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The Mamba in the Llama:
Distilling and Accelerating Hybrid Models

Anonymous Authors1

Abstract
Recent research suggests that state-space

models (SSMs) like Mamba can be competi-

tive with Transformer models for language

modeling with advantageous deployment

characteristics. Given the focus and expertise

on training large-scale Transformer models,

we consider the challenge of converting these

pretrained models into SSMs for deployment.

We demonstrate that it is feasible to distill

large Transformers into SSMs by reusing the

linear projection weights from attention lay-

ers with academic GPU resources. The re-

sulting hybrid model, which incorporates a

quarter of the attention layers, achieves per-

formance comparable to the original Trans-

former. Moreover, we introduce a hardware-

aware speculative decoding algorithm that

accelerates the inference speed of state-space

models. Overall we show how, with limited

computation resources, we can distill a large

Transformer into a hybrid SSM and decode it

efficiently.

1. Introduction
While Transformers (Vaswani et al., 2017) have been

an essential architecture in deep learning and have

driven the success of large language models such as

GPT (Brown et al., 2020), Llama (Touvron et al., 2023),

and Mistral (Jiang et al., 2023), they are prohibitively

slow for very long sequences due to their quadratic

complexity with respect to sequence length and large

Key-Value cache requirement. Recent linear RNN mod-

els (Mamba (Gu & Dao, 2023), GLA (Yang et al., 2023b),

RetNet (Sun et al., 2023), Griffin (De et al., 2024)) have

been shown to beat Transformers at small to medium
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scale. While linear RNN models (Mamba (Gu & Dao,

2023)) show fast inference (5× higher throughput) than

Transformers, larger Transformers still significantly

outperform linear RNN models on downstream tasks.

On the other hand, the training times of these linear

RNN models are similar to those of Transformers, and

scaling up these models requires substantial computa-

tional resources.

The dominance of Transformers for large language

model training motivates us to investigate whether a

large Transformer model can be distilled into a primar-

ily state space model (SSM) using affordable resources.

This SSM model can then be used for efficient inference

without requiring training from scratch. The inference

benefits of SSMs can unlock new applications currently

bottlenecked by the large KV cache of Transformers,

such as reasoning over multiple long documents (Guo

et al., 2021; Shaham et al., 2022; Peng et al., 2023) and

files in large codebases (Roziere et al., 2023; Li et al.,

2023a)). Emerging workflows with agents (Yao et al.,

2022; Yang et al., 2024) require large-batch inference

to explore more trajectories and long-context to model

complex environments. The challenge is that training

large SSMs from scratch still requires expensive com-

pute, heavy training infrastructure, and lots of data. To

distill a pretrained Transformer to an SSM, one would

need to make good use of the pretrained weights to

initialize the SSMs, as random initialization would

require extensive re-training. The technical challenges

are two-fold: how to map pretrained Transformer

weights to SSMs weights for the best initialization, and

how to adapt Transformer inference techniques such as

speculative decoding to SSMs where there is no longer

any KV cache.

We summarize our contributions in the following:

• We show that by reusing weights from attention

layers, it is possible to distill a large transformer

into a large hybrid-SSM by using 8 A100 80 GB

GPUs within three days while preserving much of

its generation quality. To mimic Transformer better,

we propose a modified Mamba architecture that can

be directly initialized from the attention block of a

1
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pretrained model.

• We propose a multistage distillation approach that

combines progressive distillation, supervised fine-

tuning (Kim & Rush, 2016), and directed preference

optimization (Rafailov et al., 2024), which shows

better perplexity and downstream evaluation com-

pared with vanilla distillation.

• We develop a targeted speculative sampling algo-

rithm and kernel, and show that speculative de-

coding can be effectively applied to this hybrid

architecture.

Our experiments distill a large-scale open chat LLM,

Zephyr-7B (Tunstall et al., 2023) to a hybrid Mamba

model, using only 3B tokens of training. Results show

that the distilled approach matches the teacher model

in standard Chat benchmarks (Zheng et al., 2023; Li

et al., 2023b). We also show that it performs on par

or better than Mamba 7B models (Mercat et al., 2024;

Gu & Dao, 2023) trained from scratch with 1.2T to-

kens in multiple tasks (e.g., MMLU (Hendrycks et al.,

2021), TruthfulQA (Lin et al., 2022)) in LLM evaluation

benchmark (Gao et al., 2023).

