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ABSTRACT

Knowledge graph (KG) reasoning is an important problem for knowledge graphs.
It predicts missing links by reasoning on existing facts. Knowledge graph em-
bedding (KGE) is one of the most popular methods to address this problem. It
embeds entities and relations into low-dimensional vectors and uses the learned
entity/relation embeddings to predict missing facts. However, KGE only uses
zeroth-order (propositional) logic to encode existing triplets (e.g., “Alice is Bob’s
wife.”); it is unable to leverage first-order (predicate) logic to represent generally
applicable logical rules (e.g., “∀x, y : x is y’s wife → y is x’s husband”). On
the other hand, traditional rule-based KG reasoning methods usually rely on hard
logical rule inference, making it brittle and hardly competitive with KGE. In this
paper, we propose RulE, a novel and principled framework to represent and model
logical rules and triplets. RulE jointly represents entities, relations and logical
rules in a unified embedding space. By learning an embedding for each logical
rule, RulE can perform logical rule inference in a soft way and give a confidence
score to each grounded rule, similar to how KGE gives each triplet a confidence
score. Compared to KGE alone, RulE allows injecting prior logical rule informa-
tion into the embedding space, which improves the generalization of knowledge
graph embedding. Besides, the learned confidence scores of rules improve the
logical rule inference process by softly controlling the contribution of each rule,
which alleviates the brittleness of logic. We evaluate our method with link pre-
diction tasks. Experimental results on multiple benchmark KGs demonstrate the
effectiveness of RulE. https://github.com/XiaojuanTang/RulE

1 INTRODUCTION

Knowledge graphs (KGs) usually store millions of real-world facts and are used in a variety of ap-
plications, such as recommender systems (Wang et al., 2018), question answering (Bordes et al.,
2014) and information retrieval (Xiong et al., 2017). Examples of knowledge graphs include Free-
base (Bollacker et al., 2008), WordNet(Miller, 1995) and YAGO (Suchanek et al., 2007). They
represent entities as nodes and relations among the entities as edges. Each edge encodes a fact in the
form of a triplet (head entity, relation, tail entity). However, KGs are usually highly incomplete due
to the limitedness of human knowledge and web corpora, as well as imperfect extraction algorithms.
Knowledge graph reasoning, which predicts missing facts by reasoning on existing facts, has thus
become a popular research area in Artificial Intelligence. There are two prominent lines of work in
this area: knowledge graph embedding (KGE), which embeds all entities and relations into vectors,
and rule-based KG reasoning, which uses logical rules to infer new facts.

Knowledge graph embedding (KGE) methods such as TransE (Bordes et al., 2013), Com-
plEx (Trouillon et al., 2016) and RotatE (Sun et al., 2019) have received significant attention due to
their effectiveness and scalability. They embed entities and relations into low-dimensional vectors or
matrices, preserving the inherent structure and latent semantic information. By computing the score
of each triplet in the continuous space, KGE effectively estimates the plausibility of unobserved
triplets so that reasoning of missing facts becomes feasible. However, KGE only uses zeroth-order
(propositional) logic to encode existing facts (e.g., “Alice is Bob’s wife.”). It cannot leverage first-
order (predicate) logic, which uses the universal quantifier to represent generally applicable logical
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Figure 1: Given a KG containing a set of triplets and logical rules, RulE represents every entity,
relation and logical rule as an embedding, i.e., e, r, R. It further defines respective mathematical
operations between entities and relations as well as between relations and logical rules. The target
is to jointly maximize the plausibility of existing triplets and logical rules, similar to how KGE
maximizes the plausibility of observed triplets. In this way, we can optimize all embeddings e, r, R
in the same space to enhance each other, which improves the generalization of KGE and allows
performing logical rule inference in a soft way.

rules. For instance, “∀x, y : x is y’s wife → y is x’s husband” encodes one logical rule. Those rules
are not specific to particular entities (e.g., Alice and Bob) but are generally applicable to all entities.
Another limitation of current KGE is that it can only be applied to transductive scenarios, which
means it is unable to answer queries (h, r, t)s if t is not contained in KG during the training.

The other line of work, rule-based KG reasoning, in contrast, can be applied to both inductive
and transductive settings, because rules are generally applicable to even unseen entities. Further-
more, unlike embedding-based methods, logical rules can achieve interpretable reasoning. How-
ever, the brittleness of logical rules greatly harms prediction performance. Consider the logical rule
(x,work in, y) → (x, live in, y) as an example. It is mostly correct. Yet, if somebody works in New
York but lives in New Jersey, the rule will surely infer the wrong fact that he/she lives in New York.

Considering that the aforementioned two lines of work can complement each other, addressing each
other’s weaknesses with their own forte, it becomes imperative to study how to robustly integrate
logical rules with KGE methods. If we view this integration against a broader backdrop, embedding-
based reasoning can be seen as a type of neural method, while rule-based reasoning can be seen as a
type of symbolic method. Neural-symbolic synthesis has also been a focus of Artificial Intelligence
research in recent years (Parisotto et al., 2017; Yi et al., 2018; Manhaeve et al., 2018; Xu et al.,
2018; Hitzler, 2022). Specifically, most of the existing work combining logical rules and KGE
either uses logical rules to infer new facts as additional training data for KGE or directly converts
some rules into regularization terms for specific KGE models (Guo et al., 2016; Rocktäschel et al.,
2015; Demeester et al., 2016). For example, KALE (Guo et al., 2016) and RUGE (Guo et al., 2018)
apply t-norm fuzzy logic to grounded rules to give a truth score for each inferred triplet and generate
additional triplets for KGE training. On the other hand, some other efforts do not ground rules to
infer new triplets for training but rather inject logical rules via regularization terms on entity/relation
embeddings during KGE training (Ding et al., 2018; Guo et al., 2020). They leverage logical rules
merely to enhance KGE training without actually using logical rules to perform reasoning. In other
words, they are still restricted to the transductive setting and might lose the important information
contained in explicit rules, leading to empirically worse performance than state-of-the-art methods.

