Distributional Training Data Attribution:
What do Influence Functions Sample?

Bruno Mlodozeniec*'?> Isaac Reid*' Sam Power® David S. Krueger*
Murat A. Erdogdu*’¢ Richard E. Turner*'” Roger B. Grosse*>°¢

"University of Cambridge 2Max Planck Institute for Intelligent Systems
3University of Bristol *Mila - Quebec Al Institute *University of Toronto
SVector Institute 7Alan Turing Institute

bkm28@cam.ac.uk ir337@cam.ac.uk

Abstract

Randomness is an unavoidable part of training deep learning models, yet some-
thing that traditional training data attribution algorithms fail to rigorously account
for. They ignore the fact that, due to stochasticity in the initialisation and batching,
training on the same dataset can yield different models. In this paper, we address
this shortcoming through introducing distributional training data attribution (d-
TDA), the goal of which is to predict how the distribution of model outputs
(over training runs) depends upon the dataset. Intriguingly, we find that influence
functions (IFs), a popular data attribution tool, are ‘secretly distributional’: they
emerge from our framework as the limit to unrolled differentiation, without
requiring restrictive convexity assumptions. This provides a new perspective on
the effectiveness of IFs in deep learning. We demonstrate the practical utility of
d-TDA in experiments, including improving data pruning for vision transformers
and identifying influential examples with diffusion models.

1 Introduction

Training data attribution (TDA) techniques are of fundamental interest in machine learning, shedding
light on the relationship between a model’s properties and its training data. TDA is typically framed
as a counterfactual prediction problem: estimating how a model’s behaviour would change upon
removal of particular examples from the training dataset [1, 2] . This invites the concept of influence.
Training examples are deemed ‘influential’ if the model’s behaviour would change significantly
upon their exclusion. The practical utility of TDA has been demonstrated in applications including
interpreting, debugging and improving models [2, 3], dataset curation [4], and data valuation [1, 5].

Influence Functions. It is typically prohibitively expensive to compute influence by retraining with
different datapoints removed. This has motivated a number of TDA methods designed to approx-
imate influence, but without actually retraining. Amongst such TDA methods, a leading example
is influence functions (IFs) [2, 6]. This classical technique from robust statistics uses the implicit
function theorem to estimate the optimal model parameters’ sensitivity to downweighting a training
datapoint. IFs have been deployed to investigate the generalisation patterns of 52 billion parameter
large language models [3], and for data attribution of diffusion models [7]. Separately, researchers
have proposed an alternative TDA method called unrolled differentiation [8, 9, 10]. Here, one differ-

¢ Equal contribution first authors. Order decided by who can swim the furthest underwater. * Shared senior authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

mailto:bkm28@cam.ac.uk
mailto:ir337@cam.ac.uk

“Standard” influence functions “Distributional” influence functions

=—Training loss: L£(6) = =Perturbed training loss: £(0)—ely(0)
(a) U
Training ‘4
 Losses

(C) T i
Training 5 G 3
Trajectories *

(d) rodict ohanoe
Predict shift Final : M(.h(’t.d‘ld‘“g('
— Models in final

—
=) ot
o (en) o
rrrrrrr 1 1

in optimum L. .
! distribution

0 0

Figure 1: Distributional training data attribution. Classical data attribution methods like influence
functions are typically motivated using convex loss functions, predicting a deterministic shift to the
unique optimal model weights (/eft). In contrast, this paper advocates for a distributional perspective,
approximating the new probability distribution over model parameters/outputs after removal of
training examples (interpreted as perturbation of the training loss). This includes for non-convex loss
functions (right).

entiates through a particular training trajectory to directly obtain the sensitivity of the final model
parameters to the weighting of a particular example in the loss function. Unrolled differentiation
tends to work better than IFs in experiments, but it is more expensive to compute.

Randomness in training. The success of IFs in deep learning is perhaps surprising because the
classical foundations of both TDA and IFs fail to account for a core property of modern training:
stochasticity [11]. Given the randomness inherent in weight initialisation and mini-batching, training
can be understood as sampling from a distribution over final models. Each training run corresponds
to drawing a single sample from this distribution. Yet classical TDA is only defined for deterministic
training algorithms, and IFs are primarily understood for convex objectives (or by finding convex
proxies [11]). Stochasticity is usually dismissed as a nuisance for TDA methods, glossed over in
method derivations [2]. At best, it is sometimes heuristically managed by ensembling or averaging
[12]. In practice, stochasticity makes it difficult to diagnose which changes to model behaviour are
attributable to changes in the training dataset, and which are due to sampling randomness.

Introducing distributional training data attribution. In this paper, we argue that the randomness
in model training is not a nuisance. Conversely, it ought to play a central role in our understanding
of influence, and deserves a proper mathematical treatment. Viewing training as sampling from a
distribution over final model weights (or outputs), the goal of TDA should be to efficiently predict
changes to this distribution under modifications to the training dataset: a novel perspective that we
coin distributional training data attribution (d-TDA). Figure 1 provides a visual schematic.

Influence functions are distributional. We show that unrolled differentiation is natively a d-TDA
method (Section 3.1). Subsequently, in Section 4.1, we rigorously show that IFs approximate unrolled
differentiation for long enough training times, and hence IF's are already inherently distributional.

Core contributions. (1) We introduce distributional training data attribution (d-TDA), a framework
for studying data attribution in stochastic deep learning settings (Section 3). (2) We show that
influence functions (IFs) are ‘secretly distributional’, solving special limiting cases of a d-TDA task
(Section 4). This may help explain the effectiveness of IFs in deep learning, far from the convex
setting in which they were originally proposed. (3) We propose distributional influence, which quan-
tifies the importance of examples by how much their inclusion/exclusion affects the distribution over
model weights and outputs. We show that distributional influence captures interesting information
missing from its regular predecessor, and leads to more effective data pruning (Section 5).

2

2 Background

‘Classical’ Training Data Attribution (TDA). Consider the space ® := U_; 2V of possible finite
training datasets 2 := (z 7')1 . In classical TDA, one is concerned with deterministic training algo-
rithms 6% : ® — Rarm, Wthh take a dataset as their input and return ‘trained’ model parameters
6* (D). The goal of TDA is to predict how the output of the training algorithm 6* would change if
it were run using a perturbed training dataset 2’, with some examples removed. Concretely, given
some trained model 6*(2), TDA methods 6*(2’) aim to approximate 8*(2’) ~ 6*(2D’) without
actually retraining the model. Of course, in practice, one is typically interested in the change in some
measurement function m : R%s= — R% when the dataset is modified — for instance, the loss on
a particular test example. Therefore, TDA methods 6*(-) are typically evaluated on their ability to
approximate m(6*(2")) ~ m(0*(’D’)).

‘Classical’ influence. The discussion above invites the concept of influence. The influence of an
example is the change in the measurement m o 8* when the example is removed from the training
dataset. Influential samples change the measurement by a large amount. The influence of a training
datapoint z;, with respect to a measurement function m is given by:

Inf () = m(6"(D)) — m(6"(D \ z,)). (1)

This is extended to groups of examples (zl)iv:’c . C D in the obvious way. To approximate Inf(z;)

without actually retraining, one uses a TDA method to approximate 8* (D \ z;,) .

Response. A practical difficulty posed by the formulation of influence in Eq. (1) is that ©, the domain
of the training algorithm 6*(-), is discontinuous. Datapoints z, are either included or not included.
The binary nature of this choice makes it difficult to analyse Inf(z,) directly using gradient-based
methods. Hence, it is typical to instead consider a continuous relaxation to the training algorithm.

Let us introduce a scalar € € [O L] which controls the weighting of a particular example in the
training algorithm. Suppose € = 0 corresponds to inclusion and € = N corresponds to exclusion,
with intermediate values meaning the example is still present but downweighted. The precise setup
will depend on the training algorithm of interest. Let 87,_, Dz, (€) denote the (assumed deterministic)
outcome of the training algorithm with loss £y,_, 5, ., (€). Provided 87,_, 5, , () is continuous and
twice-differentiable at € =0, we have that

de; €
05 p\., (6) = 0" (D) + e %ﬂ() +0(e?) ase—0. (2)

Response 7(z;,) := e=0

Hence, we define the response r(z) := M|E o- such that m(6*(D \ z;,)) = m(6*(D)) +
eVm'r(z,) + O(?). Intuitively, response measures the sensitivity of the training algorithm output
with respect the weighting € of the example z; € 2. To make this more explicit, we will now give
two concrete examples: influence functions and unrolled differentiation.

1 Inﬂuence functlons Many classical algorithms only depend on the data through a loss function

Lp(0)=% E £,(0) with £,, : R%s== — R some per-example loss. One natural way to codify
downwelghtlng 1n that case is to define an interpolated loss Lp_, p\ ., (€):=Ly — €¥},. Suppose that
the loss function £, has a single unique minimum and that the training algorithm successfully
locates it. Mathematically, this can be written as 6*(2D) = argmingcgs £ (60). Minimising the
interpolated loss £y_, 5, ., () and applying the implicit function theorem, it is straightforward to
prove that in this special case:

r(z) = V26p(6°(D)) " VL (67(D)) = 7. 3)

We derive this result in detail in Section B. 3 is referred to as an influence function (IF) — a popular
TDA tool. The effectiveness of IFs for deep learning is perhaps surprising given the unrealistic
assumptions made during their derivation.

2. Unrolled differentiation. Suppose instead that the model 1s tralned using stochastic gradient
descent (SGD). Consider the weight update rule 8,,; = 0, — 5 Z Jt V¢, (0,), where (0,)

teN

denotes the trajectory of model parameters and 6, is some random initialisation. §* with ¢ € N are
independently and identically distributed batching variables in {0, 1}, with mean E[d},] = %. In
close analogy to the interpolated loss £y,_, D\z, (), consider the interpolated update step:!

N
0,41(2) = 0,(e) — 1 D 5LV, (0,)(1 —eL,y), (4)
n=1

where 1,_, is the indicator function. If we train for T' timesteps, one can directly differentiate
through the training trajectory to obtain the sensitivity of the final model weights 8, with respect
to the weighting €. Applying the chain rule, one obtains a rather cuambersome expression (Eq. (57)
in Section D). In this setting, we call ry = %|€:0 the unrolled differentiation response. T can
be used as a classical TDA method if we consider all sources of randomness to be fixed. This
algorithm tends to work better than IFs in experiments, but the repeated computation and caching of
Hessians makes its naive implementation expensive for long training runs. This has prompted work
on approximate unrolled differentiation [9].

3 Distributional Training Data Attribution

An obvious problem with the classical TDA formulation described in Section 2 is that in reality
training is stochastic: the randomness in model initialisation and SGD precludes defining a determin-
istic map 6* : D — R%=raa, Even retraining with an identical dataset will in general give a different
model; 6* (D) is better thought of as a random variable. Previous work has dealt with this randomness
heuristically by averaging over training ensembles [2, 9]. In contrast, in this paper we advocate for a
more rigorous distributional perspective. Taking the model initialisation 6, and the batch selections
(8¢), .y to be random variables on some probability space (Q, F, P), we frame distributional training
data attribution as follows.

Distributional training data attribution (d-TDA). Let 68*(2) be the outcome of (stochastic)
training with some dataset D € ©. Let up(A) := P[0*(D) € A] (for A € F) denote its proba-
bility distribution. Let m_ 14, be the distribution of some measurement function m : R%aran —
R% of the trained model. The goal of distributional TDA is to reason about the behaviour of i,
and m, 14, with respect to changing 2 — especially, removing examples by taking D — D\ z;.

Rather than considering randomness to be a nuisance, d-TDA acknowledges that the training dataset
determines the distribution over trained models. Effective d-TDA methods answer questions like:

1. Given samples from i, how can I approximately sample from fip, , ?
2. If removed from the training dataset, which example z;,, € 2 would most drastically change ,,?
3. Which examples should I remove to change the variance of m_ 114, upon retraining?

The fact that d-TDA predicts changes in distributions over measurements leads us to reevaluate the
notion of influence. In particular, removing influential samples ought to substantially modify 1. ..
With this in mind, we define distributional influence (c.f. Eq. (3)) as follows:

Definition 1. (Distributional influence). The distributional influence of a training example z;, € D
with respect to a measurement function m : R%s= — R% is given by:

DistInf(z;) := A(m#ﬂﬂnm#ug\zk), (5)
where A(pu || pto) is some ‘difference function’ between 1 and p,.