2. Transferring Transformers to State-Space
Models

2.1. Attention and Linear RNNs

We begin by reviewing multihead attention to clarify

the shapes of intermediate objects. Notationally, we

use explicit subscripts for the sequence position instead

of matrices, to better highlight similarities between the

two models.

Attention is computed in parallel for multiple differ-

ently parameterized heads h ∈ {1 . . . H}. Each head

takes sequence o with hidden size D as an argument

and computes,

Qt = WQot, Kt = WK
t ot, Vt = WV ot for all t,

α1 . . . αT = softmax
( [m1,tQ

⊤
t K1 . . .mT,tQ

⊤
t KT ]√

D

)
yt =

∑
s

ms,tαsVs

where ot ∈ RD×1, W ∈ RN×D Qt,Kt,Vt ∈ RN×1 ms,t = 1(s ≤ t)

Recent work has argued that linear RNNs can be seri-

ous competitors to attention in large language models.

Several different linear RNN formulations have been

proposed with similar formulations. In this work, we

focus on a system with selective parameters from Gu

& Dao (2023) of the following form, described again

for a single head h ∈ {1 . . . H}:

ht = Atht−1 +Btxt, yt = Ctht (1)

For now, we leave the shapes of the parameters

At,Bt,Ct abstract. Linear RNNs have several compu-

tational advantages over attention. During training,

all yt values can be computed more efficiently than

attention using an associative scan algorithm. Dur-

ing inference, each next yt can be computed serially

without requiring a cache.

Despite the superficially different form, there is a nat-

ural relationship between linear RNNs and attention.

Linearizing the attention formula by removing the

softmax yields:

yt =
∑
s

ms,tαsVs =
1√
D
Qt

∑
s

(ms,tKsVs) =
1√
D
Qt

∑
s

ms,tKsW
V os.

This implies that there exists a linear RNN form of

linear attention, specifically:

ht = ht−1 +KtW
V ot yt =

1√
D
Qtht

If the two models have the same heads H and the

head size N , we can set Bt = WKxt, Ct = WQxt,

xt = WV xt. This relationship motivates moving

between attention and linear RNN representations.

2.2. Mamba

Unfortunately linearizing attention leads to a degraded

representation of the original model, as the softmax

nonlinearity is critical. Previous work has developed

kernel methods to improve this approximation (Schlag

et al., 2021; Irie et al., 2021; Zhang et al., 2024). These

approaches increase the size of the hidden state repre-

sentation to h to better match the modeling capacity

of softmax.

Algorithm 1 Transformer to Mamba

1: Shapes: B - Batch, L - Length, D - Hiddens,

2: H - Heads, N - D / H

3: Input: o: (B, L, D)

4: Output: output: (B, L, D) = 0

5: for each head Wk,Wq,Wv,Wo : (N,D)
6: expanding grouped KVs do
7: Head Parameter: A : (N)
8: x : (B,L,N)←WV o
9: B : (B,L,N)←WKo

10: C : (B,L,N)←WQo
11: ∆ : (B,L,N)← MLP(x)
12: A,B : (B,L,N,N)← S6(A,B,C,∆)
13: y ← Scan(A,B,C,x)
14: output← output +WO⊤y

15: return output

In this work, we use the parameterization from Mamba

Gu & Dao (2023) to increase the hidden state size, while

initializing from the attention representation. Mamba

uses a continuous time state-space model (SSM) to pa-

rameterize a linear RNN at run time, described by the

2
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differential equation: h′(t) = Ah(t)+B(t)x(t),y(t) =
C(t)h(t) where A is a diagonal matrix. We overload

the continuous time and linear RNN names for sim-

plicity. To apply it to a discrete-time problem like

language modeling, we need to produce a sequence of

sampling intervals ∆t that map our samples to discrete

time. Given these sampling intervals, and samples

of A,B,C, c, Mamba uses a zero-order hold to map

from the continuous time representation onto a linear

RNN, A1...T ,B1...T ,C1...T = S6(A,B,C,∆) For our

purposes, we can treat this as a black box for producing

a more expressive hidden state representation that can

a minimal reproduce linear attention. We note that in

addition to mapping from continuous-time to discrete-

time, Mamba also uses this step to increase the hidden

size of the representation through a hardware-aware

factorization. For each head and element in the batch,

S6 takes in Bt,Ct ∈ RN×1
and ∆t ∈ RN ′

, but outputs

Bt,Ct ∈ RN ′×N×1
. This allows the model to use dif-

ferent sampling intervals for the initial hidden state

and effectively increases the hidden size by a factor of

D over the naive linear attention.