To address the aforementioned limitations, we propose RulE, a novel and principled framework to
combine KGE and logical rules in a unified scheme. RulE stands for Rule Embedding. We choose
it as our method’s name to highlight that we are the first to jointly represent every entity, relation
and logical rule in a unified embedding, as illustrated in Figure 1. Given a KG and a set of logical
rules, RulE assigns an embedding vector to each entity, relation, and logical rule, and defines respec-
tive mathematical operators between entities and relations as well as between relations and logical
rules. By jointly optimizing embeddings in the same space, RulE allows injecting prior logical rule
information into the embedding space, which improves the generalization of KGE. Additionally, by
learning an embedding for each logical rule, RulE is able to perform logical rule inference in a soft
way as well as give a confidence score to each grounded rule, similar to how KGE gives each triplet
a confidence score. The learned confidence scores can further improve the rule-based reasoning
process by softly controlling the contribution of each rule, which alleviates the brittleness of logic.

We evaluate RulE on link prediction tasks and show superior performance. It performs competitively
with strong baselines on knowledge graph completion benchmarks WN18RR (Dettmers et al., 2018)
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and FB15K-237 (Toutanova & Chen, 2015), and obtains state-of-the-art performance on Kinship and
UMLS (Kok & Domingos, 2007), two benchmark KGs for statistical relational learning.

To summarize, our main contributions in this work are the following. (1) We design a novel paradigm
of neural-symbolic KG reasoning models to combine logical rules with KG embedding. To our best
knowledge, this is the first attempt to embed entities, relations and logical rules into a unified space
to perform KG reasoning. (2) Our framework is quite generic and flexible. It can adopt any KGE
method, such as RotatE and TransE, and can use flexible ways to model the relationship between
the embeddings of logical rules and their participating relations. (3) We empirically evaluate RulE
on several benchmark KGs, showing superior performance to prior works.

2 RELATED WORK

A popular approach for knowledge graph reasoning is knowledge graph embedding (KGE), which
embeds entities and relations into a continuous space and uses a scoring function to compute a score
for each triplet based on the entity and relation embeddings (Bordes et al., 2013; Yang et al., 2014;
Trouillon et al., 2016; Cai & Wang, 2017; Sun et al., 2019; Balažević et al., 2019; Vashishth et al.,
2019; Zhang et al., 2020; Abboud et al., 2020). Much prior work in this regard views a relation as
some operation or mapping function between entities. Most notably, TransE (Bordes et al., 2013)
defines a relation as a translation operation between some head entity and tail entity. It is effective
in modelling inverse and composition rules. DistMult (Yang et al., 2014) uses a bilinear mapping
function to model symmetric patterns. RotatE (Sun et al., 2019) uses rotation operation in complex
space to capture symmetry/antisymmetry, inversion and composition rules. [BoxE (Abboud et al.,
2020) models relations as boxes and entities as points to capture symmetry/anti-symmetry,
inversion, hierarchy and intersection patterns but not composition rules] Still, the relations
well modelled by prior work are quite simple, and embeddings are learned solely based on triplets
(zeroth-order logic) contained in the given KG. In contrast, our approach is able to embody more
complex first-order logical rules in the embedding space by jointly modeling entities, relations and
logical rules in a unified framework.

Besides embedding-based methods, logical rules have been widely applied in knowledge graph rea-
soning as well because of their interpretability and generalizability. As one of the early efforts,
Quinlan (1990) uses Inductive Logic Programming (ILP) to derive logical rules (hypothesis) from all
the training samples in a KG. Some later work leverages Markov Logic Networks (MLNs) to define
the joint distribution over given (observed) and hidden variables (missing facts) (Kok & Domingos,
2005; Brocheler et al., 2012; Beltagy & Mooney, 2014). Using maximum likelihood estimation,
MLNs learn the weights of logical rules, which can be further used to infer missing facts (hidden
variables) in the probabilistic graph framework. However, this approach requires enumerating all
possible facts and thus is not tractable. AMIE (Galárraga et al., 2013) and AMIE+ (Galárraga et al.,
2015) first enumerate possible rules and then learn a scalar weight for each rule to encode the qual-
ity. Neural-LP (Yang et al., 2017) and DRUM (Sadeghian et al., 2019) mine rules by simultaneously
learning logic rules and their weights based on TensorLog (Cohen et al., 2017). RNNLogic (Qu
et al., 2020) simultaneously trains a rule generator as well as a reasoning predictor to generate high-
quality logical rules. Except for RNNLogic, the above methods solely use the learned logical rules
for reasoning, which suffer from brittleness and are hardly competitive with embedding-based rea-
soning in most benchmarks. Although RNNLogic considers the effect of KGE during inference,
it only linearly combines the rule inference score and KGE score as the final prediction score, and
pretrains KGE separately from logical rule learning without jointly modeling KGE and logical rules
in the same space. In contrast, our RulE assigns an embedding to each logical rule and trains KGE
together with rule embedding, so that they are modelled in the same embedding space to comple-
ment each other. In addition, during rule inference, RulE further employs the learned confidence
scores of rules as soft multi-hot encoding of the activated rules instead of hard multi-hot encoding
of RNNLogic to further promote rule-based reasoning.

Moreover, some recent work tries to incorporate logical rules into KGE models to improve the
generalization and performance of KGE reasoning. KALE (Guo et al., 2016) applies t-norm fuzzy
logic to grounded rules to give a truth score to each inferred triplet and generate additional triplets
for KGE training. RUGE (Guo et al., 2018) additionally focuses on soft rules and uses logical
rules to enhance KGE in an iterative manner. These models both use logical rules to infer new
facts as additional training data for KGE. Besides the above ones, several other prior work injects
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rules via regularization terms for KGE during training. Notably, Wang et al. (2015) formulates
inference as an integer linear programming (ILP) problem with the objective function generated
from embedding models and the constraints translated from rules. Ding et al. (2018) impose non-
negativity constraints on entity representations by restricting each element of entity embedding to
[0, 1], and inject subrelation rules (e.g., rp → rq) over relation representations, regularizing the score
computed by KGE of the latter to be higher than that of the former. Based on Ding et al. (2018), Guo
et al. (2020) go beyond simple rules (i.e., subrelation) and can handle more complex logical rules
encoded by Horn clauses. In summary, these methods leverage logical rules only to enhance KGE
training and do not really perform reasoning with logical rules. [Besides, there are some other
works that adopt graph neural networks framework. They usually aggregate local neighbor
information to perform link prediction (Schlichtkrull et al., 2018; Teru et al., 2020; Zhu et al.,
2021). Although they probably achieve better performance than our method in FB15k-237
and WN18RR, it does not explicitly apply logic rules and lack explainability. However, our
method is more applicable paradigm such that we can exploit human domain knowledge.]
It simultaneously train KG embedding and rule embedding, and combine them together to infer
missing facts, which mutually enhance each other.

