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Abstract

Cross-modal hashing has emerged as a promising technique for
retrieving relevant information across distinct media types thanks
to its low storage cost and high retrieval efficiency. However, the
success of most existing methods heavily relies on large-scale well-
annotated datasets, which are costly and scarce in the real world
due to ubiquitous labeling noise. To tackle this problem, in this
paper, we propose a novel framework, termed Noise Resistance
Cross-modal Hashing (NRCH), to learn hashing with noisy labels
by overcoming two key challenges, i.e., noise overfitting and error
accumulation. Specifically, i) to mitigate the overfitting issue caused
by noisy labels, we present a novel Robust Contrastive Hashing loss
(RCH) to target homologous pairs instead of noisy positive pairs,
thus avoiding overemphasizing noise. In other words, RCH enforces
the model focus on more reliable positives instead of unreliable
ones constructed by noisy labels, thereby enhancing the robustness
of the model against noise; ii) to circumvent error accumulation, a
Dynamic Noise Separator (DNS) is proposed to dynamically and
accurately separate the clean and noisy samples by adaptively fitting
the loss distribution, thus alleviate the adverse influence of noise
on iterative training. Finally, we conduct extensive experiments on
four widely used benchmarks to demonstrate the robustness of our
NRCH against noisy labels for cross-modal retrieval. The code is
available at: https://github.com/LonganWANG-cs/NRCH.git.
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1 Introduction

Cross-modal hashing aims to map different modalities (e.g., image
and text) into a common Hamming space, providing an efficient
technique for storing and retrieving large-scale databases [15]. The
main challenge lies in learning discriminative and compact binary
codes by overcoming the heterogeneity gap across distinct modali-
ties. To this end, numerous cross-modal hashing approaches have
been proposed and achieved remarkable progress, but they usually
implicitly assume that the training labels are free from inaccura-
cies [44]. However, this assumption is unrealistic in real-world
scenarios, where noisy labels are ubiquitous due to various factors,
such as data complexity [6], human annotation errors [26], label
obfuscation tactics [34], etc. Inevitably, the noisy labels could mis-
lead deep hashing models to overfit the noise, degrading retrieval
performance.

To address the negative impact of noisy labels, various strategies
have been proposed for unimodal learning tasks, such as sample
selection [39], loss correction [8], label correction [18], etc. Unfor-
tunately, these techniques cannot directly handle the noisy labels
in cross-modal learning due to the inherent heterogeneity gap. To
address this challenge, some cross-modal methods have been de-
veloped to deal with noisy labels by pre-processing [20], robust
loss functions [10], early learning regularization [36], etc. However,
these techniques are tailored for real-value continuous representa-
tions, incurring additional computational and storage complexity.
Compared with continuous representations, binary codes are more
lightweight and efficient, but unreliable labels are more likely to
amplify quantization errors, which critically compromises the effec-
tiveness of the hashing model [37]. Thus, it is urgent to study how to
conquer the harmful impact of noisy labels to learn discriminative
and robust binary codes for cross-modal retrieval.

In order to address this problem, a few methods [32, 37] have
been proposed and achieved promising performance. Among them,
NrDCMH [32] identifies noise by contrasting feature-label simi-
larity but is limited to noise that only non-class semantic labels
are flipped. The latest advancement is CMMQ [37], which favors
instances with lower loss values. However, the selection ratio in
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Figure 1: Key points of noise separation strategies. The dy-
namic strategy as evidenced in (a) predicts label noise more
reliably, enhancing model accuracy and bypassing the deci-
sion boundary sensitivity. However, the static strategy prone
to error as shown in (b) often excludes valuable samples
while keeping noisy ones due to its rigid loss-based filtering.
The precision curves of the two strategies are shown in (c).

this method is fixed and depends on an estimated noise level, which
is hard to measure accurately in practice. Moreover, the deep model
would exacerbate overfitting due to the over-memorization of noisy
labels (see Figure 1), making such a static separation strategy less
effective in separating between noisy and clean labels in the later
training stages [40]. Therefore, a reliable dynamic label noise sepa-
ration method is highly needed for robust cross-modal hashing.

To tackle the challenges above, we propose a novel noise-robust
cross-modal hashing method called Noise Resistance Cross-modal
Hashing (NRCH). The pipeline of our NRCH is illustrated in Fig-
ure 2, which consists of two key techniques: Robust Contrastive
Hashing loss (RCH) and Dynamic Noise Separator (DNS). More
specifically, RCH is proposed to leverage homologous pairs instead
of noisy positive pairs and integrate robust contrastive learning
with selective negative pairs to mitigate the negative impact of
noisy labels. Thus, RCH could learn robust and congruent binary
representations across different modalities. On the other hand, DNS
is presented to dynamically separate the clean and noisy labels
based on the loss distributions. Our DNS uses a Gaussian Mixture
model to dynamically identify the dependable samples by evaluat-
ing their likelihood of belonging to distributions with lower losses.
By combining RCH and DNS, our NRCH could simultaneously dis-
tinguish the clean and noisy labels, and learn binary codes robustly
for cross-modal retrieval. The main contributions of our NRCH are
summarized as follows:

o This paper studies an emerging but less-touched problem
in cross-modal hashing, i.e., hashing with noisy labels. To
achieve this, we propose a novel Noise Resistance Cross-
modal Hashing (NRCH) framework for cross-modal hashing,
which ensures robustness from the perspective of loss func-
tion and sample dynamic selection.