There exist many possible instantiations of distributional influence, depending on the choice of A.
Letting X ~ p;,Y ~ pu, denote the final measurement random variables, one could consider:

Mean influence Variance increase influence Wasserstein influence
Alpllpg) = | E(X) —E(Y) Var(Y) — Var(X) Wo (1, o)

3.1 Distributional influence with unrolled differentiation

To compute DistInf(z;), we need to (approximately) sample from K\ z, Without retraining the
model. This can be achieved using unrolled differentiation, described by the pseudocode below.

IThis can be roughly thought of as SGD updates with the interpolated loss function £y, 1, (€)-

4

Alg. 1. Unrolled differentiation for d-TDA.

1. Sample 6*(2) := 6 from p4, by training the model with stochastic updates (Eq. (4)).

2. Obtain approxnnate samples from p.,, , without retraining by taking 6" (D \ z;) ~ 0*(D) +
]{ITUD, with ryp:= de T |._o the unrolled differentiation response. If 1nterested in the dlStI‘lbuthI’l
over some measurement, compute m(6*(D \ z;,)) ~ m(6* (D)) + +Vm(6*(D N e

3. Using these two sets of (correlated) samples, compute the difference function A between the
empirical distributions to efficiently approximate DistInf(z;).

When computing 7, the following observation simplifies differentiating through long training
trajectories.

Remark 1. (Unrolled differentiation is a Markov chain). Appl 1ng the cham rule of differentiation

to Eq. (4) gives the following recursive formula for (6,,r,) = (6,, = % o
<0t+1> _ 0, — % X, 0.V4u(0)) ©)
T (I—23N 6,V20,(0,))r, + %0LVEL(6,)

Intuitively, Eq. (6) shows that the response 7, ; depends on the response at the previous timestep 7,
modulated by the loss function curvature. If datapoint z;, is present in the batch sampled at timestep
t, .41 also depends on the corresponding loss gradient V¢, (6,). Practically, Eq. (6) permits us to
compute the final response 7 at linear time and constant space complexity with respect to training
duration, without caching or explicitly computing the batch Hessians (c.f. Eq. (57)). This is akin to
forward-mode automatic differentiation for meta-learning [13]. To the best of our knowledge, this
is the first application of such techniques to efficient computation of the response. Crucially, if the
batch selection sz isi.i.d., Eq. (6) defines a Markov Chain — an observation that unlocks well-studied
mathematical machinery and invites us to analyse its limiting distribution (see Section 4.1).

Empirical demonstration. Figure 2 showcases the application of unrolled differentiation as a d-
TDA method, successfully predicting changes in the distribution of measurements when a select
subset of the dataset is removed.

Samples Means Measurement distribution on

J Sample 0
ent Wy: 0. ()U
Wo: 0.22

_| Sample 5
Vy: 0.24

- Predicted with
< full dataset measur
Predicted with

® influence

L%

0.5

e
=)
1

o
| o @

Predicted
s
wt
1

uery sample Sample 2
~1.0 1 Q Sy B o 3 Full dataset
W - 0.18, [Subset
2 0.18
5w 1 Subset
predicted
T T T T T T
—1 0 -1 0 1 0

Measurements by models trained on subset

Figure 2: d-TDA demo for a neural network trained on UCI Concrete. d-TDA (using unrolled
differentiation) gives approximate samples from the distribution of models re-trained on some fixed
subset D’ C D (left). Actual samples from p. (obtained by expensive retraining) are closer to
predicted samples from x4 (obtained by efficient d-TDA methods) than they are to samples from
the original model pi4,, both in terms of their means (centre) and Wasserstein distance (right). The
distributions are over measurements on query samples for different stochastic training runs.

Why not use regular TDA with a fixed seed? A natural question raised by the challenge of
stochasticity is: instead of treating the outcome of training as a random variable, why not simply fix
all sources of randomness? Why not just stratify by the random choices like initialisation and data
ordering? Naively, this seems to recover a deterministic training algorithm, to which one may apply
regular (non-distributional) TDA methods. We refer to this as ‘fixed-seed TDA'’.

Distributional TDA is often preferable to fixed-seed TDA because many methods, like IFs, more
accurately perform the d-TDA task, even when failing at the fixed-seed one. For instance, IFs and
unrolled differentiation find local perturbations around the current optimum to predict outcomes of
counterfactual retraining. However, even fixing all randomness, chaotic training dynamics can push
training into a completely different region of the parameter space. Moreover, when using a fixed
batch-size, even tiny changes to the training set size can offset at what iteration each datum appears.
This means even fixed-seed trajectories can converge to widely different ‘optima’ under small dataset
perturbations, rendering the shift in the original local optimum inadequate. Later in Section 5, we
demonstrate IFs perform better on downstream tasks as a distributional TDA method compared to
as a fixed-seed TDA method. This suggests the distributional perspective provides a more accurate
picture of how influence functions work.

4 What do influence functions sample?

In Section 3, we introduced distributional TDA, adopting a rigorous mathematical perspective that
accounts for stochasticity in training. Here, we demonstrate how d-TDA relates to classical influence
functions (IFs; Eq. (3)). From two complementary perspectives, we find that IFs are actually ‘secretly
distributional’, appearing as asymptotic samples in specific d-TDA settings. In stark contrast to usual
derivations of IFs, which rely on assumptions that are unrealistic for deep learning [2, 14], we place
only mild constraints on £(8). All proofs are in Section A.

4.1 Perspective 1: unrolled differentiation converges a.s. to influence functions

Adopting a distributional perspective, a natural question is: what is the limiting distribution of the
random variable (0,,r,), updated according to Eq. (6)? Begin by considering the model weights
(6,), which are updated by SGD with i.i.d. batch selection. We make the following assumptions.

A1l. V24 and V¢, are Lipschitz continuous and bounded.
A2. The step sizes (nt)toi , are positive scalars satisfying >, m=ocand) n? < oo.
A3. The iterates of Eq. (12) remain bounded a.s., i.e. sup, [(0,,r,)| < oo a.s.

Standard results due to e.g. H. J. Kushner and G. G. Yin [15] give us the following result:

Theorem 1. (SGD converges to stationary points [15, Theorem 2.1, Chapter 5]). Provided
assumptions A1-A3 hold, the sequence of SGD iterates (Ot):i o as defined by Eq. (6) converges

almost surely to the set § . of stationary points of the corresponding ODE: 6=-V< () — namely,
§,={0:-VL(0) =0}

Theorem 1 demonstrates that, with a suitably decaying learning rate, SGD converges to critical points
— namely, saddle points or local minima. Define the set of local minima as follows:

8m:={0:—-VL(0) =0,—V2L(0) <0} C 8. (7)

If the weights converge to a saddle point in 8, \ 87, it is intuitive that the response r, := %E:o
will diverge. This is because the final model parameters will become sensitive to any infinitesimal
perturbation of the loss function.?2 Conversely, if the weights converge to a local minimum, the
limiting behaviour of r, becomes tractable. Consider the following additional assumptions.

A4.V/(,(0) € Span(V2£(0)) for all 6 € ST

AS5. The nonzero eigenvalues of V2.£(0) for @ € 87 are uniformly bounded away from 0.

AG6. There exists some compact neighborhood N (S7*) around 87 such that gradient flow trajectories
0(t) initialised therein converge uniformly over initialisations to points in 87'. Moreover, their
lengths are bounded a.s., so that: supg(g)ea(sm) f:jo [6(s) — limy _, . 0(s")|ds” < 0.

Theorem 2. (Unrolled differentiation converges to IFs). Suppose that A1-A6 hold, and consider an
SGD trajectory in the set that converges to 87 (c.f. 8, \ 87). The sequence of iterates ((6,, rt)):zo
generated by Eq. (6) converges almost surely to the set R* := {(0*, rz(0*) + ry(0%)) : 0* €
ST, re(0) = V2L(0)TVE,(0), 1y5(0) € Null(V2£(0))} - that is, pointwise IFs, plus a compo-
nent in the Hessian nullspace. (-)* is the pseudoinverse.

2This could be interpreted as a limitation of the conventional notions of response and influence.

6

Proof sketch. We consider the ODE which is the continuous time relaxation of Eq. (6). We prove
that the solution to this ODE r(¢) converges to an influence function, plus a component in the flat
directions of a minimum manifold. Under the learning rate assumptions above, the SGD updates
asymptotically track this ODE, which allows us to prove the final result. B

Commentary on Theorem 2. The response iterate r, either diverges (in the case that the weights
6, converge to a saddle), or converges to X*. Hence, at late times, one can approximately sample
from pp, ,, by sampling from p5, and offsetting by %Tnﬂ Using r;; instead of 7y, means that 1) we
assume we have trained for long enough, and 2) we neglect components of response in the Hessian
nullspace. The latter may not converge and will in general depend on the history of SGD iterates 8,.

Assumptions. A1-A3 are standard assumptions, needed to ensure that SGD converges. A4 guaran-
tees the perturbation ¢,, doesn’t have a component in the flat directions of the minimum manifold, or
else unrolled differentiation diverges. Note that A4 automatically holds for any symmetries shared
by £ and ¢, e.g. due to neural network parameterisation. AS ensures that IFs remain bounded,;
Hessian eigenvalues on §7' can be zero, but not nonzero and arbitrarily small. The most technically
meaningful assumption is A6, which assumes gradient flow converges sufficiently fast to local
minima. We stress that it is much less restrictive than the requirements usually cited for IFs to apply,
such as strong convexity [2, 9, 14].

Remark 2. For Generalised Linear Models (GLMs), the component of the unrolled response 7, in
the nullspace of the Hessian is 0 throughout training. Hence, in this setting, Theorem 2 gives exact
convergence of the unrolled response to the influence functions formula.

Empirical validation. In Figure 3, we test our
1§ theoretical results on a regression task with
UCI Concrete. As predicted by Theorem 2,
the strength of correlation becomes very high
(90%) at late times as the unrolled differentiation
Markov Chain converges to IFs. As expected,
the correlation is better for lower step sizes, for
%= which the SGD iterates (normalised by learning

L ——— 000 rate) track gradient flow more closely.

10th-90th percentile
T T T
2 4 6 8

», Training time (iterations X learning rate)

Learning rate
0.01
0.005
0.001
0.0005
0.0001

~

—— \lean

- 0.9990

We also experimentally confirm that the compo-
nent of the unrolled response r, in the null
space of the Hessian — that is, the error term

7

Figure 3: Validating Theorem 2. Top: Correla-
tion between changes in measurement predicted
by unrolled differentiation and changes predicted
by IFs, plotted against training time. The co-
efficient becomes high as the Markov chain
converges. The correlation is stronger for small
n where SGD is closer to gradient flow [15].
Bottom: Norm of the measurement gradient
component in the span of the Hessian divided
by norm of the measurement gradient. The null-
space component of Vm remains tiny.

that IFs cannot capture — is insignificant for the
practical tasks we test. In the lower panel of
Figure 3, we see that the measurement gradient
Vm only has a tiny component in the null-
space of the Hessian, living almost entirely in the
column space. Recalling that m(6*(D \ z;,)) ~
m(6*(D)) + 4 Vm 7y, this means it barely
contributes to predicted changes in m. As such,
the fact that IFs do not capture this part of the
limiting distribution of r, does not appear to be
of substantial concern for downstream tasks.

4.2 Perspective 2: transport maps between Boltzmann distributions

Departing from unrolled differentiation, we now instead model the final weights by a Boltzmann
distribution. This is motivated by the fact that it is the limiting distribution of Stochastic Gradient
Langevin Dynamics [16, 17], which closely resembles SGD. Given an energy function £(6) —
f,,(0) and an inverse temperature parameter S € R*, the Boltzmann distribution is:

o BL(0)~2£,(0)
Z(B,e)

Let PP denote the corresponding measure. Let 8% := {0 : £(0) = infyga £(0)} denote the set of
global minima of the loss function (c.f. §7* above). Consider the following set of assumptions.

p2(6) = 2(8.6) = [epeo-n go, (8)

Al. The derivatives dT;%,(le) are bounded for n € {1,2,3} and i € [1, N].
A2. The nonzero eigenvalues of the Hessian V2£(8) are uniformly bounded away from zero on 8%.
A3. The perturbation £, (6) is constant on §%.