3 PRELIMINARIES

A KG consists of a set of triplets or atoms K = {(h, r, t) | h, t ∈ E , r ∈ R} ⊆ E × R × E , where E
denotes the set of entities and R the set of relations. For a testing triplet (h, r, t), we define a query
as q = (h, r, ?). The knowledge graph reasoning (link prediction) task is to infer the missing entity t
based on the existing facts (and rules).

3.1 EMBEDDING-BASED REASONING

Knowledge graph embedding (KGE) represents entities and relations in a continuous space called
embeddings. It calculates a score for each triplet based on these embeddings via a scoring function.
The embeddings are trained so that facts observed in the KG have higher scores than those not
observed. The learning goal here is to maximize the scores of positive facts (existing facts) and
minimize those of generated negative samples.

RotatE (Sun et al., 2019) is a representative KGE method with competitive performance on common
benchmark datasets. It maps entities in a complex space and defines relations as element-wise
rotations in a two-dimensional complex plane. Each entity and each relation is associated with a
complex vector, i.e., h(c), r(c), t(c) ∈ Ck, where the modulus of each element in r(c) equals to 1
(multiplying a complex number with a unitary complex number is equivalent to a 2D rotation). The
k-dimensional complex vector hc can be expressed in the form h(c) = ha + hbi, where ha and hb

are k-dimensional real vectors. Based on it, RotateE represents each head entity as a 2k-dimensional
real vector h := [ha,hb] ∈ R2k, where ha are the real parts and hb are the imaginary parts
(the same for the tail embedding t). Additionally, as rotations are associated with unitary complex
numbers (i.e., |[r(c)]j | = 1, j = 1, 2, . . . , k), RotateE only parameterizes relation embeddings with
k-dimensional real vectors (angles) r. Here the real parts are cos(r) and imaginary parts are sin(r),
where both sin and cos are element-wise operations.

If a triplet (h, r, t) holds, it is expected that t(c) ≈ h(c) ◦ r(c) in the complex space, where ◦ denotes
the Hadamard (element-wise) product. This is equivalent to t ≈ Concat

(
ha ◦ cos(r) − hb ◦

sin(r),ha ◦ sin(r) +hb ◦ cos(r)
)

in the real space, where
(
ha ◦ cos(r)−hb ◦ sin(r)

)
is the real

part of t and
(
ha ◦ sin(r) + hb ◦ cos(r)

)
is the imaginary part. The distance function of RotatE is

defined as:

d(h, r, t) =∥ Concat
(
ha ◦ cos(r)− hb ◦ sin(r),ha ◦ sin(r) + hb ◦ cos(r)

)
− t ∥ (1)

By defining relations as rotations in complex space, RotatE can model symmetry/antisymmetry,
inversion and composition rules simultaneously.

3.2 RULE-BASED REASONING

Logical rules are usually expressed as first-order logic formulae, e.g., ∀x, y, z : (x, r1, y) ∧
(y, r2, z) → (x, r3, z), or r1(x, y) ∧ r2(y, z) → r3(x, z) for brevity. The left-hand side of the

4



Under review as a conference paper at ICLR 2023

e!, 𝑟!, 𝑒"
𝑒#, 𝑟", 𝑒$
𝑒%, 𝑟#, 𝑒&
…

Triples existing in KG

(𝑅!: 𝑟!∧ 𝑟" ⇒ 𝑟#)
(𝑅": 𝑟$ ∧ r% ∧ 𝑟& ⇒ 𝑟')
(𝑅#: 𝑟' ∧ r( ⇒ 𝑟#)

…

Logic rules

Initialized embedding 𝑓triple 𝑒!, 𝑟! ≈ 𝑒"
𝑓triple 𝑒#, 𝑟" ≈ 𝑒$
𝑓triple 𝑒%, 𝑟# ≈ 𝑒&

…

Triple loss

𝑓rule 𝑟!, 𝑟", 𝑅! ≈ 𝑟#
𝑓rule 𝑟$, 𝑟%, 𝑟&, 𝑅" ≈ 𝑟'
𝑓rule 𝑟', 𝑟(, 𝑅# ≈ 𝑟#

…

Rule loss

Pre-training

Jointly training

Optimized embedding

Activated rule confidence
𝑤! 𝑤#

𝑝

KGE score

Final score

Grounding

Inference

Grounding rule score

𝑒)

𝑒!

𝑟!

𝑟*

𝑅!

𝑅+

…

…

…

𝑒)

𝑒!

𝑟!

𝑟*

𝑅!

𝑅+

…

…

…

Weighted
sum

MLP

𝑟$

𝑟%
𝑟&

𝑟!

Rule grounding

𝑟' 𝑟(

𝑟"

𝑟#

𝑝𝑒&𝑒%

…

𝑅!
(-)

𝑅#
(-)

𝑅+
(-)

𝑅"
(-)

Figure 2: The overall architecture of our model. RulE consists of three components. Given a KG
containing a set of triplets and logical rules extracted from the same or some other (external) knowl-
edge source, we represent each entity, relation and logical rule as an embedding. 1) During the
pre-training stage, we model the relationship between entities and relations as well as the relation-
ship between relations and logical rules in the same continuous space to jointly learn entity, relation
and rule embeddings. With the learned rule embeddings (r) and relation embeddings (R), RulE can
output a weight (w) for each rule. 2) In the grounding stage, we further associate each rule with a
learnable grounding-stage embedding (R(g)). For all activated rules, we compute the weighted sum
of their grounding-stage embeddings with w which is further used to output a grounding rule score.
3) Finally, RulE integrates the KGE score obtained from the pre-training stage and the grounding
rule score for inference.

implication “→” is called rule body or premise, and the right-hand side is rule head or conclusion.
Logical rules are often restricted to be closed, forming chains. For a chain rule, successive relations
share intermediate entities (e.g., y), and the conclusion’s and premise’s head/tail entity are the same.
The length of a rule is the number of atoms (relations) that exist in its rule body. One example of a
length-2 rule is:

live in(x, y) ∧ city of(y, z) → nationality(x, z), (2)
of which live in(·)∧ city of(·) is the rule body and nationality(·) is the rule head. A grounding of a
rule is obtained by substituting all variables x, y, z with specific entities. For example, if we replace
x, y, z with Bill Gates, Seattle, US respectively, we get a grounding:

live in(Bill Gates,Seattle) ∧ city of(Seattle,US) → nationality of(Bill Gates,US) (3)

If all triplets in the rule body of a grounding exist in the KG, we get a support of this rule. Those
rules that have nonzero support are called activated rules. When inferring a query (h, r, ?), rule-
based reasoning enumerates relation paths between head h and each candidate tail, and uses activated
logic rules to infer the answer. For example, if we want to infer nationality(Bill Gates, ?), given the
logical rule (2) as well as the existing triplets live in(Bill Gates,Seattle) and city of(Seattle,US),
the answer US can be inferred by traversing the KG.

