
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

The Mamba in the Llama:
Distilling and Accelerating Hybrid Models

Anonymous Authors1

Abstract
Recent research suggests that state-space

models (SSMs) like Mamba can be competi-

tive with Transformer models for language

modeling with advantageous deployment

characteristics. Given the focus and expertise

on training large-scale Transformer models,

we consider the challenge of converting these

pretrained models into SSMs for deployment.

We demonstrate that it is feasible to distill

large Transformers into SSMs by reusing the

linear projection weights from attention lay-

ers with academic GPU resources. The re-

sulting hybrid model, which incorporates a

quarter of the attention layers, achieves per-

formance comparable to the original Trans-

former. Moreover, we introduce a hardware-

aware speculative decoding algorithm that

accelerates the inference speed of state-space

models. Overall we show how, with limited

computation resources, we can distill a large

Transformer into a hybrid SSM and decode it

efficiently.

1. Introduction
While Transformers (Vaswani et al., 2017) have been

an essential architecture in deep learning and have

driven the success of large language models such as

GPT (Brown et al., 2020), Llama (Touvron et al., 2023),

and Mistral (Jiang et al., 2023), they are prohibitively

slow for very long sequences due to their quadratic

complexity with respect to sequence length and large

Key-Value cache requirement. Recent linear RNN mod-

els (Mamba (Gu & Dao, 2023), GLA (Yang et al., 2023b),

RetNet (Sun et al., 2023), Griffin (De et al., 2024)) have

been shown to beat Transformers at small to medium

1

Anonymous Institution, Anonymous City, Anonymous

Region, Anonymous Country. Correspondence to: Anony-

mous Author <anon.email@domain.com>.

Under review by the Workshop on Efficient Systems for Foun-

dation Models (ES-FoMO) at ICML 2024. Do not distribute.

scale. While linear RNN models (Mamba (Gu & Dao,

2023)) show fast inference (5× higher throughput) than

Transformers, larger Transformers still significantly

outperform linear RNN models on downstream tasks.

On the other hand, the training times of these linear

RNN models are similar to those of Transformers, and

scaling up these models requires substantial computa-

tional resources.

The dominance of Transformers for large language

model training motivates us to investigate whether a

large Transformer model can be distilled into a primar-

ily state space model (SSM) using affordable resources.

This SSM model can then be used for efficient inference

without requiring training from scratch. The inference

benefits of SSMs can unlock new applications currently

bottlenecked by the large KV cache of Transformers,

such as reasoning over multiple long documents (Guo

et al., 2021; Shaham et al., 2022; Peng et al., 2023) and

files in large codebases (Roziere et al., 2023; Li et al.,

2023a)). Emerging workflows with agents (Yao et al.,

2022; Yang et al., 2024) require large-batch inference

to explore more trajectories and long-context to model

complex environments. The challenge is that training

large SSMs from scratch still requires expensive com-

pute, heavy training infrastructure, and lots of data. To

distill a pretrained Transformer to an SSM, one would

need to make good use of the pretrained weights to

initialize the SSMs, as random initialization would

require extensive re-training. The technical challenges

are two-fold: how to map pretrained Transformer

weights to SSMs weights for the best initialization, and

how to adapt Transformer inference techniques such as

speculative decoding to SSMs where there is no longer

any KV cache.

We summarize our contributions in the following:

• We show that by reusing weights from attention

layers, it is possible to distill a large transformer

into a large hybrid-SSM by using 8 A100 80 GB

GPUs within three days while preserving much of

its generation quality. To mimic Transformer better,

we propose a modified Mamba architecture that can

be directly initialized from the attention block of a

1

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

The Mamba in the Llama: Distilling and Accelerating Hybrid Models

pretrained model.

• We propose a multistage distillation approach that

combines progressive distillation, supervised fine-

tuning (Kim & Rush, 2016), and directed preference

optimization (Rafailov et al., 2024), which shows

better perplexity and downstream evaluation com-

pared with vanilla distillation.

• We develop a targeted speculative sampling algo-

rithm and kernel, and show that speculative de-

coding can be effectively applied to this hybrid

architecture.

Our experiments distill a large-scale open chat LLM,

Zephyr-7B (Tunstall et al., 2023) to a hybrid Mamba

model, using only 3B tokens of training. Results show

that the distilled approach matches the teacher model

in standard Chat benchmarks (Zheng et al., 2023; Li

et al., 2023b). We also show that it performs on par

or better than Mamba 7B models (Mercat et al., 2024;

Gu & Dao, 2023) trained from scratch with 1.2T to-

kens in multiple tasks (e.g., MMLU (Hendrycks et al.,

2021), TruthfulQA (Lin et al., 2022)) in LLM evaluation

benchmark (Gao et al., 2023).

2. Transferring Transformers to State-Space
Models

2.1. Attention and Linear RNNs

We begin by reviewing multihead attention to clarify

the shapes of intermediate objects. Notationally, we

use explicit subscripts for the sequence position instead

of matrices, to better highlight similarities between the

two models.

Attention is computed in parallel for multiple differ-

ently parameterized heads h ∈ {1 . . . H}. Each head

takes sequence o with hidden size D as an argument

and computes,

Qt = WQot, Kt = WK
t ot, Vt = WV ot for all t,

α1 . . . αT = softmax
([m1,tQ

⊤
t K1 . . .mT,tQ

⊤
t KT]√

D

)
yt =

∑
s

ms,tαsVs

where ot ∈ RD×1, W ∈ RN×D Qt,Kt,Vt ∈ RN×1 ms,t = 1(s ≤ t)

Recent work has argued that linear RNNs can be seri-

ous competitors to attention in large language models.

Several different linear RNN formulations have been

proposed with similar formulations. In this work, we

focus on a system with selective parameters from Gu

& Dao (2023) of the following form, described again

for a single head h ∈ {1 . . . H}:

ht = Atht−1 +Btxt, yt = Ctht (1)

For now, we leave the shapes of the parameters

At,Bt,Ct abstract. Linear RNNs have several compu-

tational advantages over attention. During training,

all yt values can be computed more efficiently than

attention using an associative scan algorithm. Dur-

ing inference, each next yt can be computed serially

without requiring a cache.

