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Abstract

Argumentative patterns are recurrent strategies001
adopted to pursue a definite communicative002
goal in a discussion. For instance, in Q&A003
exchanges during financial conference calls, a004
pattern called Request of Confirmation of Infer-005
ence (ROCOI) helps streamline conversations006
by requesting explicit verification of inferences007
drawn from a statement. Our work presents008
two ROCOI extraction approaches from inter-009
rogative units: sequence labeling and text-to-010
text generation. We experiment with multi-011
ple models for each task formulation to ex-012
plore which models can effectively and robustly013
perform pattern extraction. Results indicate014
that machine-based ROCOI extraction is an015
achievable task, though variation among met-016
rics that are designed for different evaluation017
axes makes obtaining a clear picture difficult.018
We find that overall, ROCOI extraction is per-019
formed best via sequence labeling (Token-level020
F1 = 0.31), though with ample room for im-021
provement. We encourage future work to ex-022
tend the study to new argumentative patterns.023

1 Introduction024

An argumentative pattern is a recurrent and iden-025

tifiable structure with a specific function in an ar-026

gumentative discussion. Such a pattern offers valu-027

able insights into the reasoning processes and di-028

alectical strategies employed by interlocutors in029

argumentative discourse.030

Extracting argumentative patterns from natural031

discourse presents a significant challenge in the032

field of Argument mining (AM) (Lawrence and033

Reed, 2019). Typically, AM involves three stages:034

(1) the identification, segmentation, and classifi-035

cation of argumentative discourse units (ADUs)036

(Ghosh et al., 2014), (2) the characterization of037

the relations between ADUs (Peldszus and Stede,038

2013), and (3) the identification of argument039

schemes, which denote implicit and explicit infer-040

ential relations within and across ADUs (Macagno041

“We should implement
more rigorous testing proce-
dures."

“You’re suggesting our cur-
rent testing is insufficient?
How do you propose to do
that?"

Model 2:
Text2Text
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Figure 1: Example ROCOI and the two extraction ap-
proaches.

and Walton, 2014). This area of research is of- 042

ten challenged by the idiosyncrasies of spoken 043

language. For instance, in Earnings Conference 044

Call (ECC) Q&A sessions, argumentative content 045

is often embedded in complex statements aimed 046

at maximizing information content while minimiz- 047

ing exchanges (Keith and Stent, 2019). Instead 048

of employing a typical end-to-end AM pipeline, 049

leveraging linguistic patterns that are clearly identi- 050

fiable as part of argument schemes could be useful 051

for locating argumentative moves, unraveling the 052

complexities in such dialogues. 053

In this paper, we present a novel task and ap- 054

proach to the extraction of a prototypical argumen- 055

tative pattern called the Request Of Confirmation 056

Of Inference (ROCOI). Our work focuses on this 057

argumentative pattern that emerges in questions 058

and presents an easily identifiable surface struc- 059

ture that complements the underlying argumenta- 060

tive function. By deliberately integrating linguistic 061

knowledge into the extraction process, we move be- 062

yond the analysis of entire discourse units, instead 063

allowing us to localize ROCOIs inside dialogues. 064

This approach allows us to maintain precise con- 065

trol over pattern detection while dealing with the 066

inherent complexity of argumentative texts. 067

We specifically focus on the ROCOI pattern as 068

it represents an ideal proto-pattern for exploring 069

how well NLP methods can extract them from 070
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text. These patterns exhibit clear characteristics071