e A Robust Contrastive Hashing loss (RCH) is proposed to
focus on homologous pairs rather than noisy positive ones,
embracing more reliable binary representations for cross-
modal retrieval.

e We present a novel Dynamic Noise Separator (DNS) to dy-
namically discriminate the clean and noisy labels based on
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the loss distributions, which avoids the expensive manual
estimation of noisy levels and mitigates noise overfitting.

e Extensive experiments are conducted on four widely used
benchmarks and demonstrate the robustness of the proposed
method against noisy labels by comparison with 11 state-of-
the-art baselines.

2 Related Work

2.1 Deep Cross-modal Hashing

Deep Cross-Modal Hashing (CMH) methods [4, 11, 15, 28, 29, 37]
aim to project multimodal data into a common Hamming space,
providing an efficient solution for the storage and retrieval of large-
scale datasets. Although supervised approaches leveraging accurate
semantic labels have made remarkable progress, they typically
employ losses based on classification, such as cross entropy [37]
or similarity-based losses (pairwise [15] and triplet [4] losses). To
mitigate the dependency on extensive volumes of well-labeled data,
semi-supervised learning strategies [33] have been proposed to
utilize a synergy of both labeled and unlabeled data. However,
almost all of these methods implicitly assume all modalities are
labeled correctly, which is infeasible in real-world scenarios due
to ubiquitous labeling noise. To tackle this challenge, some robust
methods are presented to learn hashing with noisy labels [32, 37].
For instance, a Noise-robust Deep Cross-modal Hashing method
(NrDCMH) is proposed to generate robust binary codes by adjusting
data pair weights based on feature and label agreement, whereas it
is limited to label noise where only non-class semantic labels are
flipped (i.e., additive label noise) [2]. Moreover, Yang et al. utilize
confident samples to yield lower losses and optimize training under
a fixed forgetting rate [37]. Nonetheless, the process of establishing
the appropriate selection ratio depends on manual noise estimation,
which remains a challenge in real-world scenarios. Besides, the rigid
loss-based filtering still leads to noise overfitting due to its inability
to separate noise precisely. Thus, developing dynamic strategies to
tackle noisy labels effectively remains an open research area.

2.2 Learning with Noisy Labels

Prior studies [6, 10, 26, 37, 40] have deeply delved into knowledge
extraction from datasets marred by label noise. A common strategy
for enhancing learning efficacy revolves around correcting mis-
labeled data or loss functions, generally referred to as remedial
techniques [8]. Nevertheless, these methods invariably hinge on
extensive clean labels to bolster their training structures, which is
limited and not cost-effective in real-world applications [26]. To ad-
dress this issue, various studies have targeted designing strategies
that can identify accurately labeled samples directly for training net-
works, such as MentorNet [39], Co-teaching [9], etc. However, these
strategies fall short of effectively bridging gaps between diverse
modalities, as their design is principally optimized for unimodal
tasks. To bridge the diverse modality gaps present in real-world mul-
timedia content, a variety of cross-modal methodologies [10, 20, 23—
25, 36] have been put forth. By obtaining a unified real-valued rep-
resentation for different modalities, these methods can effectively
bridge these heterogeneous gaps. Nevertheless, all of these existing
methods crafted to manage noisy labels are explicitly tailored for
continuous value representations, resulting in added computational
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Figure 2: (a) is the overall framework of our NRCH, which employs a cross-modal network N = {fj, f2} to learn hashing with
noisy labels. (b) is the training pipeline of our method. In NRCH, Robust Contrastive Hashing (RCH) leverages the homologous
pairs rather than noisy positive ones and guides N to learn unified hash codes across different modalities through convincing

samples selected by Dynamic Noise Separator (DNS). To train the networks N with convincing set D', DNS discriminates the
clean and corrupted labels in D dynamically by estimating their likelihood to be noise via the designed per-sample loss.

and storage complexities [37]. Moreover, compact binary represen-
tations can easily bring notable quantization errors, which brings a
more urgent challenge in cross-modal hashing against noisy labels.

3 Method

3.1 Problem Formulation

To clarify the presentation, we provide some definitions for cross-
modal hashing. In this paper, we take the image and text modalities
to study cross-modal hashing with noisy labels. We first represent
the multimodal training dataset comprising N examples as D =
{{xj.}l?:l,yj}f_l, where xj. represents the j-th sample from the
i-th modality, y; € RC denotes the corresponding noisy label, and
C is the number of categories. Note that if the c-th element of
y; is 1, it means the j-th instance ({x;}?zl) belongs to category
c €{1,2,---,C}, otherwise it is 0. For convenience, when above
i = 1, it denotes that the sample is from the image modality, while
i = 2 signifies it belongs to the text modality. In addition, we define
an indicator of T;; € {0,1} for the i-th image and j-th text to
show whether they share at least one common category during the
training process. T;; = 1 means shared, and vice versa.

