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ABSTRACT

Large-scale driverless fleets rely on teleoperation to resolve rare, safety-critical
edge cases that onboard autonomy cannot handle robustly. We introduce FLEE-
TAGENT, a cloud-hosted multimodal large language model (MLLM) that assesses
the plan and context of an autonomous vehicle (AV) to decide whether teleopera-
tion is needed. FLEETAGENT consumes a compact vectorized representation of
observations and planned actions rather than raw sensors, and produces a natural-
language explanation and evaluation towards the traffic scenario and driving deci-
sion. A dedicated vector encoder replaces conventional text tokenizers and vision
encoders, substantially reducing the number of input tokens and server memory
footprint while preserving the information needed for proper functioning. We also
build a dataset based on nuScenes and augment it with synthetic imperfect driving
decisions and annotated explanation and evaluation labels. System-level studies
indicate a maximum 625× reduction in communication demand and a maximum
16.54× reduction in cache size. Model-level experiments also show competitive
response quality and plan-evaluation accuracy, with a 41% improvement in BLEU
score and an 11% reduction in task failure rate. Because all computation runs on
the cloud, the approach introduces no additional onboard burden. Together, these
results outline a practical path to scalable, explainable teleoperation support for
AV fleets, paving the way to another paradigm for MLLMs’ application in au-
tonomous driving.

1 INTRODUCTION

Autonomous driving technology has been evolving rapidly over the last decade, with companies like
Waymo, Zoox, and Tesla starting to deploy driverless fleets in major U.S. cities to the general public
Waymo (2025); Zoox (2025); Tesla (2025). Large-scale driverless fleets sometimes rely on remote
operation as a backup to handle rare and safety-critical situations that the onboard system fails to
resolve. Specifically, remote operation can take the forms of remote monitoring, direct control, or
human guidance, which have already been used by leading robotaxi operators.

Typical remote driving systems feature a bi-directional communication, where an autonomous vehi-
cle’s (AV) sensor data, such as camera and LiDAR feeds, is transmitted over a wireless network to
a human operator at a remote center. The operator assesses the situation and sends guidance back
to the vehicle. To mitigate the safety risks associated with network latency, some industry leaders
are adopting a new paradigm where the AV remains in full control of its low-level operations while
the human provides high-level, strategic guidance. However, vehicle-to-server sensor streaming
remains challenging in terms of latency and cost as the system scales up.

Moreover, with the advancement of vehicular automation, the lower intervention rate prompts the
need for an approach that can accurately trigger teleoperation. These realities motivate the need for
an intelligent system that continuously evaluates vehicle behavior and, at the right moments, re-
minds human operators and provides intuitive explanation of the situation with minimum volume
of message transmitted.

Currently, multi-modal large language models (MLLMs) have shown great potential as generalist
reasoners for various complex tasks, including autonomous driving. This makes them ideal for
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Figure 1: FleetAgent: A Framework for Large-Scale Driverless Fleet Teleoperation.

serving as standalone agents to identify challenging scenarios and wrong driving decisions from
the massive amount of vehicles in the fleet. It also natively provides the remote operator with an
intuitive explanation of what is happening to the vehicle that requires intervention. While existing
research mainly focuses on grounding MLLMs in the driving domain from different stages, such
as camera perception, motion prediction, and vehicle planning, we aim to start from the actual
limitations of deploying MLLMs for real-world applications and explore a new way of MLLM
usage in autonomous driving.

In this paper, we present an LLM-based system for driving explanation and evaluation tailored for
remote driving operation via vehicle-to-network (V2N) communication. The key contributions of
this paper are as follows:

1. We propose FLEETAGENT, a flexible framework based on vectorized information presen-
tation for utilizing MLLM on a cloud server to provide 1) the evaluation of the AV driving
behavior and 2) the explanation for the remote drivers’ quick situation awareness. FLEE-
TAGENT works as a connector between the large-scale driverless fleet and human teleop-
erators.

2. A dataset NU-EVAL extended from nuScenes, providing imperfect driving and extensive
natural language labels on analysis, explanation, and evaluation; a dedicated multi-modal
encoder VECFORMER in place of general-purpose text tokenizers and pretrained visual
encoders, greatly reducing the number of input tokens and hence reducing the graphics
memory footprint during both training and inference.