that make them readily identifiable by trained hu-072

man annotators, including their interrogative na-073

ture, explicit marking of prior reasoning, and re-074

quests for confirmation of inferential conclusions.075

This clarity provides an excellent starting point for076

developing and evaluating automated extraction077

methods.078

Our experiments encompass two task formula-079

tions, comparing an extractive (sequence labeling)080

and abstractive (text-to-text generation) paradigm.081

Comparing these two approaches allows us to082

bridge traditional boundary-marking techniques083

(Eger et al., 2017; Kuribayashi et al., 2019; Bao084

et al., 2021) with state-of-the-art language model-085

ing approaches (Raffel et al., 2020; Gorur et al.,086

2024).087

This work represents a crucial step toward the088

broader goal of comprehensive argumentative anal-089

ysis, laying the groundwork for future exploration090

of more complex patterns, as well as the incorpora-091

tion of contextual features in detecting argumenta-092

tive patterns. Furthermore, our models can support093

humans in locating argumentation in financial con-094

texts (van der Meer et al., 2024), with potential095

applications in areas such as investor relations, cor-096

porate communication, and financial analysis.097

2 Related Work098

2.1 Text segmentation in ECCs099

In this study, the ROCOI pattern is extracted from100

Earnings Conference Calls (ECCs): teleconfer-101

ences that listed companies hold at the presence102

of financial analysts, following the publication of103

quarterly results (Givoly and Lakonishok, 1980;104

Keith and Stent, 2019). In the Q&A session of105

ECCs, each analyst typically only has one turn for106

their questions. As a consequence, they adopt an id-107

iosyncratic question-compression strategy whereby108

multiple questions on different topics are asked109

within a single turn before any response. These top-110

ically homogeneous sequences of utterances that111

compose the multi-issue question turns are called112

Maximal Interrogative Units (MIUs) (D’Agostino113

et al., 2024a,b). MIUs are the units of analysis114

within which argumentative patterns–in this case,115

ROCOIs–are identified and extracted.116

2.2 The Request of Confirmation of Inference: 117

An argumentative pattern in ECCs 118

A Request of Confirmation of Inference (ROCOI, 119

previously introduced and qualitatively studied by 120

Rocci and Raimondo (2018)) is an argumentative 121

pattern in ECCs that is originated in MIUs. It is 122

relevant to the discussion in the sense that it creates 123

an argumentative confrontation (van Eemeren and 124

Grootendorst, 2004). 125

A ROCOI is an assertive question, i.e., in which 126

a stance is asserted by the questioner. As a conse- 127

quence, when it is formulated directly, a ROCOI 128

is a closed question. Moreover, ROCOIs make 129

explicit by lexical means the fact that the stance as- 130

serted is the result of an inferential process, the con- 131

clusion of which is expected to be (dis)confirmed 132

by the interlocutor. This results in the ROCOI be- 133

ing a challenging question, regardless of the degree 134

of semantic indirectness of its formulation. 135

Example 1 shows some ROCOIs; in bold, the 136

lexical elements that indicate the inferential pro- 137

cess, which constitutes the keystone of the pattern. 138

(1) a. Does that mean that customers are 139

reluctant to term out these sort of 140

prices? 141

b. Just wondering, are you seeing 142

supply opening up in urban areas? 143

c. Should we think of the capital 144

commitment has a hard cap now. 145

d. Is it fair to say that you’ve maxed out 146

on what was pre-approved at the AGM 147

and that any incremental issue from 148

here would require AGM approval? 149

Previous studies on the ROCOI (Rocci and Rai- 150

mondo, 2018; D’Agostino and Rocci, 2024) iden- 151

tify subcategories of the pattern. This article con- 152

siders the class that D’Agostino and Rocci (2024) 153

call Type 1, that is, ROCOIs in which the infer- 154

ential conclusion–of which the questioner asks 155

confirmation–is part of the interrogative sentence, 156

as shown in all questions of Example 1. The reason 157

behind the choice is twofold: on the one hand, Type 158

1 ROCOIs are more compact, in the sense that the 159

conclusion and the question pertain to the same 160

unit, and are therefore more easily identifiable; on 161

the other hand, they are the most frequent ones. 162

3 Method 163

We outline the dataset, task formulation, and evalu- 164

ation setup for the ROCOI extraction approaches. 165
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3.1 Dataset166

Our work focuses on a dataset that comprises167

60 Earning Conference Calls (ECCs) between168

2020–2023 for companies Airbnb (ABNB), British169

Petroleum (BP), Credit Suisse (CS), Door Dash170

(DASH), Hasbro (HAS), Shell (SHEL), Exxon Mo-171

bil (XOM) and Zillow (Z), for a total of 1377 MIUs.172

Manual annotation resulted in 180 MIUs featuring173

ROCOIs, in total containing 193 unique ROCOI174

patterns. Of these, 134 were Type 1 ROCOIs, and175

thus represent the final corpus for this study. The176

annotation was first carried out by trained anno-177

tators; student assistants hired specifically for the178

annotation procedure. Each document was anal-179

ysed by two to four annotators in variable config-180

uration. The resulting pairwise agreement on the181

argumentative pattern annotation task (for which182

the ROCOI is one of eight possible values) is mod-183

erate to substantial, with a Cohen’s kappa (Cohen,184

1960) value ranging from κ=0.41 to κ=0.76. Fur-185

ther information about the annotation guidelines186

is provided in Lucchini and D’Agostino (2023)1.187

In total, 18% of tokens in the dataset are part of a188

ROCOI, whereas 82% of tokens are non-ROCOI189

tokens.190

3.2 Task formulation191

We compare two task formulations for ROCOI ex-192

traction: (1) sequence labeling and (2) text gen-193

eration. These two tasks allow us to compare the194

results obtained from applying an extractive and195

an abstractive paradigm. Extraction, where we196

mark the boundaries between the presence and ab-197

sence of a ROCOI, represents the standard method198

of identifying a substructure. However, such an199

approach usually requires ample training data. In200

contrast, abstraction, which involves generating the201

part of the input text that contains the ROCOI pat-202

tern, is similar to more recent state-of-the-art LLMs.203

We aim to investigate which approach works bet-204

ter given our relatively small dataset. We describe205

each task formulation separately and provide ex-206

tensive details about hyperparameters and training207

settings for all models in Appendix A.208

(1) Sequence labeling In sequence labeling for209

ROCOI extraction, IOB labeling consists in the tag-210

ging of tokenized sequences, indicating for each211

token whether it does not pertain to the desired212

1The dataset is available on GitHub: [ADDRESS
REDACTED].