Ad4. 0 £(0) — e£,(0) is Lebesgue integrable for all € in some neighbourhood of 0.

AS. £(0) attains its minima, i.e. §% = {6 : £(0) = inf, £(0)} is not empty.
Theorem 3. (Asymptotic optimality of IFs with Boltzmann distributions). Let ® C C*(R?,R?)

denote the class of bounded vector fields r such that T.(0) := 0 + er(0) is a C* diffeomorphism
for all sufficiently small € > 0. Define the functional

.1
F(r,e) = Blgf)lo EDKL (Ts#%ﬁ|ﬂﬂ>, (9)

equal to the asymptotic KL. divergence between the transformed base measure TE#POE and the
true perturbed measure P2. Consider the subset of maps Ry := {r € R : 7(0) = () for 0 €
8%} C R, for which the map is equal to influence functions on the minimum manifold. Then, given
any r € Ry and any ' € R \ Ry, there exists some a € R* such that

F(r,e) <F(r',e) V¥V |¢|<a. (10)
Moreover, the set Ry is non-empty, so such diffeomorphisms do indeed exist.

Proof sketch. We start by showing that, for small enough ¢, there do indeed exist continuously
differentiable bijections in the class 7. (6) such that 7(8) = r;;(0) when 8 € §%. At low tempera-
tures, only the behaviour at 8% matters because the probability mass concentrates where the loss is
minimised. Taking 5 — oo and using the Laplace approximation, we analyse the low-temperature
KL divergence between TE# POB (the transformed measure, without loss perturbation) and Pf (the
measure with loss perturbation). Among the class 7 (8), this is minimised at O(¢?) terms by IFs. B

Commentary on Theorem 3. For Boltzmann distributions, IFs provide exactly the transport map
in T, (0) required to transform the low-temperature (weak limit) Boltzmann distribution with loss
£(6) onto the Boltzmann distribution with a perturbed loss £(0) — ££,,(6), up to O(£?) terms. This
provides a very explicit distributional motivation for IFs: they map samples from £ (read: 114,) onto
approximate samples from F>° (read: py ,,), and do so approximately optimally in the KL sense.
We also remark that, since the KL divergence is invariant under parameter transformation, this notion
of optimality does not depend on the specific choice of coordinate system. Minimal assumptions are
made on £(8) throughout for Theorem 3 to hold.

Key takeaways from Section 4. IFs are implicitly distributional. Supposing 6*(2) ~ w4, then
the sample 6* (D) + %TIF is approximately distributed according to fi, ,, in two precise mathe-
matical senses: (1) as an asymptotic limit of unrolled differentiation, and (2) minimising a KL
divergence if the final weights follow low-temperature Boltzmann distributions. This means that
we can use 7z instead of ry; in Alg. 1 as a cheaper yet principled proxy, unlocking d-TDA at scale.
It may also help explain why IFs are effective in deep learning, far from the convexity assumptions
relied upon during typical derivations from robust statistics.

5 Distributional Training Data Attribution in Practice

Having demonstrated how d-TDA can be operationalised using IFs (Section 4), we now discuss its
practical utility. We begin by demonstrating that distributional influence captures interesting infor-
mation missing from its classical counterpart.

Rethinking influence. Previous papers have heuristically considered what amounts to mean influ-
ence [12] —if removed from the training dataset, which example would change a model measurement
most on average? In a synthetic 1D regression task shown in Figure 5, this criterion identifies x5, as
the most influential datapoint. As discussed above, we could quantify the difference in distributions
after retraining in a different way, e.g. with Wasserstein influence. Here, in contrast, x5, is deemed the
most influential. Note that =4, is not very influential by conventional measures since its mean shift
is modest, yet its removal drastically changes the behaviour after training, sharply increasing uncer-
tainty. This demonstrates that different notions of distributional influence can capture meaningful
information about the training data missed by e.g. heuristic ensembling. As a second demonstration,
in Figure 11 (App. C.2.3) we use d-TDA to identify MNIST examples which lead to a large change

8

12 777 . Seed

— Trained on full dataset / Train on owe - @ o0 0]
10 4 = Remove z3¢ all data
~ Remove a3) Remove with
A\ Training samples // 7/ fixed seed e _‘. oie
7/ /4 influence

Remove with
distributional 4 @ o ee) oo
influence

0.83 0.84 0.85 0.86
Test Accuracy

Figure 6: d-TDA > fixed-seed TDA. Test accu-
— racy improvements on CIFAR-10 with a SWIN
-3 -2 -1 0 1% 2 3 Vision Transformer from IF data pruning. We
Moan ahifes 0.14 Intonn shie: 011 compare two approaches to subset selection: 1)
W, change: 0.19 |W, change: 0.56 traditional TDA with a fixed seed, where for
each random seed we remove 5000 datapoints
that are predicted to decrease the validation loss
the most for the model trained with that specific
fixed seed; and 2) distributional-TDA, where
. e) for each model we remove 5000 datapoints pre-
Figure 5: Distributional influence on 1D regres- icied {0 decrease the validation loss the most
sion. Top: Samples of model functions t.ralned ON ,y average. Both methods lead to test accuracy
the tu.ll datas?t, as well as on subsets. Wlthout the improvements upon the baseline trained with
most influential example by mean shift () and 411 qata. However, d-TDA leads to greater over-
by Wasse.rste.:in §hift (¢31). The 90th percentile 4 improvements on average. Black dots show
of each distribution is indicated by shading. Bot- ,.cyracies for individual models (with seeds
tom: Histograms of model outputs at .., after jpdjcated in oray), whereas coloured diamonds

removing 5, or 3, and corresponding mean and indicate the average result for each method.
Wasserstein shifts c.f. the original model.

Predictions

~
1

Predictions at ztest
N
I|

in variance but a small change in mean. The right panel of the figure confirms that retraining does
actually lead to the changes our methods predict.

Distributional influence on diffusion models. To illustrate this concept at scale, we apply distrib-
utional influence to identify the most influential training examples for a latent diffusion model [7].
Figure 7 ranks the most and least influential examples on ArtBench, comparing Wasserstein influ-
ence, mean influence, and classical fixed-seed influence. The identified examples vary in each case.

The ability to predict how different training examples impact the distribution over training runs may
be practically useful. For example, one could identify examples to add or remove to most reduce
variance, hence reducing model (epistemic) uncertainty. Further, d-TDA methods could also be used
to operationalise criteria like information gain [18, 19] or marginal likelihood [20, 21, 22, 23].

Most Least
influential influential

Generated
sample

Figure 7: d-TDA highlights different influences for diffusion models The figure shows most and
least influential datapoints on generations of shown samples from a latent diffusion model trained
on ArtBench-10. The “most influential” examples are those that change the DDPM loss (a proxy for
the log-likelihood) of the generated sample the most, following [7].

9

Data pruning with d-TDA. Next, we apply distributional (mean) influence to a data pruning task,
where the goal is to remove datapoints from the training set to improve the performance of the
final trained model. We consider a SWIN transformer [24] trained on the full CIFAR-10 dataset (see
for details). For the baseline, we remove 5000 datapoints deemed to be most influential — that is,
estimated to decrease the validation loss the most when ablated — using regular TDA on a single
model. For d-TDA , we remove 5000 datapoints estimated to decrease the validation loss the most on
average, for 10 models trained using different random seeds. We then compare the final accuracies
and losses for individual models trained with those examples ablated, using the same random seeds.
Figure 6 shows the results. The distributional variant unlocks accuracy gains c.f. fixed-seed TDA.

Evaluating TDA methods. The observations above also invite us to rethink how we evaluate data
attribution methods for stochastic training algorithms: d-TDA methods ought to be effective at
identifying examples responsible for large changes in distribution. These changes are often missed
when one only looks at the change in mean. Note that the Linear Datamodelling Score (LDS) [12],
a common evaluation metric, can already be interpreted as a d-TDA evaluation metric. It measures
how accurately attribution methods rank training datapoints by mean influence:

(11)

where spearman denotes the Spearman rank correlation, DistInfy., DistInfé; are distributional
(mean) influence scores computed using exact retraining and a d-TDA method respectively, and 2/
are randomly subsampled subsets of the training data. In light of our discussion, it is natural to gener-
alise Eq. (11) using other notions of distributional influence. We term such metrics distributional
LDS, of which regular LDS is a special case. We show a preliminary benchmark in Figure 10 (App.
C.2), showcasing that distributional LDS can better flesh out differences between d-TDA methods.
Distributional LDS (e.g. Wasserstein) can be computed at virtually no additional cost over standard
LDS, and we argue should become the default for benchmarking data attribution in deep learning.

LDS = spearman (DistInfg*(D{))?il; (DistInf&(ﬂi’))M],

=1

Leave-one-out is not broken, just noisy. Prior works have
reported that TDA methods such as IFs are incapable of
accurately predicting the outcome of leave-one-out (LOO)
retraining, often obtaining near 0% correlation to ground-
truth measurements after actual retraining [14]. Adopting
a distributional perspective, we view this differently. For
big datasets, removing a training example z;, only leads to
a tiny change in distribution f15, = pp, ., . We have seen

that IFs allow us to approximately sample from KDz, » I
but we may need many empirical samples to detect such a T T T

|
o
)

1

|
o
'S

1

~0.388

.’ - -0.390

- —0.392

|
<
[=)]

1

- —0.3Removed
I— datag)oint

Predicted measurement
N
2
@
gl

|
o
<)

1

minor distributional shift empirically. In other words, real- ~06 ~04 ~0.2
world training is noisy; TDA methods struggle with LOO
primarily because of a low signal-to-noise ratio, rather than
any fundamental incompatibility. In Figure 8, we verify
that common attribution methods are capable of accurately
approximating the LOO distribution with enough samples
— the means of the predicted and ground-truth distributions
correlate extremely well.

6 Conclusion

This paper introduced distributional training data attribution
(d-TDA): a new paradigm for data attribution when training
algorithms are stochastic. To demonstrate its utility, we used
d-TDA to more effectively identify training examples whose
removal improves test loss and accuracy, and proposed
novel ways to evaluate d-TDA methods. Rigorously tackling
distributional questions also yielded new mathematical mo-
tivations for influence functions for deep learning.

10

True measurement

Figure 8: There is signal in leave-
one-out. Measurements (model output)
on a fixed query input when different
examples are removed from the training
set. True measurements on the z-axis
against measurements predicted with
unrolled differentiation on the y-axis for
individual models (with different ran-
dom seeds) are shown with low-opacity.
The distributions of measurements are
noisy, and similar for each removed ex-
ample, hence the LOO correlation is
close to 0. The empirical means of
the distribution over random seeds are
shown in full color in the inset axis.
There is clear correlation between the
means of the true and predicted mea-
surements. See App. C.1 for full details.

References

(1]

(2]

(3]

(4]

[10]

(11]

(12]

(13]

[14]

[15]

(16]

(17]

(18]

[19]

(20]

(21]

[22]

A. Ghorbani and J. Zou, “Data Shapley: Equitable valuation of data for machine learning,” in International
conference on machine learning, 2019, pp. 2242-2251.

P. W. Koh and P. Liang, “Understanding black-box predictions via influence functions,” in International
conference on machine learning, 2017, pp. 1885-1894.

R. Grosse et al., “Studying large language model generalization with influence functions,” arXiv preprint
arXiv:2308.03296, 2023.

Z. Liu, H. Ding, H. Zhong, W. Li, J. Dai, and C. He, “Influence selection for active learning,” in
Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 9274-9283.

R. Jia et al., “Towards efficient data valuation based on the shapley value,” in The 22nd International
Conference on Artificial Intelligence and Statistics, 2019, pp. 1167-1176.

F. R. Hampel, “The influence curve and its role in robust estimation,” Journal of the american statistical
association, vol. 69, no. 346, pp. 383-393, 1974.