Given the above D, the objective of cross-modal hashing is to
project diverse modalities into a shared Hamming space. Within
this space, the unified codes for different modalities are denoted

AN
as B; = {bj} v where bj. € {—l,+1}L, * € {1,2} and L rep-
j=

resents the length of hash codes. The Hamming distance is em-
ployed to assess the similarity between image and text samples.
For any image-text pair (x}, x?), the Hamming distance is defined
as d(b},b?) = % (L - <b},b§>), where <b},b?> means the inner
product. Obviously, when the image and the text exhibit similarity
in semantics with T;; = 1, the Hamming distance should be small.
Conversely, if T;; = 0, the Hamming distance should be large.

To learn unified binary representations, we employ distinct hash

functions tailored for diverse modalities. More specifically, the
hash functions take the form of f (-,©1) and f (-, ©2) for image

and text modalities, respectively, where ®; and ©®; denote the
corresponding modality-specific network parameters. For brevity,
fx (- 04), % € {1,2} is denoted as f; or fi(-) in the following. In our
NRCH framework, for i-th instance, the outcomes of these hash
functions are denoted as h} = f (x}) and h? = f; (x?). The corre-
sponding binary representation of a sample is derived by applying
the sign function [15] to h}:

b} =sign (h}),* € {1,2}. (1)

1

3.2 Robust Contrastive Hashing

To enhance the efficiency of cross-modal hashing, it is imperative
to promote the proximity of similar samples and the separation
of dissimilar samples from different modalities. Driven to achieve
this goal and informed by the proven success of the triplet loss as
evidenced in [4, 16]. Given a mini-batch D, C D, we have:

n n n
1
L(Dy) = = Z Z Z Tix (1 - T;j) max (0, m+ S;”j - S;Fk), (2)
i=1 k=1 j=1
where, * € {12, 21}, m is a positive margin value, and n < N is the
size of a mini-batch, i.e, |Dy|. Meanwhile, to address false pairs,
we employ the similarity matrix of S* proposed in [11], as follows:
* o ME <
g = MU, M Mlj <m 3
ij Ml* — ¢, otherwise ’
J
where * € {12,21}, Mllj2 = <h},h§>, /\/Iizj1 = <h?,h}>, and mis a
positive margin value. Obviously, Equation (3) capitalizes on the
consistent similarity of identical samples across distinct modali-
ties, as reflected diagonally, to reduce the effects of unreliable pairs
elsewhere in the similarity matrix. This strategy mitigates the neg-
ative impact of false pairs caused by the noisy labels [11] since
considering all negative pairs within a soft margin. Thus, we have:

n
jgl(l - T;j)max (O, m+ S;‘j - S;‘k)

nooost(1-T, . (4)
<n|m+log| 3 ST 4 IS =

j=1,j#k
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Figure 3: MAP scores versus epochs for Triplet loss and L,
on the MIRFlickr-25K dataset with 50% noise and 64 bit code.

where * € {12, 21}. The demonstration procedure is as follows:
n
Y (1-T;j) max (0, m+ S;.kj - S;‘k)

DiAglme 3 Sy (1-Ty) -
ST eAir

< | Al (m +maxj=q,. ., (5?} (1- Tij)) - S:k)
= |A;| (m +maxj=1,..n (log (65;‘].(1—73]))) - S;'kk)

n (5
<|.5’l|(m+log(ZeU(1 T”)) )

j=1
S (1-Tiy) e[s;fk]+) _ ka)
L

|k 53,

n
<n|m+log| X
Jj=1.j#k

=n|m+log > et —S;‘k R
HijeHy

where Hi*;c = {Sf‘.|Ti~ ,n} U {[5;?]_]+|j =k},
A = {S;}.|Si S* <Smyi#kj=12,. n;TiJ-ZO},and|ﬂi|

denotes the length of set A;. Building upon Equation (4), we can
deduce the following inequalities:

ZZTIk(m+Iog( Z Hijy - (6)

i=1 k=1 H*E'H*

=0,j#kj=12"

L (Dn) <

where * € {12, 21}. Consequently, based on Equation (6), we can
reformulate the minimization optimization of Equation (2) by the
loss function as follows:

2
Lr(Dn) = — ZZle(mﬂog( >, el =siy
i=1 k=1 H12€7‘112
o ()
21
+= 2 2 Tulmrlog( 37 €)=,

I
—_

= e

To streamline the computations, we only consider diagonals as:

Lo(Dy) = = Z(m+1og( ety st
H12€.7_(12
®
21
+= Z(m+log( > ety —sih,
H21 .1_{21

where H;" = {5} |TU—0]¢l]—12 ,n}U{[S?j]+|j:i}and
* € {12, 21}. As demonstrated in Figure 3, unlike the Triplet loss
where significant performance degradation typically indicates over-
fitting, £, exhibits stronger robustness by maintaining stable MAP
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scores through the training process. Finally, our Robust Contrastive
Hashing loss (RCH) is as follows:

