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Abstract— Trajectory optimization and optimal control are
powerful tools for synthesizing complex robot behavior using
appropriate cost functions and constraints. However, methods
for solving the optimization problem are often prone to
local minima and sensitive to initialization. Casting trajectory
optimization as an inference problem can alleviate some of
these issues by generating distributions over solutions. However,
the resulting inference problem can be costly. In this work,
we present an approach for using diffusion models to learn
a distribution over constraint-satisfying low-cost trajectories.
This learned distribution is then used as the initialization
for an inference-based trajectory optimization algorithm. We
exploit the composability of diffusion models to generalize
the learned generative model to out-of-distribution constraints
which consist of the composition of multiple in-distribution
constraints. We demonstrate the benefit of our approach by
showing improvement over baselines on a constrained 12DoF
Quadrotor task and a 7DoF robot manipulator task.

I. INTRODUCTION

Trajectory optimization and optimal control are important
tools for generating complex robot behavior [1]–[5]. When
performing trajectory optimization, ensuring constraint sat-
isfaction is crucial to ensure trajectories are safe. Satisfying
these constraints can be very difficult as constraint-satisfying
trajectories may lie on lower-dimensional manifolds that
have zero measure, presenting difficulties for sample-based
methods. In addition, many useful tasks entail constrained
optimization problems that are non-convex and exhibit
multiple local minima. This makes trajectory optimization
difficult for gradient-based methods, as poor initialization
may lead to poor local minima or infeasible solutions.

In this paper, we formulate the constrained trajectory
optimization problem as a Bayesian inference problem. This
view has advantages as it aims to find a distribution over
trajectories rather than a single trajectory alone, which can
improve exploration of the search space and give greater
robustness to initialization. Previous methods taking the
inference view of trajectory optimization have only been
able to incorporate constraints via penalties in the cost [6]–
[9]. Tuning the weights of the penalties is challenging due
to possible conflicts with the objective function.

Recently, Power and Berenson [10] proposed Constrained
Stein Variational Trajectory Optimization (CSVTO), an
algorithm that uses a non-parametric approximation of the
posterior over low-cost constraint-satisfying trajectories. By
generating diverse sets of trajectories, this method is more
robust to initialization than baselines that rely on a single
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Fig. 1. Example trajectories for the 7DoF manipulator on a table experiment.
At the first timestep, the initial trajectories from CSVTO are quite poor,
and CSVTO is unable to pass through the narrow passage. CSVTO with
single-constraint diffusion models generates initial trajectories towards the
goal but fails to make progress past the initial passage. CSVTO with the
composed diffusion generates trajectories that immediately pass through the
narrow passage and satisfy the table constraint.

trajectory. However, the method can still fail if all of the tra-
jectory initializations are poor. In addition, the computational
time increases as the number of constraints and time horizon
increases. When running with a limited computational budget
we generally do not have time to run until convergence. In
this paper, we introduce a method for learning a generative
model of trajectories which is used as an initialization for
CSVTO. Crucially, we propose using composable diffusion
models to generalize the learned generative model to out-
of-distribution constraints which consist of the compositions
of constraints seen in training. This composition ability is
important for tasks where the task-specific constraints are not
known at training-time and training on all possible constraints
the robot might encounter is intractable. Our results show
improved performance with a finite computational budget for
two experiments; a 12DoF quadrotor and a 7DoF manipulator.

II. RELATED WORK

a) Learning-based Constrained Planning: Learning-
based approaches have previously been used to improve
planning in constrained domains. Qureshi et al. proposed
Constrained Motion Planning Networks (CoMPNetX) [11], a
learning-based method for constrained sample-based motion
planning. Generative Adversarial Networks (GANs) have
been used to learn distributions of configurations satisfying
constraints, by Lembono et al [12] for use with constrained
sample-based motion planning and by [13] for generating
initializations for a trajectory optimization problem. Kicki et
al. proposed an approach for generating constraint-satisfying
trajectories with a neural network that outputs a B-spline
parameterization of the trajectories [14].



b) Diffusion Models in Robotics: Diffusion probabilistic
models [15]–[17] are a class of generative models that have
been recently applied to generating high-quality images [15],
trajectories [18], [19] learning multi-modal policies [20] and
learning costs for grasp optimization [21]. Two mechanisms
have been proposed for incorporating conditioning infor-
mation, classifier-guidance [22], which uses the gradients
of an additionally learned classifier with the unconditional
diffusion model, and classifier-free guidance [23] which
instead learns a conditional diffusion model which takes
the context information as input to the diffusion model. One
interesting feature of diffusion models that has been recently
explored is the composition of context information at test time,
generalizing to novel combinations of context [19], [24], [25].
Recent work by Carvalho et al. [26] has applied diffusion
models to motion planning. Their approach is similar to ours
but does not consider problems with constraints other than
obstacle avoidance.