B. K. Mlodozeniec, R. Eschenhagen, J. Bae, A. Immer, D. Krueger, and R. E. Turner, “Influence Functions
for Scalable Data Attribution in Diffusion Models,” in The Thirteenth International Conference on
Learning Representations,

S. Hara, A. Nitanda, and T. Maehara, “Data Cleansing for Models Trained with SGD.” [Online]. Available:
http://arxiv.org/abs/1906.08473

J. Bae, W. Lin, J. Lorraine, and R. Grosse, “Training data attribution via approximate unrolled differenti-
ation,” arXiv preprint arXiv:2405.12186, 2024.

A. Ilyas and L. Engstrom, “MAGIC: Near-Optimal Data Attribution for Deep Learning,” arXiv preprint
arXiv:2504.16430, 2025.

J. Bae, N. Ng, A. Lo, M. Ghassemi, and R. B. Grosse, “If influence functions are the answer, then what
is the question?,” Advances in Neural Information Processing Systems, vol. 35, pp. 17953-17967, 2022.

S. M. Park, K. Georgiev, A. Ilyas, G. Leclerc, and A. Madry, “Trak: Attributing model behavior at scale,”
arXiv preprint arXiv:2303.14186, 2023.

L. Franceschi, M. Donini, P. Frasconi, and M. Pontil, “Forward and Reverse Gradient-Based Hyperpa-
rameter Optimization,” in Proceedings of the 34th International Conference on Machine Learning, D.
Precup and Y. W. Teh, Eds., in Proceedings of Machine Learning Research, vol. 70. PMLR, 2017, pp.
1165-1173. [Online]. Available: https://proceedings.mlr.press/v70/franceschil 7a.html

S. Basu, P. Pope, and S. Feizi, “Influence functions in deep learning are fragile,” arXiv preprint
arXiv:2006.14651, 2020.

H. J. Kushner and G. G. Yin, “Stochastic approximation and recursive algorithm and applications,”
Application of Mathematics, vol. 35, no. 10, 1997.

M. Welling and Y. W. Teh, “Bayesian learning via stochastic gradient Langevin dynamics,” in Proceedings
of the 28th international conference on machine learning (ICML-11), 2011, pp. 681-688.

S. Mandt, M. D. Hoffman, and D. M. Blei, “Stochastic gradient descent as approximate bayesian infer-
ence,” Journal of Machine Learning Research, vol. 18, no. 134, pp. 1-35, 2017.

D. V. Lindley, “On a measure of the information provided by an experiment,” The Annals of Mathematical
Statistics, vol. 27, no. 4, pp. 986-1005, 1956.

F. B. Smith, A. Kirsch, S. Farquhar, Y. Gal, A. Foster, and T. Rainforth, “Prediction-oriented Bayesian
active learning,” in International Conference on Artificial Intelligence and Statistics, 2023, pp. 7331-
7348.

D. J. MacKay, Information theory, inference and learning algorithms. Cambridge university press, 2003.

E. Fong and C. C. Holmes, “On the marginal likelihood and cross-validation,” Biometrika, vol. 107, no.
2, pp. 489-496, 2020.

B. K. Mlodozeniec, M. Reisser, and C. Louizos, “Hyperparameter Optimization through Neural Network
Partitioning,” in The Eleventh International Conference on Learning Representations, 2023.

11

http://arxiv.org/abs/1906.08473
https://proceedings.mlr.press/v70/franceschi17a.html

(23]

[24]

[25]
[26]

[27]
(28]

[29]

(30]

(31]

(32]

[33]

(34]

(35]
(36]

(37]

(38]

A. Immer, M. Bauer, V. Fortuin, G. Ritsch, and K. M. Emtiyaz, “Scalable marginal likelihood estimation
for model selection in deep learning,” in International Conference on Machine Learning, 2021, pp.
4563-4573.

Z. Liu et al., “Swin transformer: Hierarchical vision transformer using shifted windows,” in Proceedings
of the IEEE/CVF international conference on computer vision, 2021, pp. 10012-10022.

V. S. Borkar, Stochastic approximation: a dynamical systems viewpoint, vol. 9. Springer, 2008.

S. G. Krantz and H. R. Parks, The Implicit Function Theorem. Boston, MA: Birkhéduser, 2003. doi:
10.1007/978-1-4612-0059-8.

V. Noferini, “A Daleckii-Krein formula for the Frechet derivative of a generalized matrix function,” 2016.

J. L. Daletskii and S. G. Krein, “Integration and differentiation of functions of Hermitian operators and
applications to the theory of perturbations,” AMS Translations (2), vol. 47, no. 1-30, pp. 10-1090, 1965.

P. W. W. Koh, K.-S. Ang, H. Teo, and P. S. Liang, “On the accuracy of influence functions for measuring
group effects,” Advances in neural information processing systems, vol. 32, 2019.

S. Basu, X. You, and S. Feizi, “On second-order group influence functions for black-box predictions,” in
International Conference on Machine Learning, 2020, pp. 715-724.

E. Barshan, M.-E. Brunet, and G. K. Dziugaite, “Relatif: Identifying explanatory training samples via
relative influence,” in International Conference on Artificial Intelligence and Statistics, 2020, pp. 1899—
1909.

J. Martens and R. Grosse, “Optimizing neural networks with kronecker-factored approximate curvature,”
in International conference on machine learning, 2015, pp. 2408-2417.

R. Eschenhagen, A. Immer, R. Turner, F. Schneider, and P. Hennig, “Kronecker-factored approximate
curvature for modern neural network architectures,” Advances in Neural Information Processing Systems,
vol. 36, pp. 33624-33655, 2023.

T. George, C. Laurent, X. Bouthillier, N. Ballas, and P. Vincent, “Fast approximate natural gradient descent
in a kronecker factored eigenbasis,” Advances in Neural Information Processing Systems, vol. 31, 2018.

L.-C. Yeh, “Concrete Compressive Strength.” 1998.

L. Deng, “The MNIST Database of Handwritten Digit Images for Machine Learning Research,” IEEE
Signal Processing Magazine, vol. 29, no. 6, pp. 141-142, 2012, doi: 10.1109/MSP.2012.2211477.

F. Dangel, R. Eschenhagen, W. Ormaniec, A. Fernandez, L. Tatzel, and A. Kristiadi, “Position: Curvature
Matrices Should Be Democratized via Linear Operators.” [Online]. Available: https://arxiv.org/abs/2501.
19183

J. Bae, G. Zhang, and R. Grosse, “Eigenvalue corrected noisy natural gradient,” arXiv preprint
arXiv:1811.12565, 2018.

12

https://doi.org/10.1007/978-1-4612-0059-8
https://doi.org/10.1109/MSP.2012.2211477
https://arxiv.org/abs/2501.19183
https://arxiv.org/abs/2501.19183

A Proofs

A.1 Proof of Theorem 2: Unrolled differentiation converges to IFs
This appendix provides a proof of Theorem 2, repeated below for the reader’s convenience.

Consider stochastic gradient descent updates given by

, N
(e)m) _ 0,— L3N 5VL,(6,) .
= e : .
T (T-% X, 65V2,(8,))r, + %61 VE,,(6,)
with random variables 8% in {0, 1} for t € N, independently and identically distributed with mean
E[6%] = £, and for some 6, independent of (8, ..

Consider the following assumptions.

Al. V2 and V/,, are Lipschitz continuous and bounded.

A2. The step sizes <nt):io are positive scalars satisfying 3 7, = coand } -, n? < 00.

A3. The iterates of Eq. (12) remain bounded a.s., i.e. sup,||(6,,7;)| < oo a.s.

A4.V(,(0) € Span(V2£(0)) forall 0 € S7.

AS5. The nonzero eigenvalues of V2.£(0) for @ € 87 are uniformly bounded away from 0.

AG6. There exists some compact neighborhood N (S7*) around 87 such that gradient flow trajectories
0(t) initialised therein converge uniformly over initialisations to points in 8. Moreover, their
lengths are bounded a.s., so that: supg o) (sm) 7 10(s) — lim,_, ., 6(s")| ds < oo.

s=0 s’ —o0

Define 8, := {6 : V.£(6) = 0}, the set of model parameters where the loss function has zero
gradient. Also define the set of local minima, 87 := {0 : —V.£(0) = 0,—V2£(0) < 0} C S,. We
denote the pseudoinverse of a matrix with (-)*. The following is true.

Theorem A.1. (Unrolled differentiation converges to IFs). Suppose that A1-A6 hold, and consider
an SGD trajectory in the set that converges to 87 (c.f. 8, \ 87). The sequence of iterates
((Gt,rt))zo generated by Eq. (12) converges almost surely to the set R* := {(6*,r:(6*) +
Tys(0%)) 1 0F € 87,11 (0) := V2L(0)TVL,(0), rys(0) € Null(V2£(6))} - that is, pointwise IFs,
plus a component in the Hessian nullspace.

Proof.

We are interested in the behaviour of response for trajectories where 8, converges to §7°, rather than
8.\ 87 (see Theorem 1). Consider the following ordinary differential equation:

(i') - (W@Xf Ere)wk(e)) (13)

This can be considered to be a continuous time analogue to the SGD updates in Eq. (12). 8 =
—V £(0) corresponds to gradient flow. We can solve this analytically given the initial model weights
6(0), obtaining a gradient flow trajectory 0(¢). Note that, by assumption Al (Lipschitz continuity)
and the Picard—Lindeldf theorem, for any initialisation (68(0), r(0)) there exists a unique solution to
the ODE in Eq. (13). The following is true.

Lemma A.2. (Gradient Flow ODE converges to influence functions) Given assumptions
Al, A4, consider any initialisation (6(0),r(0)) of Eq. (13) for which 1) the ODE con-
verges to some limiting weights 6* :=lim, , 6(t), 2) the trajectory length is bounded, i.e.
fto_oo [6(t) — 6*| dt < oo, and 3) the limiting weights are a (possibly degenerate) local minimum,
ie. V2£(6*) = 0. Then lim, , r(t) exists and lim, , 7(t) € {r;z(0*) + rys(0%) : 715(6) :=
—V2L(0)*VE,(0), 7y (0) € Null(V2£(0))}.

Proof. Inserting the computed flow trajectory O(t), consider the ODE for influence 7 =
—V2£(0(t))r + V£, (0(t)). For notational simplicity and consistency with the dynamical systems
literature, we will write this in shorthand as:

7(t) = A(t)r(t) + b(t), (14)

13

where A(t) := —V2£(0(t)) and b(t) := V£, (0(t)). Since O(t) converges and the Hessian and
gradients are Lipschitz continuous (assumption Al), A(t) — A and b(t) — b_, converge as well.

We will now study convergence to the limiting influence, 7 := lim, , (¢). For a particular
flow trajectory with limiting negative Hessian A := lim, , A(t), let P := A_ Al denote the
projection operator onto the column space of A(t). Define the variable (t) := 7(¢) (Al b,)3
Rewriting Eq. (14), we have that

z(t) = A(t)z(t) + (b(t) — A(t)ALb,). (15)

o0

=y(t)

Note that y(t) — 0 if and only if b is in the column space of A Assumptlon A4 ensures that this
is indeed the case. Denote A(t) = A + A(¢), with A(t) — 0 Let z*- (t) := Px(t) and 2/ (¢) =
(I — P)x(t) be the components of a;(t) in the column and null-space of A respectively. Our goal
will be to show that * (¢) — 0. Premultiplying Eq. (15) by P, we have that

&t (t) = Azt (t) + P(A®)(2!(t) + 2 () + y(t)). (16)
This implies that
(scl)T:'cl = (:zci)TAooacL + (wL)T(A(:c” +zt) +y), (17)

T. T
where we suppressed t dependence for compactness. Note that (zt) &' =14 ((wL) :cL) =
14 |zt 2 = |t &t Also, smce x' is in the column space of A_ and A__ is negative
semidefinite, we have that (x l) Azt < =\ |zt|? with —\ < 0 the greatest nonzero eigenvalue
of A_,. Combining the above,

T T
Ilell Szt =1(@5) Agz +(zh) P(Az +y)|

T T 18
<|(&h) Azt + (zh) P(Az +y)| < =X [z*|* + |='] |P| |Az + y] (18)

<=l + = Allz] + lyl)-

We used the triangle and Cauchy-Schwarz inequalities. By the assumptions in the theorem statement,
|£(¢)| is bounded by a constant -y independent of ¢, which is guaranteed as |2 (0)| is bounded and
f:o [6(t) — 0(c0)|, dt < oo; see Lemma A. 3 below. In this case, we have that

b IIwLII< =Xzt + e (Al + yl)- (19)

Divide through by |zt |. Since A(t) — 0 and y(t) — 0, for any £ > 0 there exists a time 7. such
that v|A(t)[+ |y(t)| < e forall t > T.. At such times, & (|z*(t)[e*) < ee, Whereupon

24 ()] < e (TL) e 20T 4 2 (1— e AET)) < e T>+X (20)

A
Forany e’ > 0, choosmgs such that £ < ¢’, one can find some T, > T so that |z (t)| < & fort >

T.,. This proves that 1 (¢) — 0, Whereupon we can conclude that, for such initialisations, Pr(t) —
AJr b

As a brief digression: in Lemma A. 2, we used that ||a:()|| is bounded by some constant . We stated
that this is guaranteed if | (0)] is bounded and f ||0 — 0|l ds < oo. This is seen as follows.

