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Abstract

One main challenge in time series anomaly detection for industrial IoT lies in the
complex spatio-temporal couplings within multivariate data. However, traditional
anomaly detection methods focus on modeling spatial or temporal dependencies
independently, resulting in suboptimal representation learning and limited sensitiv-
ity to anomalous dispersion in high-dimensional spaces. In this work, we conduct
an empirical analysis showing that both normal and anomalous samples tend to
scatter in high-dimensional space, especially anomalous samples are markedly
more dispersed. We formalize this dispersion phenomenon as scattering, quanti-
fied by the mean pairwise distance among sample representations, and leverage
it as an inductive signal to enhance spatio-temporal anomaly detection. Techni-
cally, we propose ScatterAD to model representation scattering across temporal
and topological dimensions. ScatterAD incorporates a topological encoder for
capturing graph-structured scattering and a temporal encoder for constraining over-
scattering through mean squared error minimization between neighboring time
steps. We introduce a contrastive fusion mechanism to ensure the complemen-
tarity of the learned temporal and topological representations. Additionally, we
theoretically show that maximizing the conditional mutual information between
temporal and topological views improves cross-view consistency and enhances
more discriminative representations. Extensive experiments on multiple pub-
lic benchmarks show that ScatterAD achieves state-of-the-art performance on
multivariate time series anomaly detection. Code is available at this repository:
https://github.com/jk-sounds/ScatterAD.

1 Introduction

Multivariate time series data in Industrial Internet of Things (IoT) systems exhibit intricate spatio-
temporal relationships[Tian et al., 2023], and anomaly detection is crucial to ensure the stable
operation of the system[Efthymiou et al., 2018, Baraniuk, 2020]. Recognizing abnormal patterns
from complex data has become a critical and widely studied problem in both research and practical
domains[Mohammadi et al., 2018, Wollschlaeger et al., 2017]. However, anomalies in multivariate
time series frequently manifest synergistically in temporal and topological dimensions[Jin et al.,
2024, Yi et al., 2024, Zhao et al., 2024], presenting highly coupled complex characteristics, which
pose a severe challenge to traditional anomaly detection methods.
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(a) Temporal features (b) Topological features (c) Combined features (d) Scattering measurement

Figure 1: The distribution patterns of scatter visualization and scatter measurement in time features,
topological features, and combined temporal-topological features (obtained by simple linear combi-
nation) on the SWaT dataset. Blue and red represent the embeddings of normal points and abnormal
points respectively. Normal data exhibits clustering characteristics, abnormal data exhibits scattering
characteristics, and combined features show more significant scattering differences. This provides a
strong prior signal for anomaly detection.

Time series anomaly detection methods are broadly bifurcated into two principal categories: methods
based on temporal pattern learning and methods based on topological structure modeling. Temporal
pattern-based methods (such as[Park et al., 2018, Su et al., 2019, Xu et al., 2021, Wu et al., 2021])
primarily focus on the sequential dependency of time series data and identify data points that
deviate from normal temporal patterns by constructing predictive or reconstructive models. However,
recursive models for learning temporal patterns exhibit limitations in capturing pairwise dependencies
between variables, limiting their ability to identify intricate anomalies[Zhao et al., 2020, Xu et al.,
2021]. Conversely, topological structure-based methods (such as GDN[Deng and Hooi, 2021],
GTAD[Guan et al., 2022], TopoGDN[Liu et al., 2024] etc.) focus on modeling the graph structure
relationship between variables and detecting anomalies by learning the mutual dependence between
variables. While these methodologies can model spatial correlations, they often fail to fully leverage
the dynamic characteristics of time series. Methodologies focusing exclusively on either temporal
or spatial patterns often prove inadequate for modeling the intricate spatio-temporal dynamics in
multivariate time series, consequently leading to challenges in effectively capturing the "scattering"
phenomenon of anomalies in the spatio-temporal dimension. As shown in Figure 1, we visualize the
scattering patterns of temporal features, topological features, and their linear combination features
on the SWaT dataset, using the average Euclidean distance to quantify the degree of scattering
between samples. It is evident from the scattering representation diagram and the scattering metric
diagram that the combined feature space usually exhibits more pronounced scattering differences
than the temporal feature space and the topological feature space. In essence, anomaly detection is
the identification of samples outside the data distribution (Out-of-distribution, OOD)[Wang et al.,
2020]. Significant scattering differences can bring better anomaly separation capabilities to the
model. In other words, when the scattering of anomalous samples is more pronounced, their feature
representations are pushed further apart from the normal samples, creating a clearer boundary for
anomaly detection. More recently, several studies have endeavored to consider both the temporal and
spatial dimensions, such as MTAD-GAT[Zhao et al., 2020]. However, MTAD-GAT employ simple
feature concatenation or serial processing methods and fail to address the challenge of collaborative
optimization of spatio-temporal features in theory. In particular, they lack a deep understanding and
modeling of the complementarity of spatio-temporal features.

The information bottleneck principle[Tishby et al., 2000] offers a theoretical framework for address-
ing such challenges of spatio-temporal feature complementarity. This principle aims to extract a
representation Z from the input variable X, such that Z preserves maximal information as possible
about the target variable Y in X, while compressing redundant information in X that is irrelevant to Y.
In particular, when complementary representations need to be learned from different dimensions (such
as temporal and topological), a single bottleneck objective may fail to effectively align the relationship
between the representations of each dimension[Federici et al., 2020]. Considering that anomalies
in multivariate time series typically manifest as abnormal scattering of spatio-temporal patterns, we
propose a theoretical hypothesis: effective anomaly detection needs to capture the scattering represen-
tation characteristics of both the temporal and topological dimensions and ensure the complementarity
of these two features. Through theoretical analysis, we prove that under the condition of a given graph
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structure G, maximizing the mutual information I(ZT ;ZG | G) between the temporal representation
ZT and the topological representation ZG can facilitate effective anomaly detection. This theoretical
result can be expressed as: max I(ZT ;ZG | G) s.t. I(X,ZT ) < r1, I(X,ZG) < r2, where
r1 and r2 control the compression degree of the temporal and topological representations respec-
tively. This shows that, subject to the constraint that the temporal and topological representations
are fully compressed, maximizing their conditional mutual information can promote the synergistic
complementarity of the two representations, thereby improving the performance of anomaly detection.

Specifically, we propose a novel anomaly detection approach ScatterAD, which enables effective
representation learning of spatio-temporal representation through three principal mechanisms: first,
the scattering mechanism is designed to capture the scattering characteristics of the representation in
the feature dimension in the temporal-topological representation; second, we further incorporate a time
constraint mechanism to prevent excessive scattering of the representation to maintain the consistency
of the temporal structure; finally, in order to align temporal and topological representations in the
latent representation space, we introduce contrastive fuse mechanism to align the outputs of the
temporal and topological encoders, maintaining the compression constraints while promoting the
complementarity of the representations. Unlike prior work, which treats temporal and topological
patterns separately, ScatterAD introduces a unified contrastive scattering mechanism that jointly
optimizes temporal consistency and structural distinguishability.

The contribution of our paper is summarized as follows:

• We introduce ScatterAD, a novel anomaly detection approach that employs a temporal-
topological scattering mechanism to improve representational discriminability while pre-
serving temporal structural consistency.

• To the best of our knowledge, this is the first work to introduce information bottleneck theory
into multivariate time series anomaly detection, to theoretically reveal the complementarity
between temporal and topological features. This leads to more discriminative representations
and highlights the importance of integrating spatio-temporal information in future anomaly
detection research.

• Extensive experiments conducted on six public benchmark datasets and using twelve stan-
dard evaluation metrics demonstrate that ScatterAD achieves state-of-the-art performance,
validating both the theoretical foundations and practical effectiveness of our design.

2 Related Work

Anomaly Detection in Time Series Given the scarcity and imbalance of data labels, unsupervised
anomaly detection methods have received widespread attention in recent years [Choi et al., 2021].
Primarily focused on the reconstruction error-driven autoencoder model [Kingma et al., 2013], or its
probabilistic extension, the variational autoencoder [Su et al., 2019]. These methods capture local
reconstruction patterns but struggle to capture fine-scale dependencies and dynamic propagation
across time points. Graph neural networks (GNNs) have been introduced to model the dependency
structure between different variables in multivariate time series. Representative methods such as
MTGNN [Wu et al., 2020] and GDN [Deng and Hooi, 2021] typically regard each variable as a node
in the graph and introduce graph convolution to learn spatial structure. However, these methods focus
on spatial graph modeling between variables, neglecting the temporal graph structure. Consequently,
they depend on topological associations between variables and have limited capacity to model the time
dimension. More recently, several studies have initiated the exploration of graph structures in the time
dimension. For instance, GANF [Dai and Chen, 2022] and MTGFlow [Zhou et al., 2023] construct
time series graph structures and combine density modeling methods to model the distribution of
the entire sequence, but these methods still do not deeply explore the structural characteristics and
interdependencies between time nodes. Although methods such as TopoGDN [Liu et al., 2024] and
CST-GL [Zheng et al., 2023] model spatio-temporal dependencies, they overlook representation
scattering in high-dimensional spaces, which can potentially impede their sensitivity to the dispersion
patterns characteristic of anomalies.