Despite the superficially different form, there is a nat-

ural relationship between linear RNNs and attention.

Linearizing the attention formula by removing the

softmax yields:

yt =
∑
s

ms,tαsVs =
1√
D
Qt

∑
s

(ms,tKsVs) =
1√
D
Qt

∑
s

ms,tKsW
V os.

This implies that there exists a linear RNN form of

linear attention, specifically:

ht = ht−1 +KtW
V ot yt =

1√
D
Qtht

If the two models have the same heads H and the

head size N , we can set Bt = WKxt, Ct = WQxt,

xt = WV xt. This relationship motivates moving

between attention and linear RNN representations.

2.2. Mamba

Unfortunately linearizing attention leads to a degraded

representation of the original model, as the softmax

nonlinearity is critical. Previous work has developed

kernel methods to improve this approximation (Schlag

et al., 2021; Irie et al., 2021; Zhang et al., 2024). These

approaches increase the size of the hidden state repre-

sentation to h to better match the modeling capacity

of softmax.

Algorithm 1 Transformer to Mamba

1: Shapes: B - Batch, L - Length, D - Hiddens,

2: H - Heads, N - D / H

3: Input: o: (B, L, D)

4: Output: output: (B, L, D) = 0

5: for each head Wk,Wq,Wv,Wo : (N,D)
6: expanding grouped KVs do
7: Head Parameter: A : (N)
8: x : (B,L,N)←WV o
9: B : (B,L,N)←WKo

10: C : (B,L,N)←WQo
11: ∆ : (B,L,N)← MLP(x)
12: A,B : (B,L,N,N)← S6(A,B,C,∆)
13: y ← Scan(A,B,C,x)
14: output← output +WO⊤y

15: return output

In this work, we use the parameterization from Mamba

Gu & Dao (2023) to increase the hidden state size, while

initializing from the attention representation. Mamba

uses a continuous time state-space model (SSM) to pa-

rameterize a linear RNN at run time, described by the

2

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

The Mamba in the Llama: Distilling and Accelerating Hybrid Models

differential equation: h′(t) = Ah(t)+B(t)x(t),y(t) =
C(t)h(t) where A is a diagonal matrix. We overload

the continuous time and linear RNN names for sim-

plicity. To apply it to a discrete-time problem like

language modeling, we need to produce a sequence of

sampling intervals ∆t that map our samples to discrete

time. Given these sampling intervals, and samples

of A,B,C, c, Mamba uses a zero-order hold to map

from the continuous time representation onto a linear

RNN, A1...T ,B1...T ,C1...T = S6(A,B,C,∆) For our

purposes, we can treat this as a black box for producing

a more expressive hidden state representation that can

a minimal reproduce linear attention. We note that in

addition to mapping from continuous-time to discrete-

time, Mamba also uses this step to increase the hidden

size of the representation through a hardware-aware

factorization. For each head and element in the batch,

S6 takes in Bt,Ct ∈ RN×1
and ∆t ∈ RN ′

, but outputs

Bt,Ct ∈ RN ′×N×1
. This allows the model to use dif-

ferent sampling intervals for the initial hidden state

and effectively increases the hidden size by a factor of

D over the naive linear attention.

3. Speculative Decoding for Mamba
Language model generation is inherently bottlenecked

by the serial dependency of autoregressive models.

Systems cannot utilize all available compute, as they

need to wait for the generation of previous tokens to

proceed (Spector & Re, 2023; Leviathan et al., 2023;

Chen et al., 2023a; Xia et al., 2023; Cai et al., 2024).

Speculative decoding has emerged as a method for

breaking this bottleneck by spending extra compute to

speculate on future generations. The method uses two

models, a draft model, θD, and a verification model,

θV . The fast draft model produces potential future

completions argmaxy1...yN
p(y1, . . . , yN ; θD) and the

larger verification model checks that these are top

outputs at each time step for θV . The longer a chain

before a verification failure the faster the output.

Transformer models are particularly amenable to spec-

ulation, as they are slow at generation due to sequential

attention, but fast at verification due to their ability

to check multiple tokens in parallel. Linear RNN

models like Mamba have significantly different perfor-

mance characteristics that make them less amenable

to speculative decoding. Their sequential decoding

mode using recurrent style sampling is significantly

faster than Transformers. Their parallel mode, used

at training, is more efficient than Transformers but is

optimized for extremely long sequences. In addition,

the optimization for efficient parallel scans explicitly

avoids instantiating the intermediate state represen-

Algorithm 2 MultiStep Speculative Decoding

1: function Verify(x1:k, j,hi) ▷ x1:k are draft, j is

last verified, hi is a cached state with i ≤ j
2: yj:k,hj ,hk ←MultiStep(hi,x1:k, i, j, k)
3: k′ ← FirstConflict(yj:k,xj:k)
4: return k′,hk if k′ = k else hj

5: function Speculate(K) ▷ draft K tokens per step

6: cache← h0

7: j ← 0
8: while xj is not end do
9: k← j + K

10: x1:k ← Draft(x1:j ,K)
11: j, cache← Verify(x1:k, j, cache)

tation. These properties make it difficult to use for

speculation as chains are relatively short, and it is

unknown when a conflict will occur.

We therefore design a new algorithm for Mamba spec-

ulative decoding using hardware-aware multi-step

generation. The algorithm is based on a new genera-

tion kernel for mamba that computes: yj:k,hj ,hk ←
MultiStep(hi,x1:n, i, j, k;A,B,C,∆) Where i is the

starting hidden state, i ≤ j ≤ k, and j . . . k is the range

of y outputs needed. We say the function is hardware-

aware because it is designed to avoid materializing

key terms off of the fast GPU memory. Specifically it

avoids instantiating most h1:n as well as the discrete-

time linear RNN parameters.

Utilizing this function we can run Algorithm 2 for

verification. The algorithm maintains only one linear

RNN hidden state for verification and advances it lazily

based on the success of the multistep kernel.

Additionally, since our distilled models contain trans-

former layers, we extend speculative decoding to Trans-

former/Mamba hybrid architectures. In this setting,

the Mamba layers perform verification according to Al-

gorithm 2, while the transformer layers simply perform

parallel verification.

