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ABSTRACT

Multi-task and contrastive learning are both aimed at enhancing the robustness of
learned embeddings. But combining these two fields presents challenges. Super-
vised contrastive learning brings together examples of the same class while push-
ing apart examples of different classes, which is intuitive in single-task scenarios.
However, contrastive learning becomes less intuitive when dealing with multiple
tasks, which might require different notions of similarity. In this work, we intro-
duce a novel method, Multi-Task Contrastive Loss (MTCon), that improves the
generalization capabilities of learned embeddings by concurrently incorporating
supervision from multiple similarity metrics. MTCon learns task weightings that
consider the uncertainty associated with each task, reducing the influence of un-
certain tasks. In a series of experiments, we show that these learned weightings
enhance out-of-domain generalization to novel tasks. Across three distinct multi-
task datasets, we find that networks trained with MTCon consistently outperform
networks trained with weighted multi-task cross-entropy in both in-domain and
out-of domain multi-task learning scenarios. Code will be made available upon
publication.

1 INTRODUCTION

Multi-task learning and contrastive learning have each garnered significant attention for their po-
tential to enhance the robustness and generalization capabilities of learned embeddings. Multi-task
learning simultaneously solves multiple tasks, exploiting their shared information to produce supe-
rior representations and models, particularly when training data is limited (Du et al., 2020; Zhang
& Yang, 2021). This approach introduces regularization by compelling the model to excel across
diverse tasks, mitigating the risk of overfitting to individual tasks.

Contrastive learning trains embeddings by discriminating similar sample pairs (positive examples)
from dissimilar sample pairs (negative examples). Supervised contrastive learning (Khosla et al.,
2020) uses examples with the same label as positive examples and different labels for negatives.
Self-supervised contrastive learning generates positive pairs by augmenting single examples (Chen
et al., 2020; Arora et al., 2019). Embeddings trained with self-supervised and supervised con-
trastive learning techniques have achieved state-of-the-art performance in a variety of computer
vision tasks (Radford et al., 2021; Yuan et al., 2021; Khosla et al., 2020). Given the success of both
multi-task and contrastive learning, a natural question arises: can we combine these two fields to
improve the generalization of learned embeddings?

Combining multi-task and contrastive learning presents a challenge. The idea underlying supervised
contrastive learning, pulling together examples of the same class and pushing apart those of different
classes, becomes less straightforward in the context of multi-task learning. Two examples can fall
under the same class for one task but fall under different classes for another task. For example,
in Figure 1, each of the images of shoes are labeled with category, closure, and gender attributes.
Images 1 and 2 are similar in category but are dissimilar in closure and gender, while images 2
and 3 are similar in gender but dissimilar in category and closure. Which images should be pulled
together and which should be pushed apart in a contrastive setting? Another challenging factor
is that different tasks might have different levels of noise or uncertainty, and incorporating noisy
similarity measures can lead to worse, rather than better, generalization performance on new tasks
and datasets (Kendall et al., 2018; Mao et al., 2022).

1



Under review as a conference paper at ICLR 2024

Figure 1: Shoe Example. An example illustrating multiple disjoint similarity relationships between
three images of shoes.

In this work, we introduce multi-task contrastive loss (MTCon), a contrastive loss function and ar-
chitecture that utilizes supervision from multiple tasks and learns to down-weight more uncertain
tasks. Our framework is shown in Figure 2. MTCon uses multiple projection heads to learn em-
beddings based on different metrics of similarity from different tasks. In this way, we are able to
represent examples that are positive examples in one projected subspace and negative examples in a
different projected subspace. For determining task weighting, we start by understanding the role of
task uncertainty on generalization error in the contrastive multi-task setting. We first prove that train-
ing on tasks with higher homoscedastic noise or uncertainty can hurt generalization performance in
the multi-task contrastive setting. We then construct a weighting scheme that learns to down-weight
these uncertain tasks during training. We show through experiments that our weighting scheme
allows MTCon to generalize better to unseen tasks.

We evaluate MTCon on three diverse multi-task datasets. We find that networks trained with MTCon
consistently outperform networks trained with weighted multi-task cross-entropy by a statistically
significant margin of 3.3% in out-of-domain and 1.5% in in-domain multi-task learning scenar-
ios. We also show that embeddings trained with our multi-similarity contrastive loss outperform
embeddings trained with traditional self-supervised and supervised contrastive losses and previous
multi-similarity contrastive learning methods.

Our main contributions are: 1) We present a novel method, MTCon, for using contrastive learning
in the general multi-task setting; 2) We construct a weighting scheme that learns to down-weight un-
certain tasks during training and show through experiments that our scheme helps learn embeddings
that generalize better to unseen tasks; 3) We empirically demonstrate that networks trained with MT-
Con out-performs multi-task cross-entropy and previous contrastive methods for both out-of-domain
and in-domain tasks.

Figure 2: Multi-Task Contrastive Network. Multiple projection heads are trained to learn from
multiple metrics of similarity from different tasks. The projection heads are discarded and only
the encoding network is kept for downstream tasks. During training, our network is able to learn
weightings for each similarity metric based on the task uncertainty.

2 RELATED WORK

Multi-Task Learning. Multi-task learning aims to simultaneously learn multiple related tasks,
and often outperforms learning each task alone (Kendall et al., 2018; Bhattacharjee et al., 2022;
Mao et al., 2020; Du et al., 2020). However, if tasks are weighted improperly during training, the
performance on some tasks suffer. Various learned task weighting methods have been proposed for
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multi-task learning in the vision and language domains (Mao et al., 2022; Kendall et al., 2018; Chen
et al., 2018; Sener & Koltun, 2018; Liu et al., 2017; Mao et al., 2020; 2021; Gong et al., 2019).
These methods learn task weightings based on task characteristics, and improve the generalization
performance towards novel tasks (Mao et al., 2022). This is done by regularizing the task variance
using gradient descent (Chen et al., 2018; Mao et al., 2021) or by using adversarial training to divide
models into task-specific and generalizable parameters (Liu et al., 2017). Overwhelmingly, these
methods are built for multiple tasks trained with likelihood-based losses, such as regression and
classification. One of the most popular of these methods models task uncertainty to determine task-
specific weighting and automatically learns weights to balance this uncertainty (Kendall et al., 2018).
In our work, we adapt automatically learned task weighting to our multi-similarity contrastive loss
by predicting similarity uncertainty (Ardeshir & Azizan, 2022).