LrcH(Dn) = AL (Dy) + (1= HR(Dy), )

where R (D)) is a binary regularization term. R (D) is designed
to diminish the quantization error of the acquired binary codes,
and A € (0, 1) stands as a hyperparameter governing the contribu-
tions. To forestall overfitting in the subsequent training, we impose
restrictions on |bji| = 1, and the comprehensive R (D;,) is defined

as: L,
RO =5 DY (-1) o)
j=1k=1i=1
where bj. is the k-th element ofbj‘

3.3 Dynamic Noise Separator

Although RCH provides a more stable and robust loss mode, it lacks
explicitly separating the noisy labels during training, which can still
cause noise overfitting, thus leading to performance degradation
(See Section 4.6). To train with convincing samples, recent work [37]
focused on a static strategy by discarding unreliable samples at a
fixed ratio. However, configuring such a precise forgetting ratio
necessitates manual estimation of noise levels, which is challenging
and unreliable in real-world applications. Besides, it is easy to cause
error accumulations. Inspired by the memorization effect [1, 40] of
deep neural networks (DNNs), i.e., the loss values for clean samples
are commonly lower than that of noisy ones at the early stage, which
can be used to identify the instances with corrupt labels dynamically.
Given that, we design an effective label noise separator termed
Dynamic Noise Separator (DNS) for robust cross-modal hashing.
More specifically, DNS leverages the contrast in loss distribution
between clean and noisy samples per instance to gauge its likelihood
of being corrupted and dynamically select confident samples to train
our network.

To calculate the discriminative per-sample loss for selection, we
first exploit a learnable parameter matrix W € REXL to encode
all categories into corresponding binary representations {I;k}le,
where Bk e {-1,+1} and I;k = sign(W/.])- Thus, we can connect
the binary representations between the sample and each category
to formulate per-sample loss £ = {f; }ﬁ\[: | for N training instance as:

z Cone)©
¢j = max {Zyjk (gjk_<b;"bk>) } s (11)
i=1 k=1
where bj. is the binary representation of the j-th sample from the
i-th modality, yjx € {0,1} is the k-th element of y;, and g =
2yjx — 1 € {~1,1} that aligns binary representations. Furthermore,
the operation of max(-) is to tackle noise within multi-label samples
by selecting the highest loss value as an indicator of potential label
corruption.

Then, the per-sample loss is put into a two-component Gaussian
Mixture Model (GMM) [12, 22] to separate instances with noisy
labels by fitting the loss distributions for the entire dataset. The
GMM is defined as follows:

K
p(e10) =" Brop(e | k), (12)
k=1
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where S denotes the mixture weight and ¢(¢ | k) encapsulates the
probability density for the k-th Gaussian component in the model.
Drawing upon the DNNs’ tendency to memorize cleaner data [40]
at the early training, we assign the component with a lower mean
value as a clean subset and the other as a noisy subset, respectively.
Following [18], we employ the Expectation-Maximization strategy
to optimize the two-component GMM. Finally, we calculate the
posterior probability to represent the likelihood of the j-th instance
being noise-free, with k symbolizing the Gaussian component ex-
hibiting the lower mean. The formulation is defined as:

p(k) - p(& 1K)
p(£))

To separate samples with noisy labels, we employ a threshold on

W = {w; }y: ; to divide the entire training dataset into clean and

wi=p(k| )= (13)

noisy subsets. Unlike using the fixed threshold empirically [18], we
recommend a threshold that gradually increases with the number
of training epochs to obtain the optimal selection for convincing
clean data based on the DNN:ss fitting rule. The convincing samples
for training can be selected from the training set D as follows:

D = { (x},xlz,yi,wi) | wi > Threshold(¢), }

v (xl!,x?,yl-, wi) € (D,W) ’

where D denotes the training dataset, t is the current training

epoch, and Threshold(t) is the function to set the dynamic filler
threshold.

As discussed in [37], DNNs are capable of capturing straight-
forward and clean patterns amidst noisy labels at first, yet tend to
overfit as training epochs increase. Thus, DNS is initiated with a
lower threshold to include a broad array of examples at the start.
Then, to ensure the retention of clean samples while filtering out
the noisy ones before networks memorize them, Threshold(?) is
gradually heightened to & € (0, 1), which are delineated as follows:

(14)

Threshold() = min(%kf, b). (15)

3.4 Optimization

Thanks to our RCH and DNS, our NRCH can improve the robustness
of the loss function while dynamically selecting convincing samples
for robust cross-modal hash training. Before dynamic selection, we
first conduct a warmup process on D to reach initial convergence.
Given a mini-batch Dy, € D, L,qrm to warmup is defined as:

Lvarm = Lrca(Dn) + L (Dn), (16)

where Lp(Dp) is the RCH loss as shown in Equation (9) and
Lw (Dy) is the loss to optimize W. Ly (Dy,) is defined as:

. c 2 o
2-n-C 2 ZZ(g}k‘<b}bk>), 17

(Xj.y,) €Dy k=1 i=1

-LW(Dn) =

where X; = {xj.}l?:l. After achieving the initial convergence by
Lavarm, we exploit DNS to select the convincing samples as shown
in Equation (14) and then use them to train the model robustly.
Given a mini-batch D, C D, the final loss is defined as:

Lfinal(Dp) = Lrer(Dy) + L (D), (18)

where D;, = D, N D’. The training process of NRCH is shown in
Algorithm 1.
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Algorithm 1 Noise Resistance Cross-modal Hashing