4. Experimental Setup
Target models We perform all experiments using the

chat model Zephyr-7B (Tunstall et al., 2023) as our tar-

get model, which is a fine-tuned Mistral 7B (Jiang et al.,

2023) model. We use this model because of its strong

performance in both chat and academic benchmarks,

and because the supervised fine-tuning and prefer-

ence alignment protocols used are well documented 1

1https://github.com/huggingface/
alignment-handbook

3

https://github.com/huggingface/alignment-handbook
https://github.com/huggingface/alignment-handbook

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

The Mamba in the Llama: Distilling and Accelerating Hybrid Models

and models are highly reproducible. For the distilled

model we use a hybrid one with 50% Attention layers

and one with 25% Attention layers.

Training We reiterate that distillation does not require

any language modeling pretraining data, but instead

uses the post-training process to adapt the new model.

We use a three-stage process. In the first stage, we use

UltraChat (Ding et al., 2023) and UltraFeedback (Cui

et al., 2023) as seed prompts and use the teacher model

Zephyr (Tunstall et al., 2023) to generate pseudo-labels.

The student model is trained in one epoch using the loss

L in Eq 2 with α = 1 and β = 0.1. Models are trained

using AdamW optimizer with β = (0.9, 0.98) with a

batch size 64. We used a linear learning rate warm-up

(for the first 500 steps) followed by cosine annealing.

In the second stage, we use supervised finetuning

with our model on the UltraChat (Ding et al., 2023)

and OpenHermes 2.5 (Teknium, 2023) datasets using

dSFT in one epoch, with the same configuration as

Zephyr (Tunstall et al., 2023). In the final stage, we do

distilled alignment with our model using dDPO on the

UltraFeedback (Cui et al., 2023) dataset in one epoch

(1.9k steps in total) and evaluate models for every 1k

steps and pick the best. We only freeze Gated MLP in

the first stage, while in the second and final stage all

parameters are trained. The total distillation process

takes three days in 8x80G A100.

Hybrid Speculative decoding We perform specula-

tive decoding using the distilled hybrid models. We

run experiments using both Hybrid Mamba 50% and

Hybrid Mamba 25% as main models. For the draft

models, we train 2 and 4-layer transformer draft mod-

els on the OpenHermes2.5 dataset (Teknium, 2023),

for approximately 3 full epochs, following the “shrink

and fine-tune” approach from (Shleifer & Rush, 2020).

Specifically, we initialize the draft layers using layers

from the Zephyr-7B model (we take layers at indices

[0, 31] for the 2-layer model and [0, 10, 20, 31] for the

4-layer model), and the embeddings and language

model head also from the Zephyr-7B model (Tunstall

et al., 2023). We perform loss masking on the prompt,

thus only considering next token prediction loss (cross-

entropy) on the chat continuations from the training set.

Speculative decoding experiments are run on a single

NVIDIA RTX 3090 on data from OpenHermes2.5.

Metrics We evaluate the model on chat and academic

task benchmarks. For chat, we use MT-Bench (Zheng

et al., 2023), a multi-turn benchmark including 160

questions in eight different knowledge areas. Each

model response is rated by GPT-4 on a scale from 1

to 10 and the final score is determined by averaging

the scores from the two turns, and AlpacaEval (Li

et al., 2023b) v2, a single-turn benchmark in which a

model needs to generate responses to 805 questions on

different topics, focused on helpfulness. It evaluates

the win rate against GPT-4, scored by GPT-4 Turbo.

For academic benchmarks, we use a subset of tasks in

the LLM Eval Benchmark (Gao et al., 2023) which is

consistent with teacher model Zephyr (Tunstall et al.,

2023). Note that our aim is not to replicate full general-

purpose LLM ability, so we do not target matching

perplexity but focus on transferring task ability.

5. Results
Distillation Our primary goal is to produce a model

competitive with Zephyr on chat-based benchmarks.

We evaluate our models using single-turn and multi-

turn chat benchmarks. These benchmarks assess the

model’s ability to follow instructions and respond to

challenging prompts across a wide variety of domains.

Model Size MT-Bench (score) AlpacaEval (win %)

Xwin-LM v0.1 7B 6.19 -

Mistral-Instruct v0.1 7B 6.84 -

Zephyr 7B 7.34 10.990.96

Hyb Mamba (50% att) 7B 6.69 12.601.01

Hyb Mamba (25% att) 7B 6.10 9.320.87

Falcon-Instruct 40B 5.17 3.3

Llama2-Chat 7B 6.26 5.0

Llama2-Chat 13B 6.65 7.7

Llama2-Chat 70B 6.86 13.9

GPT-3.5-turbo - 7.94 14.10

GPT-4 - 8.99 50.00

Table 1: Chat benchmark results for open-access and

proprietary models on MT-Bench and AlpacaEval. MT-

Bench scores model responses using GPT-4. AlpacaE-

val version two measures the win-loss rate between

baseline models and GPT-4 scored by GPT-4 Turbo.

Hybrid Speculative Decoding Table 2 shows results

for hybrid speculative decoding with a lookahead size

of 4. For both the 50% and 25% distilled models, we

achieve speedups of over 1.8x compared to the non-

speculative baseline. We also show that the 4-layer

draft model we trained achieves a higher acceptance

rate, but it adds some additional overhead due to the

increased draft model size.

Draft Model Target Model # Gen. Tokens Throughput (tok/s) Speedup

2 layers
Hybrid 1/2 2.48 115 1.8x

Hybrid 1/4 2.64 120 1.88x

4 layers
Hybrid 1/2 3 116 1.81x

Hybrid 1/4 3 115 1.8x

Table 2: Performance metrics for different draft and

target model configurations for K = 4 on data from

OpenHermes2.5. # Gen is the average number of

generated tokens per speculative decoding step and

includes an additional token from the last Verifier

logits.

4

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

The Mamba in the Llama: Distilling and Accelerating Hybrid Models

References
Arora, S., Eyuboglu, S., Timalsina, A., Johnson, I.,

Poli, M., Zou, J., Rudra, A., and Ré, C. Zoology:

Measuring and improving recall in efficient language

models. arXiv preprint arXiv:2312.04927, 2023.