Information bottleneck and representation complementarity The classic information bottleneck
principle [Tishby et al., 2000] explicitly articulates the objective of retaining task-relevant information
while compressing redundant inputs. Based on this foundation, Deep InfoMax [Hjelm et al., 2018]
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and InfoGraph [Sun et al., 2019] employ a mutual information maximization strategy to align
local and global representations in structured data, including images and graphs. Models such as
MVGRL [Hassani and Khasahmadi, 2020] and structured mutual information models [Yang et al.,
2025] promote complementarity between different representation views, which have the potential to
substantially enhance the performance of downstream tasks.

3 Method

3.1 Overview
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Figure 2: The overall framework of ScatterAD employs temporal graphs to model the scattering
patterns of nodes in multivariate time series. It encodes temporal nodes as graph vertices to capture
structural scattering, constrains time consistency to avoid excessive scattering, and aligns temporal
topological features through contrastive fusion, ultimately achieving effective detection through
scattering representation learning.

As illustrated in Figure 2, ScatterAD employs an online encoder fθ(·) and a target encoder fϕ(·) to
process the temporal graph G, where θ and ϕ denote the parameters of the respective encoders. (1)
A topological space is initially defined via L2-normalizing node features onto the unit hypersphere,
with a global scatter center c randomly initialized inside the unit ball (see Section 3.3 for details).
Following the positive-only sampling strategy used in DCdetector [Yang et al., 2023], all training
samples are treated as positive samples. Within this embedding space, the target encoder fϕ(·)
learns to model the compactness of normal samples, thereby capturing scattering representations and
amplifying the scattering of anomalous samples during inference. (2) The online encoder fθ(·) yields
honline and enforces temporal smoothness via a temporal constraint on adjacent temporal nodes,
preventing excessive scattering in the target encoder fϕ(·). Only the online encoder is updated via
backpropagation; the target encoder parameters ϕ are updated using the exponential moving average
(EMA) of the online encoder parameters θ after each training step (see Section 3.2 for details). (3)
The online and target encoders constitute a contrastive fusion framework to maximize the similarity
between them, thereby fostering collaboration between the online and target encoders. (4) Regarding
the anomaly judgment criterion, anomalies are evaluated based on scattering deviation and time
consistency deviation (see Section 3.3 for details).

The definition of multivariate time series anomaly detection is as follows: Let X = {xt}Tt=1,
X ∈ RT×N be a multivariate time series with N dimensions and a sliding window length of T,
xt = [x1

t , x
2
t , . . . , x

N
t ]⊤ ∈ RN represent the N-dimensional observation vector at time t, and the

sequence length is T. The goal of anomaly detection is to predict the anomaly label Yt ∈ {0, 1} for
each timestamp t, where Yt = 1 indicates that time t is in an abnormal state, and Yt = 0 indicates a
normal state.
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3.2 Temporal Graph Construction and Node Feature Extraction

Our framework employs a dual-encoder architecture to learn temporally and topologically aggregated
representations of normal patterns at temporal nodes. Unlike prior graph-based time series models,
where each node corresponds to a sensor or univariate stream, we consider each time step as a distinct
node. Specifically, each graph node represents a multidimensional time slice xt ∈ RN, and the edge
set is defined as E = (vt−k, vt) | k ∈ [1, τ ], t ∈ [τ + 1, T ], capturing the behavioral patterns across
time through directed connections. Here, τ is the look-back window size. In our experiments, we
set τ = 2. To extract temporal dynamics from the input sequence, we apply a multi-scale causal
convolutional encoder. Let h(0) = X denote the input time series:

h(l) = PReLU

(
BN

(
k−1∑
i=0

W(i)
c · h

(l−1)
t−i

))
, for t = k, . . . , T , (1)

whereWc(i) denotes the i-th convolution kernel in a k-length causal convolution, BN (·) signifies
batch normalization [Ioffe and Szegedy, 2015]. To further integrate topological dependencies across
temporal nodes, we employ a multi-head GAT layer to compute attention coefficients across nodes:

αh
ij =

exp
(
LeakyReLU(a⊤h [Whhi∥Whhj ])

)∑
k∈Ni

exp
(
LeakyReLU(a⊤h [Whhi∥Whhk])

) , (2)

αh
ij denotes the normalized attention coefficients of the h-th head. hi, hj ∈ h(l) represent the input

feature vectors of nodes i and j. Wh is the head-specific parameter matrix and the a⊤h is the attention
coefficient vector.

h′
i = ELU

 H⊕
h=1

∑
j∈Ni

softmax
(
a
(h)
ij

)
Whhj

 . (3)

Subsequently, the node features are aggregated with topological features and temporal features,
yielding zi = h′

i + h(l). zi ∈ RT×dout denotes the stacked temporal and topological representations.

3.3 Optimization Target

Time Consistent Learning The loss of time consistency is introduced to node features zonline,t ∈
zi to reinforce the temporal dependency of adjacent nodes and prevent them from excessive dispersion
in the feature subspace, thereby preserving the key temporal features of the nodes. The formulation is
as follows:

Ltime =
1

T − 1

T −1∑
t=1

∥zonline,t+1 − zonline,t∥22 , (4)

here, each row zonline,t ∈ Rdout corresponds to the node representation at time step t and Ltime

penalizes abrupt representation shifts between consecutive encoding states.

Temporal Topological Scattering Representation Learning We propose a graph scattering
mechanism to explicitly guide the target encoder in learning decentralized representations of nodes.
For node representation, we initially define a regular subspace Sk and a scattering center c. For the
subspace Sk, a transformation function Trans(·) is employed to transform the representation from
the original space Rd to Sk. Specifically, we apply L2-normalizing to each row vector zi within the
matrix ztarget,t:

z̃target,t = TransRd→Sk(ztarget,t) =
ztarget,t
∥ztarget,t∥2

, Sk = {z̃target,t : ∥z̃target,t∥2 = 1} , (5)

where z̃target,t ∈ Sk is the target representation on the unit sphere (normalized), as defined in the
formula, the representations of all nodes are distributed in the hypersphere Sk. This mapping prevents
arbitrary scattering of representations in the space, thereby mitigating instability and optimization
difficulties during training. Afterwards, we initialize a global scattering center, c, which serves
as a fixed anchor point within the latent space. This center is randomly sampled to reside strictly
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inside the unit hypersphere. The initialization is a two-step process: first, an intermediate vector c′ is
sampled from a standard multivariate normal distribution. Second, this vector is L2-normalized to
project it onto the unit hypersphere and then scaled by a random scalar ϵ ∈ (0, 1). This procedure
can be formally expressed as: c′ ∼ N (0, I), c = c′

∥c′∥2
· ϵ, where ϵ ∼ U(0, 1). With this fixed

scattering center c, we then introduce the representation scattering loss, Lscatter, designed to pull the
representations of normal samples towards it:

Lscatter = − 1

T

T∑
t=1

z̃⊤target,t · c
∥z̃target,t∥2∥c∥2

. (6)

By maximizing this loss function, the learned target features remain close to the semantic center while
preserving directional diversity, which is crucial for amplifying the scattering behavior of anomalous
nodes during inference.

Contrastive Fuse Learning To ensure that the nodes maintain consistent directions in both the
embedding space and the projected hypersphere space, while preserving local structures and global
geometric properties. We maximize the similarity between positive sample pairs from both encoders,
thereby ensuring that the embedding space preserves local structural relationships while the scattering
space maintains global node relationships. The formulation is as follows:

Lcontrast = −
1

|E|
∑

(s,d)∈E

log σ
(
cos
(
z
(s)
online,t · z

(d)
target,t

))
. (7)

Here, E denotes the set of edges of graph and σ is the sigmoid activation function, (s, d) representing
the origin and terminus of the corresponding edge, constituting a positive sample pair, z(s)online,t and

z
(d)
target,t denote the feature vectors generated by the encoder fθ(·) and the encoder fϕ(·).

Exponential Moving Average Mechanism During the training process, the parameters θ of the
online encoder are updated via gradient descent, and the parameters ϕ are updated through the
Exponential Moving Average mechanism [Cai et al., 2021] by the online encoder. Compared with
direct alignment constraints and centralized representations, the prediction target serves as a buffer
mechanism, enabling the target encoder to adaptively learn local time constraint information and
global topological scattering representation. The exponential moving average mechanism is applied
at the end of each training epoch. The formula is as follows:

θ ← mθ + (1−m) ξ. (8)

Among them, (0 < m < 1), this process facilitates the integration of graph time structure consistency
into the node scattering representation process, effectively alleviating the confrontation brought about
by direct optimization of alignment constraints and decentralized representations. Representation
scattering is used to enhance the global distinguishability of information, and time consistency loss
ensures the consistency of local information. The interaction of these two mechanisms enables the
target encoder to learn global topological scattering features more stably while preserving local
temporal information.

