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Abstract

In this report, we describe SPELL, a novel spatial-temporal
graph learning framework for active speaker detection (ASD).
First, each person in a video frame is encoded in a unique
node for that frame. The nodes corresponding to each person
across frames are connected to encode their temporal dynamics.
Nodes within a frame are also connected to encode inter-person
relationships. Thus, SPELL reduces ASD to a node classification
task. Importantly, SPELL is able to reason over long temporal
contexts for all nodes with low computation cost.

1. Introduction
Active speaker detection (ASD) is a multimodal (audio-

visual) task where the goal is to identify which persons are
speaking in each frame given a video. It has numerous practical
applications ranging from speech enhancement systems [1] to
human-robot interaction [14, 13].

Most of the previous state-of-the-art approaches [2, 15, 9, 8]
address the task by first encoding visual and audio features
from videos, and then by classifying the fused multimodal
features. However, recent methods have relied on complex
architectures for processing the audio-visual features with high
computation and memory overheads. For example, TalkNet [15]
suggests using a transformer-style architecture [16] to model
the cross-modal information from the audio-visual input.
ASDNet [8] uses a complex 3D convolutional neural network
(CNN) to extract more powerful features. These approaches are
not scalable and may not be suitable for real-world situations
with limited memory and computation budgets.

In this report, we propose an efficient graph-based
framework, which we call SPELL (Spatial-Temporal Graph
Learning). Figure 1 illustrates an overview of our framework.
First, we create a graph where each node corresponds to each
person at each frame and the edges represent spatial or temporal
relationships among them. Next, we perform binary node classi-
fication – active or inactive speaker – on this graph by learning
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Figure 1: SPELL converts a video into a canonical graph from
the audio-visual input data, where each node corresponds to a
person in a frame, and an edge represents a spatial or temporal
interaction between the nodes. The constructed graph is dense
enough for modeling long-term dependencies through message
passing across the temporally-distant nodes, yet sparse enough
to be processed within low memory and computation budget.

a three-layer graph neural network (GNN) model each with
a small number of parameters. In our framework, graphs are
constructed specifically for encoding the spatial and temporal
dependencies among the different facial identities. Therefore,
the GNN can leverage this graph structure and model the tempo-
ral continuity in speech as well as the long-term spatial-temporal
context, while requiring low memory and computation.

Although the proposed graph structure can model the
long-term spatial-temporal information from the audio-visual
features, it is likely that some of the short-term information
may be lost in the process of feature encoding. This is because
we use 2D CNNs that are not well-suited for processing the
spatial-temporal information when compared to the transformer
or the 3D CNNs. To encode the short-term information, we
adopt TSM [10] - a generic module for 2D CNNs that is
capable of modeling temporal information without introducing
any additional parameters or computation. We empirically
verify that SPELL can benefit both from the supplementary
short-term information provided by TSM and the long-term
information modeled by our graph structure.
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2. Method
2.1. Notations

Let G=(V,E) be a graph with the node set V and edge set E.
For any v ∈ V , we define Nv to be the set of neighbors of v
in G. We will assume the graph has self-loops, i.e., v∈Nv. In
addition, let X denote the set of given node features {xv}v∈V
where xv ∈Rd is the feature vector associated with the node
v. Given this setup, we can define a k-layer GNN as a set of
functions F={fi}i∈[k] for i≥1 where each fi :V →Rm ( m
will depend on layer index i). All fi is parameterized by a set of
learnable parameters. Furthermore, Xi

V ={xv}v∈V is the set
of features at layer i where xv=fi(v). Here, we assume that
fi has access to the graph G and the feature set from the last
layer Xi−1

V . We use two different types of aggregation methods,
which are SAGE-CONV [5] and EDGE-CONV [17].

2.2. Video as a multimodal graph

We represent a video as a multimodal graph that is suitable
for the task of active speaker detection. We assume that the
bounding-box information of every face region in each frame is
given as per the problem set up. For simplicity, we assume that
the entire video is represented by a single graph - if the video
has n faces in it, the graph will have n nodes. In our actual
implementation, we temporally order the set of all faces in a
video, divide them in contiguous sets, and then construct one
graph for each such set.