Arora, S., Eyuboglu, S., Zhang, M., Timalsina, A., Al-

berti, S., Zinsley, D., Zou, J., Rudra, A., and Ré,

C. Simple linear attention language models bal-

ance the recall-throughput tradeoff. arXiv preprint
arXiv:2402.18668, 2024.

Bhendawade, N., Belousova, I., Fu, Q., Mason, H.,

Rastegari, M., and Najibi, M. Speculative streaming:

Fast llm inference without auxiliary models. arXiv
preprint arXiv:2402.11131, 2024.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan,

J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry,

G., Askell, A., et al. Language models are few-shot

learners. Advances in neural information processing
systems, 33:1877–1901, 2020.

Cai, T., Li, Y., Geng, Z., Peng, H., Lee, J. D., Chen, D.,

and Dao, T. Medusa: Simple llm inference accel-

eration framework with multiple decoding heads.

arXiv preprint arXiv:2401.10774, 2024.

Chen, C., Borgeaud, S., Irving, G., Lespiau, J.-B., Sifre,

L., and Jumper, J. Accelerating Large Language

Model Decoding with Speculative Sampling, 2023a.

Chen, Z., Yang, X., Lin, J., Sun, C., Huang, J., and Chang,

K. C.-C. Cascade speculative drafting for even faster

llm inference. arXiv preprint arXiv:2312.11462, 2023b.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal,

A., Schoenick, C., and Tafjord, O. Think you have

solved question answering? try arc, the ai2 reasoning

challenge. arXiv preprint arXiv:1803.05457, 2018.

Cui, G., Yuan, L., Ding, N., Yao, G., Zhu, W., Ni, Y., Xie,

G., Liu, Z., and Sun, M. Ultrafeedback: Boosting

language models with high-quality feedback. arXiv
preprint arXiv:2310.01377, 2023.

De, S., Smith, S. L., Fernando, A., Botev, A., Cristian-

Muraru, G., Gu, A., Haroun, R., Berrada, L., Chen,

Y., Srinivasan, S., et al. Griffin: Mixing gated linear

recurrences with local attention for efficient language

models. arXiv preprint arXiv:2402.19427, 2024.

Ding, N., Chen, Y., Xu, B., Qin, Y., Hu, S., Liu, Z., Sun,

M., and Zhou, B. Enhancing chat language models by

scaling high-quality instructional conversations. In

Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pp. 3029–3051, 2023.

Fu, D., Arora, S., Grogan, J., Johnson, I., Eyuboglu, E. S.,

Thomas, A., Spector, B., Poli, M., Rudra, A., and Ré,

C. Monarch mixer: A simple sub-quadratic gemm-

based architecture. Advances in Neural Information
Processing Systems, 36, 2024a.

Fu, D. Y., Dao, T., Saab, K. K., Thomas, A. W., Rudra,

A., and Re, C. Hungry hungry hippos: Towards

language modeling with state space models. In The
Eleventh International Conference on Learning Represen-
tations, 2022.

Fu, Y., Bailis, P., Stoica, I., and Zhang, H. Break

the sequential dependency of llm inference using

lookahead decoding. arXiv preprint arXiv:2402.02057,

2024b.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S.,

DiPofi, A., Foster, C., Golding, L., Hsu, J., Le Noac’h,

A., Li, H., McDonell, K., Muennighoff, N., Ociepa,

C., Phang, J., Reynolds, L., Schoelkopf, H., Skowron,

A., Sutawika, L., Tang, E., Thite, A., Wang, B., Wang,

K., and Zou, A. A framework for few-shot language

model evaluation, 12 2023. URL https://zenodo.
org/records/10256836.

Gu, A. and Dao, T. Mamba: Linear-time sequence

modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Gu, A., Goel, K., and Ré, C. Efficiently Modeling

Long Sequences with Structured State Spaces. arXiv
preprint arXiv:2111.00396, 2021.

Gu, A., Goel, K., Gupta, A., and Ré, C. On the Parame-

terization and Initialization of Diagonal State Space

Models. Advances in Neural Information Processing
Systems, 35:35971–35983, 2022.

Guo, M., Ainslie, J., Uthus, D., Ontanon, S., Ni, J.,

Sung, Y.-H., and Yang, Y. Longt5: Efficient text-to-

text transformer for long sequences. arXiv preprint
arXiv:2112.07916, 2021.

Gupta, A., Gu, A., and Berant, J. Diagonal State Spaces

are as Effective as Structured State Spaces. Advances
in Neural Information Processing Systems, 35:22982–

22994, 2022.

He, Z., Zhong, Z., Cai, T., Lee, J. D., and He, D. Rest:

Retrieval-based speculative decoding. arXiv preprint
arXiv:2311.08252, 2023.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika,

M., Song, D., and Steinhardt, J. Measuring massive

multitask language understanding. Proceedings of the
International Conference on Learning Representations
(ICLR), 2021.

5

https://zenodo.org/records/10256836
https://zenodo.org/records/10256836

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

The Mamba in the Llama: Distilling and Accelerating Hybrid Models

Hinton, G., Vinyals, O., and Dean, J. Distilling the

knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Irie, K., Schlag, I., Csordás, R., and Schmidhuber, J.

Going beyond linear transformers with recurrent fast

weight programmers. Advances in neural information
processing systems, 34:7703–7717, 2021.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,

Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel,

G., Lample, G., Saulnier, L., et al. Mistral 7b. arXiv
preprint arXiv:2310.06825, 2023.

Kim, Y. and Rush, A. M. Sequence-level knowledge

distillation. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pp.

1317–1327, 2016.

Leviathan, Y., Kalman, M., and Matias, Y. Fast Infer-

ence from Transformers via Speculative Decoding. In

Proceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 19274–19286. PMLR, 23–29

Jul 2023. URL https://proceedings.mlr.press/
v202/leviathan23a.html.

Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov,

D., Mou, C., Marone, M., Akiki, C., Li, J., Chim, J.,

et al. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161, 2023a.

Li, X., Zhang, T., Dubois, Y., Taori, R., Gulra-

jani, I., Guestrin, C., Liang, P., and Hashimoto,

T. B. Alpacaeval: An automatic evaluator of

instruction-following models. https://github.
com/tatsu-lab/alpaca_eval, 2023b.