3. Both model and system-level evaluations showcase the outstanding capability of our pro-
posed framework and model, meeting the communication and computation requirements
in real-world applications. Notably, no additional computation is needed on the AV side.

2 RELATED WORKS

2.1 REMOTE DRIVING SYSTEMS

Previous research on vehicular and robotic teleoperation mainly focus on the challenge of real-time
control over communication network, where the latency effect is detailedly measured by Georg et
al. (Georg et al., 2020): Neumeier et al. (Neumeier et al., 2022) proposed a multi-step approach
to reduce the data rate needed for teleoperated driving; Dmitrij et al. (Schitz et al., 2021) mitigates
the need of low-latency communication by combining human’s high-level instruction and vehicle’s
low-level planning, building a shared autonomy framework; Xie et al. (Xie et al., 2021) proposed
a predictive display method for robotic teleoperation, addressing the network latency challenge by
presenting a near-future view of the robot; Gohar and Lee (Gohar & Lee, 2020) proposed a remote
operator selection method to match suitable remote operators with fleet vehicles;

From the remote operator aspect, previous research focuses on topics like improving human-
machine interfaces (HMIs) and operation quality: Wolf et al. (Wolf et al., 2024) provided an in-
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depth examination of different teleoperation interfaces; Tsagkournis et al. (Tsagkournis et al., 2023)
and Yang et al. (Yang & Michael, 2020) mentioned that intention prediction of robot teleoperators
can assistively reduce operator workload and improve the overall performance; Cho et al. (Cho
et al., 2023) provided a denoising-based method robust to imperfect input from unskilled drivers.

Current design of remote driving systems has not focused on the process of identifying whether
a fleet vehicle needs intervention and a teleoperation session is requested from the vehicle side,
usually via the constraints of operational design domain and techniques for edge case detection
(Rahmani et al., 2024). We aim to close this gap by adopting a natural language evaluating and
explaining mechanism outside the vehicle, while introducing no additional computation cost and a
limited amount of transmission cost.

2.2 MULTIMODAL LARGE LANGUAGE MODELS (MLLMS) IN AUTONOMOUS DRIVING

The application of MLLM in the autonomous driving domain has evolved into multiple paradigms
(Wang et al., 2025; Sima et al., 2025; Tian et al., 2024; Park et al., 2025), including visual question
answering (VQA) and integrated end-to-end systems (Li et al., 2025; Hwang et al., 2024; Zhou
et al., 2025; Xu et al., 2024), where multimodal LLMs are used for the planning of AVs. Agent-
Driver(Mao et al., 2024) proposed an LLM-agent-based method to provide explainable action. To
enhance the aligned interpretability, Hint-AD (Ding et al., 2024) generates language output aligned
with the autonomous driving model output, and the paper provided a driving explanation dataset Nu-
X. Moreover, ALN-P3 (Ma et al., 2025) proposed a distillation approach to transfer the knowledge
from multimodal LLM to a light autonomous driving model. Notably, in most prior research, due
to the actual needs of the VQA task and vehicle planning task, multimodal LLMs are designed to
deploy onboard, and the model inputs typically include language instructions, raw sensor data, and
ego state information. This information can losslessly describe what’s happening around and inside
the vehicle, but is too large to be transmitted over the network.

2.3 VEHICLE-TO-EVERYTHING COMMUNICATION

Vehicle-to-everything (V2X) is another rapidly evolving domain, built on top of several network
interfaces including DSRC and C-V2X (Abboud et al., 2016). V2N connects vehicles to cloud in-
frastructures and is a subset of V2X, enabling network-based data exchange. While the advancement
of communication technology has enabled a short enough latency for delivering teleoperation com-
mands, the latency from image captured to image displayed remotely is still high and unstable (Tes-
touri et al., 2025), indicating that a smaller message size is not only the requirement of cost but also
a critical factor of the system performance. In the vehicle-to-vehicle and vehicle-to-infrastructure
scenario with no flow control and small conflict probability, reducing transmitted message size can
accelerate transmission by more than five times (Zhao et al., 2025). In a busier vehicle-to-network
scenario, the gain from reducing message size would be more significant.