Let B be the set of all face images cropped from an
input video (i.e. face-crops). Then, each element b ∈B can
be represented by a tuple (Box,Time, Id), where Box is the
normalized bounding-box coordinates of a face-crop in its
frame, Time is the time-stamp of its frame, and Id is a unique
string that is common to all the face-crops that shares the same
identity. Box is treated as a map such that Box(i) is defined by
the bounding-box coordinates of the i-th face for any i∈ [n].
Similarly, Time(i) and Id(i) correspond to the time and identity
of the i-th face, respectively. With this setup, the node set of
G=(V,E) is V =[n]∼=B, and for any (i,j)∈ [n]×[n], we have
(i,j)∈E if either of the following two conditions are satisfied:

• Id(i)= Id(j) and |Time(i)-Time(j)|≤τ

• Time(i)=Time(j)

where τ is a hyperparameter for the maximum time difference
between the nodes having the same identities. In essence, we
connect two nodes (faces) if they share the same identity and
are temporally close or if they belong to the same frame. Thus,
the interactions between different speakers and the temporal
variations of the same speaker can jointly be modeled.

To pose the active speaker detection task as a node classifica-
tion problem, we also need to specify the feature vectors for each
node v∈V . We use a two-stream 2D ResNet [6] architecture
as in [12, 2] for extracting the visual features of each face-crop

and the audio features of each frame. Then, a feature vector of
node v is defined to be xv=[vvisual◦vaudio] where vvisual is the
visual feature of face-crop v and vaudio is the audio feature of
v’s frame where ◦ denotes the concatenation. Finally, we can
write G=(V,E,X) where X is the set of the node features.

2.3. ASD as a node classification task

During the training process, we have access to the ground-truth
labels of all face-crops indicating if each of the face-crop is
active speaker or not. Therefore, the task of active speaker
detection can be posed as a binary node classification problem
in the constructed graph G, whether a node is speaking or not
speaking. Specifically, we train a three-layer GNN for this clas-
sification task. The first layer in the network uses EDGE-CONV
aggregation to learn pair-wise interactions between the nodes.
For the last two layers, we observe that using SAGE-CONV
aggregation provides better performance than EDGE-CONV,
possibly due to EDGE-CONV’s tendency to overfit.

2.4. SPELL

We now describe how our graph construction and embedding
strategy takes temporal ordering into consideration. Specifically,
as we use the criterion: |Time(i)−Time(j)|≤τ for connecting
the nodes having the same identities across the frames, the
resultant graph becomes undirected. In this process, we lose
the information of the temporal ordering of the nodes. To
address this issue, we explicitly incorporate temporal direction.
Specifically, the undirected GNN is augmented with two other
parallel networks; one for going forward in time and another
for going backward in time.

More precisely, in addition to the undirected graph, we
create a forward graph where we connect (i,j) if and only if
0≥Time(i)−Time(j)≥−τ . Similarly, (i,j) is connected in
a backward graph if and only if 0≤ Time(i)−Time(j)≤ τ .
This gives us three separate graphs where each of the graphs
can model different spatial-temporal relationships between the
nodes. For the remaining parts of this report, we will refer
to this network that is augmented with the foward/backward
graphs as Bi-directional or Bi-dir for short.

2.5. Feature learning

Similar to ASC [2], we use a two-stream 2D ResNet [6]
architecture for the audio-visual feature encoding. The networks
take as visual input 11 consecutive face-crops (144 × 144)
and take as audio input the Mel-spectrogram of the audio
wave sliced along the time duration of the face-crops for the
visual stream. Although the 2D ResNet requires significantly
lower hardware resources than 3D CNN counterparts or a
transformer-style architecture [16], it is not specifically designed
for processing spatial-temporal information that is crucial in
understanding video contents. To better encode the spatial-
temporal information, we augment the visual feature encoder
with TSM [10], which provides 2D CNNs with a capability to
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model the short-term temporal information without introducing
any additional parameters or computation. This additional use
of TSM can greatly improve the quality of the visual features,
and we empirically establish that SPELL benefits from the sup-
plementary short-term information. The audio-visual features
from the two stream are concatenated to be node features {xv}.

Data augmentation. To make our method robust to noise,
we make use of data augmentation methods while training
the feature extractor. Inspired by TalkNet [15], we augment
the audio data by negative sampling. For each audio signal
in a batch, we randomly select another audio sample from the
whole training dataset and add it after decreasing its volume
by a random factor.