Lieber, O., Lenz, B., Bata, H., Cohen, G., Osin, J.,

Dalmedigos, I., Safahi, E., Meirom, S., Belinkov,

Y., Shalev-Shwartz, S., et al. Jamba: A hybrid

transformer-mamba language model. arXiv preprint
arXiv:2403.19887, 2024.

Lin, S., Hilton, J., and Evans, O. Truthfulqa: Measuring

how models mimic human falsehoods. In Proceed-
ings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp.

3214–3252, 2022.

Liu, X., Hu, L., Bailis, P., Stoica, I., Deng, Z., Cheung, A.,

and Zhang, H. Online speculative decoding. arXiv
preprint arXiv:2310.07177, 2023.

Massaroli, S., Poli, M., Fu, D., Kumbong, H., Par-

nichkun, R., Romero, D., Timalsina, A., McIntyre, Q.,

Chen, B., Rudra, A., et al. Laughing hyena distillery:

Extracting compact recurrences from convolutions.

Advances in Neural Information Processing Systems, 36,

2024.

Mehta, H., Gupta, A., Cutkosky, A., and Neyshabur,

B. Long Range Language Modeling via Gated

State Spaces. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=5MkYIYCbva.

Mercat, J., Vasiljevic, I., Keh, S., Arora, K., Dave, A.,

Gaidon, A., and Kollar, T. Linearizing large language

models. arXiv preprint arXiv:2405.06640, 2024.

Merity, S., Xiong, C., Bradbury, J., and Socher, R.

Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

Penedo, G., Malartic, Q., Hesslow, D., Cojocaru, R.,

Cappelli, A., Alobeidli, H., Pannier, B., Almazrouei,

E., and Launay, J. The RefinedWeb dataset for Falcon

LLM: outperforming curated corpora with web data,

and web data only. arXiv preprint arXiv:2306.01116,

2023. URL https://arxiv.org/abs/2306.01116.

Peng, B., Quesnelle, J., Fan, H., and Shippole, E. Yarn:

Efficient context window extension of large language

models. arXiv preprint arXiv:2309.00071, 2023.

Poli, M., Massaroli, S., Nguyen, E., Fu, D. Y., Dao, T.,

Baccus, S., Bengio, Y., Ermon, S., and Ré, C. Hyena

hierarchy: Towards larger convolutional language

models. In International Conference on Machine Learn-
ing, pp. 28043–28078. PMLR, 2023.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D.,

Ermon, S., and Finn, C. Direct preference opti-

mization: Your language model is secretly a reward

model. Advances in Neural Information Processing
Systems, 36, 2024.

Ralambomihanta, T. R., Mohammadzadeh, S., Islam,

M. S. N., Jabbour, W., and Liang, L. Scavenging

hyena: Distilling transformers into long convolution

models. arXiv preprint arXiv:2401.17574, 2024.

Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat,

I., Tan, X. E., Adi, Y., Liu, J., Remez, T., Rapin, J.,

et al. Code llama: Open foundation models for code.

arXiv preprint arXiv:2308.12950, 2023.

Schlag, I., Irie, K., and Schmidhuber, J. Linear trans-

formers are secretly fast weight programmers. In

International Conference on Machine Learning, pp. 9355–

9366. PMLR, 2021.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and

Klimov, O. Proximal policy optimization algorithms.

arXiv preprint arXiv:1707.06347, 2017.

6

https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_eval
https://openreview.net/forum?id=5MkYIYCbva
https://openreview.net/forum?id=5MkYIYCbva
https://arxiv.org/abs/2306.01116

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

The Mamba in the Llama: Distilling and Accelerating Hybrid Models

Shaham, U., Segal, E., Ivgi, M., Efrat, A., Yoran, O.,

Haviv, A., Gupta, A., Xiong, W., Geva, M., Berant, J.,

et al. Scrolls: Standardized comparison over long

language sequences. arXiv preprint arXiv:2201.03533,

2022.

Shleifer, S. and Rush, A. M. Pre-trained summarization

distillation. CoRR, abs/2010.13002, 2020. URLhttps:
//arxiv.org/abs/2010.13002.

Spector, B. and Re, C. Accelerating llm inference

with staged speculative decoding. arXiv preprint
arXiv:2308.04623, 2023.

Sun, Y., Dong, L., Huang, S., Ma, S., Xia, Y., Xue, J.,

Wang, J., and Wei, F. Retentive network: A successor

to transformer for large language models. arXiv
preprint arXiv:2307.08621, 2023.

Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D.,

Pham, P., Rao, J., Yang, L., Ruder, S., and Metzler,

D. Long range arena: A benchmark for efficient

transformers. In International Conference on Learning
Representations, 2020.

Teknium. Openhermes 2.5: An open dataset

of synthetic data for generalist llm assistants,

2023. URL https://huggingface.co/datasets/
teknium/OpenHermes-2.5.

Touvron, H., Lavril, T., Izacard, G., Martinet, X.,

Lachaux, M.-A., Lacroix, T., Rozière, B., Goyal, N.,

Hambro, E., Azhar, F., et al. Llama: Open and ef-

ficient foundation language models. arXiv preprint
arXiv:2302.13971, 2023.

Tunstall, L., Beeching, E., Lambert, N., Rajani, N., Rasul,

K., Belkada, Y., Huang, S., von Werra, L., Fourrier,

C., Habib, N., et al. Zephyr: Direct distillation of lm

alignment. arXiv preprint arXiv:2310.16944, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,

Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin,

I. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

Wang, J., Yan, J. N., Gu, A., and Rush, A. M. Pretraining

without attention. arXiv preprint arXiv:2212.10544,

2022.

Xia, H., Ge, T., Wang, P., Chen, S.-Q., Wei, F., and Sui,

Z. Speculative Decoding: Exploiting Speculative

Execution for Accelerating Seq2seq Generation. In

Findings of the Association for Computational Linguistics:
EMNLP 2023, pp. 3909–3925, Singapore, December

2023. Association for Computational Linguistics. doi:

10.18653/v1/2023.findings-emnlp.257. URL https:
//aclanthology.org/2023.findings-emnlp.257.