Loss Function The overall training objective of ScatterAD integrates three loss components:

Ltotal = Lscatter + Ltime + Lcontrast, (9)

Lscatter captures the scattering representation by modeling the compactness of normal samples
within the topological space, thereby implicitly amplifying the contrast with anomalous patterns and
enhancing feature discriminability. Ltime enforces time consistency by penalizing abrupt changes
between adjacent time steps, mitigating over-scattering. Lcontrast aligns temporal and topological
representations through a cross-view contrastive loss based on cosine similarity, fostering their
complementarity. This joint optimization encourages the model to learn discriminative, temporally
consistent, and cross-view complementary representations for robust anomaly detection.

3.4 Anomaly Criterion

To jointly evaluate anomalies from both the topological scattering and time consistency perspectives,
we define a unified anomaly scoring function that captures two complementary forms of deviation.
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For the anomaly score of the input sequence X , it is initially transformed into a node representation
zi = fθ (X ), zi ∈ RN×dout . The scattering deviation scoreD(X ), which quantifies how far the target
node representation deviates from the learned center in the normalized representation space, and the
time inconsistency score L(X ), which penalizes abrupt representation shifts between consecutive
time steps. The ultimate anomaly score is formulated as follows:

AnomalyScore(X ) = D(X ) : 1

min
k
D (zi, c)︸ ︷︷ ︸

Scattering deviation

+ L(X ) : 1
d

d∑
i=1

(
z
(t)
i − z

(t−1)
i

)2
︸ ︷︷ ︸

Time inconsistency

. (10)

This is a point-level anomaly detection approach, where anomalous points are expected to receive
higher anomaly scores. Following prior work [Xu et al., 2021, Yang et al., 2023], we introduce a
threshold δ to convert scores into binary labels: a point is labeled as anomalous (y = 1) if its score
exceeds δ, and normal (y = 0) otherwise.

4 Experiments

4.1 Experimental Setup

Datasets

We conducted evaluations on six real-world multivariate time series datasets, including (1) PSM
(Pooled Server Metrics)[Abdulaal et al., 2021]; (2) MSL (Mars Science Laboratory)[Hundman
et al., 2018]; (3) SWaT(Secure Water Treatment)[Mathur and Tippenhauer, 2016]; (4) WADI (Water
Distribution)[Ahmed et al., 2017]; (5) NIPS-TS-SWAN[Lai et al., 2021]; (6) NIPS-TS-GECCO[Lai
et al., 2021]. See Appendix B for dataset details and statistics.

Metrics We evaluate detection performance using both label-based and score-based metrics. For
label-based metrics, we report the point-adjusted F1 score (PA-F), which considers an anomaly
segment detected if any timestamp within it is flagged. Although it may overestimate performance, it
is widely used [Xu et al., 2021, Guan et al., 2022, Song et al., 2023]. To ensure fair comparisons,
we also report the Affiliated F1 score (Aff-F) [Huet et al., 2022], which measures alignment quality
between predicted and ground-truth anomaly segments. Additionally, we include score-based metrics:
Area under the ROC Curve (A-ROC) [Fawcett, 2006] and Area under the Precision-Recall Curve
(A-PR)[Boyd et al., 2013]. In summation, we report results across twelve evaluation metrics, with
comprehensive reports detailed reports in Appendix C.

Baselines We compare our method against a diverse set of baselines, including recent state-of-the-
art graph-based and transformer-based models: Sub-Adjacent Transformer (S.T.)[Yue et al., 2024],
TopoGDN (T.G.)[Liu et al., 2024], Memto [Song et al., 2023], DuoGAT (D.G.)[Lee et al., 2023],
MTGFlow (MTG)[Zhou et al., 2023], iTransformer (iT.)[Liu et al., 2023], DCdetector (DC.)[Yang
et al., 2023], Anomaly Transformer (A.T.)[Xu et al., 2021], and GANF[Dai and Chen, 2022]. We
also include classical methods such as ModernTCN (M.TCN)[Luo and Wang, 2024], Variational Au-
toencoder (VAE)[Pinheiro Cinelli et al., 2021], Isolation Forest (IF)[Liu et al., 2008], and PCA [Shyu
et al., 2003] for a comprehensive evaluation.

4.2 Main Results

We evaluate ScatterAD on six real-world multivariate time series datasets utilizing four standard
evaluation metrics: Affiliated-F1 (Aff-F), Point-Adjusted-F1 (PA-F), AUC-ROC (A-ROC), and
AUC-PR (A-PR). As demonstrated in Table 1, ScatterAD consistently achieves the best performance,
ranking first in 15 out of 24 evaluation settings. Notably, ScatterAD achieves the highest Affiliated-F1
scores across all datasets, demonstrating its superior ability to localize anomalies at the segment
level. While performance on the NIPS-TS-SWAN (N-T-S) dataset is mixed, with the highest
scores in PA-F (0.736), A-ROC (0.792), and A-PR (0.716), but a notably low Aff-F (0.038), we
attribute this to the irregular and bursty nature of anomalies in the dataset, which makes segment-
level matching particularly challenging. Nonetheless, the robust Point-Adjusted-F1 suggests robust
detection capabilities under noisy and complex conditions. Furthermore, ScatterAD consistently
achieves the highest AUC-ROC values across all datasets, indicating a strong trade-off between true
positive and false positive rates under varying threshold settings.
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Table 1: Performance comparison on six real-world datasets. Evaluation Metrics: Aff-F (affiliated F1),
PA-F (point-adjusted F1), A-ROC (AUC-ROC), and A-PR (AUC-PR). Higher values indicate better
performance. All reported results are averaged over multiple independent runs to ensure robustness.
Bold indicates the optimal performance; Underline indicates the suboptimal performance.

Dataset Metric Ours S.T. T.G. Memto DC. M.TCN iT. MTG A.T. D.G. GANF VAE IF PCA

MSL

Aff-F 0.867 0.673 0.674 0.595 0.674 0.709 0.652 0.374 0.673 0.677 0.323 0.642 0.374 0.591
PA-F 0.964 0.863 0.714 0.664 0.947 0.807 0.659 0.648 0.934 0.652 0.489 0.512 0.598 0.444

A-ROC 0.986 0.751 0.794 0.951 0.961 0.627 0.604 0.857 0.970 0.788 0.678 0.883 0.673 0.732
A-PR 0.932 0.754 0.727 0.902 0.891 0.739 0.721 0.781 0.878 0.703 0.620 0.521 0.519 0.524

PSM

Aff-F 0.797 0.786 0.689 0.659 0.653 0.701 0.652 0.436 0.657 0.624 0.329 0.524 0.569 0.437
PA-F 0.981 0.941 0.801 0.977 0.977 0.965 0.926 0.797 0.978 0.780 0.788 0.596 0.543 0.467

A-ROC 0.986 0.731 0.830 0.981 0.948 0.581 0.687 0.832 0.977 0.074 0.825 0.758 0.634 0.908
A-PR 0.969 0.806 0.965 0.542 0.866 0.629 0.751 0.753 0.961 0.245 0.745 0.443 0.344 0.687

SWaT

Aff-F 0.704 0.631 0.594 0.592 0.687 0.685 0.716 0.463 0.622 0.619 0.608 0.563 0.502 0.537
PA-F 0.951 0.863 0.788 0.756 0.939 0.884 0.916 0.500 0.943 0.822 0.244 0.526 0.472 0.548

A-ROC 0.982 0.956 0.766 0.841 0.876 0.675 0.662 0.769 0.989 0.094 0.574 0.532 0.501 0.502
A-PR 0.909 0.868 0.822 0.810 0.824 0.592 0.619 0.851 0.657 0.503 0.830 0.432 0.511 0.421

WADI

Aff-F 0.605 0.756 0.532 0.701 0.725 0.558 0.671 0.673 0.708 0.636 0.667 0.556 0.555 0.477
PA-F 0.862 0.873 0.834 0.807 0.731 0.766 0.754 0.690 0.738 0.705 0.681 0.512 0.474 0.618

A-ROC 0.960 0.945 0.612 0.693 0.829 0.831 0.814 0.782 0.982 0.372 0.782 0.501 0.860 0.502
A-PR 0.765 0.743 0.532 0.691 0.651 0.697 0.627 0.523 0.637 0.470 0.508 0.384 0.406 0.357

NIPS-TS-SWAN

Aff-F 0.038 0.805 0.685 0.033 0.484 0.533 0.507 0.003 0.099 0.659 0.005 0.385 0.438 0.680
PA-F 0.736 0.714 0.660 0.687 0.733 0.731 0.729 0.591 0.695 0.503 0.630 0.497 0.522 0.526

A-ROC 0.792 0.870 0.595 0.791 0.655 0.562 0.537 0.788 0.787 0.671 0.778 0.522 0.729 0.498
A-PR 0.716 0.946 0.527 0.702 0.626 0.545 0.531 0.699 0.569 0.714 0.712 0.326 0.473 0.326

NIPS-TS-GECCO

Aff-F 0.825 0.476 0.589 0.424 0.648 0.446 0.435 0.348 0.658 0.667 0.268 0.481 0.531 0.509
PA-F 0.784 0.491 0.670 0.504 0.472 0.357 0.381 0.381 0.325 0.625 0.355 0.491 0.481 0.583

A-ROC 0.969 0.536 0.787 0.875 0.715 0.946 0.817 0.732 0.685 0.690 0.898 0.868 0.684 0.763
A-PR 0.633 0.318 0.495 0.519 0.523 0.615 0.474 0.552 0.870 0.535 0.337 0.443 0.418 0.543

#1 Count 15 4 0 0 0 0 1 0 3 0 0 0 0 0

Figure 3 illustrates anomaly score distributions on SWaT. As shown in Figures 3a- 3c, competing
methods exhibit significant overlap between normal and anomalous scores, limiting detection pre-
cision. In contrast, ScatterAD (Figure 3d) exhibits a clear separation, and the anomaly scores for
normal points are sharply concentrated near zero, while anomalies are widely spread across higher
scores, forming multiple distinguishable modes. This distinct gap between normal and anomalous
distributions greatly reduces the false positive rate and enhances detection precision.
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Figure 3: The distribution of anomaly scores presented by different frameworks on the SWaT dataset.