3. Speculative Decoding for Mamba
Language model generation is inherently bottlenecked

by the serial dependency of autoregressive models.

Systems cannot utilize all available compute, as they

need to wait for the generation of previous tokens to

proceed (Spector & Re, 2023; Leviathan et al., 2023;

Chen et al., 2023a; Xia et al., 2023; Cai et al., 2024).

Speculative decoding has emerged as a method for

breaking this bottleneck by spending extra compute to

speculate on future generations. The method uses two

models, a draft model, θD, and a verification model,

θV . The fast draft model produces potential future

completions argmaxy1...yN
p(y1, . . . , yN ; θD) and the

larger verification model checks that these are top

outputs at each time step for θV . The longer a chain

before a verification failure the faster the output.

Transformer models are particularly amenable to spec-

ulation, as they are slow at generation due to sequential

attention, but fast at verification due to their ability

to check multiple tokens in parallel. Linear RNN

models like Mamba have significantly different perfor-

mance characteristics that make them less amenable

to speculative decoding. Their sequential decoding

mode using recurrent style sampling is significantly

faster than Transformers. Their parallel mode, used

at training, is more efficient than Transformers but is

optimized for extremely long sequences. In addition,

the optimization for efficient parallel scans explicitly

avoids instantiating the intermediate state represen-

Algorithm 2 MultiStep Speculative Decoding

1: function Verify(x1:k, j,hi) ▷ x1:k are draft, j is

last verified, hi is a cached state with i ≤ j
2: yj:k,hj ,hk ←MultiStep(hi,x1:k, i, j, k)
3: k′ ← FirstConflict(yj:k,xj:k)
4: return k′,hk if k′ = k else hj

5: function Speculate(K) ▷ draft K tokens per step

6: cache← h0

7: j ← 0
8: while xj is not end do
9: k← j + K

10: x1:k ← Draft(x1:j ,K)
11: j, cache← Verify(x1:k, j, cache)

tation. These properties make it difficult to use for

speculation as chains are relatively short, and it is

unknown when a conflict will occur.

We therefore design a new algorithm for Mamba spec-

ulative decoding using hardware-aware multi-step

generation. The algorithm is based on a new genera-

tion kernel for mamba that computes: yj:k,hj ,hk ←
MultiStep(hi,x1:n, i, j, k;A,B,C,∆) Where i is the

starting hidden state, i ≤ j ≤ k, and j . . . k is the range

of y outputs needed. We say the function is hardware-

aware because it is designed to avoid materializing

key terms off of the fast GPU memory. Specifically it

avoids instantiating most h1:n as well as the discrete-

time linear RNN parameters.

Utilizing this function we can run Algorithm 2 for

verification. The algorithm maintains only one linear

RNN hidden state for verification and advances it lazily

based on the success of the multistep kernel.

Additionally, since our distilled models contain trans-

former layers, we extend speculative decoding to Trans-

former/Mamba hybrid architectures. In this setting,

the Mamba layers perform verification according to Al-

gorithm 2, while the transformer layers simply perform

parallel verification.

4. Experimental Setup
Target models We perform all experiments using the

chat model Zephyr-7B (Tunstall et al., 2023) as our tar-

get model, which is a fine-tuned Mistral 7B (Jiang et al.,

2023) model. We use this model because of its strong

performance in both chat and academic benchmarks,

and because the supervised fine-tuning and prefer-

ence alignment protocols used are well documented 1

1https://github.com/huggingface/
alignment-handbook

3
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and models are highly reproducible. For the distilled

model we use a hybrid one with 50% Attention layers

and one with 25% Attention layers.

Training We reiterate that distillation does not require

any language modeling pretraining data, but instead

uses the post-training process to adapt the new model.

We use a three-stage process. In the first stage, we use

UltraChat (Ding et al., 2023) and UltraFeedback (Cui

et al., 2023) as seed prompts and use the teacher model

Zephyr (Tunstall et al., 2023) to generate pseudo-labels.