Contrastive Representation Learning. Our work draws from existing literature in contrastive
representation learning. Many of the current state-of-the-art vision and language models are trained
using contrastive losses (Radford et al., 2021; Yuan et al., 2021; Chen et al., 2020; Khosla et al.,
2020; He et al., 2020). Self-supervised contrastive learning methods, such as MoCo and SimCLR,
maximize agreement between two different augmentations or views of the same image (He et al.,
2020; Chen et al., 2020). Recently, vision-language contrastive learning has allowed dual-encoder
models to pretrain with hundreds of millions of image-text pairs (Jia et al., 2021; Radford et al.,
2021). The resulting learned embeddings achieve state-of-the-art performance on many vision and
language benchmarks (Yuan et al., 2021; Wang et al., 2022; Li et al., 2022). Supervised contrastive
learning, SupCon, allows contrastive learning to take advantage of existing labels (Khosla et al.,
2020; Yang et al., 2022; Zhang & Yang, 2021). Previously developed conditional similarity networks
and similarity condition embedding networks train on multiple similarity conditions by representing
these similarities as different triplets (Veit et al., 2017; Tan et al., 2019). Conditional similarity
networks learn masks for each metric of similarity; similarity condition embedding networks use an
additional conditional weighting branch. Both of these networks optimize a modified form of triplet
loss and we compare to both methods in our experiments.

We build on earlier work on the theory underlying the generalization of contrastive based losses.
(Arora et al., 2019) analyzes the generalization of InfoNCE loss in the binary case assuming that pos-
itive samples are drawn from the same latent classes. Other work studies the behavior of InfoNCE
loss from the perspective of alignment and uniformity (Ardeshir & Azizan, 2022; Oh et al., 2018),
and shows that generalization error of self-supervised contrastive learning losses can be bounded by
the alignment of generated data augmentation strategies (Huang et al., 2021). Other work investi-
gates the generalization error of contrastive learning using label information in order to understand
why labeled data help to gain accuracy in same-domain classification tasks (Ji et al., 2021). Though
this last work does not present a method that addresses the supervised multi-task contrastive learning
problem, we build directly on it to show that training with noisier task labels increases the general-
ization error bound towards novel tasks for multi-task supervised contrastive loss.

3 SETUP AND NOTATION

In this paper, we use O to denote universal constants, and we write ak ≲ bk for two sequences
of positive numbers {ak} and {bk} if and only if there exists a universal constant c > 0 such that
ak < c · bk for any k ≥ 0. Let |A| denote the cardinality of set A. We use || · || represent the l2
norm of vectors. λr(W ) represents the rth eigenvalue of matrix W . Let ED[·] and EE [·] denote the
expectation taken with respect to the set of data samples used for training and the data samples with
target task labels, respectively.

We assume that during training time, we have access to dataset: D = {xi,Yi}Mi , where x is an
image and the Yi = {y1i ...yCi } are distinct categorical attributes associated with the image. We aim
to learn an embedding function f that maps x to an embedding space. Let d represent the dimension
of the input space and n = |M | represent the number of data samples.

In the typical contrastive training setup, training proceeds by selecting a batch of N randomly sam-
pled data {xi}i=1...N . We randomly sample two distinct label preserving augmentations, x̃2i and
x̃2i−1, for each xi to construct 2N augmented samples, {x̃j}j=1...2N . Let A(i) = {1, ...2N}\i
be the set of all samples and augmentations not including i. We define g to be a projection head
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that maps the embedding to the similarity space represented as the surface of the unit sphere
Se = {v ∈ Re : ||v||2 = 1}. Finally, we define vi = g(hi) as the mapping of hi to the pro-
jection space.

Supervised contrastive learning uses labels to implicitly define the positive sets of examples. Specif-
ically, supervised contrastive learning encourages samples with the same label to have similar em-
beddings and samples with a different label to have different embeddings. We follow the literature
in referring to samples with the same label as an image xi as the positive samples, and samples with
a different label than that of xi’s as the negative samples.

Supervised contrastive learning (SupCon) Khosla et al. (2020) proceeds by minimizing the loss:

Lsupcon =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp( v

⊤
i vp
τ )∑

a∈A(i) exp( v
⊤
i va
τ )

, (1)

where |S| denotes the cardinality of the set S, P (i) denotes the positive set with all other samples
with the same label as xi, i.e., P (i) = {j ∈ A(i) : yj = yi}, I denotes the set of all samples in a
particular batch, and τ ∈ {0,∞} is a temperature hyperparameter.

4 METHODS

In this section, we introduce a novel extension, MTCon, of supervised contrastive learning to the
multi-task setting. We start by analyzing the generalization error bound of a simplified version,
MTCon-s, highlighting its dependence on the noise/uncertainty in different tasks. Guided by our
theoretical findings, we propose a modification of the MTCon-s objective that down-weights uncer-
tain tasks during training to reduce generalization error of the learned embedding to novel tasks.

In contrast to SupCon, our multi-task contrastive approach proceeds by jointly training an embed-
ding space using multiple notions of similarity from different tasks. We do so by training the em-
bedding with multiple projection heads gc that map the embedding to C projection spaces, where
each space distinguishes the image based on a different similarity metric. We define vci = gc(hi)
to be the mapping of hi to the projection space by projection head gc. Because each projection
space is already normalized, we assume that the each similarity loss is similarly scaled. We define
the multi-task contrastive loss to be a summation of the supervised contrastive loss over all condi-
tions Lmtcons

=
∑

c∈C,i∈I L
mtcons

c,i where each conditional Lmtcon−s
c,i is defined as in equation 2.

Specifically,
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where P c(i) is defined as the positive set under similarity c such that for all j ∈ P c(i), ycj = yci .

4.1 EFFECTS OF TASK UNCERTAINTY ON GENERALIZATION ERROR

Our novel MTCon-s objective function has the advantage of leveraging different notions of similarity
in learning the emeddings. However, in the presence of highly un-informative (i.e., high noise) tasks,
the MTcon-s objective might have poor generalization. In this section, we present a formal argument
that shows how the generalization error for downstream tasks depends on the noise of the source
tasks. We extend previous work (Ji et al., 2021; Bai & Yao, 2012) by postulating that the input data
(i.e. x) for each task t is a Gaussian mixture model with r+1 components shared across the T tasks.
However, the mixture probabilities pk,t, and the noise level ξk,t vary across tasks. Specifically, we
assume that the data is generated under the spiked covariance model with homoscedastic noise under
the multi-task setting:

xk,t = µk + ξk,t, Cov(ξk,t) ∼ N(0,Σk,t),∀k ∈ [r + 1], t ∈ [T ], and xt =

r+1∑
k

pk,tx
k,t (3)
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Specifically, we make the assumption that Σk,t = σ2
t ·I for all k ∈ {1, ..., r+1} where σ2

t represents
the noise variance parameter dependent on each task t. Following (Ji et al., 2021), we make the
additional assumptions that the covariance matrix Σk,t satisfies the regular covariance condition, that
the covariance of the noise is of the same order as the features, and that the feature matrix satisfies
the incoherence condition as defined in the Appendix. Full statements for all of our assumptions
are presented in the Appendix. We aim to learn feature embeddings that generalize to target tasks,
recovering the orthonormal basis W ∗ of the span of µk. Under the given assumptions, recovering
the span of µk allows us to learn a representation that will cover the features necessary to learn a
linear transformation to the target task.