sequence (tag: “O”), it is the first token of the se- 213

quence (tag: “B”), or it is an inner token of the 214

sequence after the first one (tag: “I”); the padding 215

tokens are assigned a default system-ignored tag 216

“-100”. This tagging format is often employed for 217

Named Entity Recognition (NER) tasks, and there- 218

fore the “B” and “I” tags typically further indicate 219

to what category the tagged entity belongs to (e.g., 220

person, location, etc.). This study only considers 221

one type of pattern and thus does not employ fur- 222

ther class specifications per class. 223

We experiment with 5 open-source models in 224

total; three of those are encoder-only models: 225

TinyBERT The smallest model to gauge task com- 226

plexity. If the smallest model can learn it well, we 227

do not need to train a more capable model (Jiao 228

et al., 2020). 229

Vanilla BERT Since it is commonly used as a base- 230

line (Devlin et al., 2019). 231

SpanBERT As a version of BERT that is optimized 232

to represent spans of text, since ROCOIs are often 233

single contiguous spans (Joshi et al., 2020). 234

In addition, we also experiment with two encoder- 235

decoder models: 236

T5 Strong empirical results indicate that this model 237

may be used across contexts and tasks (Raffel et al., 238

2020). 239

FlanT5 Updated version of T5 that includes a wider 240

array of tasks, the model may generalize better to 241

unseen tasks (Longpre et al., 2023). 242

(2) Text-to-text generation For this task, the pat- 243

tern is considered a substring of the MIU given 244

as an input; hence, the output corresponds to a 245

verbatim generation of a portion of the wider unit 246

(similar to the use of the text-to-text architecture 247

already intended by Raffel et al. (2020)). There- 248

fore, particular attention must be devoted to the 249

quality of the generation and, specifically, that the 250

fine-tuned model (i) does report the exact portion 251

of the string that contains the pattern and not an 252

adaptation (such as, for instance, a summarization 253

of the original text) (ii) does learn that a pattern is 254

a continuous sequence within the text and (iii) does 255

not repeat multiple subpatterns (whether correct 256

or not) to fill the plausible length of the expected 257

pattern. 258

This portion of the study is carried out on two 259

text-to-text model families: 260
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BART serves as the encoder-decoder counterpart261

to our BERT baseline for sequence labeling. We262

use the base and large varieties (Lewis et al., 2020)263

to further investigate the impact of model size.264

T5 in the small, base, and large varieties, again265

to see whether a more versatile text-to-text train-266

ing procedure benefits performance (Raffel et al.,267

2020).268

3.3 Evaluation269

We outline how we evaluate models on each task270

formulation.271

3.3.1 Sequence labeling272

We initially aimed to adopt a similar evaluation ap-273

proach as Named Entity Recognition (NER), as it274

shares the IOB tagging setup (Li et al., 2020). Per-275

formance in NER and similar tasks is traditionally276

evaluated at the token level (Tjong Kim Sang and277

Buchholz, 2000). However, tagging is typically278

performed (a) on short sequences, (b) in multiclass279

classification, and (c) featuring multiple units in280

a text; none of these characteristics strictly hold281

for ROCOIs. Even in the NER extraction domain,282

however, there has been a propensity towards evalu-283

ation at the full entity level, especially if the predic-284

tion is aimed at downstream tasks (Segura-Bedmar285

et al., 2013). Since ROCOIs are long and complex286

spans of text with potentially variable boundaries,287

we additionally adopt span-level evaluation and288

compare it to individual token-level evaluation.289

Token-level evaluation At the token level, we first290

provide an overview of the accuracy in the pre-291

diction by individual tags (‘O’, ‘I’, ‘B’). Then we292

aggregate the tags and provide a measure of pre-293

cision, recall, and F1 score, alongside the calcu-294

lation of token-based Krippendorff’s α (Krippen-295

dorff, 1970).296

Span-level evaluation To evaluate the entire span297

over which the ROCOI develops and not only the298

individual tokens that constitute it, we make use299

of the ROUGE-L metric, to determine the longest300

matching string, as well as the Gamma (Γ) method301

for inter-annotator agreement measure and align-302

ment (Mathet et al., 2015)2 in a basic, one-label,303

positional dissimilarity detection configuration.304

3.3.2 Text-to-text generation305

For the text-to-text generation evaluation, we use306

various metrics to investigate the quality of the ex-307

2Taken from the Python library pygamma-agreement
(https://github.com/bootphon/pygamma-agreement)