The student model is trained in one epoch using the loss

L in Eq 2 with α = 1 and β = 0.1. Models are trained

using AdamW optimizer with β = (0.9, 0.98) with a

batch size 64. We used a linear learning rate warm-up

(for the first 500 steps) followed by cosine annealing.

In the second stage, we use supervised finetuning

with our model on the UltraChat (Ding et al., 2023)

and OpenHermes 2.5 (Teknium, 2023) datasets using

dSFT in one epoch, with the same configuration as

Zephyr (Tunstall et al., 2023). In the final stage, we do

distilled alignment with our model using dDPO on the

UltraFeedback (Cui et al., 2023) dataset in one epoch

(1.9k steps in total) and evaluate models for every 1k

steps and pick the best. We only freeze Gated MLP in

the first stage, while in the second and final stage all

parameters are trained. The total distillation process

takes three days in 8x80G A100.

Hybrid Speculative decoding We perform specula-

tive decoding using the distilled hybrid models. We

run experiments using both Hybrid Mamba 50% and

Hybrid Mamba 25% as main models. For the draft

models, we train 2 and 4-layer transformer draft mod-

els on the OpenHermes2.5 dataset (Teknium, 2023),

for approximately 3 full epochs, following the “shrink

and fine-tune” approach from (Shleifer & Rush, 2020).

Specifically, we initialize the draft layers using layers

from the Zephyr-7B model (we take layers at indices

[0, 31] for the 2-layer model and [0, 10, 20, 31] for the

4-layer model), and the embeddings and language

model head also from the Zephyr-7B model (Tunstall

et al., 2023). We perform loss masking on the prompt,

thus only considering next token prediction loss (cross-

entropy) on the chat continuations from the training set.

Speculative decoding experiments are run on a single

NVIDIA RTX 3090 on data from OpenHermes2.5.

Metrics We evaluate the model on chat and academic

task benchmarks. For chat, we use MT-Bench (Zheng

et al., 2023), a multi-turn benchmark including 160

questions in eight different knowledge areas. Each

model response is rated by GPT-4 on a scale from 1

to 10 and the final score is determined by averaging

the scores from the two turns, and AlpacaEval (Li

et al., 2023b) v2, a single-turn benchmark in which a

model needs to generate responses to 805 questions on

different topics, focused on helpfulness. It evaluates

the win rate against GPT-4, scored by GPT-4 Turbo.

For academic benchmarks, we use a subset of tasks in

the LLM Eval Benchmark (Gao et al., 2023) which is

consistent with teacher model Zephyr (Tunstall et al.,

2023). Note that our aim is not to replicate full general-

purpose LLM ability, so we do not target matching

perplexity but focus on transferring task ability.

5. Results
Distillation Our primary goal is to produce a model

competitive with Zephyr on chat-based benchmarks.

We evaluate our models using single-turn and multi-

turn chat benchmarks. These benchmarks assess the

model’s ability to follow instructions and respond to

challenging prompts across a wide variety of domains.

Model Size MT-Bench (score) AlpacaEval (win %)

Xwin-LM v0.1 7B 6.19 -

Mistral-Instruct v0.1 7B 6.84 -

Zephyr 7B 7.34 10.990.96

Hyb Mamba (50% att) 7B 6.69 12.601.01

Hyb Mamba (25% att) 7B 6.10 9.320.87

Falcon-Instruct 40B 5.17 3.3

Llama2-Chat 7B 6.26 5.0

Llama2-Chat 13B 6.65 7.7

Llama2-Chat 70B 6.86 13.9

GPT-3.5-turbo - 7.94 14.10

GPT-4 - 8.99 50.00

Table 1: Chat benchmark results for open-access and

proprietary models on MT-Bench and AlpacaEval. MT-

Bench scores model responses using GPT-4. AlpacaE-

val version two measures the win-loss rate between

baseline models and GPT-4 scored by GPT-4 Turbo.

Hybrid Speculative Decoding Table 2 shows results

for hybrid speculative decoding with a lookahead size

of 4. For both the 50% and 25% distilled models, we

achieve speedups of over 1.8x compared to the non-

speculative baseline. We also show that the 4-layer

draft model we trained achieves a higher acceptance

rate, but it adds some additional overhead due to the

increased draft model size.