Yang, J., Jimenez, C. E., Wettig, A., Lieret, K., Yao, S.,

Narasimhan, K., and Press, O. Swe-agent: Agent

computer interfaces enable software engineering

language models, 2024.

Yang, N., Ge, T., Wang, L., Jiao, B., Jiang, D., Yang, L.,

Majumder, R., and Wei, F. Inference with reference:

Lossless acceleration of large language models. arXiv
preprint arXiv:2304.04487, 2023a.

Yang, S., Wang, B., Shen, Y., Panda, R., and Kim, Y.

Gated linear attention transformers with hardware-

efficient training. arXiv preprint arXiv:2312.06635,

2023b.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,

K., and Cao, Y. React: Synergizing reasoning

and acting in language models. arXiv preprint
arXiv:2210.03629, 2022.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and

Choi, Y. Hellaswag: Can a machine really finish your

sentence? arXiv preprint arXiv:1905.07830, 2019.

Zhang, M., Bhatia, K., Kumbong, H., and Ré, C.

The hedgehog & the porcupine: Expressive linear

attentions with softmax mimicry. arXiv preprint
arXiv:2402.04347, 2024.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu,

Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E. P.,

Zhang, H., Gonzalez, J. E., and Stoica, I. Judging

llm-as-a-judge with mt-bench and chatbot arena,

2023.

7

https://arxiv.org/abs/2010.13002
https://arxiv.org/abs/2010.13002
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://aclanthology.org/2023.findings-emnlp.257
https://aclanthology.org/2023.findings-emnlp.257

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

The Mamba in the Llama: Distilling and Accelerating Hybrid Models

A. Full Initialization and Hybrid Stepwise Training
To initialize an SSM layer from a modern attention layer we use the procedure shown in Algorithm 1 and Figure 1.

This algorithm needs to handle the conversion from attention to the SSM parameterization and then from the

SSM form to linear attention. In addition, it requires processing additional components like grouped query

attention that shares keys and values across heads. We note that this model differs from the commonly-used

Mamba architecture, which combines MLP and SSM layers into one and is single head. Our version replaces

attention heads directly with SSM layers. We also keep the MLP layers as is and do not train them.

This initialization allows us to replace any attention block with a Mamba block. In practice, we experiment with

hybrid models where we keep every n attention layers. Empirically we found that replacing layers in a stepwise

manner was the most effective strategy, i.e. we first keep every 2 layers, distill, and then every 4, and continue

distillation.

O

RMS Norm

Multi-head attention

Q K V

RMS Norm

Linear

A

Linear

SSM

Linear

Linear

B C X

O

RMS Norm

Linear

Linear

LinearLinear

Conv

Figure 1: Transferring Transformer to Mamba. Weights in same color are initialize from transformer. We replace

only individual Attention heads by SSM layers, and then fine-tune these blocks while freeze the MLP blocks.

Shapes are kept mainly the same. New parameters are introduced for the learned A and ∆ parameters.

B. Knowledge Distillation for Aligned LMs
Knowledge distillation (KD) (Hinton et al., 2015) serves as a compression technique aimed at training a smaller

network that mimics the behavior of a larger teacher network. After initializing the Mamba model from the

original transformer parameters, we aim to distill it to perform on par with the original language model. We

assume that most of the knowledge from the transformer is maintained in the MLP layers which were transferred

from the original model, and focus on distilling the fine-tuning and alignment steps of the LLM. During this

stage, the MLP layers are kept frozen and the Mamba layers are trained as in Figure 1.

Supervised Fine-Tuning We first apply knowledge distillation to redo the supervised fine-tuning (SFT) stage of

language model adaptation. During this stage, an LLM is trained to maximize the likelihood of a response y
given an input prompt x, i.e. p(y | x). In this sense, the task looks similar to conditional generation.

There are two common approaches for distillation in this setting. One method is to use word-level KL-Divergence.

In this setting, the full probability distribution of the student model p(·; θ) is trained to match the full distribution

of the teacher model p(·; θT) by minimizing the KL divergence over the entire set of next possible tokens at

8

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

The Mamba in the Llama: Distilling and Accelerating Hybrid Models

position t. The second method is sequence-level knowledge distillation (SeqKD) (Kim & Rush, 2016). SeqKD

suggests a simple method for distillation on this style of task, by replacing the ground truth text y1···t with the

teacher generation output ŷ1···t, also known as pseudo-labels.

L(θ) = −
T∑

t=1

α log p(ŷt+1 | ŷ1:t, x, θ) + β KL [p(· | ŷ1:t, x, θT) || p(· | ŷ1:t, x, θ)] (2)

Here θ is trainable parameters of the student model and α and β control the weights of sequence and word loss

term respectively.

Preference Optimization The second stage of instruction-tuning for LLMs is to align them to a set of user

preferences. During this stage, a set of desired preference pairs is used to improve the model’s output. The

objective is to produce outputs y to prompts x that maximize a reward model r while maintaining close to a

reference model. Typically the reference model is chosen to be the model after supervised fine-tuning. For

distillation, we can conveniently utilize the original teacher, i.e.

max
θ

Ex∼D,y∼p(y|x;θ)
[
rϕ(x, y)

]
− βKL

[
p(y | x; θ) || π(y | x; θT)

]
(3)

This preference model is defined by a reward function rϕ(x, y) dependent on the method used. Previous research

utilizatin AI feedback has primarily focused on employing reinforcement learning methods, such as proximal

policy optimization (PPO) (Schulman et al., 2017), to optimize ϕ concerning this reward. Recently, methods using

direct preference optimization (DPO) (Rafailov et al., 2024) have been effective at optimizing this objective with

direct gradient updates. Specifically, DPO shows that, if we have access to preferred yw and dispreferred yl
outputs for a given prompt x, we can reformulate this optimization problem as,

πθ = max
θ

E
(x,yw,yl) ∼D

log σ

(
β log

p(yw|x; θ)
p(yw|x; θT)

− β log
p(yl|x; θ)
p(yl|x; θT)

)
. (4)

This optimization can be performed at the sequence level by scoring the preferred and dispreferred outputs of

the model with the teacher and student and then backpropagating to the student. As far as we are aware this is

the first use of DPO as a distillation objective.