III. PRELIMINARIES

A. Trajectory Optimization

Trajectory optimization is commonly modeled as an
Optimal Control Problem (OCP). We consider a discrete-time
system with state x ∈ Rdx and control u ∈ Rdu and dynamics
xt = f(xt−1,ut−1). We define finite horizon trajectories
with horizon T as τ = (X,U), where X = {x1, ...xT } and
U = {u0, ...uT−1}. Given an initial state x0, the aim when
solving an OCP is to find a trajectory τ that minimizes a given
cost function C subject to equality and inequality constraints:

min
τ

C(τ)

s.t.
h(τ) = 0

g(τ) ≤ 0

∀t ∈ {1, . . . , T}
f(xt−1,ut−1) = xt

umin ≤ ut−1 ≤ umax

xmin ≤ xt−1 ≤ xmax.

(1)

B. Variational Inference for Trajectory Optimization

In this section, we will demonstrate how unconstrained
trajectory optimization can be framed as an inference problem,
as in [9], [27]–[29]. By using this framing we leverage ap-
proximate inference tools, in particular, Variational Inference
[30]. In this section, we will show how this framing leads
to an entropy-regularized objective [8] which aims to find
a high-entropy distribution over low-cost trajectories. This
results in improved exploration of the search space and greater
robustness to initialization.

To reframe trajectory optimization as probabilistic infer-
ence, we first introduce an auxiliary binary random variable
o for a trajectory such that

p(o = 1|τ) = exp (−C(τ)). (2)

We can see that maximizing the log-likelihood of p(o = 1|τ)
is equivalent to minimizing the cost. We aim to find the

posterior distribution p(τ |o = 1) ∝ p(o = 1|τ)p(τ), where τ ,
p(τ) = p(X,U) is a prior on trajectories. For deterministic
dynamics, this prior is determined by placing a prior on
controls U. Choosing a Gaussian prior results in a squared
control cost. Alternatively the prior could be learned from
data [31]. The trajectory prior is

p(τ) = p(U)

T∏
t=1

δ(xt − x̂t) (3)

where x̂t = f(xt−1,ut−1), and δ is the Dirac delta function.
This inference problem can be performed exactly for the case
of linear dynamics and quadratic costs [32], [33]. However, in
general, this problem is intractable and approximate inference
techniques must be used. We use variational inference
to approximate p(τ |o = 1) with distribution q(τ) which
minimizes the divergence KL(q(τ)||p(τ |o = 1)) [30]. This
results in minimizing the variational free energy F (see [10]
for a detailed derivation)

F(q) = Eq(τ)[C(τ)]− Eq(τ)[log p(τ)]−H(q(τ)), (4)

where H(q(τ)) is the entropy of q(τ). Intuitively, we can
understand that the first term promotes low-cost trajectories,
the second is a regularization on the trajectory, and the entropy
term prevents the variational posterior from collapsing to a
maximum a posteriori (MAP) solution.

IV. PROBLEM STATEMENT

We frame the constrained optimal control problem intro-
duced in Section III-A as a probabilistic inference problem,
using ideas developed in Section III-B. We consider the
constrained optimization problem as an unconstrained opti-
mization problem with infinite cost assigned to constraint
violations. This results in p(o = 1|τ) = 0 =⇒ p(τ |o = 1) =
0, hence constraint violating trajectories are zero probability.
We can convert the unconstrained optimization problem to to
the following constrained optimization problem on the space
of probability distributions:

q∗ = min
q

F̃(q)

s.t.
Pq(h(τ) = 0) = 1

Pq(g(τ) ≤ 0) = 1

∀t ∈ {1, . . . , T}
Pq(f(xt−1,ut−1) = xt) = 1

Pq(umin ≤ ut−1 ≤ umax) = 1

Pq(xmin ≤ xt ≤ xmax) = 1.

(5)

CSVTO solves this functional optimization problem with
a non-parametric approximation of q∗, and solves a single
planning query for a specified cost C, constraints g, h, and
dynamics f . We can then say that q∗ = q∗(C, g, h, f). We
will assume f is fixed, and that the cost C is parameterized by
a start x0 and a goal xg . We assume that the constraints g, h
are parameterized by {θ, y}, where θ ∈ Rn are continuous



parameterizations of the constraint and y ∈ [1, ...,M ] is an in-
dicator variable for the constraint type. For instance, different
types of constraints could be obstacle avoidance constraints
vs. end-effector pose constraints. Thus q∗ = q∗(x0, xg, θ).
We aim to learn a generative model which approximates this
q∗. For a given x0, xg, θ we use CSVTO to generate sampled
trajectories (X,U) from q∗. The data from which we will
learn our generative model is {{Xi,Ui}Ki=1, x0, xg, θ, y}N .
By using this generative model as an initialization, our goal is
to achieve better performance and lower constraint violation
within a limited computational budget. In addition, we seek
to generalize to unseen combinations of constraints, i.e. for
constraints hi, hj seen individually during training we aim
to generalize to the case where it is necessary to satisfy both
hi and hj .