Require: The noisy training set D, the code length L, the network
N ={fi(-,©1), f2(+, ©2) }, the learnable matrix W, the maximal
epoch number Tinax, and the warmup epoch number Ty grm;

1: Randomly initialize network parameters {Oi}?zl and W;
2: for epoch = 1 to Tipax do

3. if epoch > Tyarm then

4 Select the conniving subset D’ from D by DNS;

5. endif

6. for Dy in mini-batches sampled from D do

7 if epoch < Tyyarm then

8 Compute Lygrm(Dn) by Equation (16);

9 Optimize parameters and W through backpropagation;

10: else

11: Select the convincing data by D}, = D, N D’;

12: Compute Lyinq1(Dy,) by Equation (18);

13: Optimize parameters and W through backpropagation;
14: end if

15:  end for

16: end for

Ensure: Network parameters {G),-}l?:1 and W;

4 Experiments

To evaluate our NRCH framework, we conduct extensive exper-
iments on four widely-used benchmark datasets, i.e., MIRFlickr-
25K [13], IAPR TC-12 [5], NUS-WIDE [3], and MS-COCO [19].

4.1 Datasets

In this section, we mainly introduce the used benchmark cross-
modal datasets for experiments. The details are as follows:

MIRFlickr-25K [13] comprises 25,000 paired instances, each
a duo of an image and its associated textual tags, classified into
24 distinct semantic categories with multi-label annotations. Post-
removal of instances sans classification details, the dataset distilled
to 20,015 pairs for our experiments.

IAPR TC-12 [5] is a repository of 20,000 image-text pairs, each
labeled with 255 distinct semantic categories in a multi-label format.
Distinctively, our experiments utilize the complete dataset.

NUS-WIDE [3] encompasses 269,648 images, each annotated
across 255 multi-label semantic categories. For our investigative
work, we have selectively harvested 200,421 image-text pairs that
represent the 21 most prevalent categories.

MS-COCO [19] is a collection of 123,287 images, each accompa-
nied by five descriptive sentences, and organized into 80 distinct
categories. Following the exclusion of pairs lacking labels, our ex-
perimental dataset comprises 122,218 image-text pairs.

For MIRFLICKR-25K and IAPR TC-12, we set aside 2,000
data points randomly as the test (query) dataset, with the residual
serving as the retrieval (database) dataset, from which we further
distill a training subset of 10,000 points. In the case of NUS-WIDE,
our test dataset consists of 2,100 points, with 5,000 segregated for
training from the retrieval dataset. For MS-COCO, 5,000 points are
sampled for testing and 10,000 are reserved for training purposes.
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Table 1: The performance comparison in terms of average MAP scores of T2I and I2T tasks on the NUS-WIDE and MS-COCO
datasets. The highest and the second-highest scores are in bold and underlined, respectively.

Dataset ~ Method . 20% ) . 0% . ) 80% )

16bit  32bit 64bit 128bit | 16bit 32bit 64bit 128bit | 16bit 32bit 64bit 128bit
DJSRH (ICCV’19) | 0.418 0.458 0.476 0.506 | 0.418 0.458 0.476 0.506 | 0.418 0.458 0.476 0.506
DGCPN (AAAT'21) | 0.575 0597 0.624 0.634 | 0.575 0.597 0.624 0.634 | 0.575 0.597 0.624 0.634
UCCH (TAPMI'23) | 0.576 0.598 0.625 0.637 | 0.576 0.598 0.625 0.637 | 0.576 0.598 0.625 0.637
DCMH (CVPR’17) | 0.492 0.488 0.482 0.455 | 0.422 0.424 0426 0425 | 0.400 0416 0.420 0.415

NUS-WIDE ADAH (ECCV’18) | 0.524 0.491 0518 0.532 | 0.464 0.481 0476 0.477 | 0.434 0.449 0455 0.461
CPAH (TIP’20) 0.556 0.569 0.560 0.579 | 0.478 0496 0.512 0.512 | 0.469 0.469 0.463 0.470
PIP (SIGIR’21) 0.556 0.603 0.599 0.597 | 0.566 0.594 0.591 0.594 | 0.575 0.596 0.595 0.602
CMMQ (CVPR’22) | 0.633 0.637 0.646 0.655 | 0.583 0.600 0.609 0.613 | 0.547 0.582 0.599 0.612
DCHUC (TKDE’22) | 0.603 0.601 0.588 0.580 | 0.596 0.587 0.589 0.581 | 0.575 0.589 0.589 0.583
MIAN (TKDE’23) | 0.590 0599 0.603 0.607 | 0.445 0.457 0456 0.452 | 0.391 0.396 0.404 0.395
LtCMH (AAAT'23) | 0492 0506 0.544 0567 | 0.472 0.500 0538 0.554 | 0.507 0.537 0.554 0.565
Our NRCH 0.658 0.679 0.683 0.685 | 0.639 0.657 0.667 0.677 | 0.605 0.611 0.627 0.641
DJSRH (ICCV’19) | 0.485 0.527 0.553 0.579 | 0.485 0.527 0.553 0.579 | 0.485 0.527 0.553 0.579
DGCPN (AAAT'21) | 0591 0.613 0.623 0.631 | 0.591 0.613 0.623 0.631 | 0.591 0.613 0.623 0.631
UCCH (TAPMI'23) | 0.569 0.581 0.594 0.623 | 0.569 0.581 0594 0.623 | 0.569 0.581 0.594 0.623
DCMH (CVPR’17) | 0.544 0.581 0.585 0.599 | 0.478 0.472 0.475 0.458 | 0.394 0.385 0.357 0.351
MS-COCO ADAH (ECCV’'18) | 0.464 0478 0.477 0.483 | 0.469 0.470 0473 0.486 | 0.463 0.472 0.473 0.478