tracted pattern. Each model is evaluated according 308

to six metrics, clustered into three classes, each 309

of which corresponds to a different way of inter- 310

preting the nature of the task: syntactic (pattern 311

matching), semantic (embedding similarity), or an- 312

notation (inter-annotator agreement). The rationale 313

behind such a three-fold choice lies in the nature of 314

generative models: on the one hand, they tend to be 315

too creative despite being prompted to extract ver- 316

batim text. This would not be captured by semantic 317

metrics but is counterbalanced by syntactic metrics. 318

On the other hand, syntactic evaluation cannot cap- 319

ture whether some slightly shifted boundary still 320

correctly identifies the core of the pattern–which 321

can however be reintegrated into the equation to 322

some extent by the use of semantic similarity (al- 323

though not entirely, since such metrics are not spe- 324

cialized in ROCOI core meaning detection, similar 325

to sequence labeling). Inter-annotator agreement 326

metris works as a sanity check that decidedly sig- 327

nals the presence of ill-formed sequences in gener- 328

ated patterns. 329

Syntactic evaluation In this view, the extraction 330

performance is evaluated in terms of string match- 331

ing. The first naïve evaluation that establishes the 332

baseline consists of checking whether the pattern is 333

present in the extracted string. We call this evalua- 334

tion “pattern matching” and its most obvious flaws 335

are that (a) over-extraction to the point of reporting 336

the entire original string is a hit and (b) even slight 337

under-extraction is a complete miss. The three 338

possible values are ‘full match’ (if the retrieved 339

string contains exactly the correct pattern), ‘partial 340

match’ (if the retrieved string contains at least the 341

full correct pattern), and ‘no match’ otherwise; re- 342

ported are the frequency distributions across the 343

three classes. This is paired with a more refined 344

version of such an evaluation, that is, the calcula- 345

tion of the ROUGE score (Lin, 2004); specifically 346

the ROUGE-L metric, which identifies the longest 347

co-occurring sequence. 348

Semantic evaluation In this case, what is evaluated 349

is the semantic distance between the predicted and 350

the actual pattern. This is achieved by (1) calculat- 351

ing a simple Euclidean distance between the embed- 352

ding representation of the patterns and (2) applying 353

some well-established evaluation methods that are 354

typically used for text generation and summariza- 355

tion: notably (a) BERTScore (Zhang et al., 2020) 356

and (b) Sentence-BERT (SBERT) (Reimers and 357

Gurevych, 2019). 358
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Accuracy
Model O I B

BERT (base) 0.93 0.61 0.70
TinyBERT 0.92 0.39 0.40
SpanBERT 0.89 0.61 0.60
T5 (base) 0.95 0.67 0.65
FlanT5 (base) 0.92 0.67 0.70

Table 1: Sequence labeling accuracy by tag. The best
models are shown in bold, second best underlined.