Lemma A.3. Under assumptions A1-A7 — espec1ally, Lipschitz smoothness of the Hessian and
gradients, and the convergence condition f ||0 t) — 0|, dt < oo with A, < 0 — the response

r(t) remains bounded.
Proof. Take x(t) := r(t) — (—AL b,). The nonzero eigenvalues of A are uniformly bounded

away from 0 on 87 and b is bounded (A4), so bounded x(t) implies bounded »(t). Consider that,
for £(t) = A(t)x(t) + y(t) we have:

3g(t) can be interpreted as the error between 7(¢) and the asymptotic influence functions formula.

14

d
lzl Szl = 2" Az + 2’ Az +aly < |Afz]* + |z][y]. (21)
N — —
<0

We used the assumption that A_ < 0, since we are considering flow trajectories that converge to
local minima. It follows that %

(1)) < el A >ds(||w(0)||+ / ly()] ef:fouA<s'>|ds/dt/>
t'=0

t
< eliolA |d3<||a:(0)||+/ ly(@)] dt’)-
/=0

This is bounded if f ||A s)| ds < oo and f ||y)| ds < oco. If the first condition holds and
b, is in the column space of A, (A4), then from the definition of y(¢) the second condition
simplifies to f:o [b(t) — b | ds < 0. Under Lipschitz smoothness assumptions for the Hessian
and perturbation, these conditions are clearly guaranteed by the convergence rate condition on the
model weights LO:OHO(t) — 0] ds < oo as claimed. m

t

(22)

oo |

Lemma A. 2 proved that, provided r(0) is bounded and the model weights 6(¢) converge to a
local minimum, the response vector field 7(t) evolvmg accordmg to the flow ODE converges to
influence functions. In particular, we found that |z (¢)| < e Ter) + 5, with A the infimum
over nonzero eigenvalues of the Hessian at points in §7 (assumed to be bounded away from 0) and
~ the maximum possible ||z (t)]| (also bounded given Lemma A. 3). Assuming Lipschitz smoothness
and bounded A(t) (assumption Al), |A ()| < L;[|0(t) — 0| and |b(t)| < Ly|0(t) — O || with
L, L, bounded constants. Hence, T, is upper bounded by a constant multipled by the maximum
time required to guarantee that ||9(t) —0_|| < ¢’. Therefore, provided A6 holds — i.e. flow trajec-
tories converge uniformly in the neighborhood of the local minimum — Pr(¢) initialised therein also
converges uniformly. This property will be important later in the proof.

We have seen that the influence ODE converges under mild conditions. Our next task is to use this
result to prove the convergence of the influence SGD iterates described by Eq. (12). To do this, we
invoke classic arguments made (among others) by V. S. Borkar [25].

We can rewrite Equation (12) in the following way:
N
<9t+1> _ — % N2y Vi, +nM,
i1 (1-%3N v, (o,))rt + %wk(at) +n,N,

<Mt): +VL(6,) — % _, 05VL,(6,)
N, [N v2,0,)) - LN azwnwt r,— [LVL(0,) — 56LVL,(6,)])

Since the batching variables are i.i.d. and the dataset is fixed, (M,, N,) is a Martingale difference
sequence with respect to the increasing family of o-fields

F, :=0(0,,,Tm,m < n) (23)

n m’ ' m?

That is, E((M,, 1, N, 51)|5‘“) =0 a.s., n > 0. Furthermore, (M,,, N,)) are square integrable with

E(|M,,.1]? + || a2 %) < K(1+16,]% + |r,]) as., n > 0, for some constant K > 0. This
allows us to use standard martingale convergence results to connect the SGD iterates to the ODE
solution as t — oo.

We can think of the SGD trajectories as a noisy discretisation of the corresponding gradient flow
ODE, witht,, := ZZ: o "k Tepresenting the amount of time that the process has been running for. Let

T = {t, : n € N} be the corresponding to SGD steps. Let (6,,,7,,) _ denote the SGD iterates,
generated by Eq. (12). Define rgqp (t) := 7, for t € [t,,, ¢,). Finally, let (6™ (t), ™ (t)) for t €
[t,,,, 00) be the solution to the gradient flow ODE in Eq. (13), initialised at (8™ (¢,,,), r™(¢,,)) =
(0,,,7,,)- By [25, Lemma 2.1], since the noise is a martingale difference sequence and given

assumptions A5-A6 for any finite T’ € R™:

15

lim sup |rgep(®) —r™ (@) =0 a.s., (24)

M0 telt st +T]

so there exists m € N such that sup,e;y 47y LorlTsap(t) — 7™ (t)] < € for all m > m? [25].
This remains true if we can increase m} to be big enough that the time interval ¢, —¢t,,_; <
TV m > m*, whereupon we have that

U [t + Tot,, +2T] = [t + T, 00). (25)
m:m>m*

Since 6, — 87, we can make m yet greater to guarantee that the SGD iterates (6,,) _ .
are in the tubular neighborhood where convergence of gradient flow, and therefore the resp(;nse,
is uniform (assumption A6). Recall our earlier definition of the set R* := {rz(0*) + ry(0*) :
0" € 87, rp(0) := —V2L(0)TVL,(0),ry(0) € Null(V2£(0))}. This corresponds to influence
functions at the loss function minima, plus an unspecified component parallel in any degenerate
directions. Let P,, denote the unique asymptotic projection operator when gradient flow is initialised
at (0,,,r,,) and run for infinite time. From the uniform convergence of gradient flow, we have that

m)'m

AT, st Vi> T,

inf 7™ (t) — 7| < inf | [|B,r™(t) = B,r*| + (I - P,)r" () — (I — B,)r|
T™ER* reR*

=0

(26)

= inf
r*ER*

P, rm(t)— P,r*| <e.

The second term vanishes because within the set &* the null space component is unconstrained;
we make no claims about its convergence. Hence, it can always be exactly fitted to (I — P,,)7r™(t).
Meanwhile, the first term is can be made less than e due to convergence of ™ (t) perpendicular to
flat directions, which we already proved.

Choose any n such that ¢, > t,.. + T.. Then choose some corresponding m > m* such that ¢, €
[ty + Tty t,, + 2T.], which is always possible due to Eq. (25). Combining the previous inequalities,

Er’m
inf |lr, —7*| <|r, —r™(,)|+ inf [r™(t,) — 77| < 2e. (27)
r*cR* = " reR

SGD — ODE

ODE — influence functions
Take the union over all ¢,, > ¢,,. 4+ T, we can finally conclude that
r, — R*, (28)

as claimed. This completes the proof. B

A.2 Proof of Theorem 3: Asymptotic optimality of IFs with Boltzmann distributions
This appendix provides a proof of Theorem 3, restated below for convenience.

Given an energy function £(6) — €£,,(0) and an inverse temperature parameter 3 € R*, the Boltz-
mann distribution is:

¢~ BL(6)—<£,,(6))
Z(B,e)

Let PP denote the corresponding measure. Let 8% := {0 : £(0) = infgpa £(0)} denote the set of
global minima of the loss function (c.f. §7* above). Consider the following set of assumptions.

P2 (6) = 2(8,¢) = / ¢~ BL0)-244(0) g, (29)

Al. The derivatives dr;%,(bs) are bounded for n € {1,2,3} and ¢ € [1, N].
A2. The nonzero eigenvalues of the Hessian V2.£(6) are uniformly bounded away from zero on 8%..
A3. The perturbation ¢;(8) is constant on 8%..

A4.0 — £(0) — el (0) is Lebesgue integrable for all € in some neighbourhood of 0.

AS. £(0) attains its minima, i.e. 8% = {6 : £(0) = infy £(0)} is not empty.

16

Theorem A.4. (Asymptotic optimality of IFs with Boltzmann distributions.) Let X C
C'(R¢,R?) denote the class of bounded vector fields r such that 7_(6) := 6 + er(0) is a C*
diffeomorphism for all sufficiently small € > 0. Define the functional
.1

f@x)zgg;EDm(n#Hﬂe@, (30)
equal to the asymptotic KL divergence between the transformed base measure TE#POﬁ and the
true perturbed measure P?. Consider the subset of maps Ry := {r € R : (0) = r;(8) for 0 €
8%} C R, for which the map is equal to influence functions on the minimum manifold. Then, given
any r € Ry and any ' € R \ Ry, there exists some a € RT such that

F(rye) <F(r'ye) V |e]<a. (31)
Moreover, the set Ry is non-empty, so such diffeomorphisms do indeed exist.
Proof. We begin with the following lemma.

Lemma A.5. For small enough ¢, there exist continuously differentiable bijections in the class T
such that T,(0) = 0 + er;p(0) for0 € S .

Proof. We start by defining a function T, that we will show has the claimed properties. Let A ;, € R
denote the smallest nonzero eigenvalue of the Hessian V2.£(8) on the minimum manifold S ;, which
is bounded away from 0 (assumption A2). Define the following scalar transformation f : R — R,

—2 4+ 2 ifr< A,
A2, A min?
z) = in min 32
fle) {% otherwise. (32)

Note that f is Lipschitz continuous with constant 1/A\2, . For compactness, let A := V2.£(6).
Denote the operation of f on a symmetric matrix A by f(A) := QT f(A)Q where f is understood to
act separately on each of the eigenvalues on the diagonal of A. Observe that, if A is positive definite
and all its eigenvalues are greater than or equal to A, then f(A) = A~! and we recover the regular
matrix inverse. Similarly, if A is positive semi-definite with all non-zero eigenvalues greater than or
equal to A, and v is a vector in Span(A), then A*v = f(A)v. Hence, if we take T4 = 6 +
er(e) withr(0) = f(V2L£(0)) VL, (), this clearly satisfies 7(8) = r1(0) = V2L£(0)T V£, () for
6 € S, (Assumption A.3). Hence, we only need to show that it’s a continuous bijection. To this end,
we will use the following theorem*:

Lemma A.6. (Hadamard’s Global Inverse Function Theorem S. G. Krantz and H. R. Parks [26,
Theorem 6.2.8]) Let h : R? — R? be a continuously differentiable function. If:

1. h is proper (for every compact set K C R%, h~!(K) is compact), and
2. the Jacobian of h vanishes nowhere,

then h is a homeomorphism (continuous bijection with a continuous inverse).

We will first show that the Jacobian vanishes nowhere. The Daleckii-Krein Theorem [27, 28] gives
us the following:

Vi(A)=QR0Q'VAQ)QT, (33)
where © denotes the Hadamard matrix product, (A © B),; := A;;B,;, and
FD=F ()
Ry =4 rn, TNEA (34)
() otherwise.

Note that sup; ;|R;;| < >\+ The following is true:

AViAle
P

min

”vzf(A)”2 = ”RG QTVAQ”2 < \% dparam Sup‘R2]| ”VZAHZ < \% dparam (35)
zf.]

4Presented for the specific case of the standard topology on R%asas

17

Here, |V; Ay denotes the Frobenius norm of 3-V2£(6), which is bounded by a constant if the
third derivative of the loss is bounded (assumption A.1).

The Jacobian of this transformation is:
VT.(0) =1+ SV(f(VQL')VKk) =1+ e[Vf(V2£)V€k + f(VQZI)Vzék], (36)

where I denotes the d, oy X dyaray identity matrix. Given the previous, the spectral radius of the
term in square brackets is bounded under assumptions A1-A2, so the Jacobian is positive definite at
small enough €. This means that T, is locally invertible everywhere for small enough €.