C. Speculative Decoding for Mamba

12 4 8 16 32
Step size

0

1

2

3

4

5

Ti
m

e
(m

s)

Multi-step SSM kernel performance
Single-step
Multi-step

K # Gen. Tokens Throughput Speedup
3 3.01 1411 1.48x

4 3.28 1482 1.56x

5 3.65 1517 1.59x

6 4.00 1531 1.60x

Figure 2: (Left) Performance of the multi-step SSM kernel for generating 32 tokens. (Right) Speedup results for

speculative decoding with pure Mamba models (2.8B verifier, 130M draft) on The Pile. K is number of draft

tokens produced, # Gen includes an additional token from the last Verifier logits.

Results of our hardware-aware multi-step generation are shown in Figure 2(left). We verify the effectiveness

of Algorithm 2 we run the speculation using a 2.8B Mamba as the target model and a 130M Mamba as the

draft model (model checkpoints from (Gu & Dao, 2023)), using data from The Pile. Results are shown in

Figure 2(right).

9

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

The Mamba in the Llama: Distilling and Accelerating Hybrid Models

Additionally, since our distilled models contain transformer layers, we extend speculative decoding to Trans-

former/Mamba hybrid architectures. In this setting, the Mamba layers perform verification according to

Algorithm 2, while the transformer layers simply perform parallel verification.

D. More Experiment Results
Distillation Our primary goal is to produce a model competitive with Zephyr on chat-based benchmarks. We

evaluate our models using single-turn and multi-turn chat benchmarks. These benchmarks assess the model’s

ability to follow instructions and respond to challenging prompts across a wide variety of domains.

Model Size Align
MT-Bench

(score)

AlpacaEval

(LC win %)

AlpacaEval

(win %)

Xwin-LM v0.1 7B dPPO 6.19 - -

Mistral-Instruct v0.1 7B - 6.84 - -

Zephyr 7B dDPO 7.34 13.200.96 10.990.96

Hyb Mamba (50% att) 7B dDPO 6.69 14.111.01 12.601.01

Hyb Mamba (25% att) 7B dDPO 6.10 8.920.87 9.320.87

Falcon-Instruct 40B dSFT 5.17 5.6 3.3

Llama2-Chat 7B RLHF 6.26 5.4 5.0

Llama2-Chat 13B RLHF 6.65 8.4 7.7

Llama2-Chat 70B RLHF 6.86 14.7 13.9

GPT-3.5-turbo - RLHF 7.94 22.70 14.10

Claude 2 - RLHF 8.06 28.20 17.20

GPT-4 - RLHF 8.99 50.00 50.00

GPT-4o - RLHF - 57.461.47 51.331.47

Table 3: Chat benchmark results for open-access and proprietary models on MT-Bench and AlpacaEval. MT-Bench

scores model responses using GPT-4. AlpacaEval version two measures the win-loss rate between baseline

models and GPT-4 scored by GPT-4 Turbo.

Table 3 shows the performance of our distilled Mamba model on chat benchmarks compared with large

transformer models. The distilled Hyb Mamba (50% att) achieves a similar score in the MT-benchmark as the

teacher model, and slightly better than the teacher model on the AlpacaEval benchmark in both LC win rate and

overall win rate. The Hyb Mamba (25% att) performance is slightly worse than that of the teacher models in the

MT benchmark but still surpasses some large transformers even with more parameters in AlpcaEval.

We also report evaluation on standard academic benchmarks in Table 4. We follow the evaluation of Zephyr by

conducting 25 shots in ARC-Challenge (Clark et al., 2018), 10 shots in HellaSwag (Zellers et al., 2019), 5 shots

in MMLU (Hendrycks et al., 2021), and zero-shot in TruthfulQA (Lin et al., 2022). For these experiments, we

also compare to a pure Mamba-7B model trained from scratch (Mercat et al., 2024) and evaluate with the same

number of shots. The distilled models show somewhat degraded performance on these benchmarks compared to

Zephyr, but are still competitive. We note that our model, which is trained on only 3 billion tokens, significantly

outperforms Mamba 7B, which is trained from scratch with 1.2 trillion tokens, on the Refined Web (Penedo et al.,

2023) dataset in some tasks, like MMLU (Hendrycks et al., 2021) and Truthful QA (Lin et al., 2022).

E. Analysis
Does PPL correspond to ability? Table 5 Left compares the PPL of different model variants. We distill using

Ultrachat (Ding et al., 2023) in one epoch and compare the perplexity. We find that removing more layers gets

significantly worse. We also compare our distillation approach with a previous baseline. This approach distills a

Transformer model into a Hyena model (Poli et al., 2023), as proposed in (Ralambomihanta et al., 2024). They use

10

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

The Mamba in the Llama: Distilling and Accelerating Hybrid Models

Model Size Align ARC
Hella

Swag
MMLU

Truthful

QA

StableLM-Tuned-α 7B dSFT 31.91 53.59 24.41 40.37

MPT-Chat 7B dSFT 46.50 75.51 37.62 40.16

Xwin-LM v0.1 7B dPPO 56.57 79.40 49.98 47.89

Mistral-Instruct v0.1 7B dSFT 54.52 75.63 55.38 56.28

Zephyr 7B dDPO 62.03 84.52 61.44 57.44
Mamba 7B - 52.561.46 80.620.39 33.406.67 29.103.13
Hyb Mamba (50% att) 7B dDPO 49.151.46 75.070.43 47.9810.21 46.675.51
Hyb Mamba (25% att) 7B dDPO 48.551.46 71.090.45 37.827.31 40.015.36

Falcon-Instruct 40B dSFT 61.60 84.31 55.45 52.52

Llama2-Chat 7B RLHF 53.07 77.74 45.30 33.29

Llama2-Chat 13B RLHF 59.39 82.13 54.80 41.74

Llama2-Chat 70B RLHF 67.32 87.33 69.83 44.92

Table 4: LLM eval benchmark results for open-access models on the Open LLM Leaderboard.