4 METHOD

This section introduces our proposed model RulE. RulE uses a novel paradigm to combine KG
embedding with logical rules by learning rule embeddings. As illustrated in Figure 2, RulE consists
of three key components. Consider a KG containing triplets and a set of logical rules extracted from
the same or some other (external) knowledge source. 1) Pretraining. We model the relationship
between entities and relations as well as the relationship between relations and logical rules to jointly
train entity embedding, relation embedding and rule embedding in a continuous space, as illustrated
in Figure 1. 2) Grounding. With the rule and relation embeddings, we calculate a confidence
score for each rule which is used as the weight of activated rules to output a grounding rule score
3) Inference. Finally, we integrate the KGE score obtained from the pre-training stage and the
grounding rule score obtainable from the grounding stage to reason unknown triplets.
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4.1 PRE-TRAINING

Given a triplet (h, r, t) ∈ K and a rule R ∈ L, we use h, r, t,R ∈ R2k to represent their embeddings,
respectively, where k is the dimension of the complex space (following RotatE). Similar to KGE,
which encodes the plausibility of each triplet with a scoring function, RulE additionally defines a
scoring function for logical rules. Based on the two scoring functions, it jointly learns entity, relation
and rule embeddings in a same space by maximizing the plausibility of existing triplets K (zeroth-
order logic) and logical rules L (first-order logic). The following describes in detail how to model
the triplets and logical rules together.

Modeling the relationship between entities and relations To model triplets, we take RotatE (Sun
et al., 2019) due to its simplicity and competitive performance. Specifically, given a triplet (h, r, t),
its score is formulated as:

st(h, r, t) = γt − d(h, r, t), (4)

where γt is a fixed triplet margin and d(h, r, t) is defined in Eq. (1). A triplet with a small distance
will have a higher score, indicating its higher probability to be true. Note that our model is not
restricted to RotatE. The distance function can also be replaced with other KGE models, such as
TransE (Bordes et al., 2013) and ComplEx (Trouillon et al., 2016). Based on the scoring function,
we define the loss function with negative sampling as:

L(h, r, t) = − log σ(st(h, r, t))−
∑

(h′,r,t′)∈N

1

|N|
log σ(−st(h

′, r, t′)) (5)

where σ(x) = 1/(1 + exp(−x)) denotes the sigmoid function and N is the set of negative samples
constructed by replacing either the head entity or the tail entity with a random entity (but not both
at the same time). Following RotatE (Sun et al., 2019), we use a self-adversarial negative sampling
approach to sample negative triplets from the current embedding model.

Modeling the relationship between relations and logical rules A universal first-order logical
rule is some rule that universally holds for all entities. Therefore, we cannot relate such a rule
with specific entities. Instead, it is a higher-level concept related to the relations of which it is
composed. Motivated by RotatE, a natural idea is to model the relationship between relations and
logical rule as element-wise rotations from the rule body to the rule head, i.e., for a logical rule
R : r1 ∧ r2 ∧ ... ∧ rl → rl+1, we expect that r(c)l+1 ≈ (r

(c)
1 ◦ r(c)2 ◦ ... ◦ r(c)l ) ◦R(c), where {r(c)i }li=1

and R(c) are in the k-dimensional complex space. However, 2D rotations are commutative—they
cannot model the non-commutative property of composition rules, which is crucial for correctly
expressing the relation order of a rule. Take sister of(x, y) ∧ mother of(y, z) → aunt of(x, z)
as an example. If we permute the relations in rule body, e.g., change (sister of ∧ mother of) to
(mother of∧ sister of), the rule is no longer correct. However, the above model will output the same
score since (r

(c)
1 ◦ r(c)2 ) = (r

(c)
2 ◦ r(c)1 ).

Therefore, to respect the relation order of logical rules, we propose to use RNN (Graves, 2012).
Given the sequence of all relations in a rule body, e.g., [r1, r2, ..., rl], we use RNN to generate the
rule head rl+1. Specifically, we first concatenate each relation embedding ri in the rule body with
the rule embedding R. We further pass the concatenated embedding to an RNN, whose output is
expected to be close to the rule head embedding rl+1. Given so, the distance function is formulated
as:

d(R, r1, r2, ..., rl+1) =∥ RNN([R, r1], [R, r2], ..., [R, rl])− rl+1 ∥ . (6)

We also employ negative sampling, the same as when modeling triplets. At this time, it replaces a
relation (either in rule body or rule head) with a random relation. The loss function for logical rules
is defined as:

L(R, r1, r2, ..., rl+1) =− log σ(γr − d(R, r1, r2, ..., rl+1))

−
∑

(R,r′
1,r

′
2,...,r

′
l+1)∈M

1

|M|
log σ(d(R, r′1, r

′
2, ..., r

′
l+1)− γr), (7)

where γr is a fixed rule margin and M is the set of negative rule samples.
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Jointly training Given a KG containing a set of triplets K and logical rules L, we jointly optimize
the entity, relation, and rule embeddings with the loss:

L =
∑

(h,r,t)∈K

L(h, r, t) + α
∑

(R,r1,r2,...,rl)∈L

L(R, r1, r2, ..., rl+1), (8)

where α is a positive hyperparameter weighting the importance of rules.