3 PROBLEM FORMULATION

We formulate the driving explanation and evaluation task for remote teleoperation, which differs
fundamentally from existing VQA tasks and ego vehicle planning tasks. Traditional VQA systems
in autonomous driving follow the paradigm: f(I,Q) → A, where raw sensor input I and questions
Q produce answers A. Ego vehicle end-to-end planning models map f(I, S) → P from raw sen-
sor input I and ego vehicle state S to planning decisions P . In contrast, our task takes the form:
f(O,P ) → (L, i), where intermediate observation of the surrounding O and the vehicle’s planning
output P are evaluated to produce natural language evaluation and explanation L and intervention
score i.

This formulation introduces two key challenges for teleoperation: operating under V2N bandwidth
constraints with compact context inputs, and evaluating the appropriateness of planning outputs
rather than directly working on the planning process. The pipeline addresses these by generating
a natural language explanation of the traffic scenario and driving decision, evaluating that deci-
sion, and providing a quantized intervention score. These outputs provide situational awareness and
structured guidance for operators while limiting the need for extra computation and communication
costs.
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4 DATASET

In this section, we will analyze the dataset requirements for our driving explanation and evaluation
tasks, as described in Sec. 3, and introduce the annotation process for the dataset.

Figure 2: Annotation Pipeline and Dataset Examples.

4.1 TASK REQUIREMENT AND EXISTING DATASET COMPARISON

Our task involves explaining and evaluating a given ego-vehicle planning P in a specific context
from observations O (e.g., lanes, pedestrians, vehicles). The model must produce a scene-grounded
natural language response L and a graded intervention urgency i. For learning fine evaluation and
judgement rather than mere narration, training instances should include multiple planning variants,
cover rare and unsafe scenarios, and events.

Previous datasets in autonomous driving, including nuScenes (Caesar et al., 2020), Waymo Open
(Sun et al., 2020), KITTI (Geiger et al., 2013), and nuPlan (Caesar et al., 2022), offer rich sensor
logs covering diverse traffic scenarios and high-quality human-driven trajectories. These provide
the contexts O and the ideal portion of candidate plannings P we need, while still missing language
annotations and the imperfect portion of candidate plannings.

Multiple VQA extension datasets based on nuScenes and nuPlan, such as NuScenes-QA (Qian et al.,
2024), NuInstruct (Ding et al.), NuPrompt (Wu et al., 2025), NuPlanQA (Park et al., 2025), and Driv-
eLM (Sima et al., 2025), primarily target captioning, grounding, and scene understanding rather than
evaluating and explaining a given plan, which makes them not directly suitable for our task. For ex-
isting driving explanation and reasoning datasets, including Nu-X (Ding et al., 2024) and BDD-X
(Kim et al., 2018), annotations center on human driver actions, which are targeted for interpretabil-
ity studies. However, those datasets neither provide evaluation on the candidate planning P from
human drivers nor provide adequate imperfect driving planning. As identifying inefficient or un-
safe driving is the main goal of our task, we build a new dataset, VECEVAL, providing a vectorized
representation of each scenario and the corresponding explanation, evaluation, and the intervention
urgency score. Considering the potential need for cross-validation and joint training, we base our
dataset on nuScenes, one of the most popular datasets in the autonomous driving domain.

4.2 DATASET CONSTRUCTION PIPELINE

As shown in Fig. 2, our dataset annotation generally consists of two parts: the first part is the
generation of imperfect driving behaviors, and the other part is the annotation of natural language
explanation, evaluation, and intervention urgency scoring based on the human-driven ego planning
and the generated imperfect driving.
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4.2.1 IMPERFECT PLANNING GENERATION

In a real-world driving scenario, an autonomous system might generate incorrect planning trajecto-
ries, which are unsafe or inefficient. For those planned trajectories that are distorted or physically
infeasible, we assume they can be identified through limitations on position, speed, or acceleration
range. To better imitate those imperfect plans due to wrong decision making, we adopt trajectories
sampled from a real trajectory vocabulary as the imperfect trajectories. To construct the trajectory
vocabulary, all the human-driven trajectories from the base dataset are collected and clustered into
15 categories. The clustering successfully categorizes different trajectories regarding the speed pro-
file (steady speed, acceleration, or deceleration) and steering status (going straight, turning left, or
turning right). For each scenario, an imperfect driving trajectory is generated based on the human-
driven trajectory. A category different from the human-driven trajectory is randomly allocated, and
then imperfect planning is randomly sampled from that category.