Draft Model Target Model # Gen. Tokens Throughput (tok/s) Speedup

2 layers
Hybrid 1/2 2.48 115 1.8x

Hybrid 1/4 2.64 120 1.88x

4 layers
Hybrid 1/2 3 116 1.81x

Hybrid 1/4 3 115 1.8x

Table 2: Performance metrics for different draft and

target model configurations for K = 4 on data from

OpenHermes2.5. # Gen is the average number of

generated tokens per speculative decoding step and

includes an additional token from the last Verifier

logits.

4
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A. Full Initialization and Hybrid Stepwise Training
To initialize an SSM layer from a modern attention layer we use the procedure shown in Algorithm 1 and Figure 1.

This algorithm needs to handle the conversion from attention to the SSM parameterization and then from the

SSM form to linear attention. In addition, it requires processing additional components like grouped query

attention that shares keys and values across heads. We note that this model differs from the commonly-used

Mamba architecture, which combines MLP and SSM layers into one and is single head. Our version replaces

attention heads directly with SSM layers. We also keep the MLP layers as is and do not train them.

This initialization allows us to replace any attention block with a Mamba block. In practice, we experiment with

hybrid models where we keep every n attention layers. Empirically we found that replacing layers in a stepwise

manner was the most effective strategy, i.e. we first keep every 2 layers, distill, and then every 4, and continue

distillation.

O

RMS Norm

Multi-head attention

Q K V

RMS Norm

Linear

A

Linear

SSM

Linear

Linear

B C X

O

RMS Norm

Linear

Linear

LinearLinear

Conv

Figure 1: Transferring Transformer to Mamba. Weights in same color are initialize from transformer. We replace

only individual Attention heads by SSM layers, and then fine-tune these blocks while freeze the MLP blocks.

Shapes are kept mainly the same. New parameters are introduced for the learned A and ∆ parameters.

B. Knowledge Distillation for Aligned LMs
Knowledge distillation (KD) (Hinton et al., 2015) serves as a compression technique aimed at training a smaller

network that mimics the behavior of a larger teacher network. After initializing the Mamba model from the

original transformer parameters, we aim to distill it to perform on par with the original language model. We

assume that most of the knowledge from the transformer is maintained in the MLP layers which were transferred

from the original model, and focus on distilling the fine-tuning and alignment steps of the LLM. During this

stage, the MLP layers are kept frozen and the Mamba layers are trained as in Figure 1.

Supervised Fine-Tuning We first apply knowledge distillation to redo the supervised fine-tuning (SFT) stage of

language model adaptation. During this stage, an LLM is trained to maximize the likelihood of a response y
given an input prompt x, i.e. p(y | x). In this sense, the task looks similar to conditional generation.

There are two common approaches for distillation in this setting. One method is to use word-level KL-Divergence.

In this setting, the full probability distribution of the student model p(·; θ) is trained to match the full distribution

of the teacher model p(·; θT ) by minimizing the KL divergence over the entire set of next possible tokens at
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position t. The second method is sequence-level knowledge distillation (SeqKD) (Kim & Rush, 2016). SeqKD

suggests a simple method for distillation on this style of task, by replacing the ground truth text y1···t with the

teacher generation output ŷ1···t, also known as pseudo-labels.

L(θ) = −
T∑

t=1

α log p(ŷt+1 | ŷ1:t, x, θ) + β KL [p(· | ŷ1:t, x, θT ) || p(· | ŷ1:t, x, θ)] (2)

Here θ is trainable parameters of the student model and α and β control the weights of sequence and word loss

term respectively.

Preference Optimization The second stage of instruction-tuning for LLMs is to align them to a set of user

preferences. During this stage, a set of desired preference pairs is used to improve the model’s output. The

objective is to produce outputs y to prompts x that maximize a reward model r while maintaining close to a

reference model. Typically the reference model is chosen to be the model after supervised fine-tuning. For

distillation, we can conveniently utilize the original teacher, i.e.

max
θ

Ex∼D,y∼p(y|x;θ)
[
rϕ(x, y)

]
− βKL

[
p(y | x; θ) || π(y | x; θT )

]
(3)