Annotation agreement evaluation The true pat-359

tern can be considered a gold standard annotation360

and the extracted pattern a machine-generated an-361

notation; in this perspective, the two are compared362

with a tool designed to capture the inter-annotator363

agreement and the dissimilarity in span boundaries.364

In particular, we use the Gamma (Γ) method for365

inter-annotator agreement measure and alignment366

(Mathet et al., 2015). The metric cannot compute367

on instances in which the extracted pattern is not a368

lexical match to a substring of the input text, and369

thus tells us that the generated string is ill-formed.370

4 Results and discussion371

We describe our results after training the models372

on the two tasks: sequence labeling and text-to-text373

generation respectively.374

4.1 Sequence labeling375

Table 1 reports the accuracy values by individual376

tag. As reported in Section 3.1, 82% of tokens377

in the dataset are non-ROCOI elements; these are378

identified by ‘O’ tags. Therefore, since they repre-379

sent the most frequent type, as expected ‘O’ tokens380

reach a higher accuracy across models. On the con-381

trary, ‘B’-type tokens understandably are the least382

frequent ones in the corpus but its accuracy levels383

are not far from that of ‘I’ tokens overall – if not384

better. It is worth noticing that SpanBERT appears385

to be performing badly despite being optimized for386

encoding contiguous spans of texts. It achieves the387

lowest accuracy on the ‘O’ tag, indicating it most388

strongly mislocates ROCOI patterns in the text. At389

this stage, the best performing models seem to be390

the two belonging to the T5 family (both best in two391

out of three accuracy values), followed by vanilla392

BERT (second best in two out of three accuracy393

values).394

Further classification results aggregated over the395

three tag categories are displayed in Table 2, both396

at the token level (former four columns) and span 397

level (latter two columns). Token-level evaluation 398

appears to favor FlanT5, which achieves the high- 399

est results in three out of four metrics and is second 400

best in the remaining one. Surprisingly, SpanBERT 401

performs below par in full span detection, accord- 402

ing to span-level evaluation results, which are in- 403

stead dominated again by T5 (ROUGE-L = 0.90) 404

and FlanT5 (Γ = 0.63). 405

Earlier, we reported the annotation agreement 406

among human annotators in terms of Cohen’s κ 407

(see Section 3.1). As we’re working with a single 408

category, however, the metric is roughly compa- 409

rable with Krippendorff’s α. This allows us to 410

conclude that all models, except for TinyBERT, 411

achieve an IAA performance within the human 412

range (0.41 ≤ κ ≤ 0.76). This indicates that we 413

may use automatic ROCOI extraction for machine 414

annotation for new samples in the future. However, 415

the machine annotations fail in a way that is not 416

captured by this metric, or disagree with human 417

annotators in novel ways. Hence, we set out to 418

further understand the limitations of the automatic 419

ROCOI extraction approach in Section 5.1. 420

4.2 Text-to-text generation 421

We present the evaluation results sorted by eval- 422

uation approach type (syntactic, semantic, annto- 423

tation), each of which is presented in a dedicated 424

table. 425

Table 3 reports syntactic evaluation. For both 426

evaluation methods, the two BART models appear 427

to be by far the best-performing ones, particularly 428

the large configuration – with best results across all 429

metrics. Semantic measures are reported in Table 4. 430

The baseline metric represented by raw Euclidean 431

distance between the true and predicted pattern 432

favors BART models; moreover, both SBERT and 433

BERTScore, again identify BART-large as the best- 434

performing model, reaching F1 = 0.94. Similar 435

outcomes are shown in Table 5, which displays 436

surprisingly bad results for the T5 models on the 437

inter-annotator agreement metrics. This will be 438

appropriately discussed in Section 5.2. 439

Different metrics capture different aspects of the 440

ROCOI extraction task in a text-to-text generation 441

setup, For instance, syntactic pattern matching in- 442

forms us of the capability to lexically overlap with 443

the ground truth patterns, while semantic evalua- 444

tion allows us to observe how well the model cap- 445

tures the underlying meaning and intent of the RO- 446

COI spans. We observe that BART models achieve 447
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Token-level Span-level
Model Precision Recall F1 α ROUGE-L Γ

BERT (base) 0.22 0.25 0.23 0.58 0.87 0.49
TinyBERT 0.09 0.05 0.06 0.37 0.82 0.60
SpanBERT 0.27 0.30 0.29 0.51 0.83 0.47
T5 (base) 0.17 0.15 0.16 0.67 0.90 0.56
FlanT5 (base) 0.32 0.30 0.31 0.61 0.87 0.63

Table 2: Additional results for the sequence labeling approaches. The best models are shown in bold, second best
underlined.