4.2.2 NATURAL LANGUAGE LABEL ANNOTATION

After obtaining both human-driven and imperfect trajectories, we follow the steps outlined in Fig. 2
to annotate the natural language explanations, evaluations, and intervention urgency scores. In the
first stage, we utilize an advanced reasoning model and chain-of-thought (CoT) prompting to gen-
erate the draft annotations from ground-truth data in the base dataset nuScenes. The CoT includes
multiple steps: 1) Accessing the road and lane structure; 2) Identifying moving and static objects; 3)
Describing the given planned trajectory; 4) Analyzing the interactions between the ego vehicle and
surrounding objects; 5) Giving the desired explanation, evaluation, and intervention score. Human
annotators will then check and refine the natural language labels. In the second stage, we follow
the practice presented in HintAD (Ding et al., 2024) and diversify the annotated sample into more
diverse expressions, satisfying the potential need for tuning larger-scale models and more natural
human-machine interaction.

4.3 EXAMPLES AND KEY STATISTICS

We select human-driven samples based on their relative positions in a scenario, where 11,510 out
of 28,130 and 1,693 out of 6,019 of the original annotated samples in training and validating sets
are annotated, respectively. The final average interval between annotated samples in the datasets
is 4.43m, ensuring a good coverage of the base dataset nuScenes while keeping the diversity of
the labels. For the imperfect portion, a fixed number of two samples from a scenario is randomly
selected and annotated. In total, 1,2910 annotated samples are included in the training set, and 1,993
samples are included in the validation set. The lower part of Fig. 2 shows two examples from our
annotated datasets, providing an intuitive understanding of the components of our datasets.

5 METHODOLOGY

5.1 OVERALL ARCHITECTURE

As shown in Fig. 3, our method leverages the vectorized information received from remote vehicles
to provide a response and signal to the remote operator, working as a standalone agent monitoring the
driving behavior. Unlike previous VQA works utilizing images or videos as input, we use vectorized
data to achieve a tradeoff between the transmitted information and communication costs. Road
structures, objects with their predicted future locations, and ego planning can all be represented by
vectors.

After the cloud server receives the messages, a straightforward approach to feed them into the LLM
is to convert those vectors into a text description. Though this approach requires no additional
module, the converted text descriptions incur an extremely long context length of more than 10,000
tokens per frame. Long context length then significantly increases the memory footprint and overall
throughput. The situation gets worse when there are more road users and a complex road structure,
as more vectors are needed to represent the large number of elements, while these cases are more
likely to need teleoperation. To address this issue, we design a VECFORMER to encode the received
vectorized information into embeddings.
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Figure 3: Underlied model design of FLEETAGENT.

We choose Qwen2.5-VL (Bai et al., 2025) as the base model because it adopts a simple but effec-
tive way of multi-modal fusion, where both textual information and multi-modal information are
represented via input embeddings.

5.2 VECFORMER DESIGN

As shown in Fig. 3, our proposed VECFORMER consists of two parts: independent transformer en-
coders encoding input vectors into high-dimensional embeddings, and a multi-head gated attention
to prioritize the top-K most important map and object embeddings, regarding the ego planning em-
bedding. Denote Mi and Fmap,i as the i-th vector and embedding representing a map element, such
as a lane divider, a road boundary, or a pedestrian crossing zone; denote Oj and Fobj,i as the j-th
vector and embedding representing an object and its predicted future trajectory; denote P and Fego

as the vector representing the ego-vehicle planned waypoints. Three separate transformer encoders
first encode the input vectors into embeddings:

Fmap,i = Encodermap(Mi); Fobj,i = Encoderobj(Oj); Fego = Encoderego(P);