4.3 Ablation Studies

To validate the effectiveness of ScatterAD’s components, we conduct an ablation study on its dual
encoder architecture and contrastive fusion mechanism (Table 2). Removing the temporal online
encoder (“w/o T-Enc ”) impairs the model’s ability to capture temporal variations, reducing detection
performance. Excluding the topological target encoder (“w/o S-Enc ”) leads to significant drops,
particularly on WADI and SWAT, underscoring the need to model global structural dependencies.
Eliminating the contrastive fusion module (“w/o C-Fuse”) results in consistent performance degra-
dation across all datasets, confirming its importance in aligning temporal and topological cues.
Removing the Exponential Moving Average mechanism (“w/o EMA”) destabilizes target encoder
updates, degrading performance by limiting adaptation to temporal and structural patterns.
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Table 2: Ablation analysis of key components of ScatterAD across four real-world datasets. Eval-
uation Metrics: AF (Affiliated-F1), AR (Area Under the ROC Curve). Bold indicates the optimal
performance; Underline indicates the suboptimal performance.

Variation MSL PSM WADI SWaT #1 Count
AF AR AF AR AF AR AF AR

w/o T-Enc 0.764 0.927 0.810 0.951 0.568 0.958 0.659 0.944 1
w/o S-Enc 0.841 0.963 0.799 0.985 0.488 0.921 0.643 0.974 0
w/o C-Fuse 0.795 0.932 0.788 0.946 0.549 0.953 0.701 0.975 0
w/o EMA 0.805 0.986 0.792 0.979 0.582 0.955 0.683 0.957 1

ScatterAD 0.867 0.983 0.794 0.986 0.587 0.960 0.704 0.982 6

4.4 Model Analysis

Analysis of Scattering Mechanism To validate our hypothesis that dynamically balancing scatter-
ing and structure consistency enables learning node representations with both discriminability and
temporal dependency, we analyze the evolution of scattering during training (Figure 4). When using
only the time consistency loss Ltime4a, the heat map shows smooth but low-amplitude scattering,
indicating strong temporal continuity but limited anomaly sensitivity. In contrast, using only the scat-
tering loss Lscatter4b increases node dispersion and discriminability but disrupts temporal coherence.
Our full method 4c, which combines Ltime, Lscatter and Lcontrast, achieves a balanced scattering pattern
that preserves structure while enhancing anomaly separability. Compared to single-loss variants, it
yields more stable training and more effective representations for temporal anomaly detection.
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Figure 4: Scattering of different time nodes during training on the MSL dataset, measured by the
average Euclidean distance between sample representations. (a) Optimized with only Ltime. (b)
Optimized with only Lscatter. (c) Our method. Darker colors indicate nodes with greater average
distances from others. Compared to (a) and (b), our loss function preserves temporal dependencies
while promoting more discriminative node representations during training.

Analysis of Latent Discrepancy in Layer-Wise Evolution The embedding space transforms
significantly across GAT layers, as shown in Figures 5. Initially, normal and anomalous sample
embeddings are entangled (Figure 5a). After passing through the GAT layers (Figures 5b and 5c), a
structured separation emerges. Normal sample embeddings form cohesive clusters, while anomalous
ones scatter outwards. This progression reveals that our model effectively increases the inter-class
embedding discrepancy. Rather than explicitly enforcing a margin-based separation, the model
implicitly learns to emphasize this discrepancy by capturing richer spatio-temporal interactions
through attention mechanisms. This behavior aligns with our notion of spatio-temporal scattering,
wherein the joint modeling of temporal dynamics and variable interdependencies causes anomalies
to naturally drift away from the normal data manifold in the representation space. Crucially, by
amplifying the dissimilarity between normal and anomalous embeddings in both local neighborhoods
and global structure, the model enhances its sensitivity to out-of-distribution (OOD) patterns.

Analysis of Anomaly Criteria Figure 6 visually compares the anomaly scores of different methods.
Our approach demonstrates superior detection across various anomaly types compared to baselines.
Specifically, MTGFlow suffers from high false positives, while AnomalyTrans has noticeable false
negatives. Sub-Adjacent Trans, despite detecting all anomaly types, also generates significant false
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(a) Random Init (b) GAT-Layer 1 (c) GAT-Layer 2

Figure 5: t-SNE embeddings of GAT on the PSM dataset. Blue and yellow dots denote perturbed
negative and positive samples, respectively. The embeddings evolve from an initial entangled state to
increasingly disentangled clusters in deeper encoder layers.

alarms, particularly for contextual and shapelet anomalies, where it incorrectly assigns high scores
to normal regions. In contrast, our method not only highlights anomalies more effectively but also
reduces false positives, leading to improved accuracy and robustness.
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Figure 6: Visualization comparison of ground truth anomalies and anomaly scores across different
types. The pink segments are marked as anomalies of the pattern.

5 Conclusion

In this work, we propose ScatterAD, a novel approach integrating topological and temporal contrastive
learning. ScatterAD enhances the discriminability of representations through a scattering mechanism,
followed by the application of a topological constraint mechanism to prevent over-scattering and
maintain temporal consistency, and introduces a contrastive fusion strategy to foster the synergistic
complementarity of temporal and topological representations to improve anomaly detection perfor-
mance. Comprehensive experimentation demonstrates that ScatterAD attains strong performance
across diverse benchmarks. The proposed temporal and topological representation fusion mechanism
significantly improves the model’s ability to distinguish normal and anomalous patterns, providing
valuable insights for developing more effective anomaly detection systems.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve any crowdsourcing or experiments with human
subjects.

19

paperswithcode.com/datasets


Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with
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A Proof of Theorems

Mutual Information and Representation Learning: In representation learning, we focus on how the
representation Z extracted from the original data X retains information related to the target variable
Y . Mutual information I(Z;Y ) measures the amount of information about Y contained in Z:

I(Z;Y ) =

∫
z

∫
y

p(z, y) log
p(z, y)

p(z)p(y)
dy dz. (11)

For discrete variables, the above integral becomes a summation. Equivalently,

I(Z;Y ) = H(Y )−H(Y | Z). (12)

Representation learning aims to balance information retention and representation complexity:

J (Z) = I(Z;Y )− λ C(Z), (13)

where C(Z) measures complexity and λ > 0 controls the tradeoff. We consider a temporal encoder
ET and a topological encoder EG:

ZT = ET (X), ZG = EG(X), Z = f(ZT , ZG | G). (14)

Here f(· | G) is a graph-guided fusion mechanism. Assumptions. We assume the graph G is
constructed from domain knowledge and is independent of both the target Y and the temporal
representation ZT :

I(G;Y ) = 0, I(G;ZT ) = 0. (15)

Theorem 1 (Graph-Conditioned Information Bound)

Let Z = f(ZT , ZG | G) be the fused representation. Then

I(Z;Y ) ≤ min
{
I(X;Y ), I(ZT , ZG;Y | G)

}
. (16)

Moreover, under the above assumptions, one obtains

I(Z;Y ) ≤ I(ZT ;Y ) + I(ZG;Y | ZT ). (17)

By the Data Processing Inequality (DPI) and the Markov chain X → (ZT , ZG, G)→ Z, we have

I(Z;Y ) ≤ I(X;Y ). (18)

Similarly,
I(Z;Y ) ≤ I(ZT , ZG, G;Y ). (19)

Applying the chain rule to I(ZT , ZG, G;Y ) gives

I(ZT , ZG, G;Y ) = I(G;Y ) + I(ZT , ZG;Y | G). (20)

Under (15), I(G;Y ) = 0, hence

I(Z;Y ) ≤ I(ZT , ZG;Y | G). (21)

Next, by chain rule decomposition,

I(ZT , ZG;Y | G) = I(ZT ;Y | G) + I(ZG;Y | ZT , G). (22)

By the independence I(G;ZT ) = 0 and the fact that conditioning cannot increase mutual information,

I(ZT ;Y | G) = I(ZT ;Y ), I(ZG;Y | ZT , G) ≤ I(ZG;Y | ZT ). (23)

Combining (21)–(23) yields (17). Finally, merging with (18) gives the bound in (16).