good performance along all three dimensions for448

this task.449

5 Error analysis450

In addition to our previous results, we present a451

qualitative analysis of the predicted patterns using452

the best-performing models in both tasks. Specifi-453

cally, we observe the onset point and length of all454

extracted patterns in the test set to identify whether455

models tend to make consistent mistakes. Further,456

for the sequence labeling task, we also present457

an overview of the distribution of ill-formed se-458

quences in the prediction, that is, cases in which459

a sequence onset is not correctly followed by the460

next element in the sequence: a ‘B’ tag immedi-461

ately followed by an ‘O’ (not possible in a well-462

formed ROCOI). While the results here summarize463

the findings, Tables 9 and 10 for sequence label-464

ing and text generation respectively–available in465

Appendix B–report by row the measures over each466

instance in the test set. Shown there are the offsets467

of the prediction with respect to the true pattern468

for both the beginning of the predicted pattern and469

its length – calculated in terms of token numbers –470

and the absolute number of ill-formed sequences471

in the prediction for sequence labeling.472

5.1 Sequence labeling473

Concerning BERT, the start of the predicted pattern474

is correctly aligned in 55% of cases, too early in475

20% of cases, and too late only in 15% of cases.476

The pattern was not found in the last 10% of test477

instances. In terms of length, the exact right length478

is extracted in 15% of cases, while it typically tends479

to extract patterns too short (45% of cases); the ex-480

tracted pattern is too long in 30% of cases, which481

are all below or equal to 5 tokens of difference from482

the gold standard. These results are accompanied483

by the observation that in 25% of test instances,484

some ill-formed sequences are present in the pre- 485

diction; however, never more than two per instance. 486

As for T5, perfect alignment with the start of 487

the pattern occurs in 60% of cases, whereas both 488

early and late onset constitute 10% of cases. For 489

this model, the pattern was not found in the unit 490

in 20% of cases. The exact length is extracted in 491

15% of cases, while the majority of predicted pat- 492

terns appear to be, also in this case, shorter than 493

expected (55%) – of which half are below 10 to- 494

kens of distance from the true length. In 10% of 495

cases, the extracted pattern is longer than the gold 496

standard, always by 3 tokens. Worth noting is the 497

near-perfect acquisition of the IOB-tagging rules, 498

which is reflected in a single instance of ill-formed 499

sequence; this is moreover associated with an in- 500

stance of non-extraction of the pattern. 501

FlanT5 outperforms both BERT and T5, which 502

is reflected in its predictive capabilities. The right 503

starting point is detected in 70% of cases, while it is 504

too early in 5% of cases and too late in 15%. Extrac- 505

tion of exact right length spurts to 30%, whereas 506

short and long sequences represent 45% and 15% 507

respectively. The pattern is not found in 10% of 508

instances. However, 100% of predicted patterns 509

contain ill-formed sequences, 1 to 4 per instance 510

(mode = 2). This is an issue when such an ex- 511

traction step is integrated into a pipeline–with the 512

concrete risk of error propagation. 513

Following, a test instance failed by all three 514

models (in bold the ROCOI): “And secondly, on 515

U.S. gas, you’re very well-positioned with I believe 516

pretty much fully hedged production for this year, 517

but I’m wondering if at $2 per MCF gas, you’re 518

actually starting to see the opportunity to per- 519

haps take away some of the rigs and refocus them 520

in the Permian where you keep strongly growing 521

the activity. Thank you.” In this example, FlanT5 522

recognizes three starting points (underlined the to- 523

kens corresponding to a ‘B’ tag in the predicted 524
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Pattern matching
Model Full match Partial match No match ROUGE-L

BART (base) 0.20 0.50 0.30 0.63
BART (large) 0.20 0.60 0.20 0.67
T5 (small) 0.00 0.45 0.55 0.43
T5 (base) 0.15 0.50 0.35 0.54
T5 (large) 0.00 0.15 0.85 0.31

Table 3: Syntactic evaluation for text-to-text generation. For pattern matching, results must be read as “the higher
the better” for full and partial match, and “the lower the better” for no match. The best models are shown in bold,
second best underlined.

BERTScore

Model Euclidean
distance

SBERT
similarity Precision Recall F1

BART (base) 0.42 0.07 0.91 0.95 0.93
BART (large) 0.46 0.08 0.92 0.96 0.94
T5 (small) 0.46 0.05 0.86 0.93 0.90
T5 (base) 0.59 0.06 0.89 0.94 0.91
T5 (large) 0.54 0.07 0.84 0.90 0.87

Table 4: Semantic evaluation for text-to-text generation. The best models are
shown in bold, second best underlined.

Model Γ

BART (base) 0.56
BART (large) 0.54
T5 (small) 0.07
T5 (base) 0.26
T5 (large) —

Table 5: Annotation agreement
evaluation for text-to-text genera-
tion. The best models are shown
in bold, second best underlined.

sequence) and one well-formed sequence roughly525

corresponding to the true pattern (in bold the to-526

kens corresponding to ‘I’ tags): “And secondly, on527

U.S. gas, you’re very well-positioned with I be-528

lieve pretty much fully hedged production for this529

year, but I’m wondering if at $2 per MCF gas,530

you’re actually starting to see the opportunity531

to perhaps take away some of the rigs and refo-532

cus them in the Permian where you keep strongly533

growing the activity. Thank you.”. FlanT5 there-534

fore not only marks multiple onset points, but some535

of them may also interrupt ongoing sequences.536

Finally, Figure 2 provides a graph overview of537

the lengths of the ROCOI patterns, both for the538

true patterns and the predicted spans from each539

sequence labeling model. An immediate observa-540

tion is that BERT greatly overestimates the amount541

of tokens in the pattern. In conclusion, T5 is the542

most reliable model for onset position prediction543

(offset mean = 0.93) whereas FlanT5 is the best at544

predicting pattern length (offset mean = −6.2), as545

confirmed by similar length distribution in Figure546

2f compared to the gold standard of Figure 2a.547

5.2 Text-to-text generation548

Qualitative analysis of the text-to-text generation549

task was conducted for the two varieties of BART550

models, as they were the best performing across 551

metrics. Understandably, they show similar behav- 552

ior and the large configuration mostly hits some of 553

the misses of the base configuration (cf. Table 10). 554

The right starting point is detected in 45% of 555

cases by BART base, increasing to 60% for BART 556

large. An early detected pattern onset represents 557

35% of cases for BART base, decreased to 20% for 558

BART large. In both configurations, the detected 559

pattern started late in 5% of cases and the pattern 560

was not detected at all in 15% of cases. The dis- 561

tribution of predicted lengths was the same across 562

both varieties (20% correct, 65% long, 0% short), 563

presumably meaning that already the base configu- 564

ration is powerful enough to pick up such a feature 565

to the best that this model family allows given the 566

quantity of training data available. 567

In conclusion, both BART models learned to 568

identify the start of the pattern in the vast majority 569

of cases; remaining errors, however, greatly diverge 570

from the gold standard. Unfortunately, both tend 571

to overgenerate in the majority of cases, by a con- 572

siderable extent (77 tokens on average for BART 573

base, 73 for BART large). 574

An extreme case is represented by T5-large gen- 575

eration: despite all the safeguards, none of the re- 576
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(b) TinyBERT
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(f) FlanT5