Following the encoding stage, we employ a differentiable top-K selection mechanism using Gumbel-
Softmax (Jang et al., 2017) sampling to identify the most relevant context embeddings for ego-
vehicle planning. Given the ego embedding Fego ∈ Rd and context embeddings Fctx =
{Fmap,Fobj} ∈ Rn×d where n is the total number of context elements, we first compute multi-
head attention scores:

αi =
(WQFego)

T (WKFctx,i)√
dhead

where WQ,WK ∈ Rdhead×d are learned projection, dhead is a hypeparameter, and d is determined
by the LLM input embedding dimension. To select exactly K discrete context vectors while main-
taining differentiability, we perform sequential Gumbel-Softmax sampling. For each selection step
k ∈ {1, ...,K}, we sample from the categorical distribution over remaining contexts:

y
(k)
soft,i =

exp((log(πi) + gi)/τ)∑
j∈U(k) exp((log(πj) + gj)/τ)

where πi = softmax(αi), gi = − log(− log(ui)) with ui ∼ Uniform(0, 1) is the Gumbel noise,
τ is the temperature parameter, and U (k) denotes the set of unselected indices. To achieve dis-
crete selection while maintaining gradient flow, we compute:y(k)hard = Onehot(argmaxi y

(k)
soft,i) and

y(k) = y
(k)
hard − detach(y(k)soft) + y

(k)
soft. This keeps the boolean selection while allowing gradients
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to flow exclusively through y
(k)
soft during training. This enables the network to learn which contexts

are most relevant while maintaining discrete selections, which is essential as the effect of a non-
boolean selection matrix is offset by the normalization steps in the downstream LLM. The selected
context embedding is then F (k)

sel =
∑

i y
(k)
i Fctx,i, and the selected index is masked to prevent re-

sampling in subsequent steps. This mechanism ensures that exactly K distinct context vectors are
chosen in a differentiable manner, maintaining their individual semantic identity for downstream
LLM reasoning while enabling end-to-end gradient-based optimization.

5.3 TRAINING STRATEGY

To efficiently adapt the VECFORMER to existing pretrained LLMs using a limited amount of anno-
tated natural language labels, we use a training strategy including a masked vector reconstruction
self-supervised pretraining, a fixed-format instruction tuning, and a final supervised fine-tuning.

Masked Vector Reconstruction: In this stage, the vector encoder takes the masked vectors as input,
and a temporary decoder head reconstructs the encoded feature into the original unmasked vectors.
This step aims to train the transformer encoder to learn the relationship among points in a vector
(e.g., a lane divider or a vehicle’s predicted trajectory), instead of simply projecting point positions
to the latent space. Notably, no additional labelling is needed in this stage, as vanilla labels from
existing datasets like nuScenes can fulfill the data needs for this stage.

Fixed-format Instruction Tuning: In this stage, the vector encoder functions as the input embed-
dings of an LLM, along with a short prompt asking the LLM to interpret the input vector. For
example, an ego-vehicle planning vector is accompanied by a prompt What is the ego planning tra-
jectory the input vector is representing? By freezing most of the parameters in LLM, this stage aims
to align the encoded feature space with the LLM input embeddings. Similar to the first stage, this
stage requires no additional natural language annotations.

Supervised Fine-tuning: In this stage, we use the pretrained weights from previous stages as the
initial weights. During the training, only a one-layer feature projector and the context tokens prior-
itization module are unfrozen. The base LLM is finetuned using prefix tuning and LoRA adapter.
The motivation of this design is two-fold: 1. To reduce the computational cost of fine-tuning; 2. To
primarily preserve the capability for general reasoning from the base LLM, as our task requires ex-
tensive reasoning capability via the narration, explanation, evaluation, and the intervention scoring
pipeline.

6 EMPIRICAL RESULTS

In this section, we first present the results at the system level, showcasing how our architectural
design addresses real-world challenges. We then compare our model’s performance with existing
methods on various metrics relevant to the task of driving explanation and evaluation for vehicle
teleoperation.

