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Abstract

Fact-checking is a crucial natural language001
processing (NLP) task that verifies the002
truthfulness of claims by considering reliable003
evidence. Traditional methods are labour-004
intensive, and most automatic approaches focus005
on using documents as evidence. In this paper,006
we focus on the relatively under-researched007
fact-checking with Knowledge Graph data008
as evidence and experiment on the recently009
introduced FactKG benchmark. We present010
FactGenius, a novel method that enhances fact-011
checking by combining zero-shot prompting of012
large language models (LLMs) with fuzzy text013
matching on knowledge graphs (KGs). Our014
method employs LLMs for filtering relevant015
connections from the graph and validates016
these connections via distance-based matching.017
The evaluation of FactGenius on an existing018
benchmark demonstrates its effectiveness, as019
we show it significantly outperforms state-of-020
the-art methods.021

1 Introduction022

Fact-checking is a critical task in natural language023

processing (NLP) that involves automatically024

verifying the truthfulness of a claim by considering025

evidence from reliable sources (Thorne et al., 2018).026

This task is essential for combating misinformation027

and ensuring the integrity of information in digital028

communication (Cotter et al., 2022). Traditional029

fact-checking is performed by domain experts and030

is a labour-intensive process. Automatic fact-031

checking systems have been introduced to address032

this, but most of them work with textual data as033

evidence sources (Vladika and Matthes, 2023).034

Recent advancements in large language models035

(LLMs) have shown promise in enhancing fact-036

checking capabilities (Choi and Ferrara, 2024).037

LLMs, with their extensive pre-training on diverse038

textual data, possess a vast amount of embedded039

knowledge (Yang et al., 2024). However, their040

outputs can sometimes be erroneous or lacking in 041

specificity, especially when dealing with complex 042

reasoning patterns required for fact-checking. 043

External knowledge, such as knowledge graphs 044

(KGs) (Hogan et al., 2021), can aid in fact- 045

checking. 046

In this paper, we propose FactGenius, a novel 047

approach that combines zero-shot prompting of 048

LLMs with fuzzy relation-mining techniques 049

to improve reasoning on knowledge graphs. 050

Specifically, we leverage DBpedia (Lehmann et al., 051

2015), a structured source of linked data, to 052

enhance the accuracy of fact-checking tasks. 053

Our methodology involves using the LLM to 054

filter potential connections between entities in 055

the KG, followed by refining these connections 056

through Levenshtein distance-based fuzzy 057

matching. This two-stage approach ensures that 058

only valid and relevant connections are considered, 059

thereby improving the accuracy of fact-checking. 060

We evaluate our method using the FactKG 061

dataset (Kim et al., 2023b), which comprises 062

108,000 claims constructed through various 063

reasoning patterns applied to facts from DBpedia. 064

Our experiments demonstrate that FactGenius 065

significantly outperforms existing baselines (Kim 066

et al., 2023a), particularly when fine-tuning 067

RoBERTa (Liu et al., 2019) as a classifier, 068

achieving superior performance across different 069

reasoning types. 070

In summary, the integration of LLMs with KGs 071

and the application of fuzzy matching techniques 072

represent a promising direction for advancing fact- 073

checking methodologies. Our work contributes to 074

this growing body of research by proposing a novel 075

approach that effectively combines these elements, 076

yielding significant improvements in fact-checking 077

performance. 078
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Figure 1: Overall pipeline of FactGenius: The process starts with LLM-based Connection Filtering using a
knowledge graph (see Section 4.1.1). In Fuzzy Relation Mining (see Section 4.1.2), Stage-I matches one-hop
connections of entities, and optionally, Stage-II includes all entities’ connections. The classifier (BERT, RoBERTa,
or Zero-Shot LLM; see Section 4.3) then determines if the claim is supported or refuted.

