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Abstract

Recent research suggests that state-space
models (55Ms) like Mamba can be competi-
tive with Transformer models for language
modeling with advantageous deployment
characteristics. Given the focus and expertise
on training large-scale Transformer models,
we consider the challenge of converting these
pretrained models into SSMs for deployment.
We demonstrate that it is feasible to distill
large Transformers into SSMs by reusing the
linear projection weights from attention lay-
ers with academic GPU resources. The re-
sulting hybrid model, which incorporates a
quarter of the attention layers, achieves per-
formance comparable to the original Trans-
former. Moreover, we introduce a hardware-
aware speculative decoding algorithm that
accelerates the inference speed of state-space
models. Overall we show how, with limited
computation resources, we can distill a large
Transformer into a hybrid SSM and decode it
efficiently.

1. Introduction

While Transformers (Vaswani et al., 2017) have been
an essential architecture in deep learning and have
driven the success of large language models such as
GPT (Brown et al., 2020), Llama (Touvron et al., 2023),
and Mistral (Jiang et al., 2023), they are prohibitively
slow for very long sequences due to their quadratic
complexity with respect to sequence length and large
Key-Value cache requirement. Recent linear RNN mod-
els (Mamba (Gu & Dao, 2023), GLA (Yang et al., 2023b),
RetNet (Sun et al., 2023), Griffin (De et al., 2024)) have
been shown to beat Transformers at small to medium
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scale. While linear RNN models (Mamba (Gu & Dao,
2023)) show fast inference (5% higher throughput) than
Transformers, larger Transformers still significantly
outperform linear RNN models on downstream tasks.
On the other hand, the training times of these linear
RNN models are similar to those of Transformers, and
scaling up these models requires substantial computa-
tional resources.

The dominance of Transformers for large language
model training motivates us to investigate whether a
large Transformer model can be distilled into a primar-
ily state space model (SSM) using affordable resources.
This SSM model can then be used for efficient inference
without requiring training from scratch. The inference
benefits of SSMs can unlock new applications currently
bottlenecked by the large KV cache of Transformers,
such as reasoning over multiple long documents (Guo
etal., 2021; Shaham et al., 2022; Peng et al., 2023) and
files in large codebases (Roziere et al., 2023; Li et al.,,
2023a)). Emerging workflows with agents (Yao et al,,
2022; Yang et al., 2024) require large-batch inference
to explore more trajectories and long-context to model
complex environments. The challenge is that training
large SSMs from scratch still requires expensive com-
pute, heavy training infrastructure, and lots of data. To
distill a pretrained Transformer to an SSM, one would
need to make good use of the pretrained weights to
initialize the SSMs, as random initialization would
require extensive re-training. The technical challenges
are two-fold: how to map pretrained Transformer
weights to SSMs weights for the best initialization, and
how to adapt Transformer inference techniques such as
speculative decoding to SSMs where there is no longer
any KV cache.

We summarize our contributions in the following:

* We show that by reusing weights from attention
layers, it is possible to distill a large transformer
into a large hybrid-SSM by using 8 A100 80 GB
GPUs within three days while preserving much of
its generation quality. To mimic Transformer better,
we propose a modified Mamba architecture that can
be directly initialized from the attention block of a
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pretrained model.

* We propose a multistage distillation approach that
combines progressive distillation, supervised fine-
tuning (Kim & Rush, 2016), and directed preference
optimization (Rafailov et al., 2024), which shows
better perplexity and downstream evaluation com-
pared with vanilla distillation.

* We develop a targeted speculative sampling algo-
rithm and kernel, and show that speculative de-
coding can be effectively applied to this hybrid
architecture.

Our experiments distill a large-scale open chat LLM,
Zephyr-7B (Tunstall et al., 2023) to a hybrid Mamba
model, using only 3B tokens of training. Results show
that the distilled approach matches the teacher model
in standard Chat benchmarks (Zheng et al., 2023; Li
et al., 2023b). We also show that it performs on par
or better than Mamba 7B models (Mercat et al., 2024;
Gu & Dao, 2023) trained from scratch with 1.2T to-
kens in multiple tasks (e.g., MMLU (Hendrycks et al.,
2021), TruthfulQA (Lin et al., 2022)) in LLM evaluation
benchmark (Gao et al., 2023).