4.2 GROUNDING

During grounding, we use the parameters optimized by the pre-training process to compute the
confidence score of each rule. Similar to how KGE gives a triplet the score, the confidence score of
a logical rule Ri : ri1 ∧ ri2 ∧ ... ∧ ril → ril+1

is calculated by:

wi = γr − d(Ri, ri1 , ri2 , ..., ril+1
) (9)

where d(Ri, ri1 , ri2 , ..., ril+1) is defined in Eq. (6). Each logical rule is further associated with a
grounding-stage rule embedding R(g) ∈ Rp. Note that this embedding is trained separately from
the rule embedding R in the pre-training stage, and is only used for the grounding stage rule-based
reasoning. Specifically, when answering a query (h, r, ?), we apply logical rules to find different
grounding paths on the KG, yielding different candidate answers. For each candidate answer t′,
we sum over the grounding-stage embeddings of those activated rules, each weighted by its rule
confidence score wi and the number of paths activating this rule (# supports). Finally, we apply an
MLP to calculate the grounding rule score:

sg(h, r, t′) = MLP
(
LN(

∑
Ri∈L′

wi|P(h,Ri, t′)|R(g)
i )

)
(10)

where LN is the layer normalization operation, L′ is the set of activated rules for (h, r, t′), and
P(h,Ri, t′) is the set of supports of the rule Ri which starts from h and ends at t′. More implemen-
tation details of the grounding process are included in Appendix A. Once we have the grounding
rule score for each candidate answer, we further use a softmax function to compute the probability
of the true answer. Finally, we train the MLP and grounding-stage rule embeddings by maximizing
the log likelihood of the true answers in the training triplets.

4.3 INFERENCE

After pre-training and grounding, we predict any missing fact jointly with the KGE score (Eq. (4))
and the grounding rule score (Eq. (10)). Specifically, for a query (h, r, ?), we substitute the tail
entity with all candidate entities (h, r, t′) and compute their KGE scores st(h, r, t

′). In addition,
we perform a BFS search from h to find all candidates whose paths from h can activate a rule with
the rule head grounded by (h, r, t′). For these candidates, we compute their grounding rule scores
defined in Eq. (10) (those activating no rules have zero grounding rule scores). Then the final scores
of all candidate answers are computed by a weighted sum of st(h, r, t′) and sg(h, r, t′):

s(h, r, t′) = st(h, r, t
′) + β · sg(h, r, t′) (11)

β is a hyperparameter balancing the importance of embedding-based and rule-based reasoning.

5 EXPERIMENTS

In this section, we experimentally evaluate RulE on several benchmark KGs and demonstrate the
effectiveness of RulE on knowledge graph reasoning tasks.

5.1 EXPERIMENT SETTINGS

Datasets. We choose four datasets for evaluation: FB15k-237 (Toutanova & Chen, 2015),
WN18RR (Dettmers et al., 2018), UMLS and Kinship (Kok & Domingos, 2007). FB15k-237 and
WN18RR are subsets of two large-scale knowledge graphs, FreeBase (Bollacker et al., 2008) and
WordNet (Miller, 1995). UMLS and Kinship are two benchmark datasets for statistical relational
learning. To ensure a fair comparison, we use the same splits as RNNLogic (Qu et al., 2020). More
details of dataset statistics are summarized in Appendix C.
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Table 1: Results of reasoning on UMLS and Kinship. H@k is in %. [*] means the numbers are taken
from the [RNNLogic paper]. [†] means we rerun the methods with the same evaluation process.

UMLS Kinship
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE† 0.629 36.4 88.4 96.1 0.251 1.62 37.8 72.8
DistMult∗ 0.391 25.6 44.5 66.9 0.354 18.9 40.0 75.5
ComplEx∗ 0.411 27.3 46.8 70.0 0.418 24.2 49.9 81.2
TuckER∗ 0.732 62.5 81.2 90.9 0.603 46.2 69.8 86.3
RotatE∗ 0.744 63.6 82.2 93.9 0.651 50.4 75.5 93.2

MLN∗ 0.688 58.7 75.5 86.9 0.351 18.9 40.8 70.7
PathRank∗ 0.197 14.8 21.4 25.2 0.369 27.2 41.6 67.3
Neural-LP∗ 0.483 33.2 56.3 77.5 0.302 16.7 33.9 59.6

DRUM∗ 0.548 35.8 69.9 85.4 0.334 18.3 37.8 67.5
RNNLogic+ (rule.)† 0.800 70.4 87.8 94.3 0.655 50.4 76.0 94.7

RNNLogic+ (emb.+rule.)† 0.847 76.7 91.6 96.9 0.714 58.1 81.8 95.4

RulE (emb.) 0.801 70.0 88.2 96.0 0.674 53.6 76.6 93.7
RulE (rule.) 0.827 74.6 88.9 95.7 0.682 53.5 78.9 95.1

RulE (emb.+rule.) 0.866 79.5 92.7 97.4 0.740 62.0 82.9 95.7

Table 2: Results of reasoning on FB15k-237 and WN18RR. H@k is in %. [*] means the numbers are
taken from the original papers. [†] means we rerun the methods with the same evaluation process.

FB15k-237 WN18RR
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE∗ 0.294 - - 46.5 0.226 - - 50.1
DistMult∗ 0.241 15.5 26.3 41.9 0.43 39 44 49
ComplEx∗ 0.247 15.8 27.5 42.8 0.44 41 46 51

ComplEx-N3∗ 0.37 - - 56 0.48 - - 57
ConvE∗ 0.325 23.7 35.6 50.1 0.43 40 44 52

TuckER∗ 0.358 26.6 39.4 54.4 0.470 44.3 48.2 52.6
RotatE∗ 0.338 24.1 37.5 53.3 0.476 42.8 49.2 57.1

PathRank∗ 0.087 7.4 9.2 11.2 0.189 17.1 20.0 22.5
Neural-LP∗ 0.237 17.3 25.9 36.1 0.381 36.8 38.6 40.8

DRUM∗ 0.238 17.4 26.1 36.4 0.382 36.9 38.8 41.0
RNNLogic+ (rule.)† 0.299 21.5 32.8 46.4 0.489 45.3 50.6 56.3

RNNLogic+ (emb.+rule.)† 0.349 25.8 38.5 53.3 0.502 46.0 51.8 58.1

RulE (emb.) 0.338 24.1 37.6 53.3 0.480 43.7 49.6 56.1
RulE (rule.) 0.311 22.9 34.1 47.6 0.491 45.4 50.7 56.1

RulE (emb.+rule.) 0.354 26.1 39.1 54.3 0.506 46.6 52.2 58.9

Baselines. We compare with a comprehensive suite of baselines. (1) Embedding-based models:
we include TransE (Bordes et al., 2013), ComplEx (Trouillon et al., 2016), RotatE (Sun et al., 2019)
and TuckER (Balažević et al., 2019). (2) Rule-based models: we consider popular rule-mining
models Neural-LP (Yang et al., 2017), DRUM (Sadeghian et al., 2019), and two RNNLogic+ vari-
ants (Qu et al., 2020). RNNLogic+ (rule.) is a pure rule-based reasoning method while RNNLogic+
(emb.+rule.) uses both logical rules and knowledge graph embeddings. See more introductions to
RNNLogic in Appendix B. Besides, we also compare with two early works: MLN (Richardson &
Domingos, 2006) and PathRank (Lao & Cohen, 2010). (3) RulE: For our model RulE, we present
results of embedding-based reasoning, rule-based reasoning and joint reasoning. The first one only
uses KGE scores obtained from the pre-training stage to reason unknown triplets, denoted as (emb.).
The second one uses the grounding score calculated from the grounding stage to infer missing facts,
and we denote it as (rule.). The last combines both of them, denoted (emb.+rule.). By default, we
use the same rules mined by RNNLogic+.

