same) ID training set, i.e., no
label information has been provided to CVT model. Surprisingly CVT still outperforms majority
of the supervised OOD detectors except model in (Fort et al., 2021). As shown in the bottom part
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of Table 1, we benchmark CE+SimCLR(Winkens et al., 2020), supervised CSI, supervised SSD,
CIDER(Ming et al., 2022), and (Fort et al., 2021) in the two pairs of CIFAR datasets. To briefly
conclude, the proposed CVT model performs well in different OOD detection tasks for both near/far
OOD datasets.

4.2 COMPARISON BETWEEN ENSEMBLE FEATURES AND OTHER FEATURES

As depicted in Fig. 1, we develop an ensemble module to balance the features extracted from both
encoder and predictor. In this subsection, we test and show the effectiveness of the ensemble module
in the CVT model.

Table 2: Performance of ensemble module in CVT. ‘Encoder features’ and ‘Predictor features’
represent output features produced by the Encoder component and the Predictor component in the
CVT model, respectively. ‘Ensemble features’ describes the merged features computed on both
encoder/predictor features.

ID dataset OOD dataset Encoder features Predictor features Ensemble features

CIFAR-10 CIFAR-100 94.89% 96.56% 96.06%
SVHN 99.95% 99.62% 99.93%

CIFAR-100 CIFAR-10 78.00% 77.26% 80.34%
SVHN 99.06% 95.41% 99.21%

The first two columns in Table 2 show four test settings that are grouped into semantic shift scenarios
(e.g., CIFAR-10/CIFAR-100 vs. SVHN) and covariate shift scenarios (e.g., CIFAR-10 vs. CIFAR-
100). By using the features from either the Encoder or the Predictor to compute the OOD score
for detecting OOD samples, the results display different trends under the above two scenarios. The
race of the OOD detection under the covariate shift scenario between low-level features (i.e., the
features from the encoder) and high-level features (i.e., the features from the predictor) ends in a
draw. By contrast, low-level features dominate the OOD detection under the semantic shift scenario.
Therefore, it is hard to decide which kind of features should be finally used to compute the OOD
score. However, by comparing the performance of ensemble features with others under CIFAR-10
ID dataset, one sees that the ensemble module balances the performance between low-level and high-
level features. Interestingly, one also observes that ensemble features achieves better performance
under CIFAR-100 ID dataset. We reckon the ensemble features not only balance features but also
enhance features for OOD detection.

4.3 ENCODER USING VIT VS. RESNET VS. SWIN TRANSFOMER

To evaluate our hypothesis that the attention-based models are capable of extracting more effective
features for OOD detection, we compare the performance between three architecture options for
the encoder module in CVT, namely ResNet50, ViT-B-16 (Base model of ViT), and Swin-B (Base
model of Swin Transfomer). In this experiment, we calculate OOD scores using features output
from predictor and the number of dimensions is set as 768.

Fig. 3 shows experimental results of using CIFAR-10 as the ID set while CIFAR-100 (left panel)
and SVHN (right panel) as the OOD set. One sees that both ViT and Swin Transformer architec-
tures clearly outperform standard ResNet50 by about 26% in both AUROC and AUPR (higher the
better), and with 67% decreases in FPR95 (lower the better). On the other hand, ResNet50 achieves
slightly better performance in the far-OOD scenario (right panel). Back to the comparison between
ViT-B-16 and Swin-B, one sees comparable performance in AUROC and AUPR, with ViT model
performs slightly better in FPR95. This might be due to shifted window introduced in Swin Trans-
former, which reduces its computational complexity but makes it slightly less capable in information
extraction.
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Figure 3: Performance comparison using ResNet50, ViT-B-16, and Swin-B.

4.4 DISTRIBUTIONS OF SEMANTIC SHIFTED AND COVARIATE SHIFTED DATASETS

We visualise and compare the ID and OOD distributions over the four datasets (CIFAR-10/100,
SVHN and Texture) in feature space, in which CIFAR-10 is set as the ID set and the rest three are
the OOD sets.

Figure 4: Visualisation of in-distribution and out-of-distribution. The left figure is the FNR of ID
datasets and the FPR of OOD datasets under different threshold of OOD score, and the right one is
visualization of embedding on feature space.

From the right panel of Fig. 4, one sees that both CIFAR-10 and CIFAR-100 shares some points
and on the contrary SVHN points are more focal and locates further away from the CIFAR datasets.
The left panel of Fig. 4 depicts the FNR and FPR of ID and OOD datasets separately in terms of
the threshold of OOD score, which can illustrate the overlap level among different datasets. One
observes that only CIFAR datasets are overlapped with each other obviously (about 16% of CIFAR-
100 samples are mixed with CIFAR-10) while SVHN and Texture are slightly overlapped, even
non-overlapped, with CIFAR-10. The main reason of these observations is that SVHN and Texture
belong to domains further away from CIFAR-10. We also compare distributions of CIFAR-10/100
under different hyper-parameter settings, see Fig. 6 in Appendix A.1 for details.

4.5 THE ABLATION STUDY OF TEMPERATURE AND NUMBER OF CLUSTERS

In the absence of training data labels, we can divide the training dataset into k clusters and evaluate
whether the number of clusters k affect the performance. The left panel of Fig. 5 shows that the
model achieves good performance when the number of clusters is k = 1. The ID dataset (CIFAR-
100) has 10 classes, thus we select 1 and 10 as number of clusters for temperature ablation. For
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1 cluster case, the AUROC is maximised at 0.5 temperature and the lowest AUROC is at 0.07
temperature.