2. Transferring Transformers to State-Space
Models

2.1. Attention and Linear RNNs

We begin by reviewing multihead attention to clarify
the shapes of intermediate objects. Notationally, we
use explicit subscripts for the sequence position instead
of matrices, to better highlight similarities between the
two models.

Attention is computed in parallel for multiple differ-
ently parameterized heads i € {1... H}. Each head
takes sequence o with hidden size D as an argument
and computes,

Q. =W%,, K,= VVtKot, V,=WVo, forallt,

TK; ... TK
ay...op = softmax( (M1, QK. Qy T]) Y = Zm,,_tasVs

vD

where 0, € RP*!, W € RV*P Q, K,, V, e RV i, , = 1(s < t)

Recent work has argued that linear RNNs can be seri-
ous competitors to attention in large language models.
Several different linear RNN formulations have been
proposed with similar formulations. In this work, we
focus on a system with selective parameters from Gu
& Dao (2023) of the following form, described again
for asinglehead h € {1...H}:

h; = Ah;_1 + Bz, yr = Cihy 1)

For now, we leave the shapes of the parameters

A,,B,, C; abstract. Linear RNNs have several compu-
tational advantages over attention. During training,
all y; values can be computed more efficiently than
attention using an associative scan algorithm. Dur-
ing inference, each next y,; can be computed serially
without requiring a cache.

Despite the superficially different form, there is a nat-
ural relationship between linear RNNs and attention.
Linearizing the attention formula by removing the
softmax yields:

L 1
vD VD

This implies that there exists a linear RNN form of
linear attention, specifically:

Yt = Z 77Ls,tasvs = Qt Z(”ls,thvs) =
s

s

Q Z msvtKSWVos.

s

Yy = %cht

If the two models have the same heads H and the
head size N, we can set B; = W&g,, C; = W%z,
x; = WV, This relationship motivates moving

between attention and linear RNN representations.

ht = ht—l + KtWVOt

2.2. Mamba

Unfortunately linearizing attention leads to a degraded
representation of the original model, as the softmax
nonlinearity is critical. Previous work has developed
kernel methods to improve this approximation (Schlag
et al., 2021; Irie et al., 2021; Zhang et al., 2024). These
approaches increase the size of the hidden state repre-
sentation to h to better match the modeling capacity
of softmax.

Algorithm 1 Transformer to Mamba

1: Shapes: B - Batch, L - Length, D - Hiddens,
2: H-Heads, N-D /H

3: Input: o: (B,L, D)

4: Output: output: (B,L, D) =0

5: for each head W*, W% WV W° : (N, D)
6: expanding grouped KVs do

7 Head Parameter: A : (N)

8 x:(B,L,N)+ WVo

9. B:(B,L,N)«+ W¥o

10: C:(B,L,N)+ W%

11: A:(B,L,N) + MLP(x)

12: A/B:(B,L,N,N) <+ S6(A,B,C,A)
13: y < Scan(A,B,C, x)

14: output < output + Wy

15: return output

In this work, we use the parameterization from Mamba
Gu & Dao (2023) to increase the hidden state size, while
initializing from the attention representation. Mamba
uses a continuous time state-space model (S5SM) to pa-
rameterize a linear RNN at run time, described by the
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differential equation: h'(t) = Ah(t) +B(t)z(t), y(t) =
C(t)h(t) where A is a diagonal matrix. We overload
the continuous time and linear RNN names for sim-
plicity. To apply it to a discrete-time problem like
language modeling, we need to produce a sequence of
sampling intervals A, that map our samples to discrete
time. Given these sampling intervals, and samples
of A,B, C, c, Mamba uses a zero-order hold to map
from the continuous time representation onto a linear
RNN, Al...Ta ]31,__”[7 Cl...T = S6(A, B, C, A) For our
purposes, we can treat this as a black box for producing
a more expressive hidden state representation that can
a minimal reproduce linear attention. We note that in
addition to mapping from continuous-time to discrete-
time, Mamba also uses this step to increase the hidden
size of the representation through a hardware-aware
factorization. For each head and element in the batch,
S6 takes in B;, C; € RV*! and A, € RV, but outputs
B,,C; € RN'*Nx1 This allows the model to use dif-
ferent sampling intervals for the initial hidden state
and effectively increases the hidden size by a factor of
D over the naive linear attention.