CPAH (TIP’20) 0.547 0598 0.605 0.613 | 0.543 0.550 0.556 0.573 | 0.515 0518 0.516 0.517
PIP (SIGIR’21) 0.538 0.575 0.588 0.597 | 0.513 0.554 0.599 0.603 | 0.500 0.522 0.565 0.591
CMMQ (CVPR’22) | 0.613 0.639 0.641 0.641 | 0.595 0.623 0.625 0.632 | 0.601 0.618 0.625 0.635
DCHUC (TKDE’22) | 0.558 0.493 0.552 0.484 | 0.552 0.497 0.488 0.486 | 0.550 0.485 0.491 0.556
MIAN (TKDE’23) | 0.571 0.573 0.603 0.587 | 0.498 0.499 0523 0.545 | 0.445 0.459 0.479 0.470
LtCMH (AAAT'23) | 0.553 0589 0.615 0.629 | 0.547 0.572 0.610 0.627 | 0.559 0.597 0.609 0.615
Our NRCH 0.637 0.649 0.669 0.673 | 0.647 0.663 0.681 0.686 | 0.646 0.658 0.675 0.690

4.2 Implementation Details

In our NRCH, we utilize the pre-trained VGG19 [14] on ImageNet as
the convolutional neural network (CNN) backbone for processing
images. Meanwhile, we utilize the pre-trained Doc2Vec [17] model
as the backbone for processing textual data. To jointly learn shared
representations across modalities, three hidden layers are stacked
on the backbone for image modality, while two for text modality.
Each fully collected (FC) layer is followed by a Rectified Linear Unit
(ReLU) layer, except for the last layer. Within these FC structures, a
consistent count of 8,192 units is maintained in the hidden layers,
culminating in an output layer calibrated to L, which symbolizes the
dimensional scale of the shared space. Subsequently, the RMSprop
algorithm [30] is utilized as the training optimizer for our NRCH
model. We standardize the maximum number of epochs Tinax at
100 and warmup epochs Tyyqrm at 20 for every dataset, respectively,
with the hyperparameter A established at 0.6 and margin m at 0.2.
We determine the initial rate of learning 5 to be 1le — 5 and the
batch size n to 128. Ty is uniformly assigned a value of 100 and the
threshold ¢ is maintained at 0.3. To ensure a fair comparison with
baselines, all backbones remain frozen during the training stage.
Our NRCH is implemented using the PyTorch framework [21] and
trained on a single RTX3090 24GB GPU.

4.3 Experimental Setup

To evaluate the performance, we report the results of two cross-
modal retrieval tasks, ie., image-to-text retrieval (I2T) task and
text-to-image retrieval (T2I) task. More specifically, the I2T task is
to fetch relevant text by a given image query based on the ham-
ming distance. Conversely, the I2T task retrieves the relevant image

using a text query. Like [11, 31], we use the widely used Mean
Average Precision (MAP) as the assessment standard to evaluate
the retrieval performance. The MAP score is the average value of
Average Precision (AP) scores for each query, which is widely ac-
knowledged for evaluating retrieval since it concurrently takes into
account both the precision and ranking of yielded outcomes. It’s
noteworthy that we calculate MAP scores throughout all retrieval
outcomes in trials with bit lengths configured to 16, 32, 64, and 128.
Moreover, to thoroughly assess the robustness of the approaches,
we introduce mixed symmetric label noise [2], with noise rates
established at 20%, 50%, and 80% in our experiments.

4.4 Comparison with State-of-the-Arts

To demonstrate the superiority and robustness of our method, we
compare the proposed NRCH with 11 state-of-the-art methods on
four widely used datasets, including the unsupervised methods:
DJSRH [27], DGCPN [38], and UCCH [11]; the supervised meth-
ods: DCMH [15], ADAH [42], CPAH [35], PIP [41], CMMQ [37],
DCHUC [31], MIAN [43] and LtCMH [7]. Significantly, the CMMQ
method is specifically proposed to address challenges posed by
noisy labels. The average MAP scores for the I2T and T2I tasks
are presented in Tables 1 and 2. From the results in these tables, it
becomes clear that our NRCH surpasses all baselines consistently
across the entirety of the four datasets. Besides, the Figure 4 illus-
trating precision-recall curves is plotted on code lengths of 64 bits
amid a 50% noise rate, both of which additionally elucidate the
effectiveness and robustness of our NRCH on T2I and I2T tasks.
Through evaluating the region under the precision-recall curves,
it becomes apparent that our NRCH consistently surpasses all al-
ternative state-of-the-art approaches in both I2T and T2I tasks.
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Table 2: The performance comparison in terms of average MAP scores of T2I and I2T tasks on the IAPR TC-12 and MIRFlickr-
25K datasets. The highest and the second-highest scores are in bold and underlined, respectively.