Model PPL Ratio

Teacher: Zephyr (7B) 2.02 1

Hyb Mamba (50% att) 2.09 1.03

Hyb Mamba (25% att) 2.20 1.09

Hyb Mamba (6.25% att) 2.46 1.22

Mamba (0% att) 3.36 1.66

Teacher: Pythia (70M) 51.4 1

Distill Hyena 121.2 2.36

Model Hyb Mamba Hyb Mamba

(50% Att) (25% Att)

Dis 5.55 5.01

Dis+SFT 5.61 4.97

Dis+dDPO 5.42 4.84

Dis+SFT+dDPO 6.69 6.10

Table 5: (Left) Perplexity comparison between our distillation approach and (Ralambomihanta et al., 2024).

(Right) Ablation study of different alignment methods of the Distilled Hybrid Mamba on the MT-benchmark.

a different distillation approach using progressive knowledge transfer, wherein the student model is trained

starting from the first layer and progressively extending to subsequent layers. While it is challenging to compare,

our distill shows a smaller degradation (1.03 for 50 % attention, 1.09 for 25 % attention, 1.22 for 6.35% attention,

and 3.36 for no attention), while the Distill Hyena model is trained in WikiText (Merity et al., 2016) dataset with a

much smaller model and shows large perplexity degrade.

Does distilling from preferences help? In Table 5 (Right), we show the impact of different steps in the alignment

process of the distillation. We observe that dSFT or dDPO alone does not yield much improvement, while dSFT +

dDPO yields the best score.

Ablations We consider several different model ablation studies in Table 6. For these experiments we consider

training for 5k steps using the pseudo-label approaches on the Ultrachat (Ding et al., 2023) dataset.

Table 6 (Left) presents the results of distillation with various initializations. According to this table, initializing

weights from a transformer is crucial for performance. Without weight initialization from a transformer, perplexity

significantly worsens for both pure Mamba models and hybrid models. Also, freezing MLP layers can help the

student model focus on learning the interaction of tokens and better mimic attention layers. Table 6 (Right)

shows also see smaller benefits from progressive distillation and interleaving the attention layers with Mamba.

11

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

The Mamba in the Llama: Distilling and Accelerating Hybrid Models

Model

Mamba

(0% Att)

Hyb Mamba

(50% Att)

Froz -Froz Froz -Froz

Atten-Init 3.36 66.7 2.09 9.1

-Atten-Init 18.2 20.3 7.4 11.2

Model

Hyb Mamba

(25% Att)

Hyb Mamba

(50% Att)

Step -Step Step -Step

Interleave 2.20 2.29 2.09 -

-Interleave 2.89 - 2.41 -

Table 6: (Left) Perplexity comparison with different SSM initialization. (Right) Perplexity comparison with

different Mamba interleaving layers and stepwise distillation.

F. Related Work
Attention-free models. Attention-free models offer improved computational and memory efficiency, making

them increasingly popular for various language processing tasks, including autoregressive language modeling.

Models like S4 (Gu et al., 2021) and its subsequent variants (Gupta et al., 2022; Gu et al., 2022) have shown

promising results in long-range synthetic tasks (Tay et al., 2020). Gated SSM architectures, such as GSS (Mehta

et al., 2023) and BiGS (Wang et al., 2022), incorporate a gating mechanism into SSMs for (bidirectional) language

modeling. The recently introduced Mamba model (Gu & Dao, 2023) argues that the static dynamics of these

methods fail to incorporate input-specific context selection within the hidden state, which could be crucial for

tasks like language modeling. Mamba has been shown to outperform Transformers across different model sizes

and scales. Additionally, several other sub-quadratic model architectures (Poli et al., 2023; Yang et al., 2023b; De

et al., 2024; Arora et al., 2023; 2024; Fu et al., 2024a) and hybrid architectures (Fu et al., 2022; Lieber et al., 2024)

have also been proposed.

Distillation from Transformers. Laughing Hyena (Massaroli et al., 2024) proposes to distill the long convolution

into a state space representation, enabling constant time inference in Hyena (Poli et al., 2023). Ralambomihanta

et al. (2024) introduces a progressive knowledge approach to distill small transformer models (70M) into Hyena

models.

Speculative Decoding. Speculative decoding (Spector & Re, 2023; Leviathan et al., 2023; Chen et al., 2023a; Xia

et al., 2023; Cai et al., 2024) has recently emerged as a promising method to accelerate the inference process of

large language models, particularly Transformers. This approach utilizes a smaller draft model to speculatively

generate candidate tokens, which the larger target model then verifies. Leviathan et al. (2023); Chen et al.

(2023a) proposed a rejection sampling scheme to improve inference quality, while Spector & Re (2023) organized

candidate tokens into a tree structure to enable more efficient verification. Subsequent work has examined both

trained draft models (Bhendawade et al., 2024; Chen et al., 2023b; Liu et al., 2023) and training-free draft models

(He et al., 2023; Yang et al., 2023a; Fu et al., 2024b).

G. Discussion: Limitations, Broader Impacts, Conclusion
Limitations We only train our model using chat corpora due to academic budget constraints. Training on

general corpora, such as those referenced in (Penedo et al., 2023), may help close the gap between teacher models

and is worth exploring further. Additionally, our model is in 7B scale. Further work still needs to be done with

models that have more parameters.

Broader Impacts Our models are trained using a collected chat corpus. Recent research has uncovered potential

societal biases embedded within many established corpora. While it is beyond the scope of this paper to delve

deeply into these biases, we acknowledge the potential risk that our distilled trained models may inherit these

biases.

Conclusion We consider the problem of maintaining LLM abilities while increasing decoding speed through

a combination of distillation and speculative decoding. We first show that a transformer LLM can be used to

effectively initialize a Mamba linear RNN model while maintaining original abilities. We then show that through

a combination of distillation on supervised instructions and preferences, we can improve the model’s ability with

relatively little compute. Finally, we show that the Mamba model can be significantly sped up at inference time

through the use of a hardware-aware speculative decoding method. The full model nears LLM chat accuracy,

12

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

The Mamba in the Llama: Distilling and Accelerating Hybrid Models

and is accelerated with speculative decoding. We believe these results show that transformer knowledge can be

transferred effectively to other architectures, opening up the potential for customizing the inference profile of

LLMs beyond optimizing attention.

13