3. Speculative Decoding for Mamba

Language model generation is inherently bottlenecked
by the serial dependency of autoregressive models.
Systems cannot utilize all available compute, as they
need to wait for the generation of previous tokens to
proceed (Spector & Re, 2023; Leviathan et al., 2023;
Chen et al., 2023a; Xia et al., 2023; Cai et al., 2024).
Speculative decoding has emerged as a method for
breaking this bottleneck by spending extra compute to
speculate on future generations. The method uses two
models, a draft model, 6p, and a verification model,
0v. The fast draft model produces potential future
completions argmax,, - p(y1,...,yn;0p) and the
larger verification model checks that these are top
outputs at each time step for §y. The longer a chain
before a verification failure the faster the output.

Transformer models are particularly amenable to spec-
ulation, as they are slow at generation due to sequential
attention, but fast at verification due to their ability
to check multiple tokens in parallel. Linear RNN
models like Mamba have significantly different perfor-
mance characteristics that make them less amenable
to speculative decoding. Their sequential decoding
mode using recurrent style sampling is significantly
faster than Transformers. Their parallel mode, used
at training, is more efficient than Transformers but is
optimized for extremely long sequences. In addition,
the optimization for efficient parallel scans explicitly
avoids instantiating the intermediate state represen-

Algorithm 2 MultiStep Speculative Decoding

1: function VeriFY(x1.,j, h;) D> @y are draft, j is
last verified, h; is a cached state with ¢ < j

Yjuks Pj, i, <= MuLtiStep(h;, 1.1, 4, §, k)

k" < FIRsTCONFLICT(Y; .k, T;:k)

return k', hy, if &' = k else h;
: function SpecuLate(K) > draft K tokens per step
cache < hg
j<«0
while x; is not end do

k—j+K

x1.; < DrarT(21.5, K)

j,cache < VEriFY(x1.k, j, cache)

O PN A RN

_
_ O

tation. These properties make it difficult to use for
speculation as chains are relatively short, and it is
unknown when a conflict will occur.

We therefore design a new algorithm for Mamba spec-
ulative decoding using hardware-aware multi-step
generation. The algorithm is based on a new genera-
tion kernel for mamba that computes: y;.x, b;, hy <
MuttiStep(h;, 1.y, 4, j, k; A, B, C, A) Where i is the
starting hidden state, i < j < k,and j ...k is the range
of y outputs needed. We say the function is hardware-
aware because it is designed to avoid materializing
key terms off of the fast GPU memory. Specifically it
avoids instantiating most h;.,, as well as the discrete-
time linear RNN parameters.

Utilizing this function we can run Algorithm 2 for
verification. The algorithm maintains only one linear
RNN hidden state for verification and advances it lazily
based on the success of the multistep kernel.

Additionally, since our distilled models contain trans-
former layers, we extend speculative decoding to Trans-
former/Mamba hybrid architectures. In this setting,
the Mamba layers perform verification according to Al-
gorithm 2, while the transformer layers simply perform
parallel verification.

4. Experimental Setup

Target models We perform all experiments using the
chat model Zephyr-7B (Tunstall et al., 2023) as our tar-
get model, which is a fine-tuned Mistral 7B (Jiang et al.,
2023) model. We use this model because of its strong
performance in both chat and academic benchmarks,
and because the supervised fine-tuning and prefer-
ence alignment protocols used are well documented !

Thttps://github.com/huggingface/
alignment-handbook
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and models are highly reproducible. For the distilled
model we use a hybrid one with 50% Attention layers
and one with 25% Attention layers.