To show that T is proper, note that T, : R%se — R%ssn is proper iff lim,, , ||7.(x,,)|, for
every sequence (acn)f;’:1 s.t. ||z, |, = oo as m — oo. To show the latter, note that V2£ and V¢,
are bounded (Assumption A.1), and so is f(V2£(6)) (since f is Lipschitz), and hence r(6) =
f(V2L)Ve, is also bounded. Hence, lim,,_, | x,, +er(zx,) |, = coas |z,, [, — oo as required,
and by the Hadamard’s Theorem, T, is a homeomorphism. ®

Equipped with Lemma A. 5, for small enough € we can apply the change of variables formula.
Since the KL-divergence is reparameterisation-invariant, we have that Dy [Ta # POB I Pf] =

Dy, [TE_#} T4 F{]ﬂ [TE_# P#] = Dy, [Poﬂ [TE;Z P#] for any continuously differentiable bijection 7.
Note that T} P has a density given by
e~ BL(T.(0)—£,(T.(0)))

pA(T.(0))| det VT.(6)| = Z(B,¢)

| det VT,(0)],

Hence, we have that:

%DKL (1., B P = %DKL (R T4 Y]

1, 5(6)
=3 e IOg(pWTE(e))OMet VT€<0>|> 0 (37

g
5 1 1 5
= [pE(O)(£(T.(0)) — ct,(T.(6)) + 3 log det VT () | d6 + B(}[[p5] +10g Z, (e, 8)).
e I Y B B 1 B
Here, # [po i= — [py(6)logpy (0) dO denotes the entropy of py. Note, the terms 3 (}[[po] +
log Z, (¢, 8)) do not depend on 7. Moreover, we have that limg_, %}[[pg] = 0. Given assump-

tions A1-A2 used to keep the transformation locally invertible, the eigenvalues of VT_(6) are
bounded by a constant independent of 6 so limg_, % Ik poﬁ () logdet VTI.(0)) = 0.

Putting in T_(6) = 6 + 7(8), let us now consider the expectation Eq pp [£(0+er(0)) — el (0 +

er(60))]. Below, we will use Einstein summation notation, with the implicit understanding that one
should sum over repeated indices. Taylor expanding in € with 0 fixed,

2
£(0+er) = £(6) +20,£(0)r; + S0,,6(0)rir; + RE (6,2, 7). (38)
Here, R (0,¢,71) = %6”-,65(0 +¢&'r)r;r;ry, is the error term,’ for some ¢’ € (0, ¢). Similarly,
£0,(0 + er) = ££,,(8) + 20,4, (0)r; + R* (0, ¢, 1), (39)

where this time Rf’“ (0,e,7) = %3”[,{(0 + ¢&'r)r;r;. Since the first three derivatives of £ and £,

£
’ . . R$(0,e,7) . R*(0,e,7)
as well as r and r’, are bounded a.e. (assumption Al), lim__,, =23 and lim__,, =5~

bounded by constants independent of 8. It follows that

are

>With a slight abuse of notation, we included 7 as an argument to emphasise that the remainder term will depend
on the particular choice of function 7. Once the function r is fixed, the arguments of R are of course 8 and €.

18

Ee~p§ [£(0+er)— el (0+er))

g2 (40)
=Eqg ¢ £(0) +e0,£(0)r; + 381-5}(3(0)7“1-7“]» — el (0) — 20,4, (0)r; | + O().
Next, consider the log partition function, log Z,(¢, 3) := log J e P(£(0)—¢i(9) 9. Applying the
Laplace approximation [20], we find that:

1
lim —

B—00 5

Assembling the various pieces, we then have that:

F(r,e) = lim By c[£(0) —t,(60)] = inf [£(0) —t,(6)] +

6cRparan

log Z,(c,8) = — inf [£(6) —&t,,(6)]. (41)

O€cR%paran

5 1 1 5 (42)
e® lim By o [iaiajz(e)rirj — 8i€k(0)ri] +0(e%).

B—00

We dropped the limg , Ee~p§ [0;£(0)r;] term since the the weak limit Py has support on the
minimum manifold S, = {0 : £(0) = infg ga,.... £(0)}, where 0,£(0) = 0 by definition. Since
0,£(0)r; is continuous and bounded, the limit of the expectations is the expectation under the weak
limit.

Let us now consider some r € Ry and some ' € R \ Ryp. Since r1(0) := V2L£(0)TV{,(0)
directly minimises the square bracket on the second line of Eq. (42) for each 8 € S ., we have that

F(rye) —F(r',e) =

1 1
500,60, — 0.,0)r, — (50.0,6(6)rir; — 0.6,(6)r7) |

limE, ; [
O~ 10
B—o0 Po |2 (43)

=—A<0
. e ’ / e ’ /
+&3 61520 Eg ¢ [Rf(@,s,r) — R*(0,¢,7) — Rf'(0,¢e,7") + R*'(0,¢,r)]

Every remainder term is bounded by a constant independent of 8 and &, so the magnitude of the
expectation on the bottom line is bounded by a constant C' € R*. Hence,

F(rye) —F(r'e) < —Ae? + Ce?, (44)
whereupon F (r,e) < F(r’,) is guaranteed for |¢| < 5. This completes the proof. m

Extra remark. In the special case that the perturbation does not introduce any new global minima/
break the degeneracy of the minimum manifold, then the KL divergence actually vanishes up to
o (53) so we have an even stronger result. Assume that the perturbation is constant on S (assumption
A3). Consider the following:

nf [£(68) — e,(6)] =

£(67) — 2,(60%) + & inf [30,0,6(0%)15(0),715(6%), — D.64(6)r5(6%),| +0) (45

0*cS,

1
= £(0%) —el, (%) — 552 L [Ve,(6%)"V2£(6%)"VEL(0%)] + O(e2),
£

where we Taylor expanded in € and used the implicit function theorem. The infimum will cancel
with the expectation on the lower line of Eq. (42) if its argument V£, (8*)"V2.£(0%)" V¢, (6%) is
identical for all 8* € S .. This will not be true for general perturbations — just a specific class that
does not break the manifold symmetry at O(e?).

To provide an intuitive summary: influence functions are always the best local transport map at
O(£?), parameterised by 6 — 6 + 7(0). But they are also the best non-local map, making O(£?)
terms vanish so that the KL divergence is truly (9(53), in the special case that the perturbation does
not induce symmetry breaking of the minimum manifold at @(e?). This condition is formalised by

19

V4, (0°)TV2.£(0%)T VL, (6*) being constant for all 8* € S, — which is also intuitive because it
gives the change in ¢;, at the new minima.

B Derivation of Influence Functions

The purpose of this appendix section is to provide a standalone “classical” derivation of the influence
functions framework for the “classical” training data attribution task. We state the Implicit Function
Theorem (Section B.1); then, in Section B.2 we introduce the details of how it can be applied
to predict local changes in the minima of a loss function £(g, 8) parameterised by a continuous
hyperparameter € (e.g. £(g,0) = £5(0) — €£,,(0)), so that € controls how down-weighted the loss
terms on some examples are). This derivation largely mirrors that in [7, Appendix A].

There appears to be a prevalent misconception that influence functions can only be applied to convex
loss functions [14]. This appendix hopefully makes clear that they can be applied to a loss function
with multiple minima, as long as each minimum is a strict local minimum; influence functions in
that case will simply predict the change in the corresponding local minimum. The rest of this paper
then makes formal what influence functions do in the more general and complex setting of stochastic
optimisation for general loss functions with possibly degenerate minima.

B.1 The Implicit Function Theorem

Theorem 1 (Implicit Function Theorem S. G. Krantz and H. R. Parks): Let F' : R® x R™ — R™ bea
continuously differentiable function, and let R™ x R™ have coordinates (x, y). Fix a point (a, b) =
(@qy ey Gy by, oy by,) With F(a, b) = 0, where 0 € R™ is the zero vector. If the Jacobian matrix

V,F(a,b) € R™*™ of y = F(a,y), defined as

[V, Flab)], = 5 @), (46)

is invertible, then there exists an open set U C R"™ containing a such that there exists a unique
function g : U — R™ satisfying g(a) = b, and F(x,g(x)) = 0 for all € U. Moreover, g is
continuously differentiable.

Remark 1 (Derivative of the Implicit Function): Denoting the Jacobian matrix of — F(x,y) as
V. F(x,y), the derivative g—g : U — R™*™ of g given by Theorem 1 can be written as:

d0g -1
5 = [Vl (@ g@)] V F(z,g())] (47)
This can readily be seen by noting that, for x € U:
dF
F(z',g(x') =0 Vo' eU = W —0. (48)

Since g is differentiable (by Theorem 1), we can apply the chain rule of differentiation to get:

_ dF@.g(x) o9(a)
dz ox

=V F(x,g9(x)) + V, F(z,g(x)) (49)

Rearranging gives equation (47).

B.2 Applying the implicit function theorem to quantify the change in the optimum of a loss

Consider a loss function £ : R” x R™ — R that depends on some hyperparameter € € R™ (e.g.
the scalar by which certain loss terms are down-weighted) and some parameters 8 € R™. At the
minimum of the loss function £(e, 8), the derivative with respect to the parameters 8 will be zero.
Hence, assuming that the loss function is twice continuously differentiable (hence g—g is continuously
differentiable), and assuming that for some €’ € R"™ we have a set of parameters 6* such that

‘?,—f (e’,6*) = 0 and the Hessian ‘ng (&', 8*) is invertible, we can apply the implicit function theorem

20

to the derivative of the loss functlon ae :R™ x R™ — R™, to get the existence of a continuously
differentiable function g such that 2£(e, g(€)) = 0 for € in some neighbourhood of €.

Now g(&) might not necessarily be a minimum of 8 — £(e,). However, by making the further
assumption that £ is strictly convex we can ensure that whenever %—g(s, 6) =0, 0 is a unique
minimum, and so g(e} represents the change in the minimum as we vary bold{e). Alternatively, if
6* = g(e’) is a local minimum, then g(&) will give the shift in this particular local minimum as we
vary € in some neighbourhood around &’.

We can make this more precise with the following lemma:

Lemma 1: Let £ : R™ x R™ — R be a twice continuously differentiable function, with coordinates
denoted by (g,0) € R™ x R™, such that 8 — £(g,0)) is strictly convex Ve € R™. F1x 2 point
(¢/,6*) such that %5 (e’,0*) = 0. Then, by the Implicit Function Theorem applied to 2%, there
exists an open set U C R™ containing 8* and a unique function g : U — R™ satisfying:

* g(e’) = 6%, and

* g(e) is the unique minimum of @ — £(e,0) foralle € U.

Moreover, g is continuously differentiable with derivative:

da(e) _
Oe

2 Py
O e (ge >>] L AETE) (50)

Again, dropping the assumption of strict convexity, and replacing it with the assumption that (¢, 0)
merely yield a local minimum, gives a similar conclusion, but only guarantees existence of a function
g such that g(¢) is a local minimum for all € € U.

Equation (50) might still look a bit distinct from the influence function formula. The one missing
piece is restricting ourselves to look at £ of the form £(g,0) = £,(0) — ££(0), matching the loss
interpolations we consider in the main paper body.

Remark 2: For a loss function £ : R x R™ of the form £(e,0) = £,(0) — ££(6), %(s,g(e))
in the equation above simplifies to:

02L oY
(e9(0) = —55(9(0)) (51)
The above give the final influence functions formula. Namely, for the loss of the form:
1 & 1 &
O=—=—> £,(0)——=)> ¢ (0)c (52)
Lp 1
we can substitute 2% Ba & = ZM) 83961 (0) into (50) to get the existence of a function g with the

properties given by Lemma 1 w1th the derlvatlve taking the following familiar form:

9g(e) _ 0%<C
e A A v Z 0% (53)
and, ate = 0:
-1
dg 324’@ M9
50 = |t] 31 590 54

C Additional experimental results

C.1 Investigating leave-one-out

21

In Figure 9, we show that d-TDA methods are able to approximate the leave-one-out (LOO)
distribution over measurements rather well. We simply need a very large number of samples from
each distribution to get a good empirical estimate of the distribution in order to observe this. The
setting for the LOO experiment was training an MLP on the UCI Concrete dataset (see Section E.1
for architectural and training details). We plot the measurement (model output) for a fixed query
input for 500 models trained with different random seeds. For each one of 4 removed (leave-one-
out) training examples, we retrain a model with each random seed without that example to obtain
the ground-truth measurement shown on the z-axis (left & middle plots in Figure 9). To obtain the
‘predicted’ measurement, we compute the predicted change to the measurement of the model trained
on all the data using (exact) unrolled differentiation; this is shown on the y-axis (left & middle plots
in Figure 9).