Evaluation protocols. For each test triplet (h, r, t), we substitute the tail entity with all entities,
calculate a score for each candidate, and sort all candidates in descending order to get the rank
of the true tail entity. During ranking, we use the filtered setting (Bordes et al., 2013) by removing
corrupted triplets that already exist in either the training, validation or test set. We report the standard
evaluation metrics for these datasets, Mean Reciprocal Rank (MRR) and Hits at N (H@N).
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Table 3: Results of reasoning on FB15k and WN18. H@k is in %.
FB15k WN18

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE† 0.730 64.6 79.2 86.4 0.772 70.5 80.8 92.2
KALE 0.523 38.3 61.6 76.2 0.662 - 85.5 93.0

RulE (emb. TransE) 0.734 65.0 79.9 86.9 0.775 67.2 86.2 95.0

ComplEx† 0.766 69.7 81.3 88.3 0.898 85.4 92.6 95.2
RUGE 0.768 70.3 81.5 86.5 0.943 - - 94.4

ComplEx-NNE+AER 0.803 76.1 83.1 87.4 0.943 94.0 94.5 94.8
RulE (emb. ComplEx) 0.788 72.4 83.3 89.6 0.928 91.9 93.5 94.4

Hyperparameter settings. By default, we use RotatE (Sun et al., 2019) as our KGE model. We
optimize our model parameters with Adam (Kingma & Ba, 2014) and tune the hyperparameters by
grid search on the validation dataset. See more details in Appendix C.

5.2 RESULTS

As shown in Table 1 and 2, RulE outperforms all baselines on UMLS, Kinship, and WN18RR. It is
competitive on FB15k-237 as well. Especially for UMLS and Kinship, we obtain 1.9% and 2.6%
higher absolute MRR than the best baselines, respectively. A detailed analysis follows.
Embedding logical rules helps KGE. We first compare RulE (emb.) with RotatE. Compared to
RotatE, RulE (emb.) only adds an additional rule embedding loss to the KGE training and still uses
KGE scores only for prediction. As presented in Table 1 and Table 2, RulE (emb.) achieves higher
performance than RotatE, indicating that embedding entities, relations and logical rules in the same
space are beneficial for learning more compact representations for KG. Specifically, on UMLS and
Kinship, RulE (emb.) outperforms RotatE with 5.7% and 2.3% improvement in MRR, which is
more significant than on FB15k-237 and WN18RR. The reason is probably that UMLS and Kinship
contain more rule-sensitive facts while WN18RR and FB15k-237 consist of more general facts (like
the publication year of an album, which is hard to infer via rules). This phenomenon is observed
in previous works too (Qu et al., 2020). In Table 3, we further experiment with variants of RulE
(emb.) using TransE and ComplEx as the KGE models. They both obtain superior performance to
the corresponding KGE models. More results are shown in Appendix E.1.
Rule confidence improves rule-based reasoning. One significant difference between RulE
(rule.) and RNNLogic+ (rule.) is that the former weights the grounding-stage rule embeddings
(Eq. (9) when performing rule-based reasoning, while the latter only uses hard 1/0 to select acti-
vated rules. RulE (rule.) achieves better performance than RNNLogic+ (rule.). This demonstrates
that the confidence scores of logical rules, which are learned through jointly embedding KG and
logical rules, help rule-based reasoning. See Appendix E.2 for more discussion.
Comparison with other joint reasoning and rule-enhanced KGE models. Compared with
RNNLogic+ (emb.+rule.), RulE (emb.+rule.) achieves better results on all datasets, demonstrating
the benefits of pretraining KGE with rule embeddings together. We further compare RulE (emb.)
with KALE (Guo et al., 2016), RUGE (Guo et al., 2018) and ComplEx-NNE+AER (Ding et al.,
2018) in Table 3. These models inject logical rules to enhance KGE training. KALE is based on
TransE, whereas RUGE and ComplEx-NNE+AER use ComplEx. For a fair comparison, we replace
RotatE in RulE with TransE and ComplEx, respectively. As these baselines only have code for
old datasets, we compare all models on FB15k and WN18. From Table 3, we can see that RulE
(emb. TransE) yields more accurate results than KALE. For RulE (emb. ComplEx), although it
does not outperform ComplEx-NNE+AER (probably because it additional injects the regularization
terms on entities but RulE does not), compared to RUGE, RulE (emb. ComplEx) also obtains 2%
improvement in MRR on FB15k as well as comparable results on WN18.

6 DISCUSSION AND CONCLUSION

We propose a novel and principled framework RulE to jointly represent entities, relations and logical
rules in a unified embedding space. It improves the generalization capability of KGE and improves
logical rule reasoning through absorbing the best of both. However, similar to prior work using
logical rules, RulE needs to enumerate all paths between entity pairs, making it difficult to scale.
In the future, we plan to explore more efficient and effective algorithms, e.g., replace logical rules
completely with rule embeddings during inference, and consider more complex rules.
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A MORE DETAILS OF IMPLEMENTING THE GROUNDING PROCESS

This section introduces how to implement the grounding process. It is slightly different from our
proposed framework but can empirically achieve better results. Recall that R and r are the embed-
dings of logical rules and relations, respectively, whose dimensions are k. In practice, we do not
need to restrict the dimension of R as k. With the relation embeddings and rule embeddings opti-
mized in the pre-training process, we can compute the confidence score of each rule. Specifically,
given a logical rule Ri : ri1 ∧ ri2 ∧ ... ∧ ril → ril+1