Training We reiterate that distillation does not require
any language modeling pretraining data, but instead
uses the post-training process to adapt the new model.
We use a three-stage process. In the first stage, we use
UltraChat (Ding et al., 2023) and UltraFeedback (Cui
etal., 2023) as seed prompts and use the teacher model
Zephyr (Tunstall et al., 2023) to generate pseudo-labels.
The student model is trained in one epoch using the loss
LinEq 2with o = 1and 8 = 0.1. Models are trained
using AdamW optimizer with 8 = (0.9,0.98) with a
batch size 64. We used a linear learning rate warm-up
(for the first 500 steps) followed by cosine annealing.
In the second stage, we use supervised finetuning
with our model on the UltraChat (Ding et al., 2023)
and OpenHermes 2.5 (Teknium, 2023) datasets using
dSFT in one epoch, with the same configuration as
Zephyr (Tunstall et al., 2023). In the final stage, we do
distilled alignment with our model using dDPO on the
UltraFeedback (Cui et al., 2023) dataset in one epoch
(1.9k steps in total) and evaluate models for every 1k
steps and pick the best. We only freeze Gated MLP in
the first stage, while in the second and final stage all
parameters are trained. The total distillation process
takes three days in 8x80G A100.

Hybrid Speculative decoding We perform specula-
tive decoding using the distilled hybrid models. We
run experiments using both Hybrid Mamba 50% and
Hybrid Mamba 25% as main models. For the draft
models, we train 2 and 4-layer transformer draft mod-
els on the OpenHermes2.5 dataset (Teknium, 2023),
for approximately 3 full epochs, following the “shrink
and fine-tune” approach from (Shleifer & Rush, 2020).
Specifically, we initialize the draft layers using layers
from the Zephyr-7B model (we take layers at indices
[0, 31] for the 2-layer model and [0, 10, 20, 31] for the
4-layer model), and the embeddings and language
model head also from the Zephyr-7B model (Tunstall
et al., 2023). We perform loss masking on the prompt,
thus only considering next token prediction loss (cross-
entropy) on the chat continuations from the training set.
Speculative decoding experiments are run on a single
NVIDIA RTX 3090 on data from OpenHermes2.5.

Metrics We evaluate the model on chat and academic
task benchmarks. For chat, we use MT-Bench (Zheng
et al., 2023), a multi-turn benchmark including 160
questions in eight different knowledge areas. Each
model response is rated by GPT-4 on a scale from 1
to 10 and the final score is determined by averaging
the scores from the two turns, and AlpacaEval (Li

et al., 2023b) v2, a single-turn benchmark in which a
model needs to generate responses to 805 questions on
different topics, focused on helpfulness. It evaluates
the win rate against GPT-4, scored by GPT-4 Turbo.
For academic benchmarks, we use a subset of tasks in
the LLM Eval Benchmark (Gao et al., 2023) which is
consistent with teacher model Zephyr (Tunstall et al.,
2023). Note that our aim is not to replicate full general-
purpose LLM ability, so we do not target matching
perplexity but focus on transferring task ability.

5. Results

Distillation Our primary goal is to produce a model
competitive with Zephyr on chat-based benchmarks.
We evaluate our models using single-turn and multi-
turn chat benchmarks. These benchmarks assess the
model'’s ability to follow instructions and respond to
challenging prompts across a wide variety of domains.

Model Size \ MT-Bench (score)  AlpacaEval (win %)
Xwin-LM v0.1 7B 6.19 -
Mistral-Instruct v0.1 7B 6.84 -
Zephyr 7B 7.34 10.990,9(5
Hyb Mamba (50% att) 7B 6.69 12.601.01
Hyb Mamba (25% att) 7B 6.10 9.320.87
Falcon-Instruct 40B 5.17 3.3
Llama2-Chat 7B 6.26 5.0
Llama2-Chat 13B 6.65 7.7
Llama2-Chat 70B 6.86 13.9
GPT-3.5-turbo - 7.94 14.10
GPT-4 - 8.99 50.00

Table 1: Chat benchmark results for open-access and
proprietary models on MT-Bench and AlpacaEval. MT-
Bench scores model responses using GPT-4. AlpacaE-
val version two measures the win-loss rate between
baseline models and GPT-4 scored by GPT-4 Turbo.

Hybrid Speculative Decoding Table 2 shows results
for hybrid speculative decoding with a lookahead size
of 4. For both the 50% and 25% distilled models, we
achieve speedups of over 1.8x compared to the non-
speculative baseline. We also show that the 4-layer
draft model we trained achieves a higher acceptance
rate, but it adds some additional overhead due to the
increased draft model size.