Remark. The contrastive loss in our model maximizes a lower bound on I(ZT ;ZG | G), encouraging
complementary information extraction under graph constraints.

Theorem 2 (Graph-Conditioned Mutual Information Maximization with Asymmetric Encoders)
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Let ZT = pθ(ET (X)) and ZG = sg(EG(X)) be the temporal and topological representations under
graph G, where pθ is a predictor and sg(·) denotes stop-gradient. The contrastive loss:

Lcontrast = −E(s,d)∼G
B

[
log

exp(sθ(ZT [s], ZG[d]))∑
d′∈B exp(sθ(ZT [s], ZG[d′]))

]
. (24)

achieves:

I(ZT ;ZG|G) ≥ log(|B| − 1)− Lcontrast. (25)

Proof: The proof builds on the variational lower bound for mutual information and its connection
to contrastive learning. Variational Lower Bound of Conditional MI. Following the variational
framework for mutual information estimation [Oord et al., 2018, Poole et al., 2019], then define
conditional mutual information:

I(ZT ;ZG | G) = E(s,d)∼G

[
EZT [s], ZG[d] log

p
(
ZT [s];ZG[d] | G

)
p
(
ZT [s] | G

)
p
(
ZG[d] | G

)]. (26)

Introduce variational distribution q
(
ZG[d] | ZT [s], G

)
to approximate the true conditional distribution.

According to the variational lower bound, we get:

I(ZT ;ZG | G) ≥ E(s,d)∼G

[
EZT [s], ZG[d] log

q
(
ZG[d] | ZT [s], G

)
p
(
ZG[d] | G

) ]
. (27)

Then, maximize the lower bound by contrast loss:

Assume the scoring function is normalized cosine similarity:

sθ
(
ZT [s], ZG[d]

)
=
⟨pθ(ZT [s]), ZG[d]⟩

τ ∥pθ(ZT [s])∥ ∥ZG[d]∥
. (28)

Define variational distribution:

q
(
ZG[d] | ZT [s], G

)
=

exp
(
sθ(ZT [s], ZG[d])

)∑
d′∈B

exp
(
sθ(ZT [s], ZG[d

′])
) . (29)

Substituting into the variational lower bound we get:

I
(
ZT ;ZG | G

)
≥ E(s,d)∼G

[
sθ
(
ZT [s], ZG[d]

)
− log

∑
d′∈B

exp
(
sθ(ZT [s], ZG[d

′])
)]
. (30)

Contrast loss Lcontrast It can be rewritten as:

Lcontrast = −E(s,d)∼G

[
sθ(ZT [s], ZG[d])

]
+ Es

[
log
∑
d′∈B

exp
(
sθ(ZT [s], ZG[d

′])
)]
. (31)

Combining the two equations, we can get the final lower bound:

I
(
ZT ;ZG | G

)
≥ log

(
|B| − 1

)
− Lcontrast. (32)

Therefore, Minimizing the contrastive loss Lcontrast is equivalent to maximizing a lower bound on
the conditional mutual information I(ZT , ZG | G), and this optimization inherently encourages the
temporal embedding ZT and the topological embedding ZG to share as much graph-constrained
information as possible.
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B Experimental details

B.1 Datasets

Our model ScatterAD is evaluated on six real world multivariate datasets. The specific descriptions
of the datasets are shown in the following table.

Table 3: Dataset statistics used in our experiments. “Dims” denotes the number of dimensions
(variables). “Train” and “Test” indicate the number of time points in training and labeled test sets,
respectively. “AR” denotes the anomaly rate (%).

Benchmark Source Dims Train Test (labeled) AR (%)

MSL NASA Space Sensors 55 58,317 73,729 10.48
PSM eBay Server Machine 25 132,481 87,941 27.76
SWaT Infrastructure System 51 495,000 449,919 12.14
WADI Infrastructure System 123 1,209,601 172,801 5.71

NIPS-TS-GECCO Water Quality for IoT 9 69,260 69,260 1.10
NIPS-TS-SWAN Solar Weather (Space) 38 60,000 60,000 32.60

The SWaT and WADI datasets can be obtained by filling out the following form: https:
//docs.google.com/forms/d/1GOLYXa7TX0KlayqugUOOPMvbcwSQiGNMOjHuNqKcieA/
viewform?edit_requested=true

B.2 Baselines

For all baseline comparisons, we rely on their official codebases and adopt the hyperparameter
settings as suggested in the respective publications. The corresponding source codes are publicly
accessible at the URLs provided below.

Sub-Trans (IJCAI’24) https://github.com/jackyue1994/sub_adjacent_transformer
ModernTCN (ICLR’24)https://github.com/luodhhh/ModernTCN
iTransformer (ICLR’24)https://github.com/thuml/iTransformer
TopoGDN (CIKM’24) https://github.com/ljj-cyber/topogdn
DCdetector (KDD’23) https://github.com/DAMO-DI-ML/KDD2023-DCdetector
MEMTO (NeurIPS’23) https://github.com/gunny97/MEMTO
DuoGAT (CIKM’23) https://github.com/ByeongtaePark/DuoGAT
MTGFlow (AAAI’23) https://github.com/zqhang/MTGFLOW
GANF (ICLR’22) https://github.com/EnyanDai/GANF
AnomalyTrans (ICLR’22) https://github.com/thuml/Anomaly-Transformer
VAE https://github.com/yzhao062/pyod/blob/master/pyod/models/vae.py
IF https://github.com/yzhao062/pyod/blob/master/pyod/models/iforest.py
PCA https://github.com/yzhao062/pyod/blob/master/pyod/models/pca.py

B.3 Evaluation Metrics

In anomaly detection evaluation, to comprehensively assess model performance across diverse
anomaly detection scenarios, we adopt a unified evaluation protocol inspired by Liu et al. [Liu and
Paparrizos, 2024], covering both label-based and score-based metrics.

For label-based evaluation We use the Affiliated-Precision (Aff-P), Affiliated-Recall (Aff-R),
and Affiliated-F1 (Aff-F) [Huet et al., 2022], which aim to better reflect the proximity between
predicted and true anomaly ranges. For completeness, we also include the widely used yet imperfect
point-adjusted metric, including Point-Adjusted-Precision (PA-P), Point-Adjusted-Recall (PA-R) and
Point-Adjusted-F1 (PA-F).
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score-based evaluation We employ conventional metrics such as (AUC-PR) and (AUC-ROC),
along with their range-based extensions, Range-AUC-PR (R-A-P) and Range-AUC-ROC (R-A-R) [Pa-
parrizos et al., 2022], which consider anomaly duration and sequential nature to more comprehensively
reflect model performance. Additionally, we incorporate the Volume Under the Surface measures,
VUS-ROC(V-ROC) and VUS-PR(V-PR) [Paparrizos et al., 2022], which enhance anomaly score
reliability and interpretability by introducing tolerance buffers around anomaly boundaries and using
continuous labels.

B.4 Implementation Details

All experiments were performed in Python 3.9 using PyTorch and on NVIDIA Tesla-A800 GPUs. We
used the Adam optimizerduring training. Initially, the batch size was set to 128, and the time window
size was uniformly set to 110 for all datasets except NIPS-TS-GECCO(N-T-W) and NIP-TS-Swan(N-
T-S), which were set to 90. The GAT in ScatterAD has H=4 attention heads per layer and a hidden
dimension of 512. For hyperparameter tuning, the training set was temporarily divided into 80% for
training and 20% for validation. For each dataset, the learning rate was uniformly set to 0.0001.

C Additional Experiments

Due to space constraints in the main text, we present additional experimental results in this section.
In particular, we further evaluate the performance using the following metrics: Range-AUC-ROC and
Range-AUC-PR, VUS-ROC and VUS-PR, Affiliated Precision, Affiliated Recall and Affiliated F1,
as well as point-adjusted metrics including PA-P, PA-R and PA-F. The reported results are averaged
over multiple runs to ensure reliability.

Table 4: Quantitative comparison of four evaluation metrics. R-A-R and R-A-P are Range-AUC-ROC
and Range-AUC-PR. V-ROC and V-PR are volumes under the surfaces created based on the ROC
curve and PR curve. Bold indicates the optimal performance; Underline indicates the suboptimal
performance.