Figure 2: True (upper left) and predicted (others) ROCOI lengths.

trieved patterns corresponds to a substring of the577

original text–hence hindering the calculation of578

the Γ metric in Table 5. For example, compared579

to the true pattern “Are you suggesting that you580

could potentially ship to Russia later this year?”,581

the corresponding generation reads: “- And then582

my follow, as it is in terms of Europe. I just want583

to clarify that? So this has the potential risk from584

Russia for approximately 100 million.”.585

6 Conclusions586

This paper introduces a prototypical argumentative587

pattern that originates in the questions asked during588

the Q&A sessions of financial dialogues, called the589

Request Of Confirmation Of Inference (ROCOI).590

Since argumentation is a pivotal aspect of human591

communication, the identification and extraction of592

argumentative patterns is argued to be fundamental593

in the study of language in interaction. Particularly,594

given that the identification of argumentative pat-595

terns is a challenging yet doable task for trained596

humans, this study seeks to answer the question of597

whether language models can perform this task as598

well.599

We adopted two concurrent ML approaches to600

the extraction of ROCOIs from a wider interrog-601

ative unit: sequence labeling and text-to-text gen-602

eration. Sequence labeling was performed com- 603

paring three encoder-only models to two encoder- 604

decoder models; text-to-text generation compared 605

five encoder-decoder models. The models, fine- 606

tuned for the task, were selected due to their nature: 607

they are relatively small open-source models. The 608

sequence labeling approach, evaluated both at the 609

token- and span-level, shows that FlanT5 is the best- 610

performing model. Qualitative observation of the 611

results, however, marks its outputs as potentially 612

unreliable. T5 is therefore the best-performing 613

model both for accuracy and reliability of the out- 614

put. The text-to-text generation approach identifies 615

BART-large as the best-performing model across 616

syntactic, semantic, and annotation agreement eval- 617

uation measures. 618

In conclusion, this task can be carried out by lan- 619

guage models. At the present stage, results suggest 620

that sequence labeling is still the most trustworthy 621

method to approach the task. While results would 622

improve with a larger training dataset, gathering 623

additional samples containing ROCOIs is difficult 624

due to their infrequency. Further work may include 625

the insertion of intermediate steps to fine-tune for 626

similar tasks (such as argumentative sequence la- 627

beling) before applying them to ROCOI extraction 628

(van der Meer et al., 2022). 629
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7 Limitations630

Our work has several important limitations to con-631

sider. While we carefully selected the models that632

are open source and accepted baselines among633

related work in Argument Mining literature, our634

choice of model architecture remains limited. Fu-635

ture work can benefit from investigating how larger636

(decoder-only) approaches, for instance, those us-637

ing In-Context Learning, perform on the ROCOI638

extraction task. Further, our relatively limited639

dataset size affects the generalizability of our re-640

sults, especially in cases of context shift. Training641

models with more data, or increasing the size of642

the evaluation set may paint a different image of643

the relative performance among models. Lastly,644

despite using fixed model checkpoints and consis-645

tent dataset splits, we observed that T5’s generation646

outputs exhibit high predictive variability, introduc-647

ing some uncertainty in our results. In addition,648

we found that FlanT5 has a systematic tendency to649

overpredict multiple ROCOI spans within individ-650

ual samples, potentially inflating certain metrics.651

8 Ethical Considerations652

Recognizing argumentative content can be biased653

to the content of the training set. This may result654

in predictions that are poor in novel contexts or655

edge cases. Responsible implementations of an ex-656

traction system, especially in the financial domain,657

should always be checked by a human. Our work658

is a first attempt at creating a system for analyzing659

argumentative patterns for financial dialogues. Sit-660

uating our approach in an ecosystem that contains661

checks and balances will not only ensure responsi-662

ble use of the predictive model but also may yield663

valuable insights into the actual use of the model.664
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A Experimental details841