Under these assumptions, we analyze the downstream performance of linear representations and
simple predictors, which take a linear transformation of the representation as an input. Specif-
ically, for a representation matrix W , and a set of weights w, fw,W (x) = w⊤Wx. Note that
effectively, Wxi = hi from the last section. For simplicity, we focus on the mean squared error
ℓ(fw,W (x), y) = (w⊤Wx− y)2, but we note that our analysis is extendable to other losses.

Theorem 1 Suppose n > d ≫ r, T > r and λ(r)(
∑T

t=1 wtw
⊤
t ) > c for some constant c > 0.

Let WCL be the learned representation using MTCon-s and W ∗ be the optimal true representation.
Then, the prediction risk of the downstream task can be bounded as:

ED[ inf
w∈Rr

EE [ℓ(fw,WCL
(x), y)]− inf

w∈Rr
EE [ℓ(fw,W∗(x), y)] ≲

√
dr

n
(

T∑
t=1

σt)

The proof is presented in the Appendix. Theorem 1 shows that the generalization error for down-
stream tasks depends on the sum of σt, the task-specific variances over the noise variable. This in
turn implies that the generalization error deteriorates if the source data includes noisy tasks.

4.2 CONTRASTIVE TASK WEIGHTING SCHEME

In the simplified formulation of our multi-similarity contrastive loss function, each similarity is
weighted equally. However, as shown in the previous section, tasks with higher homoscedastic noise
or uncertainty can hurt generalization performance in the multi-task contrastive setting. Previous
work in general multi-task learning has suggested using irreducible uncertainty of task predictions in
a weighting scheme (Kendall et al., 2018). For example, tasks where predictions are more uncertain
are weighted lower because they are less informative.

Such notions of uncertainty are typically predicated on an assumed parametric likelihood of a label
given inputs. However, this work is not easily adapted to multi-similarity contrastive learning be-
cause 1) contrastive training does not directly predict downstream task performance and 2) the con-
fidence in different similarity metrics has never been considered in this setting. In contrastive learn-
ing, the estimate of interest is a similarity metric between different examples rather than a predicted
label, so downstream task performance is not directly predicted by training results. Furthermore,
previous work in contrastive learning has only focused on modeling data-dependent uncertainty, or
how similar a sample is to negative examples within the same similarity metric. To our knowledge,
we are the first to utilize uncertainty in the training tasks and their corresponding similarity metrics
as a basis for constructing a weighting scheme for multi-similarity contrastive losses.

We do this in two ways: 1) we construct a pseudo-likelihood function approximating task perfor-
mance and 2) we introduce a similarity dependent temperature parameter to model relative con-
fidence between different similarity metrics. We present an extension to the contrastive learning
paradigm that enables estimation of the uncertainty in similarity metrics. Our estimate of uncer-
tainty enables us to weight the different notions of similarity such that noisy notions of similarity
are weighted lower than more reliable notions.

Our approach proceeds by constructing a pseudo-likelihood function that approximates task per-
formance. We show in the Appendix that maximizing our pseudo-likelihood also maximizes our
MTCon objective function. This pseudo-likelihood endows the approach with a well-defined notion
of uncertainty that can then be used to weight the different similarities.

Let vci be the model projection head output for similarity c for input xi. Let Yc be the cth column
in Y. We define P c

y = {xj ∈ D : Yc
j = y} to be the positive set for label y under similarity metric
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c. We define the classification probability p(y|vci , D, τ) as the average distance of the representa-
tion vci from all representations for inputs conditioned on the similarity metric. Instead of directly
optimizing equation 1, we can maximize the following pseudo-likelihood:

p(y|vci , D, τ) ∝ 1

|P c
y |

∑
p∈P c

y

exp(
vcTi vcp
τ

). (4)

Note that optimizing 4 is equivalent to optimizing 1 by applying Jensen’s inequality. By virtue of
being a pseudo-likelihood, equation 4 provides us with a well-defined probability associated with
downstream task performance that we can use to weight the different tasks. We will next outline
how to construct this uncertainty from the pseudo-likelihood defined in equation 4.

We assume that vc is a sufficient statistic for yc, meaning that yi is independent of all other variables
conditional on vi. Such an assumption reflects the notion that vc is an accurate estimation for yc.
Under this assumption the pseudo-likelihood expressed in 4 factorizes as:

p(y1, ...yC |v1i , ...vCi , D, τ) = p(y1|v1i , D, τ)...p(yC |vCi , D, τ). (5)

Previous work in contrastive learning modifies the temperature to learn from particularly difficult
data examples Zhang et al. (2021); Robinson et al. (2020). Inspired by this, we adapt the contrastive
likelihood to incorporate a similarity-dependent scaled version of the temperature. We introduce a
parameter σ2

c for each similarity metric controlling the scaling of temperature and representing the
similarity dependent uncertainty in Equation 6.

p(y|vci , D, τ, σ2
c ) ∝

1

|P c
y |

∑
p∈P c

y

exp(
vcTi vcp
τσ2

c

) (6)

The negative log-likelihood for this contrastive likelihood can be expressed as Equation 7.

−log p(y|vci , D, τ, σ2
c ) ∝

1

σ2
c

∑
i=I

Lmtcons

c,i + 2log(σc) (7)

Extending this analysis to consider multiple similarity metrics, we can adapt the optimization objec-
tive to learn weightings for each similarity as in Equation 8.

argminf,g1,...gC ,σ1,...σC
(
∑
c∈C

(
1

σ2
c

∑
i=I

Lmtcons

c,i + 2log(σc))) (8)

During training, we learn the σc weighting parameters through gradient descent. After learn-
ing the weighting parameters σc, we can define the weighted loss function as Lmtcon =∑

c∈C(
1
σ2
c

∑
i=I L

mtcons

c,i + 2log(σc)).

5 EXPERIMENTS

We first evaluate the robustness of our learned embeddings to task uncertainty. We show that when
we introduce task noise, 1) MTCon learns to down-weight noisy tasks, and 2) the resulting learned
embeddings generalize better to novel tasks. We then show that the generalization performance
of embeddings trained with MTCon is superior to that of embeddings trained with multi-task cross-
entropy or with previous multi-task contrastive losses. Finally, we show that even on in-domain tasks
networks trained with our multi-similarity contrastive loss significantly outperform networks trained
with existing self-supervised, single-task supervised, and previous multi-task contrastive losses.