Dataset Metric Ours S.T. T.G. Memto DC. M.TCN iT. MTG A.T. D.G. GANF VAE IF PCA

MSL

R-A-R 0.920 0.750 0.695 0.704 0.913 0.756 0.655 0.748 0.891 0.613 0.846 0.725 0.641 0.633
R-A-P 0.919 0.754 0.826 0.643 0.891 0.745 0.638 0.753 0.875 0.574 0.733 0.630 0.654 0.651
V-ROC 0.872 0.745 0.705 0.601 0.904 0.748 0.647 0.648 0.884 0.512 0.644 0.626 0.743 0.641
V-PR 0.885 0.752 0.785 0.639 0.883 0.737 0.631 0.727 0.864 0.573 0.678 0.631 0.656 0.652

PSM

R-A-R 0.889 0.731 0.764 0.820 0.911 0.781 0.738 0.703 0.874 0.588 0.686 0.641 0.692 0.616
R-A-P 0.918 0.806 0.591 0.871 0.925 0.841 0.808 0.831 0.865 0.629 0.821 0.571 0.712 0.671
V-ROC 0.879 0.729 0.641 0.814 0.861 0.784 0.741 0.707 0.844 0.583 0.687 0.574 0.652 0.516
V-PR 0.911 0.798 0.795 0.867 0.888 0.842 0.808 0.825 0.904 0.525 0.813 0.738 0.659 0.569

SWaT

R-A-R 0.942 0.956 0.734 0.710 0.967 0.791 0.931 0.539 0.952 0.563 0.568 0.732 0.638 0.663
R-A-P 0.915 0.868 0.646 0.678 0.941 0.772 0.886 0.551 0.795 0.484 0.424 0.648 0.674 0.694
V-ROC 0.945 0.938 0.776 0.713 0.970 0.791 0.924 0.540 0.954 0.322 0.563 0.842 0.548 0.707
V-PR 0.917 0.870 0.637 0.681 0.944 0.771 0.881 0.551 0.796 0.383 0.414 0.656 0.678 0.689

WADI

R-A-R 0.927 0.945 0.623 0.866 0.912 0.561 0.629 0.614 0.955 0.413 0.617 0.692 0.714 0.677
R-A-P 0.846 0.843 0.588 0.797 0.773 0.265 0.359 0.637 0.794 0.442 0.639 0.549 0.434 0.547
V-ROC 0.877 0.943 0.627 0.758 0.937 0.573 0.631 0.618 0.956 0.412 0.620 0.692 0.719 0.669
V-PR 0.799 0.854 0.576 0.659 0.786 0.276 0.359 0.634 0.796 0.441 0.634 0.549 0.439 0.542

NIPS-TS-SWAN

R-A-R 0.858 0.870 0.607 0.882 0.881 0.872 0.866 0.843 0.878 0.729 0.748 0.807 0.702 0.794
R-A-P 0.941 0.936 0.587 0.851 0.948 0.946 0.944 0.879 0.929 0.705 0.781 0.639 0.646 0.743
V-ROC 0.829 0.851 0.607 0.873 0.861 0.853 0.847 0.805 0.866 0.607 0.807 0.755 0.691 0.681
V-PR 0.932 0.925 0.587 0.929 0.935 0.933 0.931 0.858 0.918 0.687 0.759 0.629 0.637 0.633

NIPS-TS-GECCO

R-A-R 0.721 0.536 0.599 0.523 0.629 0.522 0.523 0.566 0.581 0.522 0.564 0.614 0.635 0.626
R-A-P 0.587 0.318 0.585 0.483 0.345 0.311 0.367 0.566 0.349 0.519 0.526 0.561 0.522 0.517
V-ROC 0.748 0.541 0.589 0.527 0.623 0.521 0.521 0.568 0.576 0.513 0.565 0.669 0.665 0.624
V-PR 0.611 0.323 0.582 0.479 0.339 0.314 0.353 0.546 0.443 0.512 0.505 0.597 0.582 0.554

#1 Count 12 1 0 2 9 0 0 0 2 0 0 0 0 0
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Table 5: Performance comparison across six benchmark datasets using affinity-based precision
(Aff-P), recall (Aff-R), and F1 score (Aff-F). Our method consistently outperforms others, especially
in Aff-F. Bold indicates the optimal performance; Underline indicates the suboptimal performance.

Dataset Metric Ours S.T. T.G. Memto DC. M.TCN iT. MTG A.T. D.G. GANF VAE IF PCA

MSL
Aff-P 0.994 0.549 0.709 0.515 0.516 0.588 0.559 0.921 0.518 0.512 0.762 0.587 0.423 0.694
Aff-R 0.782 0.871 0.642 0.704 0.972 0.893 0.785 0.234 0.961 0.998 0.205 0.714 0.342 0.512
Aff-F 0.867 0.673 0.674 0.595 0.674 0.709 0.652 0.374 0.673 0.677 0.323 0.642 0.374 0.591

PSM
Aff-P 0.746 0.774 0.627 0.641 0.561 0.664 0.644 0.967 0.551 0.465 0.961 0.755 0.469 0.389
Aff-R 0.846 0.798 0.764 0.677 0.783 0.743 0.662 0.282 0.814 0.945 0.198 0.412 0.731 0.312
Aff-F 0.797 0.786 0.689 0.659 0.653 0.701 0.652 0.436 0.657 0.624 0.329 0.524 0.569 0.437

SWaT
Aff-P 0.567 0.582 0.538 0.554 0.531 0.586 0.581 0.662 0.571 0.478 0.552 0.499 0.743 0.387
Aff-R 0.926 0.689 0.663 0.635 0.981 0.827 0.934 0.356 0.683 0.878 0.676 0.642 0.363 0.725
Aff-F 0.704 0.631 0.594 0.592 0.687 0.685 0.716 0.463 0.622 0.619 0.608 0.563 0.502 0.537

WADI
Aff-P 0.714 0.632 0.652 0.545 0.619 0.546 0.573 0.771 0.553 0.476 0.751 0.456 0.658 0.601
Aff-R 0.525 0.956 0.449 0.981 0.874 0.571 0.809 0.598 0.985 0.957 0.601 0.726 0.482 0.365
Aff-F 0.605 0.756 0.532 0.701 0.725 0.558 0.671 0.673 0.708 0.636 0.667 0.556 0.555 0.477

NIPS-TS-SWAN
Aff-P 0.754 0.798 0.521 0.525 0.531 0.515 0.491 0.998 0.672 0.509 0.435 0.374 0.711 0.645
Aff-R 0.019 0.824 0.997 0.017 0.445 0.554 0.526 0.002 0.054 0.935 0.003 0.396 0.318 0.731
Aff-F 0.038 0.805 0.685 0.033 0.484 0.533 0.507 0.003 0.099 0.659 0.005 0.385 0.438 0.680

NIPS-TS-GECCO
Aff-P 0.829 0.805 0.508 0.638 0.513 0.555 0.541 0.706 0.533 0.501 0.592 0.732 0.402 0.539
Aff-R 0.820 0.337 0.702 0.317 0.883 0.373 0.365 0.231 0.859 0.998 0.173 0.362 0.698 0.481
Aff-F 0.825 0.476 0.589 0.424 0.648 0.446 0.435 0.348 0.658 0.667 0.268 0.481 0.531 0.509

#1 Count 6 2 1 0 1 0 1 3 1 3 0 0 1 0

Table 6: Performance comparison in terms of PA-Precision (PA-P), PA-Recall (PA-R), and PA-F1
(PA-F) on six benchmark datasets. Bold indicates the optimal performance; Underline indicates the
suboptimal performance.

Dataset Metric Ours S.T. T.G. Memto DC. M.TCN iT. MTG A.T. D.G. GANF VAE IF PCA

MSL
PA-P 0.933 0.931 0.626 0.971 0.922 0.884 0.825 0.744 0.917 0.742 0.422 0.421 0.509 0.472
PA-R 0.997 0.803 0.836 0.504 0.974 0.743 0.548 0.574 0.951 0.582 0.584 0.635 0.723 0.416
PA-F 0.964 0.863 0.714 0.664 0.947 0.807 0.659 0.648 0.934 0.652 0.489 0.512 0.598 0.444

PSM
PA-P 0.985 0.980 0.784 0.989 0.971 0.975 0.962 0.992 0.973 0.837 0.994 0.691 0.374 0.647
PA-R 0.977 0.904 0.819 0.966 0.984 0.954 0.893 0.666 0.983 0.731 0.652 0.524 0.739 0.337
PA-F 0.981 0.941 0.801 0.977 0.977 0.965 0.926 0.797 0.978 0.780 0.788 0.596 0.534 0.467

SWaT
PA-P 0.931 0.809 0.827 0.889 0.931 0.894 0.874 0.952 0.892 0.786 0.548 0.585 0.651 0.443
PA-R 0.973 0.923 0.754 0.659 0.949 0.875 0.962 0.338 0.992 0.863 0.157 0.477 0.328 0.721
PA-F 0.951 0.863 0.788 0.756 0.939 0.884 0.916 0.500 0.943 0.822 0.244 0.526 0.472 0.548

WADI
PA-P 0.813 0.856 0.841 0.751 0.607 0.291 0.355 0.875 0.637 0.866 0.847 0.658 0.372 0.547
PA-R 0.917 0.890 0.829 0.874 0.917 0.372 0.511 0.570 0.947 0.595 0.570 0.416 0.612 0.723
PA-F 0.862 0.873 0.834 0.807 0.731 0.326 0.419 0.690 0.738 0.705 0.681 0.512 0.474 0.618

NIPS-TS-SWAN
PA-P 0.991 0.997 0.694 0.988 0.966 0.954 0.952 0.662 0.972 0.591 0.695 0.633 0.364 0.699
PA-R 0.585 0.556 0.629 0.526 0.591 0.592 0.591 0.533 0.540 0.438 0.576 0.395 0.738 0.403
PA-F 0.736 0.714 0.660 0.687 0.733 0.731 0.729 0.591 0.695 0.503 0.630 0.497 0.522 0.526

NIPS-TS-GECCO
PA-P 0.669 0.524 0.582 0.889 0.391 0.404 0.471 0.371 0.277 0.539 0.346 0.382 0.548 0.466
PA-R 0.944 0.463 0.789 0.352 0.597 0.321 0.321 0.391 0.391 0.745 0.364 0.672 0.422 0.735
PA-F 0.784 0.491 0.670 0.504 0.472 0.357 0.381 0.381 0.325 0.625 0.355 0.491 0.481 0.583

#1 Count 6 2 0 2 0 0 0 2 3 0 1 0 1 0
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D Analysis on the Universality and Robustness of the Scattering Phenomenon

To investigate the universality of the scattering phenomenon and evaluate the model’s robustness,
we conduct a quantitative analysis across all six benchmark datasets under varying levels of noise.
Specifically, we inject additive Gaussian noise with four different intensities (σ ∈ {0, 0.5, 1.0, 2.0})
into the normalized test data, where σ = 0.0 serves as the no-noise baseline. We then quantify the
model’s internal discriminative power by calculating the average scattering score for both normal
and anomalous samples. This score is defined as the mean Euclidean distance of samples to their
respective class center. The separation ratio between these scores (Anomalous/Normal) is analyzed
to measure class distinguishability, with results presented in Table 7.