, the learned RNN outputs a derived embedding:

r′il+1
= RNN([Ri, ri1 ], [Ri, ri2 ], ..., [Ri, ril ]), (12)

where the dimension of r′il+1
is k, the same as the rule head embedding ril+1

. The distance between
r′il+1

and ril+1
measures the uncertainty of the logical rule, thus the confidence function of Ri is

formulated as:

ci =
γr
k

− (r′il+1
− ril+1

)2, (13)

where γr is the fixed rule margin defined in the pre-training process, and ci is a k-dimensional
vector. Each element of ci represents a way of weighting the rule Ri. Instead of the scalar wi

defined in Eq. (9), we use a more fine-grained way to represent the confidence of each logical rule.
When answering a query (h, r, ?), we ground logical rules on the KG and yield different candidate
answers. For each candidate answer t′, we can define the following function:

vj(h, r, t′) = LN
( ∑
Ri∈L′

ci,j |P(h,Ri, t′)|R(g)
i

)
, j = 1, 2, . . . , k (14)

where LN is the layer normalization operation, L′ is the set of logical rules activated by (h, r, t′),
R

(g)
i is the grounding-stage rule embedding of Ri and P(h,Ri, t′) is the set of supports of the rule

Ri which starts from h and ends at t′. Eq. (14) encodes a way to activate the grounding-stage rule
embedding with rule confidence. There are k ways in total; thus, we can aggregate them to calculate
the grounding score, i.e.,

sagg(h, r, t′) = MLP(AGG(v1(h, r, t′),v2(h, r, t′), . . . ,vk(h, r, t′))) (15)

Here, AGG is an aggregator, which can aggregate all vj(h, r, t′) by sum, mean, max or min. In
experiments, we adopt the sum in WN18RR and FB15k-237 as well as the mean in UMLS and
Kinship. Once we have the grounding rule score sagg(h, r, t′) for each candidate answer, we further
compute the probability of the true answer by a softmax function. Finally, we optimize the MLP
and grounding-stage rule embedding by maximizing the log likelihood of the true answers based on
these training triplets.

In fact, if we aggregate vj by sum and remove the layer normalization operation, Eq. (15) can be
reduce to Eq. (10). The proof is shown as follows:

Proof: We remove the layer normalization and rewrite Eq. (14) and Eq. (10):

vj(h, r, t′) =
∑

Ri∈L′

ci,j |P(h,Ri, t′)|R(g)
i (16)

s′g(h, r, t′) = MLP
( ∑
Ri∈L′

wi|P(h,Ri, t′)|R(g)
i

)
(17)

By aggregating vj by sum and combining Eq. (14) and Eq. (15), we obtain:
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s′agg(h, r, t′) = MLP
( k∑
j=1

vj(h, r, t′)
)

= MLP
( k∑
j=1

∑
Ri∈L′

ci,j |P(h,Ri, t′)|R(g)
i

)
= MLP

( ∑
Ri∈L′

k∑
j=1

ci,j |P(h,Ri, t′)|R(g)
i

)
= MLP

( ∑
Ri∈L′

|P(h,Ri, t′)|R(g)
i

k∑
j=1

ci,j
)

(18)

Based on Eq. (9), we imply that:
k∑

j=1

ci,j =

k∑
j=1

[
γr
k

− (r′il+1
− ril+1

)2]j

= γr− ∥ r′il+1
− ril+1

∥
= γr− ∥ RNN([Ri, ri1 ], [Ri, ri2 ], ..., [Ri, ril ])− ril+1

∥
= wi

(19)

Thus we continue to simplify Eq. (18):

s′agg(h, r, t′) = MLP
( ∑
Ri∈L′

|P(h,Ri, t′)|R(g)
i

k∑
j=1

ci,j
)

= MLP
( ∑
Ri∈L′

wi|P(h,Ri, t′)|R(g)
i

)
= s′g(h, r, t′)

(20)

This completes the proof.

B INTRODUCTION OF RNNLOGIC+

RNNLogic (Qu et al., 2020) aims to learn logical rules from knowledge graphs, which simultane-
ously trains a rule generator as well as a reasoning predictor. The former is used to generate rules
while the latter learns the confidence of generated rules. RulE applies pre-defined logical rules to
perform knowledge graph reasoning. To compare with it, we only focus on the reasoning predictor
RNNLogic+, which is also a more powerful model than RNNLogic for exploiting logical rules. Its
details are described in this section.

Given a KG containing a set of triplets and logical rules, RNNlogic+ associates each logical rule
with a grounding-stage rule embedding R(g) (following the grounding process of RulE), for a query
(h, r, ?), it grounds logical rules into the KG, finding different candidate answers. For each candidate
answer t′, RNNLogic+ aggregates all the rule embeddings of those activated rules, each weighted by
the number of paths activating this rule (# supports). This is a different point from RulE that RulE
additionally employs the confidence scores of rules as soft multi-hot encoding instead of the hard
multi-hot encoding of RNNLogic. Then an MLP is further used to project the aggregated embedding
to the grounding rule score:

sr(h, r, t′) = MLP
(
LN(AGG({R(g)

i , |P(h,Ri, t′)|}Ri∈L′))
)

(21)

where LN is the layer normalization operation, AGG is the PNA aggregator (Corso et al., 2020), L′

is the set of activated rules for (h, r, t′), and P(h,Ri, t′) is the set of supports of the rule Ri which
starts from h and ends at t′. Once RNNLogic+ has the score of each candidate answer, it can use a
softmax function to compute the probability of the true answer. Finally, it trains the MLP and rule
embeddings by maximizing the log likelihood of the true answers based on training triplets.

During inference, there are two variants of models:
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• RNNLogic+ (rule.): This variant only uses the logical rules for knowledge graph reasoning.
Specifically, we calculate the score of each candidate answer only defined in Eq. 21 (i.e.,
sr(h, r, t′)).

• RNNLogic+ (emb.+rule.): It uses RotatE (Sun et al., 2019) to pretrain knowledge graph
embeddings models, which is another difference from RulE that RulE jointly models KGE
and logical rules in the same space to learn entity, relation and logical rule embeddings. In
the inference process, the same as RulE, it linearly combines the grounding rule score and
KGE score as the final prediction score, i.e.,

s(h, r, t′) = sr(h, r, t′) + α ∗ KGE(h, r, t′), (22)

where KGE(h, r, t′) is the KGE score calculated with entity and relation embeddings op-
timized by RotatE and α is a positive hyperparameter weighting the importance of the
knowledge graph embedding score.