Draft Model ~Target Model # Gen. Tokens  Throughput (tok/s) Speedup
2 laver Hybrid 1/2 2.48 115 1.8x
ayers Hybrid 1/4 2.64 120 1.88x
4 layers Hybrid 1/2 3 116 1.81x
4 Hybrid 1/4 3 115 1.8x

Table 2: Performance metrics for different draft and
target model configurations for K = 4 on data from
OpenHermes2.5. # Gen is the average number of
generated tokens per speculative decoding step and
includes an additional token from the last Verifier
logits.
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A. Full Initialization and Hybrid Stepwise Training

To initialize an SSM layer from a modern attention layer we use the procedure shown in Algorithm 1 and Figure 1.
This algorithm needs to handle the conversion from attention to the SSM parameterization and then from the
SSM form to linear attention. In addition, it requires processing additional components like grouped query
attention that shares keys and values across heads. We note that this model differs from the commonly-used
Mamba architecture, which combines MLP and SSM layers into one and is single head. Our version replaces
attention heads directly with SSM layers. We also keep the MLP layers as is and do not train them.

This initialization allows us to replace any attention block with a Mamba block. In practice, we experiment with
hybrid models where we keep every n attention layers. Empirically we found that replacing layers in a stepwise
manner was the most effective strategy, i.e. we first keep every 2 layers, distill, and then every 4, and continue
distillation.

I
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Figure 1: Transferring Transformer to Mamba. Weights in same color are initialize from transformer. We replace
only individual Attention heads by SSM layers, and then fine-tune these blocks while freeze the MLP blocks.
Shapes are kept mainly the same. New parameters are introduced for the learned A and A parameters.

B. Knowledge Distillation for Aligned LMs

Knowledge distillation (KD) (Hinton et al., 2015) serves as a compression technique aimed at training a smaller
network that mimics the behavior of a larger teacher network. After initializing the Mamba model from the
original transformer parameters, we aim to distill it to perform on par with the original language model. We
assume that most of the knowledge from the transformer is maintained in the MLP layers which were transferred
from the original model, and focus on distilling the fine-tuning and alignment steps of the LLM. During this
stage, the MLP layers are kept frozen and the Mamba layers are trained as in Figure 1.

Supervised Fine-Tuning We first apply knowledge distillation to redo the supervised fine-tuning (SFT) stage of
language model adaptation. During this stage, an LLM is trained to maximize the likelihood of a response y
given an input prompt z, i.e. p(y | ). In this sense, the task looks similar to conditional generation.

There are two common approaches for distillation in this setting. One method is to use word-level KL-Divergence.
In this setting, the full probability distribution of the student model p(+; #) is trained to match the full distribution
of the teacher model p(-; 67) by minimizing the KL divergence over the entire set of next possible tokens at

8



The Mamba in the Llama: Distilling and Accelerating Hybrid Models

position t. The second method is sequence-level knowledge distillation (SeqKD) (Kim & Rush, 2016). SeqgKD
suggests a simple method for distillation on this style of task, by replacing the ground truth text y;..., with the
teacher generation output ...+, also known as pseudo-labels.

T
LO) == alog p(ii1 | f1e:7,0) + BKLIp(- | f14,2,07) || p(- | 10,7, 0)] )

t=1

Here 0 is trainable parameters of the student model and « and 3 control the weights of sequence and word loss
term respectively.

Preference Optimization The second stage of instruction-tuning for LLMs is to align them to a set of user
preferences. During this stage, a set of desired preference pairs is used to improve the model’s output. The
objective is to produce outputs y to prompts = that maximize a reward model r while maintaining close to a
reference model. Typically the reference model is chosen to be the model after supervised fine-tuning. For
distillation, we can conveniently utilize the original teacher, i.e.

ngXEwND,pr(yM;H) [T(b('ray)] - /BI(L [p(y | €Z; 9) || 7T(y ‘ Z; GT)] (3)

This preference model is defined by a reward function r4(z, y) dependent on the method used. Previous research
utilizatin Al feedback has primarily focused on employing reinforcement learning methods, such as proximal
policy optimization (PPO) (Schulman et al., 2017), to optimize ¢ concerning this reward. Recently, methods using
direct preference optimization (DPO) (Rafailov et al., 2024) have been effective at optimizing this objective with
direct gradient updates. Specifically, DPO shows that, if we have access to preferred y,, and dispreferred y;
outputs for a given prompt z, we can reformulate this optimization problem as,

Ty = max E log o (ﬁ log M — Blog p(ylx,ﬂ)) . 4)

(@yursyt) ~D P(Ywle; O7) p(yilz; 07)

This optimization can be performed at the sequence level by scoring the preferred and dispreferred outputs of
the model with the teacher and student and then backpropagating to the student. As far as we are aware this is
the first use of DPO as a distillation objective.