6.1 SYSTEM LEVEL RESULTS

We conduct a comprehensive system-level evaluation to assess the computational efficiency and re-
source requirements of different approaches, comparing both API-based and local deployment sce-
narios across various input modalities. Raw images are collected from surround-view or single-view
RGB cameras, which are one of the most common input modalities for MLLM’s application in au-
tonomous driving. Bird’s Eye View (BEV) images provide top-down perspective representations of
the driving scene. Language Descriptions, which encode scene information as discrete embeddings
via a text tokenizer.
As shown in Table 1, FLEETAGENT demonstrates superior system efficiency across all metrics.
While raw images and BEV images require massive data transmission (25,312.5/4218.8 kB per
request), FleetAgent’s vector embeddings deliver similar information with only 40.5 kB, a 625×
reduction in bandwidth requirements, matching the compact size of language descriptions as they
are both reconstructed from vectorized messages. More importantly, FLEETAGENT achieves the
fastest response time of 4.41 seconds with low variance, outperforming all other methods. When
compared with language description input, FLEETAGENT requires only 1,241 MB of cache memory

7
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Table 1: System Level Comparison. Use OpenAI GPT-4o as an example for the API category, Qwen-
2.5VL-7B as an example for the local model category. Due to the hardware constraint incurred by
Language Description Input and Raw Images Input, all local models are inferred on half-precision.
Local response time tested on a single NVIDIA A100-40GB with a batch size of 1.

Model Type Input Type Transmitted Packet Size (kB)
per request

Response Time (s)
avg. (s.d.)

Memory Footprint (MB)
Cache/Model

1 Raw Images 25312.5 5.8783 (1.5160) -
2 BEV Images 4218.8 6.9310 (2.7076) -
3

API
Language Description 40.5 7.5245 (3.0132) -

4 Raw Images 25312.5 12.6158 (1.0635) 10558 / 15819 (×8.51)
5 BEV Images 4218.8 5.8987 (1.0530) 2604 / 15819 (×2.10)
6

Local
Language Description 40.5 8.6372 (5.5699) 20522 / 15819 (×16.54)

FleetAgent Local Vector Embeddings 40.5 4.4116 (1.0610) 1241 / 17081

compared to 20,522 MB for language descriptions (a 16.54× reduction) in local deployments, as
the constraints from the text tokenizer are lifted and a single vector is encoded into exactly one
continuous-space embedding. The significant reduction in cache memory enables faster inference
and a larger batch size, given a fixed memory allocation.

Generally speaking, using vectorized messages during communication and employing VECFORMER
to bridge the input and VLM achieves the most advantages from an architectural perspective. Ex-
periments at the model-level provide quantitative results on task performance, demonstrating that
FLEETAGENT’s efficiency gains do not come at the cost of model capability.

6.2 MODEL LEVEL RESULTS

Table 2: Benchmark Comparison on NU-EVAL dataset. FLEETAGENT outperforms other baseline
methods on all metrics and performs similarly to Gemini-2.5-Flash, which is used to assist annotat-
ing during the dataset construction process. Bold text denotes the best performance, and underlined
text indicates the second-best.

Language Metrics Lingo-Judge
Model Input Modality B ↑ M ↑ R ↑ Acc. ↑ Score ↑ Intervention Failure Rate (%)↓

Raw Images 61.65 24.59 22.34 18.26 0.2304 15.24
BEV Images 62.90 24.16 20.92 15.49 0.2191 16.05GPT-4o

Language Description 45.05 29.07 22.21 26.03 0.2422 13.63

Raw Images 66.28 26.43 27.58 55.63 0.3281 15.90
BEV Images 42.16 21.84 17.78 22.25 0.2533 13.83Qwen-2.5VL-7B

(Few-shot Example) Language Description 48.38 29.84 22.21 52.22 0.3056 15.14

FleetAgent (w/o tokens prioritization) Vector Embeddings 61.99 36.58 31.10 54.44 0.3599 12.42
FleetAgent Vector Embeddings 93.26 33.24 27.52 55.93 0.3568 12.12

Gemini-2.5-Flash Language Description 89.33 38.86 37.53 78.61 0.4478 16.00

In addition to the advantages of system-level evaluation, we also conduct experiments at the model
performance level, highlighting the effectiveness of model design compared with general-purpose
VLMs.