Table 7: Analysis of scattering scores and their separation ratio under different Gaussian noise levels
(σ). A separation ratio greater than 1.0 suggests that anomalous samples are, on average, farther from
their class center than the normal samples, confirming the scattering phenomenon.

Dataset Noise Level
(σ)

Scattering Score
(Normal)

Scattering Score
(Anomalous)

Separation
Ratio(%)

MSL

0.0 16.0 18.2 1.14
0.5 21.6 31.6 1.46
1.0 36.0 49.3 1.37
2.0 65.9 84.6 1.28

PSM

0.0 31.5 37.8 1.20
0.5 33.1 40.3 1.22
1.0 41.2 47.4 1.15
2.0 61.1 65.7 1.08

SWaT

0.0 73.10 94.09 1.29
0.5 75.63 95.71 1.27
1.0 79.22 98.03 1.24
2.0 84.50 102.11 1.21

WADI

0.0 0.78 1.16 1.49
0.5 34.9 43.4 1.24
1.0 87.1 72.4 0.83
2.0 166.7 137.0 0.82

NIPS-TS-SWAN

0.0 20.2 28.4 1.41
0.5 21.8 32.4 1.49
1.0 27.7 42.2 1.52
2.0 42.1 65.5 1.56

NIPS-TS-GECCO

0.0 21.60 95.97 4.44
0.5 26.10 105.33 4.04
1.0 40.70 41.40 1.02
2.0 68.60 197.30 2.88

The results presented in Table 7 clearly reveal a consistent anomaly scattering pattern across the
six diverse, real-world datasets. Notably, for the WADI dataset, the scattering score of normal
samples surpasses that of anomalies under medium-to-high noise conditions (σ ≥ 1.0), resulting in a
separation ratio less than 1.0. We attribute this phenomenon to WADI’s high dimensionality (123
dimensions), where strong noise may have a compounding effect and lead to complex changes in
inter-variable correlations. This finding indicates that while our method is generally robust across
various noisy environments, its performance may be sensitive to strong noise when applied to
extremely high-dimensional datasets that feature subtle anomaly patterns. This analysis helps to
comprehensively characterize the performance boundaries of our method.

E Parameter Sensitivity Analysis

We analyze the sensitivity of ScatterAD to key hyperparameters across six datasets (Figure 7). The
model performs consistently across varying window sizes, demonstrating robustness to both short-
and long-range temporal contexts. A window size of 110 yields the highest AUC-ROC and is thus
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used in all experiments. Therefore, this brief window size is selected in our experiments. We further
studied the sensitivity of the other 2 parameters: the dimension of the hidden layer and the number
of encoder layers. For encoder depth, two layers consistently achieve the best performance while
keeping the model lightweight. Increasing the hidden dimension improves performance, and we
choose 512 as a balanced default to maintain model efficiency.
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Figure 7: Parameter sensitivity analysis in ScatterAD.

Anomaly threshold σ is a important hyperparameter, which may affect the determination of anomaly
or not. We have a default value of 1 for all benchmarks. As shown in Table8, when it is in the range
of 0.5 to 1, it has little effect on the final model performance. PSM and SMAP are also more robust
to anomaly thresholds than MSL. For the three benchmarks, its best results appear when σ equals 0.8
or 1.

Table 8: Sensitivity analysis of the hyperparameter δ on six datasets. Metrics: AF (Affiliated-F1), AR
(AUC-ROC). Best values per column are highlighted in bold.

Dataset MSL PSM SWaT WADI N-T-S N-T-W

Metric AF AR AF AR AF AR AF AR AF AR AF AR

δ = 0.2 0.863 0.986 0.789 0.955 0.656 0.517 0.929 0.944 0.029 0.786 0.799 0.954
δ = 0.4 0.861 0.982 0.793 0.952 0.698 0.521 0.934 0.974 0.038 0.792 0.803 0.964
δ = 0.6 0.843 0.978 0.783 0.946 0.704 0.586 0.961 0.975 0.035 0.790 0.814 0.965
δ = 0.8 0.855 0.981 0.794 0.969 0.701 0.587 0.960 0.957 0.038 0.792 0.818 0.959
δ = 1.0 0.867 0.986 0.792 0.969 0.702 0.583 0.955 0.957 0.037 0.789 0.823 0.969
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F Analysis of Performance on the NIPS-TS-SWAN Dataset

A notable performance discrepancy is observed on the NIPS-TS-SWAN dataset, specifically con-
cerning the Affiliated-F1 (Aff-F1) metric. It is important to first establish that our proposed model,
ScatterAD, successfully generates separable anomaly scores for this dataset. The high Point-Adjusted
F1 (PA-F1) score of 0.736 (as reported in Table 1) demonstrates that anomalous events are correctly
assigned higher scores than normal ones at the point level.

To investigate the low Aff-F1 score, we hypothesize that the metric itself may be overly sensitive to
minor localization errors on this particular dataset. To test this, we devised a controlled simulation
experiment, independent of our model, to evaluate the intrinsic robustness of the Aff-F1 metric.
In this simulation, we assume a perfect model whose predictions exactly match the ground truth
(achieving an F1 score of 1.0). We then introduce a minor, realistic localization error by shifting the
entire prediction sequence by a small number of timesteps (∆t) and observe the resulting changes in
both Aff-F1 and a traditional point-wise F1 score. The experiment is also conducted on the MSL
dataset for comparison.

Table 9: Sensitivity analysis of F1 metrics to temporal localization errors. A perfect prediction
sequence is shifted by a few timesteps, and the degradation of segment-level (Aff-F1) and point-level
F1 scores is measured.

Dataset Localization Error
(Shift in steps)

Aff-F1 Score
(Segment-level)

Point-wise F1
(Point-level)

NIPS-TS-SWAN

0 steps 1.000 1.000
1 step 0.065 (93.5%↓) 0.686
2 steps 0.174 0.697
5 steps 0.223 0.704

10 steps 0.226 0.709

MSL

0 steps 1.000 1.000
1 step 1.000 0.995
2 steps 1.000 0.991
5 steps 0.972 (2.8%↓) 0.977

10 steps 0.889 0.954

The results in Table 9 are revealing. For the NIPS-TS-SWAN dataset, a minuscule localization shift
of just one timestep causes the Aff-F1 score to plummet from 1.0 to 0.065, a 93.5% reduction. In
stark contrast, the same shift on the MSL dataset has no impact on the Aff-F1 score, and even a
5-step shift results in only a minor 2.8% drop. This demonstrates the extreme sensitivity of the Aff-F1
metric specifically on the NIPS-TS-SWAN dataset. This inherent characteristic of the metric and
dataset interaction explains why our model, along with many other state-of-the-art methods (as shown
in Table 1), exhibits poor performance on this particular metric. Conversely, the more traditional
point-wise F1 score shows much greater resilience. This justifies our decision to report both scores
for a balanced and comprehensive evaluation.

To further validate our model’s detection capability at a macro level, we compiled overall prediction
statistics for ScatterAD on the NIPS-TS-SWAN dataset, shown in Table 10.

Table 10: Macro-level prediction statistics for ScatterAD on the NIPS-TS-SWAN dataset.

Statistic Ground Truth Our Prediction

Total Anomaly Ratio 32.6% 32.1%
Number of Anomaly Segments 551,937 843,596

The statistics show that the total proportion of anomalies predicted by ScatterAD (32.1%) closely
aligns with the ground truth (32.6%), demonstrating its accurate high-level detection capability.
However, the model identifies a higher number of individual anomaly segments. This suggests that the
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model may tend to partition a single continuous ground-truth anomaly into several smaller, consecutive
segments. Consequently, due to such minor, unavoidable localization offsets, its performance is
significantly underestimated by the strict segment-matching criteria of the Aff-F1 metric under these
specific data conditions.