2 Literature Review079

Fact-checking has become an increasingly vital080

aspect of natural language processing (NLP)081

due to the proliferation of misinformation082

in digital communication (Guo et al., 2022).083

Traditional approaches to fact-checking have084

typically relied on manually curated datasets085

and rule-based methods, which, while effective086

in controlled environments, often struggle with087

scalability and adaptability to new types of088

misinformation (Saquete et al., 2020; Guo et al.,089

2022). The labour-intensive nature of these090

methods also poses significant challenges in rapidly091

evolving information landscapes (Nakov et al.,092

2021; Zeng et al., 2021).093

To address challenges in understanding machine-094

readable concepts in text, FactKG introduces095

a new dataset for fact verification with claims,096

leveraging knowledge graphs, encompassing097

diverse reasoning types and linguistic patterns,098

aiming to enhance reliability and practicality in099

KG-based fact verification (Kim et al., 2023b).100

Similarly, the Fact Extraction and VERification101

(FEVER) dataset (Thorne et al., 2018) pairs claims102

with Wikipedia sentences that support or refute103

them, providing a benchmark for fact-checking104

models. The authors employed a combination of105

natural language inference models and information106

retrieval systems to assess claim veracity. The107

GEAR framework (Zhou et al., 2019) improves108

fact verification by using a graph-based method109

to aggregate and reason over multiple pieces of110

evidence, surpassing previous methods by enabling111

evidence to interact.112

Recent advancements in large language models113

(LLMs) have demonstrated considerable potential114

in enhancing fact-checking processes (Kim et al., 115

2023a; Choi and Ferrara, 2024). LLMs have been 116

pre-trained on vast and diverse corpora (Yang et al., 117

2024), enabling them to generate human-like text 118

and possess a broad knowledge base (Choi and 119

Ferrara, 2024). However, despite their impressive 120

capabilities, LLMs can produce outputs that are 121

erroneous or lack the specificity required for 122

complex fact-checking tasks (Choi and Ferrara, 123

2024). This is particularly evident when 124

intricate reasoning and contextual understanding 125

are necessary to verify claims accurately (Chai 126

et al., 2023). Several studies have explored the 127

integration of LLMs with external knowledge 128

sources to improve their performance in fact- 129

checking tasks (Cui et al., 2023; Ding et al., 2023). 130

The incorporation of knowledge graphs (KGs) 131

into fact-checking frameworks has also garnered 132

attention. KGs, such as DBpedia (Lehmann et al., 133

2015), provide structured and linked data that can 134

enhance the contextual understanding of LLMs. 135

Knowledge graphs have been used to improve 136

various NLP tasks by providing additional context 137

and relationships between entities, as demonstrated 138

by initiatives for knowledge-aware language 139

models (Li et al., 2023; Logan Iv et al., 2019) 140

and KG-BERT (Yao et al., 2019). 141

Approximate string matching (Navarro, 2001), 142

also called fuzzy string matching, is a technique 143

used to identify partial matches between text 144

strings. Fuzzy matching techniques (Navarro, 145

2001) have been applied to enhance the integration 146

of LLMs and KGs (Wang et al., 2024). 147

Levenshtein distance-based similarity 148

measure (Levenshtein et al., 1966) helps in 149

identifying strings which have approximate 150

matches which can be useful for finding relevant 151

2



connections between entities by accommodating152

minor discrepancies in data representation This153

approach has been beneficial in refining the outputs154

of LLMs, ensuring that only valid and contextually155

appropriate connections are considered (Guo et al.,156

2023).157

Our proposed method, FactGenius, builds158

on these advancements by combining zero-shot159

prompting of LLMs with a fuzzy relation-mining160

technique to improve reasoning over KGs. This161

methodology leverages DBpedia as a structured162

source of linked data to enhance fact-checking163

accuracy. By using LLMs to filter potential164

connections between entities and refining these165

connections through fuzzy matching, FactGenius166

aims to address the limitations of existing fact-167

checking models.168

3 Preliminaries169

A Knowledge Graph (KG) G is a set of triples170

(s, r, o) with s, o ∈ E and r ∈ R, where E is171

the set of entities and R is the set of relations172

connecting those entities. A KG can be viewed173

either as a set of tiples or as a graph with nodes in174

E and edge labels in R. Hence, when we discuss175

the 1-hop neighbourhood of a certain entity e we176

refer to a set of entities connected to e through an177

edge in this graph. For a triple s, r, o we consider178

s to be connected to o through the edge labelled179

as r, whereas we consider o to be connected to s180

through the edge labelled as ∼r, where ∼r denotes181

the inverse relation of r.182

We consider natural language sentences in the183

intuitive sense.184

Given as input a claim in natural language C, a185