Samples Means
1.0 Pearson Correlation E
0.2 —— Mean-OT distance
e) 0.8 4—/MSE o,
o ¢ £ = 10
5 ‘4% 7 0.6 F
- 1 o B .6
% —0.4 ‘!; = \ L
o b A .
& oé = —0.3900 0.4 4 E 10 3
~ —0.6 3 - i —0.3925 F
«/of - ® | 0.2 4 3
Removed example ® - —0.3050 . I
9o O o%eo 2 : ‘ 0.3975 AM—I\‘N? 10~
—0.8 "= 1ews . I 0.0 - :
T T T T T T T T T T
—0.6 —0.4 —-0.2 —0.6 —0.4 —-0.2 1 100 200 300 400 500

Num. samples (seeds)
Measurement by models trained on different leave-one-out subsets

Figure 9: There is signal in leave-one-out. Left: Measurements (model output) on a fixed query
example predicted by a d-TDA method (unrolled differentiation) when different singular examples
are to be removed from the training set against the actual measurements on models retrained without
those examples. The distributions of measurements are noisy, and very similar for each removed
example, hence the LOO correlation is close to 0. Middle: If we look at the means of the distributions,
we see that the measurement distributions are subtly different, and the d-TDA method is able to pick
up on the shift in mean. The differences are tiny, however; note the scale on the zoomed-in plot. For
reference, the mean of the measurement distribution with model trained on the full dataset is shown
(on the y-axis) with rectangles; we see that the d-TDA method improves upon using the mean of the
original distribution. Right: Correlation between the means of the true measurement distributions
after retraining, and the means of the predicted distributions, against the number of seeds we use
to empirically estimate each distribution. As the number of seeds goes up into the hundreds, the
correlation approaches 90%. The seeds (determining data ordering and initialisation) were chosen
independently for the fully trained model and the retrained models, indicating that we don’t need to
correlate the retraining trajectories with the fully trained models to get good LOO scores [10].

C.2 Distributional Linear Datamodelling Score (LDS)

In Figure 10, we show distributional LDS scores using different notions of distributional influence. It
can be seen that different distributional LDS metrics do reveal differences between methods that can’t
be seen when only using the mean influence. For instance, the performance difference when using the
full Hessian vs. block-diagonal Hessian for influence functions only becomes apparent when using
the Wasserstein LDS metric. Similarly, EK-FAC with and without score normalisation (described in
Section C.2.2) perform identically (up to numerical accuracy) on mean influence LDS, but we see
that the normalisation helps slightly when using the Wasserstein and variance change influence LDS
metrics. Lastly, it’s clear that all methods except for unrolled differentiation fall short of being able
to capture the variance change in the measurement distributions in the settings considered.

For future work, we would strongly recommend using the Wasserstein LDS metric in benchmarks.
It’s a natural choice from a theoretical standpoint — Wasserstein distance is able to capture differences
in distributions that go beyond changes in mean. It also makes sense intuitively as a notion of
influence in stochastic training settings. Lastly, it’s easy to implement — it differs only marginally

22

from the mean LDS metric — and empirically seems to capture interesting information missed by
mean LDS.

Mean Marginal Wasserstein Variance Change

° ©79.3%+1.1 #56.2%+2.2 #2.5%+2.5 - EK-FAC Influence
%E 79.2%+1.1 56.8%+2.2 3.5%+2.5 I EK-FAC Influence (Normalised)
O 095.7%+0.4 085.6%+1.0 ®80.2%+0.8 F Unrolled Differentiation

I .é7.1%i0,7 I .65.I8%j:1.7 I.3.4{“%j:2.8 I | Exact Hessian Influence
oM 084.7%=+0.7 857.7%=1.8 #9.0%=+2.8 - Block-diagonal Hessian Influence
§§ ®78.0%=+1.2 #53.8%+2.2 #3.4%+2.5 - EK-FAC Influence
85 T7.7%+1.2 54.4%+2.1 4.4%+2.5 I EK-FAC Influence (Normalised)

.96.0%10.3 .85.4%:&1.0 .84.9%10. Unrolled Differentiation
0 100 0 100 0 100

Rank Correlation % (Distributional LDS)

Figure 10: Distributional LDS. The distributional LDS scores using different notions of distribu-
tional influence (mean, variance change and Wasserstein). Each axis row corresponds to a different
training setting, and each nested row to a different d-TDA method.

C.2.1 Influence rankings are different according to different notions of influence

Using distributional LDS with notions of influence other than mean influence would be in vain if
they produced the same orderings over (groups of) datapoints. We observe, however, that this is
not the case: Wasserstein influence and variance influence produce meaningfully different rankings,
presenting a different challenge for d-TDA methods. This is demonstrated in Table 1 below.

Table 1: Similarity between influence rankings for random subsets of the training dataset when using
different notions of distributional influence. The distributional influence (and the corresponding
rankings) are empirically estimated by retraining. “Top 10% overlap” refers to the fraction of the
10% most influential subsets that is shared by rankings according to different notions of influence.
“Footrule distance” represents the total number of places each element in one ordering would have
to be shifted by to match the other ordering. The reported footrule distances and top 10% overlaps
are the average over all query points

|[Mean| vs. Wasserstein influence |Mean| vs. Variance influence
Setting Footrule distance Top 10% overlap Footrule distance Top 10% overlap
Concrete | MLP 27.4 (max 200) 47% 129.7 (max 200) 8%
MNIST | MLP 32.2 (max 200) 54% 106.3 (max 200) 11%

C.2.2 Normalised Hessian-approximations for influence functions

One previously observed issue when using Hessian approximations such as K-FAC with influence
functions is that, although the correlation to ground-truth measurements is good, the scale in the
predicted change is often off by a large factor [7]. This deficiency is not captured when looking
at classic (mean) LDS metric, as the metric is invariant to the scale of the predicted change in
measurement. However, the scale of the predicted change matters when we rank subsets according
to influence using other notions of difference in the distribution. Hence, distributional LDS metric
can detect methods that are off by a large scale factor in their predictions.

To alleviate this limitation of influence functions on distributional influence tasks, we propose a
method to empirically normalise the Hessian approximation. Concretely, we do so in a way that
doesn’t require any retraining, unlike hyperparameter sweeps done to maximise an LDS score.

Concretely, we note that for a Hessian approximation H to the Hessian H , for any vector v in column
space of the Hessian, we would want:

23

| H*Hv—v |2 ~ 0. (55)

If the Hessian approximation is a good approximation to the Hessian, but is off by some scale factor,
i.e. aH ~ H for some o, we can find a by trying to minimise:

Z” aH*Hv; —v; |, (56)

i

for a set of vectors v, that we expect to be in the column space of the Hessian. This is exactly our
proposed normalisation method. For the set of vectors v;, we use the per-datapoint training loss
gradients, as we would expect them to be in the column space of the true Hessian (otherwise, the
response would diverge as training goes on, as shown in our theory section). We can compute Hv, —
a Hessian-vector product — relatively cheaply even for large models, at roughly the cost of a forward-
backward pass, by using torch. func.hvp. Lastly, Eq. (55) is a second-degree polynomial in «, and
so can be solved analytically. Hence, we don’t need to run optimisation to find the normalisation
factor c. At the end, we simply multiply the Hessian approximation by the normalisation factor «
to get the normalised Hessian approximation. We see minor improvements in the distributional LDS
scores from using the normalisation factor, but we observe that the normalisation factor is necessary
for the predicted changes in distribution by EK-FAC influence to look visually reasonable.

C.2.3 Identifying examples responsible for high-variance on MNIST

Query point

Change in mean
Ng -

o Q n'\\/
1 1 1
Remove

. ° e | top-2 by
Top by variance decrease: variance
Top 1 Top 2 Top 3 Topd T Top 6 Top 7 Remove
op op op op op 5 Top op
Top by mean change: ° ° | top-2 by
mean
5 3 H T | — change
" w 0

Top 1 Top 2 Top 3 Top 4 Top 7 Top 22 ir‘ 2 .
Change in variance

Figure 11: d-TDA for MNIST. d-TDA with influence functions (see Section 4) successfully deter-
mines which training examples to remove for a decrease in measurement variance. These differ to
examples identified for a change in mean. Different d-TDA variants capture diverse information about
the training data. This experiment uses a multi-layer perceptron (MLP) trained on MNIST.

C.2.4 Data Pruning Results

24

Train on
N data o0 o Pno ° o

Remove 5000 that
decrease loss ® o 00 o) e o @
for this model

Distributional:
Remove 5000 that
e o o e (X} ° °
decrease loss .
on average T T T T T T T
0.50 0.55 0.60 0.65 0.70 0.75 0.80

Validation Loss

Figure 12: Validation loss improvements on CIFAR-10 with a SWIN Vision Transformer from IF
data pruning. For matching results for accuracy see Figure 6. We compare two approaches to subset
selection: 1) traditional TDA with a fixed seed, where for each random seed we remove 5000
datapoints that are predicted to decrease the validation loss the most for the model trained with that
fixed seed; and 2) distributional-TDA, where for each model we remove 5000 datapoints predicted to
decrease the validation loss the most on average. Both methods lead to validation loss improvements
upon the baseline trained with all data, but d-TDA leads to a greater average improvement. Black dots
show accuracies for individual models (with seeds indicated in gray), whereas coloured diamonds
indicate <> the average result for each method.

D Related Work

Influence Functions Influence functions were originally proposed as a method for data attribution
in deep learning by [2]. Later, [29] explored influence functions for investigating the effect of
removing or adding groups of data points. Further extensions were proposed by [30] — who explored
utilising higher-order information — and [31], who aimed to improve influence ranking via re-
normalisation (different from our normalisation). Initial works on influence functions [2, 29] relied
on using iterative solvers to compute the required inverse-Hessian-vector products. [3] later explored
using EK-FAC as an alternative solution to efficiently approximate calculations with the inverse
Hessian. [14] investigated the empirical limitations of influence functions for predicting changes
in measurements in the leave-one-out setting, without taking into consideration the distributional
aspects of the training algorithm. [11] also investigated the limitations of influence functions, and
propose perspectives on what if not counterfactual retraining they might actually approximate. In this
paper, we propose alternative perspectives, which are truthful to the underlying goal of predicting
outcomes of coutnerfactual retraining with data removed.

Unrolled differentiation Orthogonally, pointing out the limitations of influence functions, [8, 9, 10]
have proposed to use unrolled differentiation for computing influence instead. For SGD trajectories,
one can apply the chain rule of differentiation to obtain a closed-form formula for the unrolled
differentiation response:

T-1 T-2 N
=Y ok (H (Z 5iv2e, ()) %wzk 0,) = ry. (57

e=0 t=0 i=1

do,(e)
de

K-FAC and EK-FAC The need for approximate computation with the training loss Hessian in deep
learning is evident, and Kronecker-Factored Approximate Curvature (K-FAC) has been one of the
best performing Hessian approximations in TDA that can be run on a large scale. K-FAC was origi-
nally proposed by [32] to approximate the Fisher Information matrix for natural gradient descent.
It was initially formulated only for multi-layer perceptrons, but has since been generalised to any
architecture with linear layers with weight-sharing (which includes convolutional neural networks,
recurrent neural networks, and transformers) by [33]. [34] introduced eigenvalue-corrected K-FAC
(EK-FAC), which corrects K-FAC by using the optimal diagonal approximation in the Kronecker-
factored eigenbasis. This was originally done in the context of approximate natural gradient descent,
but [3] later used EK-FAC in the influence function approximation to study generalisation in large
language models.