Dataset Method 20% 50% 80%
arase eHo 16bit 32bit 64bit 128bit | 16bit 32bit 64bit 128bit | 16bit 32bit 64bit 128bit
DJSRH (ICCV’19) 0.368 0.397 0.421 0434 | 0.368 0.397 0.421 0.434 | 0.368 0.397 0.421 0.434
DGCPN (AAAT’21) | 0.421 0.448 0.464 0.467 | 0.421 0.448 0.464 0.467 | 0.421 0.448 0.464 0.467
UCCH (TAPMI'23) | 0.418 0.465 0.465 0.468 | 0.418 0.465 0.465 0.468 | 0.418 0.465 0.465 0.468
DCMH (CVPR’17) 0424 0428 0416 0416 | 0.414 0411 0404 0.394 | 0.369 0.370 0.365 0.359
IAPR TC-12 ADAH (ECCV’18) 0.421 0.432 0.449 0.448 | 0.408 0.417 0.443 0.444 | 0.414 0410 0.429 0.433
CPAH (TIP’20) 0.450 0.466 0.466 0.473 | 0.441 0.453 0.457 0.462 | 0.422 0.449 0.456 0.458
PIP (SIGIR’21) 0.439 0.452 0.463 0479 | 0.414 0453 0.466 0.477 | 0.426 0.448 0.461 0.473
CMMQ (CVPR’22) | 0.418 0.446 0.467 0.469 | 0.413 0.445 0.462 0471 | 0.424 0.438 0.456 0.460
DCHUC (TKDE’22) | 0.449 0.451 0.449 0.448 | 0.447 0.450 0.447 0.448 | 0.424 0.439 0.451 0.447
MIAN (TKDE’23) 0.440 0.445 0.455 0435 | 0.422 0429 0437 0.445 | 0.403 0419 0428 0.431
LtCMH (AAAT’23) | 0.420 0.435 0.449 0.457 | 0.419 0.436 0.448 0.457 | 0.414 0.439 0.444 0.455
Our NRCH 0.498 0.527 0.546 0.552 | 0.494 0.526 0.542 0.547 | 0.488 0.518 0.534 0.544
DJSRH (ICCV’19) 0.608 0.619 0.637 0.645 | 0.608 0.619 0.637 0.645 | 0.608 0.619 0.637 0.645
DGCPN (AAAT’21) | 0.691 0.694 0.708 0.718 | 0.691 0.694 0.708 0.718 | 0.691 0.694 0.708 0.718
UCCH (TAPMI'23) | 0.690 0.712 0.715 0.718 | 0.690 0.712 0.715 0.718 | 0.690 0.712 0.715 0.718
DCMH (CVPR’17) 0.703 0.701 0.703 0.698 | 0.651 0.645 0.639 0.630 | 0.629 0.622 0.617 0.616
MIRFlickr-25K ADAH (ECCV’18) 0.724 0.727 0.736  0.733 | 0.706 0.712 0.718 0.712 | 0.602 0.614 0.606 0.607
CPAH (TIP’20) 0.704 0.702 0.702 0.702 | 0.671 0.673 0.678 0.665 | 0.633 0.669 0.657 0.647
PIP (SIGIR’21) 0.683 0.692 0.694 0.704 | 0.663 0.697 0.696 0.702 | 0.685 0.682 0.702 0.702
CMMQ (CVPR’22) | 0.726 0.730 0.736 0.738 | 0.698 0.718 0.720 0.724 | 0.694 0.711 0.716 0.719
DCHUC (TKDE’22) | 0.740 0.736 0.738 0.734 | 0.734 0.740 0.734 0.730 | 0.723 0.721 0.734 0.732
MIAN (TKDE’23) 0.738 0.741 0.750 0.753 | 0.677 0.689 0.690 0.693 | 0.659 0.663 0.659 0.655
LtCMH (AAATI’23) | 0.706 0.718 0.725 0.731 | 0.688 0.695 0.718 0.724 | 0.671 0.708 0.714 0.722
Our NRCH 0.748 0.762 0.764 0.768 | 0.740 0.754 0.762 0.766 | 0.731 0.738 0.754 0.754
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Figure 4: The precision-recall curves on four datasets. Note that the length of hash codes is 64 and the noise rate is 50%.

Deriving insights from the experimental result in Tables 1 and 2,
the subsequent observations can be formulated:

o As the noise rate increases, the performance of these super-
vised methods [7, 15, 31, 35, 37, 41-43] degrades. In compar-
ison, the unsupervised methods [11, 27, 38] on the dotted
line in the tables seem to have a certain degree of robustness.
However, it is still difficult for them to achieve further per-
formance improvement as they do not use labels for training.

e Among all these baseline methods, CMMQ [37] stands out
for its resistance to noisy labels on the NUS-WIDE and MS-
COCO datasets, sharing similarities with our NRCH in terms
of noise segregation components. But unlike this, our NRCH
achieves even more promising performance by improving
the robustness of the loss and performing reliable dynamic
sample selection.

o All in all, our NRCH surpasses all baselines on four datasets
and outperforms the best baselines by 2.9%, 4.5%, 6.2%, and
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0.8%, respectively, in the most challenging scenarios (i.e.,
the noise rate is 80% noise and code length is 16 bits). This
is enough to prove the effectiveness and superiority of our
NRCH against noisy labels.