This preference model is defined by a reward function rϕ(x, y) dependent on the method used. Previous research

utilizatin AI feedback has primarily focused on employing reinforcement learning methods, such as proximal

policy optimization (PPO) (Schulman et al., 2017), to optimize ϕ concerning this reward. Recently, methods using

direct preference optimization (DPO) (Rafailov et al., 2024) have been effective at optimizing this objective with

direct gradient updates. Specifically, DPO shows that, if we have access to preferred yw and dispreferred yl
outputs for a given prompt x, we can reformulate this optimization problem as,

πθ = max
θ

E
(x,yw,yl) ∼D

log σ

(
β log

p(yw|x; θ)
p(yw|x; θT )

− β log
p(yl|x; θ)
p(yl|x; θT )

)
. (4)

This optimization can be performed at the sequence level by scoring the preferred and dispreferred outputs of

the model with the teacher and student and then backpropagating to the student. As far as we are aware this is

the first use of DPO as a distillation objective.

C. Speculative Decoding for Mamba

12 4 8 16 32
Step size

0

1

2

3

4

5

Ti
m

e 
(m

s)

Multi-step SSM kernel performance
Single-step
Multi-step

K # Gen. Tokens Throughput Speedup
3 3.01 1411 1.48x

4 3.28 1482 1.56x

5 3.65 1517 1.59x

6 4.00 1531 1.60x

Figure 2: (Left) Performance of the multi-step SSM kernel for generating 32 tokens. (Right) Speedup results for

speculative decoding with pure Mamba models (2.8B verifier, 130M draft) on The Pile. K is number of draft

tokens produced, # Gen includes an additional token from the last Verifier logits.

Results of our hardware-aware multi-step generation are shown in Figure 2(left). We verify the effectiveness

of Algorithm 2 we run the speculation using a 2.8B Mamba as the target model and a 130M Mamba as the

draft model (model checkpoints from (Gu & Dao, 2023)), using data from The Pile. Results are shown in

Figure 2(right).
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Additionally, since our distilled models contain transformer layers, we extend speculative decoding to Trans-

former/Mamba hybrid architectures. In this setting, the Mamba layers perform verification according to

Algorithm 2, while the transformer layers simply perform parallel verification.

D. More Experiment Results
Distillation Our primary goal is to produce a model competitive with Zephyr on chat-based benchmarks. We

evaluate our models using single-turn and multi-turn chat benchmarks. These benchmarks assess the model’s

ability to follow instructions and respond to challenging prompts across a wide variety of domains.

Model Size Align
MT-Bench

(score)

AlpacaEval

(LC win %)

AlpacaEval

(win %)

Xwin-LM v0.1 7B dPPO 6.19 - -

Mistral-Instruct v0.1 7B - 6.84 - -

Zephyr 7B dDPO 7.34 13.200.96 10.990.96

Hyb Mamba (50% att) 7B dDPO 6.69 14.111.01 12.601.01

Hyb Mamba (25% att) 7B dDPO 6.10 8.920.87 9.320.87

Falcon-Instruct 40B dSFT 5.17 5.6 3.3

Llama2-Chat 7B RLHF 6.26 5.4 5.0

Llama2-Chat 13B RLHF 6.65 8.4 7.7

Llama2-Chat 70B RLHF 6.86 14.7 13.9

GPT-3.5-turbo - RLHF 7.94 22.70 14.10

Claude 2 - RLHF 8.06 28.20 17.20

GPT-4 - RLHF 8.99 50.00 50.00

GPT-4o - RLHF - 57.461.47 51.331.47

Table 3: Chat benchmark results for open-access and proprietary models on MT-Bench and AlpacaEval. MT-Bench

scores model responses using GPT-4. AlpacaEval version two measures the win-loss rate between baseline

models and GPT-4 scored by GPT-4 Turbo.

Table 3 shows the performance of our distilled Mamba model on chat benchmarks compared with large

transformer models. The distilled Hyb Mamba (50% att) achieves a similar score in the MT-benchmark as the

teacher model, and slightly better than the teacher model on the AlpacaEval benchmark in both LC win rate and

overall win rate. The Hyb Mamba (25% att) performance is slightly worse than that of the teacher models in the

MT benchmark but still surpasses some large transformers even with more parameters in AlpcaEval.