Datasets. We use three multi-task datasets: Zappos50k (Yu & Grauman, 2014; 2017),
MEDIC (Alam et al., 2022; 2018; 2020; Mouzannar et al., 2018; Nguyen et al., 2017), and CUB200-
2011 (Wah et al., 2011). Zappos50k contains 50,000 136 × 102 images of shoes. We train models
on three tasks: the category of shoe, the suggested gender of the shoe, and the closing mechanism
of the shoe. We use the brand of the shoe for the out-of-domain task. We use the published splits
and resize all images to 112 × 112. MEDIC contains ∼ 71, 000 images of disasters collected from
social media. The dataset includes four disaster-related tasks that are relevant for humanitarian aid:
the disaster type, the informativeness of the image for humanitarian response, categories relevant to
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humanitarian response, and the severity of the damage of the event. For the out-of-domain analysis,
we hold out each task from training and then attempt to predict the held-out task during evaluation.
We use the published splits. All images are resized to 224× 224. CUB200-2011 has 11,788 labeled
images of 200 different bird species. We train models on three tasks: the size, the shape, and the
primary color of the bird. We evaluate on species classification for the out-of-domain task. We use
the published train/test split and separate 10% of the training set as a validation set. All images are
resized to 224× 224.

Implementation. Consistent with previous work (Chen et al., 2020; Khosla et al., 2020; Huang
et al., 2021), images are augmented by applying various transformations to increase dataset diver-
sity. We train using standard data augmentations: random crops, flips, and color jitters. Zappos50k
encoders use ResNet18 backbones with projection heads of size 32. CUB200-2011 and MEDIC en-
coders use ResNet50 backbones with projection spaces of size 64 (He et al., 2016). All models are
pretrained on ImageNet (Deng et al., 2009). All networks are trained using an SGD with momen-
tum optimizer for 200 epochs with a batch-size of 64 and a learning rate of 0.05, unless otherwise
specified. We use a temperature of τ = 0.1. To evaluate the quality of the learned encoder, we train
a linear classifier for 20 epochs and evaluate top-1 accuracy. Standard deviations are computed by
bootstrapping the test set 1000 times.

Baselines. We compare MTCon with multi-task, single-task, and self-supervised baselines:

(1) Multi-Task Cross-Entropy (XEnt MT) We train a weighted multitask cross-entropy network
with all available tasks (Kendall et al., 2018). We train each network with a learning rate of 0.01 for
200 epochs. (2) Conditional Similarity Network (CSN) Following the procedure in (Veit et al.,
2017), we train a conditional similarity network that learns the convolutional filters, embedding, and
mask parameters together. 10,000 triplets are constructed from all the similarities available in each
training dataset. (3) Similarity Condition Embedding Network (SCE-Net) Following (Tan et al.,
2019), we train a SCE-Net for each dataset treating each training task as a similarity condition. The
same training triplets are used as for the CSN networks. (4) Single-Task Cross-Entropy (XEnt)
We train single-task cross-entropy networks for each training task with a learning rate of 0.01 for
200 epochs. (5) SimCLR and SupCon Networks We train a SimCLR network for each dataset and
individual SupCon networks with each of the similarity metrics represented in the training dataset.
We pretrain with a temperature of 0.1 for all contrastive networks, which is the typical temperature
used for SimCLR and SupCon (Chen et al., 2020; Khosla et al., 2020). For evaluation, we fine-tune
a classification layer on the frozen embedding space.

MTCon Weighting Improves Robustness to Task Uncertainty. We first evaluate the responsive-
ness of our learned embeddings to similarity uncertainty. Since the true level of task noise (similarity
metric uncertainty) is unobserved, we use a semi-simulated approach, where we simulate uncertain
similarities in both the Zappos50k and MEDIC datasets.

For the Zappos50k dataset, we train the encoder using the category, closure, and gender tasks. To
introduce task uncertainty, we randomly corrupt the closure task by corruption proportion ρ. We
randomly sample ρ of the closure labels, and randomly reassign the label amongst all possible labels.
Note that when ρ = 1.0, all labels are randomly sampled equally from the available closure labels.
When ρ = 0.0, all labels are identical to the original dataset. For the MEDIC dataset, we train the
encoder using the disaster types, humanitarian, and informative similarity metrics. We corrupt the
disaster type task to introduce task uncertainty.

For the Zappos50k dataset, we evaluate the top-1 classification accuracy on an out-of-domain task,
brand classification, and on an in-domain task, the corrupted closure classification. Similarly, for the
MEDIC dataset, we evaluate the top-1 classification accuracy on an out-of-domain task, damage-
severity classification, and on an in-domain task, the corrupted disaster-type classification.

Figure 3 shows the results from this analysis. The top panel shows that, as expected, as ρ increases,
MTCon learns to down-weight the noisy task. The middle and bottom panels show how out-of-
domain and in-domain evaluation accuracy changes as we change task uncertainty. As expected,
as ρ increases to 1, the in-domain classification accuracy for both the equal-weighted and weighted
MTCon learned embeddings decreases to random. The out-of-domain classification accuracy for the
weighted MTCon learned embeddings is more robust to changes in ρ than the unweighted MTCon
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learned embeddings. This is because the weighted version of MTCon automatically learns to down-
weight uncertain tasks during encoder training.

Figure 3: MTCon downweights uncertain tasks to improve generalizability to out-of-domain
classification. Unweighted and weighted versions of MTCon are trained on increasing task corrup-
tion. The x-axis on all plots represents the amount of task corruption ρ. The top row shows that
weighted MTCon learns to downweight the corrupted task. The middle row shows that there is no
meaningful difference in performance on the corrupted task. The bottom row shows that weighted
MTCon generalizes better to out-of-domain tasks than unweighted MTCon.

Generalization Performance. We compare the out-of-domain performance of MTCon against
multi-task cross-entropy and previous contrastive multi-similarity methods for out-of-domain tasks
on the Zappos50k, MEDIC, and CUB200-2011 datasets. We find that MTCon outperforms other
multi-task trained methods on out-of-domain tasks for all datasets. On average across datasets, MT-
Con improves upon multi-task cross-entropy by 3.3%,and improves performance for all tasks except
for MEDIC informativeness. The informativeness task seems to be carry little information about the
other tasks, as evidenced by the fact that, as shown elsewhere, including it hurts performance for
other tasks (Alam et al., 2022).

Table 1: Out-of-domain Performance. Out-of-domain classification accuracy on hold-out tasks
across three multi-task datasets for multi-task learning methods.