A.1 Training parameters842

We present additional details regarding the usage843

of pretrained models for the two formulations of844

the ROCOI extraction. We present an overview of845

the initial model checkpoints and their parameter846

counts in Table 6. The hyperparameters to train the847

models on the sequence labeling task are given in848

Table 7, and the ones for text-to-text generation are849

given in Table 8. Training a single model generally850

takes up to one hour at most on modern hardware851

(one RTX3090 or A100 GPU).852

Sequence labeling For the sequence labeling853

models, we train on the training set (75% of to-854

tal available samples) while observing metrics on a855

validation set (10% of samples). We pick the model856

iteration with the highest token-level F1 score and857

evaluate that model on the test set (15% of samples)858

to obtain the results reported in Tables 1 and 2. We859

use the same split for each experiment.860

Text-to-text sequence generation For the text-861

to-text generation models, we train on the training862

set (75% of total available samples) while observ-863

ing metrics on a validation set (10% of samples).864

We optimized hyperparameters and picked the best865

model iteration with the lowest loss value, and eval-866

uated that model on the test set (15% of samples)867

to obtain the results reported in Tables 3, 4, and 5.868

We use the same split for each experiment.869

B Error analysis870

We present additional details upon which we based871

our qualitative observations of Section 5. Partic-872

ularly, we display the the raw numerical data for873

each test instance, which in the body of the paper874

was instead merged in the form of percentage over875

the total. Table 9 refers to the sequence labeling876

task and reports begin- and length- offsets of the877

predicted patterns with respect to the gold standard,878

alongside the number of ill-formed sequences in879

the tag sequence. Table 10 presents begin- and880

length- offset numbers only, from the text-to-text881

generation task.882
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Model Checkpoint Size

BERT (base) google-bert/bert-base-uncased 109M
SpanBERT SpanBERT/spanbert-base-cased 108M
TinyBERT huawei-noah/TinyBERT_General_4L_312D 14M
T5 (base) google-t5/t5-base 110M
Flan-T5 (base) google-t5/flan-t5-base 110M

BART (base) facebook/bart-base 139M
BART (large) facebook/bart-large 406M
T5 (small) google-t5/t5-small 61M
T5 (base) google-t5/t5-base 223M
T5 (large) google-t5/t5-large 738M

Table 6: Description of each model and the specific checkpoint we used.

Model Parameter Value

BERT (base) learning rate 2e-05
SpanBERT learning rate 2e-05
TinyBERT learning rate 2e-05
T5 (base) learning rate 4e-04
Flan-T5 (base) learning rate 4e-04
all batch size 16
all max sequence length 256
all max epochs 100

Table 7: Hyperparameters for the sequence labeling
approaches.

Model Parameter Value

all learning rate 6e-06
BART all batch size 4
T5 (all) batch size 6
all max sequence length 256
all max epochs 100

Table 8: Hyperparameters for the text-to-text ap-
proaches.
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begin length ill-formed
offset offset sequences

0 0 0
0 -4 0
0 -6 0
0 0 0

181 -16 1
n.a. n.a 0

0 4 0
0 -33 0
0 0 0

-33 3 1
49 -14 0

n.a. n.a 0
0 -30 0

-40 5 0
0 1 2
0 -27 1
0 13 1

-1 2 0
-17 -6 0

0 -27 0

(a) BERT (base)

begin length ill-formed
offset offset sequences

0 -2 0
n.a. n.a. 0

0 0 0
0 0 0

n.a. n.a. 1
0 -5 0
0 -9 0
0 -33 0
0 -2 0
0 0 0

-41 -16 0
n.a. n.a. 0

0 -34 0
n.a. n.a. 0

0 3 0
1 -41 0
0 3 0

73 -5 0
-18 -6 0

0 -15 0

(b) T5 (base)

begin length ill-formed
offset offset sequences

0 -1 4
0 0 4
0 0 3
0 0 1
0 10 2
0 0 3
0 4 2
0 -33 3
0 0 2
0 0 3

n.a. n.a. 2
0 -1 2
0 -34 3

n.a. n.a. 2
0 5 3
1 -14 3

12 -5 2
69 -1 2

-18 -6 2
0 -26 4

(c) FlanT5 (base)

Table 9: Qualitative error analysis: sequence labeling approach. Reported the three best performing models. For
each sub-table, the first two columns indicate offsets (predicted-true) and the third one indicates the absolute number
of instances. The best value is zero for all features.
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begin offset length offset

-218 187
0 0

n.a. n.a.
0 0
0 78

158 5
0 71

-47 47
0 0

-160 77
-179 34
-196 196

0 0
n.a. n.a.

0 33
n.a. n.a.

0 70
-4 87

-74 74
0 38

(a) BART (base)

begin offset length offset

0 182
0 228

n.a. n.a.
0 0
0 78

158 5
0 22

-47 47
0 0
0 35

-179 34
0 0
0 0

-186 85
0 33

n.a. n.a.
0 70

-4 87
n.a. n.a.

0 38

(b) BART (large)

Table 10: Qualitative error analysis: text-to-text sequence generation approach. Reported the two best performing
models. For each sub-table, the two columns indicate offsets (predicted-true). The best value is zero for all features.
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