We also report evaluation on standard academic benchmarks in Table 4. We follow the evaluation of Zephyr by

conducting 25 shots in ARC-Challenge (Clark et al., 2018), 10 shots in HellaSwag (Zellers et al., 2019), 5 shots

in MMLU (Hendrycks et al., 2021), and zero-shot in TruthfulQA (Lin et al., 2022). For these experiments, we

also compare to a pure Mamba-7B model trained from scratch (Mercat et al., 2024) and evaluate with the same

number of shots. The distilled models show somewhat degraded performance on these benchmarks compared to

Zephyr, but are still competitive. We note that our model, which is trained on only 3 billion tokens, significantly

outperforms Mamba 7B, which is trained from scratch with 1.2 trillion tokens, on the Refined Web (Penedo et al.,

2023) dataset in some tasks, like MMLU (Hendrycks et al., 2021) and Truthful QA (Lin et al., 2022).

E. Analysis
Does PPL correspond to ability? Table 5 Left compares the PPL of different model variants. We distill using

Ultrachat (Ding et al., 2023) in one epoch and compare the perplexity. We find that removing more layers gets

significantly worse. We also compare our distillation approach with a previous baseline. This approach distills a

Transformer model into a Hyena model (Poli et al., 2023), as proposed in (Ralambomihanta et al., 2024). They use

10



550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

The Mamba in the Llama: Distilling and Accelerating Hybrid Models

Model Size Align ARC
Hella

Swag
MMLU

Truthful

QA

StableLM-Tuned-α 7B dSFT 31.91 53.59 24.41 40.37

MPT-Chat 7B dSFT 46.50 75.51 37.62 40.16

Xwin-LM v0.1 7B dPPO 56.57 79.40 49.98 47.89

Mistral-Instruct v0.1 7B dSFT 54.52 75.63 55.38 56.28

Zephyr 7B dDPO 62.03 84.52 61.44 57.44
Mamba 7B - 52.561.46 80.620.39 33.406.67 29.103.13
Hyb Mamba (50% att) 7B dDPO 49.151.46 75.070.43 47.9810.21 46.675.51
Hyb Mamba (25% att) 7B dDPO 48.551.46 71.090.45 37.827.31 40.015.36

Falcon-Instruct 40B dSFT 61.60 84.31 55.45 52.52

Llama2-Chat 7B RLHF 53.07 77.74 45.30 33.29

Llama2-Chat 13B RLHF 59.39 82.13 54.80 41.74

Llama2-Chat 70B RLHF 67.32 87.33 69.83 44.92

Table 4: LLM eval benchmark results for open-access models on the Open LLM Leaderboard.

Model PPL Ratio

Teacher: Zephyr (7B) 2.02 1

Hyb Mamba (50% att) 2.09 1.03

Hyb Mamba (25% att) 2.20 1.09

Hyb Mamba (6.25% att) 2.46 1.22

Mamba (0% att) 3.36 1.66

Teacher: Pythia (70M) 51.4 1

Distill Hyena 121.2 2.36

Model Hyb Mamba Hyb Mamba

(50% Att) (25% Att)

Dis 5.55 5.01

Dis+SFT 5.61 4.97

Dis+dDPO 5.42 4.84

Dis+SFT+dDPO 6.69 6.10

Table 5: (Left) Perplexity comparison between our distillation approach and (Ralambomihanta et al., 2024).

(Right) Ablation study of different alignment methods of the Distilled Hybrid Mamba on the MT-benchmark.

a different distillation approach using progressive knowledge transfer, wherein the student model is trained

starting from the first layer and progressively extending to subsequent layers. While it is challenging to compare,

our distill shows a smaller degradation (1.03 for 50 % attention, 1.09 for 25 % attention, 1.22 for 6.35% attention,

and 3.36 for no attention), while the Distill Hyena model is trained in WikiText (Merity et al., 2016) dataset with a

much smaller model and shows large perplexity degrade.

Does distilling from preferences help? In Table 5 (Right), we show the impact of different steps in the alignment

process of the distillation. We observe that dSFT or dDPO alone does not yield much improvement, while dSFT +

dDPO yields the best score.

Ablations We consider several different model ablation studies in Table 6. For these experiments we consider

training for 5k steps using the pseudo-label approaches on the Ultrachat (Ding et al., 2023) dataset.