Zappos50k CUB200-2011 MEDIC

Loss Brand Species Severity Type Human Inform.
XEnt MT 32.10 (1.48) 41.23 (0.47) 79.51 (0.36) 75.02 (0.38) 79.77 (0.4) 86.18 (0.3)

CSN 25.72 (2.03) 34.15 (0.51) 66.71 (0.35) 65.18 (0.36) 67.22 (0.38) 75.56 (0.3)
SCE-Net 28.72 (1.79) 38.91 (0.45) 69.92 (0.31) 67.27 (0.33) 71.23 (0.31) 78.62 (0.31)
MTCon 42.62 (1.52) 43.07 (0.48) 80.98 (0.32) 76.17 (0.32) 81.45 (0.34) 85.22 (0.3)

In-domain Classification Performance. To evaluate the quality of the learned embedding spaces,
we measure classification accuracy on all training tasks for Zappos50k, MEDIC, and CUB200-
2011. We report the average accuracy and the standard deviation for all tasks. For the Zappos50k
and CUB200-2011 datasets, Table 2, MTCon has the highest classification accuracy of the models.
For MEDIC, Table 3, MTCon out performs all of the contrastive learning techniques on all tasks.
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However, for three of the MEDIC tasks, the best performance is achieved by one of cross-entropy
methods (but different methods dominate for different tasks). We hypothesize that this may be
related to the inherent uncertainty of some of the tasks, as observed in Alam et al. (2018; 2022).
For all datasets, CSN and SCE-Net achieve accuracies that are lower than the single-task supervised
networks. We believe this is because conditional similarity loss is trained with triplet loss Hoffer
& Ailon (2015), which others have shown performs less well than N-pairs loss and supervised
contrastive learning for single-task learning Sohn (2016); Khosla et al. (2020). More qualitative
analysis of the learned similarity subspaces (i.e., TSNE visualizations) is in the Appendix.

Table 2: In-domain Performance for Zappos50k and CUB200-2011. MTCon outperforms all
baselines on training tasks. Note that the entries for XEnt and SupCon represent separately trained
supervised models for each task.

Zappos50k CUB200-2011

Loss Category Closure Gender Shape Size Primary Color
XEnt 96.64 (0.34) 92.28 (0.35) 83.09 (0.60) 55.76 (0.50) 55.91 (0.48) 32.61 (0.45)

XEnt MT 96.98 (0.29) 93.33 (0.36) 85.07 (0.55) 54.87 (0.49) 56.96 (0.47) 33.18 (0.45)

SimCLR 90.05 (0.43) 81.30 (0.49) 69.10 (0.84) 34.20 (0.46) 52.43 (0.48) 28.51 (0.43)
SupCon 96.95 (0.29) 91.75 (0.41) 85.11 (0.58) 55.92 (0.49) 58.13 (0.48) 33.28 (0.47)

CSN 83.33 (0.32) 72.12 (0.36) 69.21 (0.60) 45.14 (0.49) 48.24 (0.45) 25.23 (0.42)
SCE-Net 86.23 (0.31) 75.32 (0.33) 71.32 (0.59) 48.29 (0.41) 51.53 (0.44) 28.78 (0.41)
MTCon 97.17 (0.27) 94.37 (0.35) 85.98 (0.56) 56.88 (0.49) 59.32 (0.48) 35.97 (0.45)

Table 3: In-domain Performance for MEDIC. MTCon outperforms all contrastive learning base-
lines on training tasks. Note that the entries for XEnt and SupCon represent separately trained
supervised models for each task.

MEDIC

Loss Damage severity Disaster types Humanitarian Informative
XEnt 81.39 (0.35) 78.98 (0.35) 82.1 (0.37) 85.68 (0.3)

XEnt MT 81.01 (0.36) 78.04 (0.32) 82.25 (0.35) 86.01 (0.29)

SimCLR 74.9 (0.4) 68.5 (0.42) 73.89 (0.4) 78.67 (0.33)
SupCon 80.26 (0.33) 78.33 (0.37) 74.89 (0.39) 84.02 (0.3)

CSN 75.13 (0.4) 70.02 (0.37) 70.52 (0.38) 76.28 (0.32)
SCE-Net 77.25 (0.42) 71.15 (0.39) 72.12 (0.42) 77.52 (0.33)
MTCon 81.0 (0.3) 79.14 (0.31) 81.69 (0.3) 85.15 (0.3)

6 CONCLUSION

In this work, we introduce a method for learning representations using multi-task contrastive loss
(MTCon). MTCon uses multiple projection heads to represent examples that may belong to the
same class under one task but to different classes under another task. It uses a task uncertainty-based
weighting scheme that down-weights uncertain tasks to improve generalization to novel downstream
tasks. In a set of experiments, we demonstrate that our MTCon learned embeddings generalize better
than embeddings trained with previous multi-task baselines to novel tasks.

A limitation is that our mathematical analysis of the impact of task noise on the multi-task contrastive
learning generalization error makes simplifying assumptions that may not hold in practice, including
the assumption that source tasks are abundant enough to recover core features necessary for the target
task. However, our results on three multi-task datasets show that MTCon works well in practice to
train models that generalize to novel tasks. Another limitation of MTCon is that we assume that
there exists task-specific noise that we can learn. Our experiments indicate that this assumption
holds to varying degrees in different tasks.

In conclusion, we show that we can combine multi-task and contrastive learning to build models that
generalize well to novel tasks.
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A APPENDIX

We provide detailed computations and additional experimental results in the Appendix.

A.1 PROOF OF THEOREM 1

Proof Strategy Our proof follows the proof of Theorem 4.7 in (Ji et al., 2021). We first provide
a bound on the sine distance between the orthonormal bases of optimal W ∗ and learned WCL, U∗

and UCL, as estimated by our proposed simplified contrastive loss MTCon-s. We then provide a
bound on the downstream task generalization error as a function of the bound on the sine difference
between U∗ and UCL.

Notation First, we provide some additional notation. We use Θ to denote universal constants. We
use || · ||2 and || · ||F to represent the spectral norm of matrices and the Frobenius norm of matrices
respectively. Let Od,r be a set of d× r orthogonal matrices. λr(W ) represents the rth eigenvalue of
matrix W . We use || sinΘ(U1, U2)||F to refer to the sine distance between two orthogonal matrices
U1, U2 ∈ Od,r, defined by || sinΘ(U1, U2)||R := ||UT

1⊥U2||F . We additionally define {ei}di=1 to
denote the canonical basis in d-dimensional Euclidean space Rd, where ei is the vector whose i-th
coordinate is 1 and all other coordinates are 0. We define 1{A} to be the indicator function that
takes 1 when A is true and 0 otherwise. Let ∆(M) represent the matrix M with diagonal entries set
to 0. We provide some additional definitions below:

Definition 1 We define the incoherence constant of U ∈ Od,r as

I(U) = max
i∈[d]

||eTi U ||2

Intuitively, this constant measures the similarity between U and the canonical basis.