C. Speculative Decoding for Mamba

Multi-step SSM kernel performance

-- Single-step
5 | —e— Multi-step

K #Gen. Tokens Throughput Speedup
3 3.01 1411 1.48x
4 3.28 1482 1.56x
5 3.65 1517 1.59x
6 4.00 1531 1.60x

12 4 8 16 32
Sten <ize

Figure 2: (Left) Performance of the multi-step SSM kernel for generating 32 tokens. (Right) Speedup results for
speculative decoding with pure Mamba models (2.8B verifier, 130M draft) on The Pile. K is number of draft
tokens produced, # Gen includes an additional token from the last Verifier logits.

Results of our hardware-aware multi-step generation are shown in Figure 2(left). We verify the effectiveness
of Algorithm 2 we run the speculation using a 2.8B Mamba as the target model and a 130M Mamba as the
draft model (model checkpoints from (Gu & Dao, 2023)), using data from The Pile. Results are shown in
Figure 2(right).
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Additionally, since our distilled models contain transformer layers, we extend speculative decoding to Trans-
former/Mamba hybrid architectures. In this setting, the Mamba layers perform verification according to
Algorithm 2, while the transformer layers simply perform parallel verification.

D. More Experiment Results

Distillation Our primary goal is to produce a model competitive with Zephyr on chat-based benchmarks. We
evaluate our models using single-turn and multi-turn chat benchmarks. These benchmarks assess the model’s
ability to follow instructions and respond to challenging prompts across a wide variety of domains.

) . MT-Bench AlpacaEval AlpacaEval
Model Size  Align (score) (Lg win %) (Svin %)
Xwin-LM v0.1 7B dPPO 6.19 - -
Mistral-Instruct v0.1 7B - 6.84 - -
Zephyr 7B dDPO 7.34 13.200.96 10.99¢ .96
Hyb Mamba (500/0 att) 7B dDPO 6.69 14.111_01 12.601,01
Hyb Mamba (250/0 att) 7B dDPO 6.10 8.920,87 9-320.87
Falcon-Instruct 40B  dSFT 5.17 5.6 3.3
Llama2-Chat 7B RLHF 6.26 54 5.0
Llama2-Chat 13B  RLHF 6.65 8.4 7.7
Llama2-Chat 70B  RLHF 6.86 14.7 13.9
GPT-3.5-turbo - RLHF 7.94 22.70 14.10
Claude 2 - RLHF 8.06 28.20 17.20
GPT-4 - RLHF 8.99 50.00 50.00
GPT-4o0 - RLHF - 57.461.47 51.331_47

Table 3: Chat benchmark results for open-access and proprietary models on MT-Bench and AlpacaEval. MT-Bench
scores model responses using GPT-4. AlpacaEval version two measures the win-loss rate between baseline
models and GPT-4 scored by GPT-4 Turbo.

Table 3 shows the performance of our distilled Mamba model on chat benchmarks compared with large
transformer models. The distilled Hyb Mamba (50% att) achieves a similar score in the MT-benchmark as the
teacher model, and slightly better than the teacher model on the AlpacaEval benchmark in both LC win rate and
overall win rate. The Hyb Mamba (25% att) performance is slightly worse than that of the teacher models in the
MT benchmark but still surpasses some large transformers even with more parameters in AlpcaEval.