Table 6 (Left) presents the results of distillation with various initializations. According to this table, initializing

weights from a transformer is crucial for performance. Without weight initialization from a transformer, perplexity

significantly worsens for both pure Mamba models and hybrid models. Also, freezing MLP layers can help the

student model focus on learning the interaction of tokens and better mimic attention layers. Table 6 (Right)

shows also see smaller benefits from progressive distillation and interleaving the attention layers with Mamba.
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Model

Mamba

(0% Att)

Hyb Mamba

(50% Att)

Froz -Froz Froz -Froz

Atten-Init 3.36 66.7 2.09 9.1

-Atten-Init 18.2 20.3 7.4 11.2

Model

Hyb Mamba

(25% Att)

Hyb Mamba

(50% Att)

Step -Step Step -Step

Interleave 2.20 2.29 2.09 -

-Interleave 2.89 - 2.41 -

Table 6: (Left) Perplexity comparison with different SSM initialization. (Right) Perplexity comparison with

different Mamba interleaving layers and stepwise distillation.

F. Related Work
Attention-free models. Attention-free models offer improved computational and memory efficiency, making

them increasingly popular for various language processing tasks, including autoregressive language modeling.

Models like S4 (Gu et al., 2021) and its subsequent variants (Gupta et al., 2022; Gu et al., 2022) have shown

promising results in long-range synthetic tasks (Tay et al., 2020). Gated SSM architectures, such as GSS (Mehta

et al., 2023) and BiGS (Wang et al., 2022), incorporate a gating mechanism into SSMs for (bidirectional) language

modeling. The recently introduced Mamba model (Gu & Dao, 2023) argues that the static dynamics of these

methods fail to incorporate input-specific context selection within the hidden state, which could be crucial for

tasks like language modeling. Mamba has been shown to outperform Transformers across different model sizes

and scales. Additionally, several other sub-quadratic model architectures (Poli et al., 2023; Yang et al., 2023b; De

et al., 2024; Arora et al., 2023; 2024; Fu et al., 2024a) and hybrid architectures (Fu et al., 2022; Lieber et al., 2024)

have also been proposed.

Distillation from Transformers. Laughing Hyena (Massaroli et al., 2024) proposes to distill the long convolution

into a state space representation, enabling constant time inference in Hyena (Poli et al., 2023). Ralambomihanta

et al. (2024) introduces a progressive knowledge approach to distill small transformer models (70M) into Hyena

models.

Speculative Decoding. Speculative decoding (Spector & Re, 2023; Leviathan et al., 2023; Chen et al., 2023a; Xia

et al., 2023; Cai et al., 2024) has recently emerged as a promising method to accelerate the inference process of

large language models, particularly Transformers. This approach utilizes a smaller draft model to speculatively

generate candidate tokens, which the larger target model then verifies. Leviathan et al. (2023); Chen et al.

(2023a) proposed a rejection sampling scheme to improve inference quality, while Spector & Re (2023) organized

candidate tokens into a tree structure to enable more efficient verification. Subsequent work has examined both

trained draft models (Bhendawade et al., 2024; Chen et al., 2023b; Liu et al., 2023) and training-free draft models

(He et al., 2023; Yang et al., 2023a; Fu et al., 2024b).

G. Discussion: Limitations, Broader Impacts, Conclusion
Limitations We only train our model using chat corpora due to academic budget constraints. Training on

general corpora, such as those referenced in (Penedo et al., 2023), may help close the gap between teacher models

and is worth exploring further. Additionally, our model is in 7B scale. Further work still needs to be done with

models that have more parameters.

Broader Impacts Our models are trained using a collected chat corpus. Recent research has uncovered potential

societal biases embedded within many established corpora. While it is beyond the scope of this paper to delve

deeply into these biases, we acknowledge the potential risk that our distilled trained models may inherit these

biases.

Conclusion We consider the problem of maintaining LLM abilities while increasing decoding speed through

a combination of distillation and speculative decoding. We first show that a transformer LLM can be used to

effectively initialize a Mamba linear RNN model while maintaining original abilities. We then show that through

a combination of distillation on supervised instructions and preferences, we can improve the model’s ability with

relatively little compute. Finally, we show that the Mamba model can be significantly sped up at inference time

through the use of a hardware-aware speculative decoding method. The full model nears LLM chat accuracy,
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and is accelerated with speculative decoding. We believe these results show that transformer knowledge can be

transferred effectively to other architectures, opening up the potential for customizing the inference profile of

LLMs beyond optimizing attention.
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