Figure 5: The left panel shows AUROC trends with 1 to 10 clusters and the right panel depicts the
performance under different temperatures in single cluster scenario. CIFAR-10 is set as the ID set.

Table 3: AUROC with different temperature values in self-supervised training. The in-distribution
dataset is CIFAR-10, the OOD datasets are CIFAR-100 and SVHN respectively

Dataset Number of clusters Temperature (0.07) (0.2) (0.5) (0.8)

CIFAR-100 1 65.05% 93.14% 96.48% 95.81%
10 72.23% 73.69% 75.29% 76.98%

SVHN 1 74.94% 98.51% 99.41% 99.29%
10 83.47% 81.38% 80.72% 84.66%

On the contrary, the AUROC on CIFAR-10 vs. SVHN is the minimum at 0.5 temperature when
cluster number equals to 10, as shown in Table 3. The observed trend of accuracy is consistent to
those in Fig. 5. In general, when we have one cluster and temperature is 0.5, the model gains the
best performance.

5 CONCLUSIONS

In this paper, we proposed a new self-supervised OOD detector, the CVT model, which outper-
formed competing OOD detectors in benchmark tests over three different datasets (CIFAR-10/100
and SVHN). In the CVT model, we developed an ensemble module, which not only balanced the
performance on far and near OOD datasets, but also enhanced overall OOD detection performance.
The CVT model achieved a notable 80.34% AUROC accuracy in the challenging unlabeled far-
OOD detection task. Although the results were remarkable, there exists open issues and promising
directions for future work. Firstly, the adopted datasets are well established and recognised, but rela-
tively constrained. Images in CIFAR-10, CIFAR-100, and SVHN normally contain only one object.
Further evaluation of the proposed CVT model may requires more complicated and real datasets.
Besides, with label information, a supervised OOD detector may learn more features than unsuper-
vised learning. Hence, the supervised OOD detector is worth to be further explored and we believe
the ensemble module in CVT model will also benefit supervised OOD detectors. Finally, the CVT
model has a good potential to be integrated to other (non-OOD) self-supervised tasks, OOD detec-
tion enabled CVT model may save time and improve reliability of the other OOD self-supervised
model.
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A APPENDIX

A.1 ABLATION

A.1.1 THE INFLUENCE OF TEMPERATURE AND NUMBER OF CLUSTERS

We visualize the features of ID and OOD datasets under different temperature parameters in Fig. 6.
Here the ID dataset is CIFAR-10, and the OOD datasets are CIFAR-100 and SVHN respectively.
When observing the divergence of CIFAR-10 under 0.07 and 0.5 temperatures, we find the clusters
become more cohesive when the temperature is 0.5. From the pictures on CIFAR-10 vs. SVHN at
temperature 0.07, the features from SVHN are farther from features from CIFAR-10 than features
from CIFAR-100. Hence, temperature controls the distance among each sample in the feature space,
while the contrastive loss makes the samples from the same class close and repel others in the feature
space. A low temperature will spread features, and the features will be evenly distributed when it is
small enough. Although a large temperature can make features from the same class more cohesive,
it also shortens the distance between different classes.

Figure 6: Visualization of features under different temperature parameters. The temperature of the
two pictures on the left is 0.07, and the pictures on the right are 0.5.
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A.1.2 DIMENSION OF FEATURE EMBEDDINGS

To discover how many dimensions of feature embeddings are suitable for OOD score calculation,
we experiment with different dimensions to compute the OOD score. Here, we use the features
from predictor and encoder respectively to calculate metrics. As shown in Table 4, the AUROC
begins with the lowest value at 128 dimensions on CIFAR-100 and SVHN OOD datasets when
using features from predictor. It becomes stable when the dimension is larger than 256.

Table 4: AUROC with different dimension values in self-supervised training and the in-distribution
dataset is CIFAR-10.

OOD Dataset Feature type Dimensions (128) (256) (512) (768)

CIFAR-100 Predictor features 95.05% 96.48% 96.61% 96.56%
Encoder features 93.59% 95.47% 94.07% 94.89%

SVHN Predictor features 99% 99.41% 99.42% 99.62%
Encoder features 99.83% 99.9% 99.94% 99.95%

A.2 THE IMPACT OF DATA AUGMENTATION ON OOD DETECTION

Considering that data augmentation with a few specific techniques is applied to ID dataset for gen-
erating positive pairs in contrastive learning, it is valuable to explore how the data augmentation
impact OOD score, especially for the ID test set. In training process of our method, the Random-
ResizedCrop in torchvision and the GaussianBlur in Pillow are utilised for data augmentation. The
scale for cropping image is from 0.08 to 1, which is denoted by Crop(0.08, 1), whilst the radius of
Gaussian kernel in GaussianBlur is from 0.1 to 2, which is denoted by GaussianBlur(0.1, 2). To
explore whether the augmented samples from ID test set will still be recognised as ID ones, new pa-
rameters different from those in the training are set for these two techniques to generate augmented
ID test set, and then the trained model is used to detect these new augmented samples. The results
shown in Table 5 demonstrates that data augmentation has almost no impacts on the OOD score for
ID samples.

Table 5: The impact of data augmentation on OOD detection. This toy experiment is conducted on
two scenarios, where CIFAR-10 and CIFAR-100 are used as ID dataset respectively, and FPR95 is
selected as the metric, where a higher FPR95 is, the less impact data augmentation has on OOD
detection.

Augmented ID test set
ID dataset Crop(0.03, 0.08) GaussianBlur(2, 3) Crop(0.03, 0.08) + GaussianBlur(2, 3)

CIFAR-10 99.98% 99.76% 99.98%
CIFAR-100 99.99% 99.22% 99.98%
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