G Analysis of the Scattering Center Initialization

The initialization strategy for the scattering center, c, is a key design consideration impacting model
stability and the potential for learning suboptimal solutions. In our framework, the scattering center
c is initialized once at the beginning of each training run and remains fixed throughout the training
process; it is not a learnable parameter updated via backpropagation. The role of this fixed center is
twofold:

• Provide a Fixed Anchor Point: The center c offers a stable, convergent target direction
for the representations of normal samples. This guides the model to learn a mapping that
projects these representations into a compact region on the latent hypersphere.

• Break Symmetry and Regularize: A fixed, predefined center (e.g., a canonical basis
vector like [1, 0, ..., 0]) might introduce an undesirable bias, potentially inducing the model
to learn a trivial solution where all normal samples map to a specific axis. By randomly
initializing c, we avoid this risk and compel the model to learn more generalizable, rotation-
invariant representations. This can be viewed as a form of implicit stochastic regularization,
preventing the model from overfitting to a predefined direction in the latent space.

G.1 Stability Analysis

To empirically validate the stability of this random initialization strategy, we conducted an experiment
by repeating the full training and evaluation process with 5 different random seeds on the MSL and
PSM datasets. A different seed results in a different initialization for the scattering center c. As
shown in Table 11, the standard deviation of the performance metrics is extremely low, confirming
that the model’s performance is robust and not sensitive to the specific random choice of the center.

Table 11: Stability analysis of the random scattering center initialization across 5 runs with different
random seeds. The low standard deviation indicates high stability.

Dataset Metric Original Mean Std. Dev.

MSL
Aff-F1 0.865 0.865 ± 0.003
A-ROC 0.986 0.986 ± 0.001

PSM
Aff-F1 0.797 0.797 ± 0.002
A-ROC 0.986 0.986 ± 0.003

G.2 Ablation Study on Initialization Strategies

Furthermore, to demonstrate the effectiveness of our chosen approach, we performed an ablation
study comparing several alternative center initialization strategies:

• Zero: Initialize the center at the origin (zero vector) to test the simplest symmetric starting
point.

• Fixed-Radius: Initialize the center on a hypersphere with a fixed radius to test the model’s
sensitivity to the initial magnitude.

• Multi-center: Use multiple independent scattering centers to test the model’s ability to
capture potentially multi-modal distributions of normal data.

The results, presented in Table 12, compare these strategies with the random_in_ball approach
(randomly selecting a point within the unit hypersphere) proposed in our paper. The findings confirm
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that our model is not sensitive to the specific initialization strategy of c. The performance remains
consistently high across different methods, indicating that the random_in_ball strategy is a simple,
robust, and effective choice that avoids the need for additional hyperparameter tuning (e.g., setting a
radius or the number of centers).

Table 12: Ablation study of different scattering center initialization strategies. Performance metrics
(Aff-F1 and AUC ROC) remain stable across various strategies, validating the robustness of our
approach.

Dataset Center Strategy Num Centers Radius Aff-F1 AUC-ROC

MSL

random_in_ball (Ours) 1 N/A 0.867 0.986
zero 1 0.0 0.866 0.986
fixed_radius 1 0.3 0.866 0.986
fixed_radius 1 0.7 0.864 0.986
multi-center 3 N/A 0.869 0.986

PSM

random_in_ball (Ours) 1 N/A 0.797 0.986
zero 1 0.0 0.797 0.986
fixed_radius 1 0.3 0.797 0.986
fixed_radius 1 0.7 0.796 0.986
multi-center 3 N/A 0.792 0.980

SWaT

random_in_ball (Ours) 1 N/A 0.704 0.982
zero 1 0.0 0.704 0.982
fixed_radius 1 0.3 0.698 0.977
fixed_radius 1 0.7 0.702 0.979
multi-center 3 N/A 0.702 0.980

H Robustness to Graph Topology

To evaluate the model’s sensitivity and robustness to the graph structure, we conducted an experiment
to simulate dynamically changing graph topologies. We extended our data loading process to generate
a different graph structure for each input time window during both training and inference. This
contrasts with our main approach of using a single, static graph learned from the training data. We
designed two dynamic topology generation strategies:

• Random Topology: For each time window, connections between nodes are randomly
established with a fixed probability (edge_prob=0.3). To ensure basic graph connectivity,
the connections between physically adjacent nodes are always preserved. This strategy
simulates scenarios where inter-sensor correlations are irregular and appear randomly over
time.

• K-Nearest Neighbors (KNN) Topology: For each time window, a topology is constructed
by computing the Euclidean distance between the time series of each node and all other
nodes within that window. Each node is then connected to its k-nearest neighbors (we use
k = 3).

The performance and efficiency of these dynamic strategies were compared against our original static
graph approach on the MSL and PSM datasets. The results are presented in Table 13.

The results in Table 13 indicate that the model’s detection performance is highly robust to the underly-
ing graph structure. While dynamic topology strategies lead to marginal performance improvements
in some specific cases (e.g., Random Topology on MSL and KNN Topology on PSM), the overall
accuracy metrics remain remarkably stable across all three approaches. However, these dynamic
strategies introduce significant computational overhead, as evidenced by the substantially lower
throughput and higher average inference times. This analysis demonstrates that our proposed model
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Table 13: Performance and efficiency comparison between static (Original) and dynamic graph
topology strategies. While dynamic strategies offer marginal performance changes, they incur
significant computational overhead, reducing throughput and increasing inference time.

Dataset Strategy Aff-F PA-F A-ROC A-PR Throughput
(samples/sec)

Avg. Inference
Time (ms)

MSL
Original (Ours) 0.866 0.964 0.986 0.932 60.35 16.57
Random Topology 0.867 0.967 0.987 0.937 38.33 26.09
KNN Topology 0.862 0.961 0.984 0.927 49.17 20.34

PSM
Original (Ours) 0.797 0.981 0.986 0.969 62.17 16.09
Random Topology 0.791 0.975 0.980 0.961 31.77 31.47
KNN Topology 0.803 0.966 0.971 0.948 25.66 38.98

exhibits strong robustness to graph topology, and employing a static graph derived from the training
data strikes an excellent balance between detection effectiveness and computational efficiency.

I Convergence analysis

(a) MSL (b) PSM (c) SWaT

(d) WADI (e) N-T-S (f) N-T-W

Figure 8: The convergence performance of our model’s loss on six different datasets is shown in the
figure.

The convergence performance of the total loss (Equation 9) of our model on six different datasets is
shown in the figure. Several consistent features can be observed from these curves: In all experiments,
the loss function shows a similar convergence pattern, rapidly decreasing from an initial value of
about 1.6 and gradually stabilizing. Specifically, within the first 100 iterations, the loss value drops
rapidly to about 0.4, indicating that the model can effectively capture the key features of the data.
Subsequently, the loss curve enters a gentle decline phase and converges to a stable value of about
0.3-0.4. It is worth noting that although the total number of iterations in each experiment is different
(300, 800, 2000 and 3000 respectively), they all show similar convergence curve shapes, proving
that the temporal topology constraint model we proposed has stable optimization characteristics and
can effectively learn the main patterns of the data in a small number of iterations (about 100-200
iterations). This consistent convergence behavior further verifies the robustness and scalability of our
model on different datasets.
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J Run Times

To evaluate the practicality of ScatterAD in production environments, we comprehensively compared
the training time, inference time, and GPU memory usage of various neural network models on the
SWaT dataset. The results are shown in the table.

Table 14: Comparison of training time, inference time, and GPU memory consumption on the SWaT
dataset.

Method Training Time (s/iter) Inference Time (s) GPU Memory (GB)

GANF 0.177 0.834 8.202
DuoGAT 0.283 239.608 6.050

AnomalyTrans 0.378 86.134 12.424
MTGFlow 0.378 2.119 9.458

iTransformer 0.027 59.515 2.061
ModernTCN 0.012 59.882 1.923
DCdetector 0.012 59.882 1.923
MEMTO 0.621 8.582 19.91
TopoGDN 0.131 66.146 2.830

Sub-Adjacent Trans 0.107 1.762 5.396
ScatterAD 0.042 2.124 3.458

Table 14 reports the training and inference time per iteration, along with GPU memory usage on
the SWaT dataset. Our method achieves the fastest training speed (0.0421s/iter). It also offers
competitive inference efficiency and low GPU memory consumption. Compared to DuoGAT and
Anomaly Trans, which suffer from extremely long inference times and high memory overhead, our
model demonstrates superior scalability and deployment practicality.

K Limitations and Future Work

While ScatterAD shows strong performance across diverse real-world datasets, there remain a few
avenues for future improvement. ScatterAD effectively captures spatial-temporal dependencies, and
incorporating more explicit modeling of inter-series interactions may offer additional benefits in
specialized applications such as industrial monitoring or financial forecasting. For future work, we
aim to explore adaptive graph construction that evolves with streaming data to improve robustness
in non-stationary environments. In addition, integrating causal discovery modules could enhance
interpretability and detection precision. Another promising direction is extending ScatterAD to a semi-
supervised or active learning setting, where limited anomaly labels can further guide representation
learning.
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