25

E Experimental Details

E.1 Settings
We work with the following training settings in the empirical investigations in this paper:

Concrete | MLP. In this setting, we train a multi-layer perceptron (MLP) on a (1D target) regression
setting on the UCI Concrete dataset [35]. The MLP with an input size of 8, hidden dimensions of
[128, 128, 128], and GeLU activation functions, was trained using Stochastic Gradient Descent
(SGD) with a learning rate of 0.03 and momentum of 0.9. We applied a weight decay of 10~° and
gradient clipping at 1.0. The model was trained for 580 iterations using a mean squared error (MSE)
loss function and a batch size of 32. The initial 58 iterations (10% of the total) are dedicated to a
linear learning rate warmup from 0. For all the retrained models with the data removed, we keep the
same number of training iterations as the original model, no matter how much data is removed.®

Concrete | Tiny MLP. This setting is the same as the previous one, but we use a smaller MLP with
hidden dimensions of [64, 64], which enables exact Hessian inversion.

MNIST | MLP. For the MNIST | MLP setting, we train a multi-layer perceptron (MLP) on the
MNIST dataset [36]. The MLP takes flattened 28 x 28 images (input size 784), has hidden dimen-
sions of [512, 256, 128], and an output size of 10. The model was trained using SGD with a
learning rate of 0.03 and momentum of 0.9. We applied a weight decay of 10~3. The model was
trained for 1560 iterations with a cross-entropy loss function and a batch size of 64. A linear learning
rate warmup from O was applied for the initial 5% of the total iterations.

SWIN Vision Transformer | CIFAR-10. We train a SWIN Transformer as described in [24] with
2 sets of blocks with 4 layers each, with channel dimensionality 128 — 128 and 128 — 256 respec-
tively. We use attention head dimension of 32, with a patch-size of 2, window-size of 4, and 30%
dropout applied to the final layer (head). We train the model with AdamW with a learning rate of
1074, weight decay of 107}, linear warmup for the first 5% of training iterations, a cosine schedule,
and a total of 200000 training iterations with a batch-size of 64. For the dataset, we use the full 50000
images from the train set of CIFAR-10.

Latent Diffusion Model | ArtBench. For training the model, we follow the ArtBench setting with
a Latent Diffusion Model as described in Appendix J in B. K. Mlodozeniec, R. Eschenhagen, J.
Bae, A. Immer, D. Krueger, and R. E. Turner [7]. The only difference is that we train 5 models with
different random seeds on the full dataset.

E.2 Influence computation

For influence functions computation, we rely on the following methods:

Exact Hessian We use curvlinops [37] to compute the exact Hessian for the training loss. We add
a damping factor equivalent to weight-decay, so that the Hessian corresponds to the actual training
loss with the ¢, penalty.”

Block-diagonal Hessian We compute the full exact Hessian as described above, but then extract the
per-parameter (weights and biases of each layer) block-diagonal parts of the Hessian. The inverse of
a block-diagonal matrix is the block-diagonal matrix of inverses of each block, which allows us to
invert the Hessian block for each parameter separately. For this, we use the same solver and settings
as for the exact Hessian.

EK-FAC Eigenvalue-corrected Kronecker-Factored Curvature (EK-FAC) [32, 33, 38] can be viewed
as a Kronecker-factored approximation to the Hessian. We use the curvlinops [37] implementation
of EK-FAC, with the slight modification to compute the pseudo-inverse rather than regular inverse,
as our theory suggests we ought to do. This amounts to thresholding eigenvalues, and only inverting

This is so that the “trajectory length” will be roughly equivalent for trained and retrained models.

"Note that, without the ¢, penalty term, the Hessian will not in general be positive semi-definite when training
has converged. Dealing with weight-decay is a tacit detail that is not often mentioned in the literature. For inversion,
we use the default pytorch pseudo-inverse solver torch.linalg.pinv with relative tolerance of 10~# and absolute
tolerance of 0.

26

the ones above a certain threshold, while setting the ones below it to zero. This is because, due to
numerical errors, 0 eigenvalues might actually be compute as very small values, which after inversion
will dominate the inverse matrix spectrum. The threshold is set relative to the largest eigenvalue
for each layer, and we set it to 101=*} times the largest eigenvalue by default. Just as for the exact
Hessian, before taking the pseudo-inverse, we add a damping factor equivalent to weight-decay, so
that the Hessian corresponds to the actual training loss with the ¢, penalty.

Unrolled differentiation We compute exact unrolled differentiation with forward-mode automatic
differentiation, by keeping track of the % terms during training, and computing the forward
derivative through the optimiser update using forward-mode autodiff (torch.func.jvp). There is
one such term for every datapoint (or group of datapoints considered) to be removed. In the case of
stateful optimisers (like SGD with momentum or Adam), we also need to keep track of the derivative

of the optimisier state at iteration ¢ with respect to €.

E.3 Individual experiment details

Figure 2. For this figure, we train 50 MLP models on the UCI Concrete (see Section E.1 for
architecture and training details). We remove a fixed randomly sampled subset of 10% of the training
datapoints to obtain 2’ for the ‘retrained’ models. We measure and plot the 1D model output on the
left and center plot. The ‘predicted’ measurements are computed using exact unrolled differentiation
applied to the models trained on the full dataset.

Figure 3. To investigate the correlation between unrolled differentiation and exact Hessian influence
functions, we restrict ourselves to the “Tiny MLP’ UCI Concrete setting described in Section E.1.
This smaller setting allows us to compute the exact Hessian. For the top axis, we compute changes in
measurement (model output) on 103 test points from UCI Concrete, and plot the Pearson correlation
between the changes predicted by unrolled differentiation and exact Hessian influence. We also
computed the correlation between exact Hessian influence functions and unrolled differentiation with
changes to parameters project to lie within the span of the Hessian (assuming eigenvalues below
relative tolerance are 0). The lines were virtually overlapping with the original correlation to unrolled
differentiation without the projection, and hence removing the null-space component doesn’t affect
the results significantly.

For the bottom axis, we compute the predicted changes in measurement (model output) for 103
different test points using (1) unrolled differentiation and (2) unrolled differentiation, but projecting
the predicted change in parameters onto the span of the Hessian (again, assuming anything below
the relative tolerance of 10~ is a 0 eigenvalue). We report the Pearson correlation across the 103
test points between measurement changes computed with (1) and (2).

Transformer Data Pruning (Figure 6 & Figure 12). For the data pruning task, we train 10 models
with 10 different random seeds on the full CIFAR-10. We compute influence functions using EK-FAC
[3, 38] with an adaptation to the EK-FAC implementation in the curvlinops library [37]. Concretely,
we use a numerically stable pseudo-inverse as described in Section E.2. We then find 5000 datapoints
to remove for each method in the following way:

* Fixed-seed TDA. For each of the 10 models trained with different random seeds, we
influence functions to identify different 5000 datapoints to remove for each model. We
select the 5000 datapoints that are predicted to reduce the validation loss when removed
the most for that model. When we retrain with the datapoints removed, we use the same
random seed as for training the original full model.

* Distributional (mean influence) TDA. We identify one subset of 5000 datapoints to
remove for all 10 models. Concretely, we find 5000 datapoints that are predicted to reduce
the the validation loss the most on average over the 10 models. We then retrain each of the
10 models with that same subset removed.

If influence functions performed perfectly as classical TDA methods, identifying a separate subset
to remove for each random seed should perform at least as well as picking one shared subset for
all seeds. The fact that the latter performs better implies that influence functions are indeed better
understood (and more accurate) as a d-TDA method.

27

As a baseline, we compare against the 10 models trained on the full dataset. Naturally, this outper-
forms removing 5000 datapoints at random, and hence is a stronger baseline.

Distributional Influence for Latent Diffusion Models (Figure 7). To identify top influences for
the latent diffusion model, we again use EK-FAC influence, this time without the numerically stable
pseudo-inverse. Instead, we directly use the reference implementation open-sourced in [7], and use
the same IF settings with damping as described in the appendix of [7] for the ArtBench setting. We
compute distributional influence with 5 models trained with 5 different random seeds. For the fixed-
seed TDA reference, we apply influence functions to one model only (with seed 0) and report the top
influences for that seed.

E.4 Distributional LDS experiments

For the distributional LDS experiments in Section C.2, we subsample 20 datasets from the original
dataset uniformly at random without replacement, each with 10% of the datapoints removed (c.f. 100
datasets and 50% examples removed in [12]). For each subdataset, we train 50 models with different
seeds. To estimate the distribution of the fully trained model measurements, we also use 50 seeds,
and we apply the d-TDA method to produce an approximate sample from the models trained on
subdatasets to each of the 50 fully trained models. To estimate mean, variance change and Wasserstein
influences, we compute the mean differences, variance differences and Wasserstein distances for the
empirical distributions of the measurements using the 50 seeds.

28

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The abstract promises a new lens on training data attribution for stochastic algo-
rithms, which Section 3 thoroughly discusses. Secondly, the abstract indicates that influence
functions can be derived for deep learning in a principled fashion using our framework, a promise
we deliver on in Section 4.1.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* Itis fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper provides theoretical results, and explicitly states the assumptions on
which those rely. The limitations and reach of these assumptions is discussed, as well as empir-
ically evaluated.

Guidelines:
* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate “Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

e The authors should reflect on the factors that influence the performance of the
approach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

e The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

o If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover

29

limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]

Justification: The key results of the paper presented in Theorem 3 and Theorem 6 are accom-
panied by an explicit list of assumptions, as well as complete proofs in the Appendix.

Guidelines:
* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main exper-
imental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, the experimental details are provided in the appendix, and the code for all the
experiments will be released upon acceptance.

Guidelines:
* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
1. If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

30

2. If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

3. If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

4. We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The code will be open-sourced upon acceptance, together with the instructions
on how to reproduce the main experiments. Anonymised source-code is included in the supple-
mentary for the review.

Guidelines:
* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https://
nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperpara-
meters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The key information critical to understanding the results is provided in the main
paper body. The technical details pertaining to the exact setup are given in the appendix, and the
code with instructions on how to run the experiments will be open-sourced upon acceptance.

Guidelines:
* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

31

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Confidence intervals and error bars are given and described where relevant.

Guidelines:
* The answer NA means that the paper does not include experiments.

* The authors should answer “Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

 Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: The appendix briefly describes the computational resources used for the experi-
ments, although novelty of scalability is not a main focus of the paper.

Guidelines:
* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

» The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

32

https://neurips.cc/public/EthicsGuidelines

10.

11.

Justification: All the guidelines in the NeurIPS Code of Ethics were followed throughout the
submission and writing process.

Guidelines:
¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

e If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: Although the work is foundational in nature, the work discusses applications of
the kind methods we introduce a new perspective for in the introduction. For each application,
we reference the papers that include the discussion of the societal impact of the corresponding
application.

Guidelines:
* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact
specific groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* Ifthere are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer:

Justification: The models used in the paper do not pose a high risk for misuse. No novel datasets
are released.

Guidelines:
* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released
with necessary safeguards to allow for controlled use of the model, for example by

33

requiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: The experiments in the paper do rely on existing datasets, with the creators being
adequately credited. The license terms for the use of the datasets are being respected. The paper
does not use any models that are not publicly available.

Guidelines:
* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include
a URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Justification: No new assets introduced.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and research with human subjects

34

paperswithcode.com/datasets

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well
as details about compensation (if any)?

Answer:
Justification: No crowdsourcing nor research with huma subjects was conducted in this paper.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer:
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: Use of LLMs was not an important, original, or non-standard component of this
research.

Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.

35

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Distributional Training Data Attribution
	Distributional influence with unrolled differentiation

	What do influence functions sample?
	Perspective 1: unrolled differentiation converges a.s. to influence functions
	Perspective 2: transport maps between Boltzmann distributions

	Distributional Training Data Attribution in Practice
	Conclusion
	References
	Proofs
	Proof of : Unrolled differentiation converges to IFs
	Proof of : Asymptotic optimality of IFs with Boltzmann distributions

	Derivation of Influence Functions
	The Implicit Function Theorem
	Applying the implicit function theorem to quantify the change in the optimum of a loss

	Additional experimental results
	Investigating leave-one-out
	Distributional Linear Datamodelling Score (LDS)
	Influence rankings are different according to different notions of influence
	Normalised Hessian-approximations for influence functions
	Identifying examples responsible for high-variance on MNIST
	Data Pruning Results

	Related Work
	Experimental Details
	Settings
	Influence computation
	Individual experiment details
	Distributional LDS experiments

	NeurIPS Paper Checklist