V. METHOD

Given trajectory samples (X,U) ∼ q∗(x0, xg, θ), we use
a conditional diffusion model pψ(X,U |x0, xg, θ) to learn a
generative model of the data. We will first give an overview
of diffusion models.

A. Diffusion Models
Diffusion probabilistic models [15]–[17] are a class of

generative models that have been shown to be highly effective
for learning distributions of trajectories [18], [19]. Given a
dataset D = {τ}N , the data samples are τ0 and a predefined
forward noising process q(τk+1|τk) = N (

√
αkτk, (1−αk)I)

is used to progressively add noise to the data for K steps,
resulting in τ1, ..., τK increasingly noisy latent vectors. K and
αk are chosen such that τK ∼ N (0, I). To sample from the
model, we use a trainable reverse process pψ(τk−1|τk) =
N (µ(τk, k),Σk), where µ is parameterized by a neural
network, and Σk is typically fixed, but can in principle be
learned. Diffusion models are learned with the loss

L(ψ) = Ek∼[1,K],τ0∼D,τk∼q(τk|τ0),ϵ∼N (0,I)[||ϵ−ϵψ(τk, k)||2]
(6)

where ϵψ is a neural network. The mean of the reverse process
µ is then calculated from this ϵψ .

a) Classifier-free Guidance for Conditional Diffusion
Models: In the previous section, we described an uncondi-
tional diffusion model. However, we would like to generate
trajectories conditioned on the start, goal, and constraints.
For convenience, we label all contextual information as c, the
dataset is then D = {τ, c}N . We use a technique known as
classifier-free guidance [23]. The diffusion model is modified
to also take the context as an input ϵ(τk, c, k). The loss then
becomes
L(ψ) =
Ek∼[1,K],τ0,c∼D,τk∼q(τk|τ0),ϵ∼N (0,I)[||ϵ− ϵψ(τk, c, k)||2].

(7)
During training, with some dropout probability punconditional
we replace c with ∅, this effectively trains a conditional
generative model and an unconditional generative model
together. When sampling, the conditional and unconditional
models are combined via

ϵ̂(τk, c, k) = ϵψ(τk, ∅, k)+ω(ϵψ(τk, c, k)−ϵψ(τk, ∅, k)), (8)

where ω controls the influence of the conditioning information.
We can see that ω = 1 corresponds to simply using ϵ̂ =
ϵψ(τk, c, k), ω is typically chosen to be larger than 1 to more
strongly incorporate the conditioning information.

B. Composing Constraints

As introduced in the previous section, the conditional
diffusion model is ϵψ(τk, c, k), where c is the contextual
information. The contextual information is {x0, xg, θ, ŷ},
where ŷ is a one-hot encoding of y. We are interested
in composing constraints, such that we can generalize to
novel combinations of constraints that have not been seen
together during training. Suppose we have L constraints, then
the contextual information is c = {x0, xg, θ1, ŷ1, ..., θL, ŷL}.
These are composed at test time via

ϵ̂(τk, c, k) =ϵψ(τk, ∅, k)+
L∑
i=1

ωi(ϵψ(τk, {x0, xg, θi, ŷi}, k)− ϵψ(τk, ∅, k)),

(9)
where ωi is a hyperparameter that controls the relative
influence of each constraint.

C. Architecture

For the neural network architecture we use the 1-D
convolutional U-Net described in [18]. We encode the start,
goal, and constraint information with a multi-layer perceptron
(MLP) to a R256 vector which is used to condition the network
via Feature-wise Linear Modulation (FiLM) [34]. To query
and train the unconditional diffusion model, we replace this
vector with the zero vector. We train with Adam and a learning
rate of 1× 10−4.

D. Using the learned model for planning with CSVTO

In principle, a perfect generative model planning would
simply consist of sampling from the diffusion model, as
in [18], [19]. However, to ensure that trajectories satisfy
the constraints we use the samples as the initialization for
CSVTO. CSVTO starts from an initial set of particles and
drives the particles towards constraint satisfaction and low
cost while also promoting diversity. Suppose we are running
CSVTO with N particles. In the first time-step, we sample
N trajectories from the generative model to get a set of
initial trajectory samples. At subsequent timesteps, CSVTO
gives N initial trajectories which are the shifted result of the
previous time-steps optimization. We sample an additional N
trajectories from the generative model and choose the best
N of the 2N trajectories to serve as the initialization for the
optimization.