We also report evaluation on standard academic benchmarks in Table 4. We follow the evaluation of Zephyr by
conducting 25 shots in ARC-Challenge (Clark et al., 2018), 10 shots in HellaSwag (Zellers et al., 2019), 5 shots
in MMLU (Hendrycks et al., 2021), and zero-shot in Truthful QA (Lin et al., 2022). For these experiments, we
also compare to a pure Mamba-7B model trained from scratch (Mercat et al., 2024) and evaluate with the same
number of shots. The distilled models show somewhat degraded performance on these benchmarks compared to
Zephyr, but are still competitive. We note that our model, which is trained on only 3 billion tokens, significantly
outperforms Mamba 7B, which is trained from scratch with 1.2 trillion tokens, on the Refined Web (Penedo et al.,
2023) dataset in some tasks, like MMLU (Hendrycks et al., 2021) and Truthful QA (Lin et al., 2022).

E. Analysis

Does PPL correspond to ability? Table 5 Left compares the PPL of different model variants. We distill using
Ultrachat (Ding et al., 2023) in one epoch and compare the perplexity. We find that removing more layers gets
significantly worse. We also compare our distillation approach with a previous baseline. This approach distills a
Transformer model into a Hyena model (Poli et al., 2023), as proposed in (Ralambomihanta et al., 2024). They use
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Model Size Align | ARC SHvilal; MMLU T“gifm
StableLM-Tuned-« 7B dSFT 31.91 53.59 2441 40.37
MPT-Chat 7B dSFT 46.50 75.51 37.62 40.16
Xwin-LM v0.1 7B dPPO 56.57 79.40 49.98 47.89
Mistral-Instruct v0.1 7B dSFT 54.52 75.63 55.38 56.28
Zephyr 7B dDPrO 62.03 84.52 61.44 57.44

Mamba 7B - 52.561,46 80.620,39 33-406.67 29.103,13
Hyb Mamba (500/0 att) 7B dDPO 49-151.46 75.070.43 47.9810.21 46.675_51
Hyb Mamba (250/0 att) 7B dDPO 48.551,46 71.090.45 37-827,31 40-015.36

Falcon-Instruct 40B  dSFT 61.60 84.31 55.45 52.52
Llama2-Chat 7B RLHF 53.07 77.74 45.30 33.29
Llama2-Chat 13B  RLHF 59.39 82.13 54.80 41.74
Llama2-Chat 70B  RLHF 67.32 87.33 69.83 44.92

Table 4: LLM eval benchmark results for open-access models on the Open LLM Leaderboard.

Model PPL  Ratio
Teacher: Zephyr (7B) 2.02 1 Model Hyb Mamba Hyb Mamba
Hyb Mamba (50% att) 2.09 1.03 (50% Att) (25% Att)
Hyb Mamba (25% att) 2.20 1.09 .
Hyb Mamba (6.25% att) 246  1.22 Dis 5.55 5.01
Mamba (0% att) 336 1.66 Dis+SFT 5.61 4.97

i i Dis+dDPO 5.42 4.84

Dis+SFT+dDPO 6.69 6.10

Teacher: Pythia (70M) 51.4 1
Distill Hyena 121.2 236

Table 5: (Left) Perplexity comparison between our distillation approach and (Ralambomihanta et al., 2024).
(Right) Ablation study of different alignment methods of the Distilled Hybrid Mamba on the MT-benchmark.

a different distillation approach using progressive knowledge transfer, wherein the student model is trained
starting from the first layer and progressively extending to subsequent layers. While it is challenging to compare,
our distill shows a smaller degradation (1.03 for 50 % attention, 1.09 for 25 % attention, 1.22 for 6.35% attention,
and 3.36 for no attention), while the Distill Hyena model is trained in WikiText (Merity et al., 2016) dataset with a
much smaller model and shows large perplexity degrade.

Does distilling from preferences help? In Table 5 (Right), we show the impact of different steps in the alignment
process of the distillation. We observe that dSFT or dDPO alone does not yield much improvement, while dSFT +
dDPO yields the best score.

Ablations We consider several different model ablation studies in Table 6. For these experiments we consider
training for 5k steps using the pseudo-label approaches on the Ultrachat (Ding et al., 2023) dataset.