Table 3: Comparison on Nu-X dataset
Model Input Modality B M R

Raw Images 2.45 10.5 23GPT-4o Language Description 14.35 11.93 5.85

BEV Images 31.56 18.63 13.94Gemini-2.5-Flash Language Description 27.77 18.67 12.75

BEV Images 23.41 18.25 10.97Qwen-2.5VL-7B Language Description 2.37 8.28 4.29

TOD3Cap - 2.45 10.5 23
HintAD - 4.18 13.2 27.6
ALN-P3 - 5.59 14.7 35.2

FleetAgent Vector Embeddings 76.96 19.51 26.72

Our experimental results on the NU-EVAL
dataset demonstrate the effectiveness of FLEE-
TAGENT’s vector embedding approach com-
pared to other input modalities and multiple
proprietary and open-sourced VLMs. We eval-
uate models using three categories of metrics:
(1) NLP metrics including BLEU (B), ME-
TEOR (M), and ROUGE (R) to assess linguis-
tic quality and fluency of generated responses;
(2) context-aware evaluation through Lingo-
Judge (Marcu et al., 2023), evaluating the
semantic appropriateness and contextual rele-
vance of outputs in driving scenarios. The accuracy is calculated based on an acceptance thresh-
old of 0.3; and (3) task-specific performance measured by the Intervention Failure Rate, which
is calculated as the percentage of samples where the method fails to trigger intervention on cases
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that need intervention, directly capturing the practical effectiveness of the model in the teleoperation
scenario.

As shown in Table 2, FLEETAGENT achieves exceptional performance across these metrics, outper-
forming all baseline methods, including GPT-4o and Qwen-2.5VL-7B, across different input modal-
ities (raw images, BEV images, and language descriptions). Despite having the lowest commu-
nication and computational costs and the fastest response speed, FLEETAGENT achieves the
lowest intervention failure rate of 12.12% and the highest score from Lingo-Judge, demon-
strating superior task-specific performance crucial for real-world deployment. The ablation
study comparing FLEETAGENT with and without token prioritization demonstrates the effective-
ness of the Context Tokens Prioritization Module. With a negligible performance difference, models
equipped with the module reduce the required number of tokens by 43.7%, resulting in a 14.8%
acceleration. Notably, the results on both GPT and Qwen confirm that a general-purpose VLM not
pretrained on autonomous driving data can understand the situation via camera images and textual
descriptions, but fails to work well on BEV images.

To make the performance comparable with existing VQA and driving explanation methods, we also
experiment on the Nu-X dataset (Ding et al., 2024). As shown in Table 3, though FLEETAGENT
was only trained on the Nu-X dataset while other methods use multiple datasets for grounding the
MLLMs to the autonomous driving, our method can outperform the previous SoTA methods like
ALN-P3 (Ma et al., 2025) and baseline methods.

6.3 QUALITATIVE RESULT

Fig. 4 provides an example to showcase FLEETAGENT’s capability in understanding driving scenar-
ios and providing intuitive explanations and evaluations for human teleoperators. Other methods,
including Gemini-2.5-Flash, consider that this scenario needs to be taken over by a remote operator
because it is attempting to halt on the lane divider. However, this is a safe and reasonable drive yield-
ing to an oncoming vehicle. The context tokens prioritization helps in this case because irrelevant
contexts are ignored, and interacting objects are preserved.

Figure 4: Qualitative Result

7 CONCLUSION

FLEETAGENT presents an alternative paradigm using on-cloud MLLM to evaluate the AV plan-
ning results, supplementing the current VLA and VQA paradigms for MLLMs’ applications in au-
tonomous driving, establishing a practical foundation for scalable, explainable teleoperation support
systems. We achieve significant system-level improvements: a 625× reduction in communication
bandwidth and a 16.54× reduction in cache size, without sacrificing task performance: obtaining a
41% improvement in BLEU score and an 11% reduction in intervention failure rates. Our Nu-Eval
dataset will also provide a valuable resource for future research. The limitation lies in the super-
vision of the context tokens prioritization module during training, where no explicit labels for this
relevance are available. As a future direction, we plan to conduct closed-loop validation and a user
study on simulators and real-world vehicles.
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