C EXPERIMENT SETUP

C.1 DATA STATISTICS

[We use the same splits as RNNLogic and mine logic rules by RNNLogic. Each relation has
about 100 or 200 logic rules, and the length of rules is no more than 3.] More statistics of
datasets are shown in Table 4.

Table 4: Statistics of four datasets

Dataset #Entities #Relations #Train #Validation #Test #Rules

FB15k-237 14,541 237 272,115 17,535 20,466 47,362
WN18RR 40,943 11 86,835 3,034 3,134 6,676

UMLS 135 46 1,959 1,306 3,264 18,400
Kinship 104 25 3,206 2,137 5,343 10,000

C.2 DATA PROCESS

Most rules mined by rule mining systems are not chain rules. They usually need to be trans-
formed into chain rules by inversing some relations. Considering r1(x, y) ∧ r2(x, z) → r3(y, z)
as an example, with replacing r1(x, y) with r−1

1 (y, x), the rule can be converted into chain rule
r1(y, x)−1 ∧ r2(x, z) → r3(y, z). Based on the above, for data processing, we need to add a inverse
version triplet (t, r−1, h) for each triplet (h, r, t), representing the inverse relationship r−1 between
entity t and entity h.

C.3 HYPERPARAMETERS SETTING

For the pre-training of RulE, the ranges of the hyperparameters for the grid search are: embedding
dimension k ∈ {100, 200, 500, 1000}, learning rate lr ∈ {0.00001, 0.00005, 0.0001}, batch size of
triplets and rules b ∈ {256, 512, 1024}, negative sample size bn ∈ {128, 256, 512}, self-adversarial
sampling temperature α ∈ {0.5, 1.0} and fixed margin γt, γr ∈ {6, 12, 24, 32}. During the ground-
ing process. We tune the learning rate lrg ∈ {0.0005, 0.001, 0.05}, the dimension of grounding-state
rule embedding p ∈ {100, 200, 500}. For inference, we combine embedding-based reasoning and
rule-based reasoning with the hyperparameter α ∈ {0.5, 1.0, 3.0, 5.0}.

D A VARIANT OF MODELING RULES

Besides using RNN (Graves, 2012) to model logical rules, we propose another variant to model
the relationship between logical rules and relations, which is called ADD. Recall that we are given
the sequence of all relations in the rule body, e.g., [r1, r2, . . . , rl], ADD aims to generate the rule
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head. To respect the relation order of logical rules, we associate each rule with a rule embedding,
R = [R1,R2, ...,Rl], R ∈ Rkl, where k is the dimension of relation embedding and l is the length
of the logical rule. Based on these definitions, we can formulate the distance between the rule body
and rule head as:

d(r1, r2, . . . , rl+1,R) =∥
l∑

k=1

(rk ◦Rk)− rl+1 ∥, (23)

where ◦ is an element-wise product. Then we use Eq. (7) to further define loss function of logical
rules.

E ABLATION STUDY

E.1 EMBEDDING LOGICAL RULES BASED ON TRANSE

We first compare RulE (emb.) with KGE models. As shown in Table 3, the two variants using
TransE (Bordes et al., 2013) and ComplEx (Trouillon et al., 2016) as KGE models are called RulE
(emb. TransE) and RulE (emb. ComplEx.) respectively. They both obtain superior performance
to the pure corresponding KGE models. We also further compare with other rule-enhance KGE
models. In experiment setup, RulE (emb. TransE) uses the same logical rules as KALE (Guo
et al., 2016); RulE (emb. ComplEx) uses the same logical rules as ComplEx-NNE-AER (Ding
et al., 2018). From the comparison, RulE (emb. TransE) and RulE (emb. ComplEx) both achieve
better performance than KALE and RUGE, respectively. From Table 5, we also see that RulE (emb.
ComplEx) is slightly worse than ComplEx-NNE-AER. The reason is probably that ComplEx-NNE-
AER additionally injects the regularization terms on entity representations but RulE does not, and
ComplEx-NNE-AER is based on origin ComplEx, which performs better than ComplEx we use.

We further study the effect made by logical rules on embedding-based models with more datasets
(i.e., UMLS and Kinship). We rerun KALE (Guo et al., 2016) on UMLS and Kinship datasets.
They both use the same splits and logical rules as RulE. However, KALE uses pairwise ranking loss
function while TransE and RulE use logistic loss function. Many experiments indicate that logistic
loss usually performs better than pairwise ranking loss. Thus the results of KALE are worse than
TransE in Table 5. It is not easy to refactor due to their old coding. So we focus more on TransE,
RulE (emb. TransE RNN)and RulE (emb. TransE ADD). From the results shown in Table 5, we
can see that whatever RNN or ADD, RulE (emb.) achieves better results than TransE. Especially
for ADD, RulE (emb.TransE ADD) obtained 13.9% and 14.2% MRR improvements on UMLS and
Kinship respectively.

Table 5: Results of reasoning on UMLS and Kinship. H@k is in %. TransE is the the KGE model.
UMLS Kinship

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE 0.629 36.4 88.4 96.1 0.251 1.62 37.8 72.8
KALE 0.462 31.1 55 74.2 0.284 19.2 30.2 45.6

RulE (emb. TransE ADD) 0.768 66.8 85.0 93.2 0.393 23.9 45.1 72.9
RulE (emb. TransE RNN) 0.658 43.2 86.3 95.5 0.282 8.3 37.1 69.0

Table 6: Results of reasoning on UMLS and Kinship. H@k is in %.
UMLS Kinship

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

RulE (w/o confidence) 0.798 70.5 87.2 94.5 0.653 50.5 75.6 93.0
RulE (with confidence) 0.824 74.3 88.8 95.3 0.682 53.5 78.9 95.1

E.2 RULE CONFIDENCE IMPROVE RULE-BASED REASONING

To fully verify our conclusion that rule confidence can promote rule-based reasoning, we focus on
the grounding stage and remove the rule confidence, (i.e. assignment each wi with 1 on Eq. (9)),
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which denoted it as RulE (w/o confidence). Both RulE (w/o confidence) and RulE (with confidence)
use the same hyperparameters and tune them based on the validation sets. From Table 6, we can
see that RulE (with confidence) produce more accurate results than RulE (w/o confidence), which
demonstrates our the effectiveness of soft multi-hot encoding for grounding-stage rule embeddings.
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