Spatial feature. The spatial locations of speakers can be
another type of inductive bias. In order to exploit the spatial
information of each face-crop, we incorporate the spatial
features corresponding to each face as additional input to the
node feature as follows: We project the 4-D spatial feature
of each face region parameterized by the normalized center
location, height and width (x, y, h, w) to a 64-D feature vector
using a single fully-connected layer. The resulting spatial feature
vector is then concatenated to the visual feature at each node.

3. Experiments
Implementation details. Following ASC [12], we utilize

a two-stream network with a ResNet-18 [6] backbone for the
audio-visual feature encoder. In the training process, we perform
visual augmentation including horizontal flipping, color jittering,
and scaling and audio augmentation as described in Section 2.5.
We extract the encoded audio, visual, and spatial features for
each face-crop to make the node feature. For SPELL, we
implement it using PyTorch Geometric library [4]. Our model
consists of three GCN layers, each with 64 dimensional filters.
The first layer is implemented by an EDGE-CONV layer that
uses a two-layer MLP for feature projection. The second and
third GCN layers are of type SAGE-CONV and each of them
uses a single MLP layer. We set the number of nodes n to 2000
and τ parameter to 0.9, which ensures that each graph fully
spans each of the face tracks. We train SPELL with a batch
size of 16 using the Adam optimizer [7]. The learning rate
starts at 5×10−4 and decays following the cosine annealing
schedule [11]. The whole training process of 120 epochs takes
less than two hours using a single GPU (TITAN V).

3.1. Comparison with the state-of-the-art

We summarize the performance comparisons of SPELL with
other state-of-the-art approaches on the AVA-ActiveSpeaker
dataset [12] in Table 1. We want to point out that SPELL
significantly outperforms all the previous approaches using
the two-stream 2D ResNet-18 [6]. Critically, SPELL’s visual
feature encoding has significantly lower computational and
memory overhead (0.7 GFLOPs and 11.2M parameters)
compared to ASDNet [8] (13.2 GFLOPs, 48.6M #Params),

Method val mAP(%) test mAP(%)

Roth et al. [12] 79.2 82.1
Zhang et al. [18] 84.0 83.5
Chung et al. [3] 87.8 87.8
ASC [2] 87.1 86.7
MAAS-TAN [9] 88.8 -
TalkNet [15] 92.3 90.8
ASDNet [8] 93.5 91.7

SPELL (Ours) 94.2 -
SPELL+ (Ours) 95.3 93.2

Table 1: Performance comparisons with other state-of-the-art
methods on the AVA-ActiveSpeaker dataset [12]. We report
mAP (mean average precision).

the leading state-of-the-art method. A concurrent and closely
related work MAAS [9] also uses a GNN-based framework.
MAAS-LAN uses a graph that is generated on a short video
clip. To improve the detection performance, MAAS-TAN
extends MAAS-LAN by connecting the graphs over time,
which makes 13 temporally-linked graph spanning about 1.59
seconds. This time span is relatively shorter than SPELL since
the SPELL graph spans around 13-55 seconds, as explained
in the discussion section. In addition, SPELL requires a single
forward pass when MAAS performs multiple forward passes
for each inference process. For the challenge, we use the
features encoded by a two-stream ResNet-50 to boost the
performance (SPELL+). Here, the visual encoder is augmented
with TSM and takes as input 23 consecutive face-crops.

4. Discussion

Long-term temporal context. Here, we estimate the
effective temporal context span of SPELL. AVA-ActiveSpeaker
dataset contains 5.3 million frames and 3.65 million annotated
faces, resulting into 1.45 faces per frame. With an average
of 1.45 faces per frame, a graph with 500 to 2000 faces in
sorted temporal order spans over 345 to 1379 frames which
correspond to 13 to 55 seconds for a 25-fps video. In other
words, the nodes in the graph might have a time-difference
of about 1 minute, and SPELL is able to reason over that
long-term temporal window within a limited memory and
compute budget, thanks to the effectiveness of the proposed
graph structure. It is note worthy that the temporal window
size in MAAS [9] is 1.9 seconds and TalkNet [15] uses up to
4 seconds as long-term sequence-level temporal context.

Conclusion. We have presented an effective graph-based ap-
proach for active speaker detection in videos. The main idea is to
capture the long-term spatial and temporal relationships among
the face-crops through a graph structure that is aware of tempo-
ral orders of them. SPELL is generic; it can be used to address
other video understanding tasks such as action localization.
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