Assumptions Here we present the standard spiked covariance model assumptions for the multi-
task setting and the three assumptions necessary for our theorem. Under the standard spiked covari-
ance model, we assume that ||µk|| =

√
rν,∀k ∈ [r + 1] where ν represents the scaling factor of the

covariance matrix. We assume that our samples are drawn from r+ 1 different classes for each task
t, with probability pk,t for each class k ∈ [r+1] and

∑r+1
k=1 pk,t = 1. To ensure identifiability since

the multi-class problem is invariant under translation, we additionally assume
∑r+1

k=1 pkµk = 0.

Let Λt =
∑k+1

k=1 pk,tµkµ
T
k . We additionally assume rank(Λt) = r and C1ν < λ(r)(Λt) <

λ(1)(Λt) < C2ν for constants C1 and C2. Finally, we assume that tasks are abundant enough to
recover features completely via the labeled data.

Following Assumptions 3.4-3.6 in (Ji et al., 2021), we make the following assumptions under the
multi-task spiked covariance model.

Regular Covariance Condition. The condition number of the covariance matrix, Σk,t, satisfies
κ := σ2

1,t/σ
2
r+1,t < C, where σ2

j,t represents the jth largest number among σ2
1,t... σ

2
r+1,t.
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Signal to Noise Ratio Condition We define the task noise ratio ρt := ν/σt. We assume that
ρt = Θ(1) or that the covariance of the noise is the same order as that of the core features for each
task.

Incoherent Condition The incoherent constant of the feature matrix W ∗ ∈ Od,r satisfies I(W ∗) =
O(r log d/d)

Definition Our proof will rely on an analysis of a hybrid loss that combines the self-supervised
loss with supervised contrastive losses (SupCon) with arbitrary weights for each task.

We first must define the matrix loss for self-supervised and supervised contrastive loss. Given two
augmentation functions a1, a2 and n training samples, the augmented views for example xi are
given by {(a1(xi), a2(xi)} and the corresponding positive and negative samples are defined by
{as(xi) : s ∈ [2]\{v}} and {as(xj) : s ∈ [2], j ∈ [n]\{i}} respectively. Then, the self-supervised
contrastive learning loss can be written as:

LSelfCon(W ) = − 1

2n

n∑
i=1

2∑
v=1

[⟨Wav(xi),Wa[2]\{v}(xi)⟩ −
∑
j ̸=i

2∑
s=1

⟨Wav(xi),Was(xj)⟩
2n− 2

]

+
λ

2
||WW⊤||2F

Under the supervised setting, for the K-class classification problem for task t, given nk,t samples
for each class k ∈ [K] : {xk

i : i ∈ [nk,t]}Kk=1 with n :=
∑K

k=1 nk,t, we define the positive and
negative samples for xk,t

i as {xk,t
j : j ∈ [nk,t]\i} and {xs,t

j : s ∈ [K]\k, j ∈ [ns,t]} respectively.
The supervised contrastive learning loss for the weight matrix for a single task can be written as:

LSupCon(W, t) = − 1

nK

K∑
k=1

n∑
i=1

[
∑
j ̸=i

⟨Wxk,t
i ,Wxk,t

j ⟩
n− 1

−
n∑

j=1

∑
s̸=k

⟨Wxk,t
i ,Wxs,t

j ⟩
n(K − 1)

] +
λ

2
||WW⊤||2F

We consider optimization under the hybrid contrastive loss:

min
W∈Rr×d

L(W ) := min
W∈Rr×d

LSelfCon(W ) +

T∑
t=1

αiLSupCon,t(W )

Note that the setting under which αt → ∞ at the same rate for the hybrid loss exactly matches our
simplified multi-task contrastive loss. Also note that MT-Con is the same as the second term in the
previous equation with αi =

1
σ2
i

. Next, we provide some restatements of Lemmas in (Ji et al., 2021)
to help with our proof.

Let H = In− 1
n1n1

⊤
n . Define matrices M̂ and N̂i as follows, M̂ := 1

n (∆(XX⊤)− 1
n−1X(1n1

⊤
n −

In)X
⊤) and N̂t := 1

(n−1)2XtHyty
⊤
t HX⊤

t . Let M = [µ1, ...µk] represent the target component

means. Intuitively, M̂ represent the learned component means and N̂t the data centering matrix.

Lemma 1 (Restated Eq. 54 in (Ji et al., 2021)) Let the bound for the 2 norm expectation of matrix
M̂2 −M which represents learned and target component means:

E||M̂ −M ||2 ≲ ν2(
r

d
log d+

√
r

n
+

r

n
) + σ2

1(

√
d

n
+

d

n
) + σ1ν

√
d

n

Lemma 2 (Restated Lemma C3 in (Ji et al., 2021)) Let U∗ represent the orthonormal basis of
learned representation W . Let the task label be generated by y = ⟨w∗, z⟩. Under the assump-
tions and conditions for a single task, we can find an event A such that P(AC) = O(

√
d/n) and:

E[|| 1

(n− 1)2
XHyy⊤HX⊤ − ν2U∗w∗w∗⊤U∗⊤||F1{A}] ≲

√
d

n
σν
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Lemma 3 (Restated Eq. 92 in (Ji et al., 2021)) Let the target matrix for all tasks be N =

ν2U∗U∗⊤ +
∑T

t=1 αtν
2U∗wtw

⊤
t U

∗⊤. Define σ1 = maxt∈T {σt}. The upper bound between N

and N̂ can be represented:

E||N̂ −N ||21{∩T
i=1Ai} ≤ 1

4
E||M̂2 −M ||2 +

T∑
t=1

αtE||N̂t − ν2U∗wtw
⊤
t U

∗⊤||F1{At}

Lemma 4 (Restated Theorem 4.1 in (Ji et al., 2021)) Under the assumptions with sample size m,
let WCL be any solution that minimizes the hybrid contrastive loss. Denote its singular value de-
composition as WCL = (UCLΣCLV

⊤
CL)

⊤, then

E|| sinΘ(UCL, U
∗)||F ≲

1

1 + α
(
r3/2

d
log d+

√
dr

n
) +

α

1 + α

√
dr

m

Lemma 5 (Restated Lemma B.22 in (Ji et al., 2021)) For any U ∈ Od,r,

inf
w∈Rr

EE [ℓ(fw,WCL
(x), y)]− inf

w∈Rr
EE [ℓ(fw,W∗(x), y)] = O((1+ρ−1)ED[||sinΘ(U,U∗)||2]||w∗||2)