VI. EVALUATION

We evaluate our approach in three experiments. The first
is a constrained 12DoF quadrotor task which has nonlinear
underactuated dynamics. The second experiment is a 7DoF
robot manipulator task where the aim is to move the robot
end-effector to a goal location while being constrained to
move along the surface of a table.



Fig. 2. Experimental setup for the training and evaluation of the quadrotor
tasks. The quadrotor must travel to the goal location. a) The quadrotor is
constrained to travel along a non-linear surface shown in purple. b) The
quadrotor must avoid the infeasible regions in the x-y plane shown in red. c)
The quadrotor must satisfy both the previous constraints. The combination
of these two constraints is not seen during training

A. Ablations

We compare using our proposed composable learned
generative model for trajectory optimization with ablations.
The first is CSVTO without a learned generative model. For
the second ablation we compare against using the learned
diffusion model without the composability, e.g. for a task
that consists of satisfying two constraints, we use a diffusion
model which only takes into account one constraint.

B. 12DoF Quadrotor

For this task, there are two types of constraints; a constraint
that the quadrotor must travel along a nonlinear surface z =
fsurf (x, y), and that it must avoid obstacles in the x-y plane,
with in-collision configurations described by fobs(x, y) < 0.
To generate different versions of each of these two types
of constraints, we sample fobs and fsurf from a Gaussian
Process prior with an RBF kernel and zero mean function.
To do this, we sample 10×10 function evaluations on an x-y
grid. We then fit a GP to these and use the posterior mean
as the constraint function. The constraint is parameterized by
the 10×10 function values. We collect a dataset that consists
of trajectories that satisfy either the surface constraint or
the obstacle avoidance constraint. To collect the dataset, we
generate 10000 parameterizations for each constraint type.
For each constraint we run CSVTO with 16 particles and
generate trajectories for 10 different starts and goals. We
evaluate with an unseen setup in which the quadrotor must
satisfy both the obstacle constraint and the surface constraint
at the same time. Examples are shown in Figure 2.

We run this experiment for 20 trials with randomly sampled
starts, goals, surface, and obstacle constraints. The results
are shown in Figure 3. CSVTO with the composed diffusion
outperforms the ablations, achieving succeeding 13/20 times
at a goal threshold of 0.6m, compared with 9/20 for CSVTO
with no diffusion, the next best baseline. We see that CSVTO
with a diffusion model that only takes into account the surface
constraint performs similarly to CSVTO with no diffusion,
whereas CSVTO which only takes into account the obstacle
constraint performs significantly worse.

C. Robot Manipulator on Surface

For this experiment, we use the same experimental setup
as that described in VI-C. In this task, there are again
two types of constraints, a surface constraint that the end-
effector must be constrained to along the surface of the table,

Fig. 3. Results for quadrotor experiments. The left row shows the success
rate vs. goal region size. The right shows the average constraint violation as
a function of time

Fig. 4. Results for manipulator table experiments. The left row shows the
success rate as we increase the size of the goal region. The right shows the
average constraint violation as a function of time

and an obstacle constraint that the end-effector must avoid
two cylindrical obstacles in the x-y plane. For the obstacle
constraint, θ ∈ R4 is the x-y positions of the center of both
obstacles, while for the surface constraint, θ = [h, 0, 0, 0],
where h is the table height. We collect a dataset by generating
10000 surface constraints and 10000 obstacle constraints. For
each constraint, we run CSVTO with 16 particles and generate
trajectories for 10 different starts and goals. We evaluate our
approach in a scenario in which the robot must satisfy both
constraints at the same time.

We run this experiment for 20 trials with randomly sampled
starts, goals, surface, and obstacle constraints. The results
are shown in Figure 4. CSVTO with the composed diffusion
outperforms the ablations, achieving succeeding 20/20 times
at a goal threshold of 0.04m, compared with 17/20 for CSVTO
with no diffusion, the next best baseline. Examples of all
methods are shown in Figure 1.

VII. CONCLUSION

In this paper, we presented a method for learning a
generative model to initialize CSVTO using composable
diffusion models. We demonstrate that by incorporating the
learned generative model we can outperform CSVTO, with
a success rate of 13/20 vs 9/20 for a 12DoF quadrotor
task and 20/20 vs 17/20 on a 7DoF manipulator. In both
of these experiments, we apply the generative model to novel
combinations of constraints. In future work, we would like to
extend this approach to more manipulation tasks with more
diverse combinations of constraints.
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