4.5 Ablation Study

In this section, we perform an ablation study on the MIRFlickr-
25K dataset with a noise rate of 50% to assess the effectiveness
of the proposed components (DNS and R (Dy,)) in cross-modal
retrieval. For a comprehensive exploration of the contribution of
each component, we contrast our NRCH with its three variants: (1)
NRCH devoid of any components, (2) NRCH with only R (Dy,), and
(3) NRCH with solely DNS. To ensure an equitable comparison, all
comparative variants are trained using the same configurations as
our NRCH. To further affirm the model’s capacity to endure noise
interference, we selected outcomes from the final epoch of training
and evaluated them on the test dataset. As illustrated in Table 3, the
full version of NRCH (4) shows the best performance while other
variants have suboptimal results, which means that all proposed
components are vital for NRCH.

Table 3: Ablation studies on the MIRFlickr-25K dataset with
50% noise. The highest and the second-highest scores are in
bold and underlined, respectively.

Configuration Image to Text Text To Image
No.DNS R (Dy,) 16bit 32bit 64bit 128bit 16bit 32bit 64bit 128bit

1 X X 0.739 0.745 0.755 0.757 0.724 0.732 0.749 0.747
2 X v 0.742 0.751 0.758 0.762 0.725 0.737 0.752 0.749
3 v X 0.744 0.754 0.759 0.765 0.729 0.741 0.753 0.754
4 Vv v’ 0.747 0.762 0.770 0.772 0.734 0.747 0.754 0.759

4.6 Robustness Study

To study the robustness of our NRCH intuitively, we select the
baseline CMMQ and a variant of NRCH without DNS as the com-
parative approaches. Then, we splot MAP scores versus epochs on
the test dataset in Figure 5. The results indicate that while CMMQ
may enhance their initial training performance, their susceptibil-
ity to noisy label interference results in a lower MAP compared
to our NRCH. Meanwhile, the absence of a dynamic strategy to
identify noisy labels leads CMMQ to a serious overfitting issue
in the late stages of training, which would precipitate significant
performance deterioration as shown in Figure 5. On the contrary,
our NRCH manifests a continual enhancement in efficacy through-
out the initial training phases and upholds steadiness without a
noteworthy downturn in the subsequent stages. The variant also
suffers a performance drop due to its inability to discern and retain
confident samples, thus leading to suboptimal MAP scores. Overall,
compared with CMMQ and the variant, our proposed method has
an effective dynamic separation strategy and can achieve much
superior robustness and better results.

4.7 Parameter Sensitivity Analysis

In this subsection, we investigate the sensitivity of the parameter
A on the MIRFlickr-25k and IAPR TC-12 datasets. We report the
results with a hash code length of 64 bits under 50% noise rate and
A is adjusted in the range of 0.1 to 1. The outcomes are illustrated
in Figure 6, where “Best” represents the best average MAP value on

Longan Wang et al.
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Figure 5: Test MAP scores versus epochs on the MS-COCO
dataset with 50% noise. Note that the length of hash codes is
64 and NRCH" means the variant of NRCH without DNS.
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Figure 6: Sensitive analysis on the MIRFlickr-25K and JAPR
TC-12 datasets with 50% noise. The hash code length is 64.
both 12T and T2I tasks, and “Last” means the average MAP value
for the last training epoch. As depicted in Figure 6, the trend for
both peak and long-term training results starts with an upward
trajectory, stabilizing at higher levels once 1 exceeds 0.6, before
eventually tapering off. Interestingly, the curves represented by the
MAP results of the best and final training sessions almost overlap
each other when the value of 1 is between 0.6 and 0.7. This suggests
that our model demonstrates strong robustness when A is within
the range of 0.6 to 0.7, effectively mitigating the problem of deep
network overfitting to noisy labels. However, as the value of 1
deviates from this range, the gap between the two curves increases,
indicating a decrease in robustness. Furthermore, configuring A as
1 leads to the deterioration of our model into a setup devoid of the
binary regularization term, which substantiates the significance of
the binary regularization term in our method. Thus, opting for A
values within the range of 0.6 to 0.7 is advisable. In our experiments,
we designate A as 0.6.

5 Conclusion

In this paper, we propose a novel cross-modal hashing approach
to learn from noisy labels, i.e, NRCH. NRCH is equipped with
two parts, ie., the Robust Contrastive Hashing loss (RCH) and the
Dynamic Noise Separator (DNS). RCH directs our model to focus
on more reliable positive pairs instead of noisy ones, thus avoiding
overfitting to noisy labels. DNS enables us to separate the clean and
noisy samples dynamically and train our model with more reliable
samples, thus embracing robustness against noisy labels. Diverging
from previous methods, our NRCH can dynamically discriminate
the clean and corrupted labels with loss distributions per sample
while alleviating the error accumulation. Extensive experiments
conducted on four widely used benchmarks reveal that our NRCH
outperforms existing state-of-the-art methods under noisy labels
and shows strong robustness.
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