Combining the computed bound with Lemma 4 gives us the desired bound

ED[infw∈RrEE [ℓ(fw,WCL
(x), y)]− inf

w∈Rr
EE [ℓ(fw,W∗(x), y)]] ≲

√
dr

n
(

T∑
i=1

σt)

Theorem A 1 Under the multi-task supervised contrastive learning setting, we can compute the
upper bound between the contrastive learned and optimal orthonormal basis of the representations,

E||sin(Θ(UCL, U∗))||F ≲

√
dr

n
(

T∑
t=1

σt)

Proof: We derive an upper bound on the sine distance between the contrastive learned and optimal
orthonormal basis. Optimizing the hybrid loss is equivalent to finding the top-r eigenspace of the
matrix

1

4n
(∆(XXT )− 1

n− 1
X(1n1

T
n − In)X

T ) +
T∑

i=1

αi

(ni − 1)2
XiHniyiy

T
i HniX

T
i

[Eq. 91 in (Ji et al., 2021)]

Again, let H = In − 1
n1n1

⊤
n . Define matrices M̂ and N̂i as follows, M̂ := 1

n (∆(XX⊤) −
1

n−1X(1n1
⊤
n − In)X

⊤) and N̂t := 1
(n−1)2XtHyty

⊤
t HX⊤

t . Let M = [µ1, ...µk] represent the

target component means. Intuitively, M̂ represent the learned component means and N̂t the data
centering matrix. We will proceed by analyzing each of these two terms separately.

From Lemma 1, we can bound the 2-norm expectation of matrix M̂ −M as follows,

E||M̂ −M ||2 ≲ ν2(
r

d
log d+

√
r

n
+

r

n
) + σ2

1(

√
d

n
+

d

n
) + σ1ν

√
d

n

Next we analyze the second term in the expression. By Lemma 2, for the multi-task setting, for each
task t, we can find an event At such that P(AC

t ) = O(
√

d/n) and:

E[||N̂t − ν2U∗w∗
tw

∗⊤
t U∗⊤||F1{At}] ≲

√
d

n
σtν
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Let the target matrix for all tasks be N = ν2U∗U∗⊤ +
∑T

t=1 αiν
2U∗wtw

⊤
t U

∗⊤. Define σ1 =

maxt∈T {σt}. We can obtain the upper bound between N and N̂ using Lemma 3:

E||N̂ −N ||21{∩T
i=1Ai} ≲ ν2(

r

d
log d+

√
r

n
+

r

n
) + σ2

1(

√
d

n
+

d

n
) + σ1ν

√
d

n
+

T∑
t=1

[αt

√
d

n
σtν

2]

We can compute an upper bound on the sine distance between U∗ and UCL using Lemma 4:

E||sin(Θ(UCL, U
∗))||F = E||sin(Θ(UCL, U

∗))||F1{∩T
t=1At}+E||sin(Θ(UCL, U

∗))||F1{∪T
t=1A

C
t }

≲

√
rE||N̂ −N ||21{∩T

t=1At}
λr(N)

+
√
rP(1{∪T

t=1A
C
t })

≲

√
r

ν2 + ν2λr(
∑⊤

t=1 αtwtw⊤
t )

(ν2
r

d
log d+ σ2

1

√
d

n
+

⊤∑
t=1

αt

√
d

n
σtν) +

√
r

T∑
t=1

√
d

n

as αt → ∞ under the multi-task supervised contrastive learning setting, this expression simplifies
to

E||sin(Θ(UCL, U∗))||F ≲

√
dr

n
(

T∑
t=1

σt)

□

Next, we will use the upper bound between the contrastive learned and optimal orthonormal basis
of the representations to bound the prediction risk of the downstream task.

Theorem A 2 Suppose n > d ≫ r, T > r and λ(r)(
∑T

t=1 wtw
⊤
t ) > c for some constant c > 0.

Let WCL be the learned representation using MTCon-s and W ∗ be the optimal true representation.
Then, the prediction risk of the downstream task can be bounded as:

ED[ inf
w∈Rr

EE [ℓ(fw,WCL
(x), y)]− inf

w∈Rr
EE [ℓ(fw,W∗(x), y)] ≲

√
dr

n
(

T∑
t=1

σt)

Proof: Combining Theorem A1 with Lemma 5 gives us the desired bound,

ED[infw∈RrEE [ℓ(fw,WCL
(x), y)]− inf

w∈Rr
EE [ℓ(fw,W∗(x), y)]] ≲

√
dr

n
(

T∑
i=1

σt)

□

A.2 DERIVATION OF WEIGHTED MTCON LOSS

We provide a detailed derivation of the negative log-likelihood bound computation here.
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−log p(y|vc
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We bound our negative log-likelihood with Jensen’s inequality at step 2. Following the cross-entropy
uncertainty log-likelihood derivation in (Kendall et al., 2018), we also use the simplifying assump-

tion 1
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when σc → 1. Extending this analysis to multi-similarity contrastive loss, we can adapt the loss
function to learn weightings for each similarity. While we make several simplifying assumptions
to reduce the objective, we demonstrate that the optimization objective works well in our empirical
results.

A.3 EXTENDED CLASSIFICATION EXPERIMENTS

We provide the full in-domain classification results here, including results from each of the separate
single-task trained cross-entropy and supervised contrastive learning networks for the Zappos50k,
CUB200-2011 and MEDIC datasets in Table 4, Table 5, and Table 6, respectively. MTCon outper-
forms all contrastive learning baselines with a single trained model on all tasks.

Table 4: Extended In-domain Performance for Zappos50k. MTCon outperforms all baselines on
training tasks.

Zappos50k

Loss Category Closure Gender
XEnt Category 96.64 (0.34) 74.55 (0.38) 63.78 (0.59)

XEnt Closure 88.99 (0.33) 92.28 (0.35) 66.59 (0.57)
XEnt Gender 81.96 (0.32) 73.28 (0.37) 83.09 (0.60)

XEnt MT 96.98 (0.29) 93.33 (0.36) 85.07 (0.55)

SimCLR 90.05 (0.43) 81.30 (0.49) 69.10 (0.84)
SupCon Category 96.95 (0.29) 73.02 (0.36) 61.24 (0.62)

SupCon Closure 83.62 (0.30) 91.75 (0.41) 65.90 (0.60)
SupCon Gender 76.40 (0.28) 69.52 (0.38) 85.11 (0.58)

CSN 83.33 (0.32) 72.12 (0.36) 69.21 (0.60)
SCE-Net 86.23 (0.31) 75.32 (0.33) 71.32 (0.59)
MTCon 97.17 (0.27) 94.37 (0.35) 85.98 (0.56)

A.4 SIMILARITY SPACE ANALYSIS

Zappos50k We visually examine the embeddings learned through our approach to qualitatively
analyze the learned similarity projection spaces. Figure 4 shows the 2D t-SNE (Van der Maaten
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Table 5: Extended In-domain Performance for CUB200-2011. MTCon outperforms all baselines
on training tasks.