Table 6 (Left) presents the results of distillation with various initializations. According to this table, initializing
weights from a transformer is crucial for performance. Without weight initialization from a transformer, perplexity
significantly worsens for both pure Mamba models and hybrid models. Also, freezing MLP layers can help the
student model focus on learning the interaction of tokens and better mimic attention layers. Table 6 (Right)
shows also see smaller benefits from progressive distillation and interleaving the attention layers with Mamba.
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Mamba Hyb Mamba Hyb Mamba Hyb Mamba
Model (0% Att) (50% Att) Model (25% Att) (50% Att)
Froz -Froz Froz -Froz Step -Step Step -Step
Atten-Init | 3.36  66.7  2.09 9.1 Interleave | 2.20 229  2.09 -
-Atten-Init | 182 203 74 11.2 -Interleave | 2.89 - 241 -

Table 6: (Left) Perplexity comparison with different SSM initialization. (Right) Perplexity comparison with
different Mamba interleaving layers and stepwise distillation.

F. Related Work

Attention-free models. Attention-free models offer improved computational and memory efficiency, making
them increasingly popular for various language processing tasks, including autoregressive language modeling.
Models like 54 (Gu et al., 2021) and its subsequent variants (Gupta et al., 2022; Gu et al., 2022) have shown
promising results in long-range synthetic tasks (Tay et al., 2020). Gated SSM architectures, such as GSS (Mehta
et al., 2023) and BiGS (Wang et al., 2022), incorporate a gating mechanism into SSMs for (bidirectional) language
modeling. The recently introduced Mamba model (Gu & Dao, 2023) argues that the static dynamics of these
methods fail to incorporate input-specific context selection within the hidden state, which could be crucial for
tasks like language modeling. Mamba has been shown to outperform Transformers across different model sizes
and scales. Additionally, several other sub-quadratic model architectures (Poli et al., 2023; Yang et al., 2023b; De
et al., 2024; Arora et al., 2023; 2024; Fu et al., 2024a) and hybrid architectures (Fu et al., 2022; Lieber et al., 2024)
have also been proposed.

Distillation from Transformers. Laughing Hyena (Massaroli et al., 2024) proposes to distill the long convolution
into a state space representation, enabling constant time inference in Hyena (Poli et al., 2023). Ralambomihanta
et al. (2024) introduces a progressive knowledge approach to distill small transformer models (70M) into Hyena
models.

Speculative Decoding. Speculative decoding (Spector & Re, 2023; Leviathan et al., 2023; Chen et al., 2023a; Xia
et al., 2023; Cai et al., 2024) has recently emerged as a promising method to accelerate the inference process of
large language models, particularly Transformers. This approach utilizes a smaller draft model to speculatively
generate candidate tokens, which the larger target model then verifies. Leviathan et al. (2023); Chen et al.
(2023a) proposed a rejection sampling scheme to improve inference quality, while Spector & Re (2023) organized
candidate tokens into a tree structure to enable more efficient verification. Subsequent work has examined both
trained draft models (Bhendawade et al., 2024; Chen et al., 2023b; Liu et al., 2023) and training-free draft models
(He et al., 2023; Yang et al., 2023a; Fu et al., 2024b).

G. Discussion: Limitations, Broader Impacts, Conclusion

Limitations We only train our model using chat corpora due to academic budget constraints. Training on
general corpora, such as those referenced in (Penedo et al., 2023), may help close the gap between teacher models
and is worth exploring further. Additionally, our model is in 7B scale. Further work still needs to be done with
models that have more parameters.

Broader Impacts Our models are trained using a collected chat corpus. Recent research has uncovered potential
societal biases embedded within many established corpora. While it is beyond the scope of this paper to delve
deeply into these biases, we acknowledge the potential risk that our distilled trained models may inherit these
biases.

Conclusion We consider the problem of maintaining LLM abilities while increasing decoding speed through
a combination of distillation and speculative decoding. We first show that a transformer LLM can be used to
effectively initialize a Mamba linear RNN model while maintaining original abilities. We then show that through
a combination of distillation on supervised instructions and preferences, we can improve the model’s ability with
relatively little compute. Finally, we show that the Mamba model can be significantly sped up at inference time
through the use of a hardware-aware speculative decoding method. The full model nears LLM chat accuracy,
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and is accelerated with speculative decoding. We believe these results show that transformer knowledge can be
transferred effectively to other architectures, opening up the potential for customizing the inference profile of
LLMs beyond optimizing attention.
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