CUB200-2011

Loss Shape Size Primary Color
XEnt Shape 55.76 (0.50) 52.41 (0.47) 26.44 (0.44)

XEnt Size 54.54 (0.46) 55.91 (0.48) 22.02 (0.40)
XEnt Primary Color 54.57 (0.49) 55.96 (0.47) 32.61 (0.45)

XEnt MT 54.87 (0.49) 56.96 (0.47) 33.18 (0.45)

SimCLR 34.20 (0.46) 52.43 (0.48) 28.51 (0.43)
SupCon Shape 55.92 (0.49) 58.16 (0.47) 31.82 (0.45)

SupCon Size 54.44 (0.50) 58.13 (0.48) 30.99 (0.46)
SupCon Primary Color 54.79 (0.48) 53.41 (0.48) 33.28 (0.47)

CSN 45.14 (0.49) 48.24 (0.45) 25.23 (0.42)
SCE-Net 48.29 (0.41) 51.53 (0.44) 28.78 (0.41)
MTCon 56.88 (0.49) 59.32 (0.48) 35.97 (0.45)

Table 6: Extended In-domain Performance for MEDIC. MTCon outperforms all contrastive
learning baselines on training tasks.

MEDIC: In-Domain Evaluation
Loss Damage severity Disaster types Humanitarian Informative

XEnt Damage severity 81.39 (0.35) 75.71 (0.37) 81.76 (0.33) 84.48 (0.31)
XEnt Disaster types 81.02 (0.34) 78.98 (0.35) 82.06 (0.34) 86.08 (0.3)
XEnt Humanitarian 81.32 (0.36) 76.52 (0.35) 82.1 (0.37) 86.41 (0.31)

XEnt Informative 80.2 (0.36) 76.73 (0.35) 80.83 (0.36) 85.68 (0.3)
XEnt Multi-Task 81.01 (0.36) 78.04 (0.32) 82.25 (0.35) 86.01 (0.29)

SimCLR 74.9 (0.4) 68.5 (0.42) 73.89 (0.4) 78.67 (0.33)
SupCon Damage severity 80.26 (0.33) 75.1 (0.4) 80.42 (0.4) 84.45 (0.34)

SupCon Disaster types 80.23 (0.34) 78.33 (0.37) 80.63 (0.36) 84.02 (0.3)
SupCon Humanitarian 79.98 (0.36) 74.89 (0.39) 80.36 (0.32) 85.07 (0.32)

SupCon Informative 79.14 (0.35) 74.67 (0.34) 79.97 (0.31) 84.02 (0.3)
CSN 75.13 (0.4) 70.02 (0.37) 70.52 (0.38) 76.28 (0.32)

SCE-Net 77.25 (0.42) 71.15 (0.39) 72.12 (0.42) 77.52 (0.33)
MTCon 81.0 (0.3) 79.14 (0.31) 81.69 (0.3) 85.15 (0.3)
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Figure 4: 2D T-SNE plots of projection spaces learned through our approach (MTCon) trained
on the Zappos50k dataset. Top, middle and bottom plots show category, closure, and gender
projection spaces respectively. Our approach correctly learns to separate disjoint similarity metrics.

& Hinton, 2008) plots for each of the category, closure, and gender similarity metrics represented
in the Zappos50k test dataset. Figure 4 indicates that MTCon correctly learns to separate these
disjoint similarity metrics. Surprisingly, the figure also suggests that MTCon is able to learn some
inherent structure of the underlying data that is not explicitly represented in the similarity labels.
For example, in the gender projection space, MTCon appears to learn that women’s shoes are more
similar to both men’s and girl’s shoes than to boy’s shoes. We present a similar analysis on the
MEDIC dataset in the Appendix, showing that the same conclusions hold.

MEDIC We visually demonstrate that the projection spaces trained with multi-similarity con-
trastive loss are learning to separate disjoint similarity metrics. Figure 5 shows the 2D t-SNE plots
for each of the damage severity, disaster types, humanitarian, and informative similarity metrics rep-
resented in the MEDIC test dataset. Figure 5 indicates that the multi-similarity contrastive network
is learning how to separate these disjoint similarity metrics. It also suggests that these projected
subspace learn some inherent structure of the underlying data that is not explicitly represented in the
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similarity metric. For example, in the disaster types projection space, it appears that landslides are
more similar to earthquakes than to fires. Similarly, hurricanes and floods appear relatively similar
in the space. We also notice a gradient of damage severity, where the mild damage severity images
typically appear in between severe and little or none damage severity images.

Figure 5: T-SNE plots for each of the projection spaces of a multi-similarity contrastive net-
work trained on the MEDIC dataset. The four plots show the 2D T-SNE plot for the category,
closure, and gender projection spaces of the MEDIC test set respectively.

A.5 HYPERPARAMETER ANALYSIS.

We test if there exists a specific temperature that leads to optimal performance of MTCon for multi-
ple similarity metrics. In Figure 6, we plot the top-1 classification accuracy for each of the category,
closure, and gender tasks as a function of pretraining temperature for MTCon. We also plot the
top-1 classification accuracy as a function of training epochs. We find that a pretraining temperature
of τ = 0.1 and training for 200 epochs works well for all tasks. These hyperparameter settings
are consistent with optimal hyperparameter settings for SimCLR and SupCon. Note that previous
work for SimCLR and SupCon have found the large batch sizes consistently result in better top-1
accuracy (Chen et al., 2020; Khosla et al., 2020). We hypothesize that larger batch sizes would
also improve performance for MTCon loss. We include hyperparameter analyses on MTCon for the
MEDIC dataset in Figure 7.
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Figure 6: Hyperparameter effect on top-1 accuracy for the Zappos50k dataset. The top row
shows top-1 classification accuracy as a function of temperature during pretraining stage for MTCon.
The bottom row shows top-1 classification accuracy as a function of pretraining epochs for MTCon.

Figure 7: Hyperparameter effect on top-1 accuracy for the MEDIC dataset. The top row shows
top-1 classification accuracy as a function of temperature during pretraining stage for MTCon. The
bottom row shows top-1 classification accuracy as a function of pretraining epochs for MTCon.
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