KG G with entities E, and a set of entities relevant186

to the claim EC , the fact verification with KG187

evidence task is to predict whether the claim C188

is supported or not according to the evidence in G.189

4 Methodology190

We introduce the FactGenius system for the fact191

verification with KG evidence task. Our system has192

two main components: a graph filtering component193

that selects the relevant KG evidence for the input194

claim, and a classifier component which uses this195

evidence together with the claim to predict whether196

the claim is supported or not.197

FactGenius leverages the capabilities of a Large198

Language Model (LLM) to filter the set of triples199

in the input graph G. More concretely, an LLM is200

used in a zero-shot setting to select the relevant 201

relations from the 1-hop neighborhood of the 202

entities EC associated with claim C. Since the 203

output of LLMs can be erroneous, the triples are 204

further validated against the unfiltered set using 205

fuzzy matching techniques. Finally, the classifier, 206

which can be fine-tuned over pre-trained models 207

like BERT (Devlin et al., 2019) or RoBERTa (Liu 208

et al., 2019), or a Zero-Shot LLM, determines 209

whether the claim is supported or refuted. The 210

overall pipeline is shown in Figure 1. 211

4.1 FactGenius: Relation filtering with LLM 212

and Fuzzy Matching 213

The first step in our FactGenius pipeline is 214

identifying the graph evidence relevant to the input 215

claim. We select the relevant relations in the 1-hop 216

neighborhood of the claim entities by employing 217

LLM-based filtering. Once we have the relevant 218

relations, we select the 1-hop neighborhood triples. 219

These will be turned into strings and used together 220

with the claim by the classifier. 221

4.1.1 LLM promt-based filtering 222

We are utilizing an LLM, particularly the Llama3- 223

Instruct model, to identify and filter potential 224

connections between entities based on a given 225

claim. 226

This is done in the following way. First, we must 227

select a set of relations to filter using the LLM. 228

Given that KGs can be very large, for example with 229

DBpedia having billions of triples and thousands 230

of edges (Lehmann et al., 2015), considering the 231

full set of relations in an LLM prompt is infeasible. 232

In FactGenius we choose to look only at the 1-hop 233

neighborhood of the given set of claim entities EC 234

to generate the initial set of relations. We therefore 235

construct a set of 1-hop relations for each entity 236

e, i.e. {r|(e, r, e1) ∈ G}, which we will denote 237

with RC(e). Then, the LLM is given as input the 238

claim C, and the set of relations RC(e) for each 239

entity relevant to the input claim (each e ∈ EC), 240

and has to output subsets of each RC(e), which 241

we can denote with Rllm
C (e). A prompt example is 242

given in Figure 2. 243

A retry mechanism is employed to handle 244

potential failures in LLM responses. If the LLM 245

output is inadequate (e.g., empty or nonsensical), 246

the request is retried up to a specified maximum 247

number of attempts, in practice 10. Throughout our 248

experiments, however, we did not encounter any 249

cases where the retry exceeded this limit. If this 250
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System prompt:
You are an intelligent graph connection finder.
You are given a single claim and connection
options for the entities present in the claim.
Your task is to filter the Connections options that
could be relevant to connect given entities to
fact-check Claim1. ~ ( tilde ) in the beginning
means the reverse connection.
User prompt:
Claim1:
<<<Well, The celestial body known as 1097
Vicia has a mass of 4.1kg.»>
## TASK:
- For each of the given entities given in the DICT
structure below:
Filter the connections strictly from the given
options that would be relevant to connect given
entities to fact-check Claim1.
- Think clever, there could be multi-step hidden
connections, if not direct, that could connect the
entities somehow.
- Prioritize connections among entities and
arrange them based on their relevance. Be extra
careful with signs.
- No code output. No explanation. Output only
valid python DICT of structure:
<<<
{
"1097_Vicia": ["...", "...", ... ]
# options (strictly choose from): discovered,
formerName, epoch, periapsis, apoapsis, ...,
Planet/temperature "4.1": ["...", "...", ... ],
# options (strictly choose from): ~length,
~ethnicGroups, ~percentageOfAreaWater,
~populationDensity, ~engine, ..., ~number
}
>>>

Figure 2: Filtering prompt example. The text inside
< < < and > > > changes with each input.

limit is exceeded, the non-filtered sets of relations 251

can be returned. 252

4.1.2 LLM output validation 253

As mentioned, the LLM could output relations that 254

are not in G. That is, Rllm
C (e) is not necessarily a 255

subset of RC(e) or even R. 256

We therefore pass the LLM output through a 257

validation stage, which is one of two stages, namely 258

Stage A or Stage B, 259

In Stage A, we perform validation of the relation 260

set for each entity from the claim. That is, for each 261

entity e ∈ EC , we select the subset of RC(e) that 262

best matches the LLM output Rllm
C (e). To do so we 263

fuzzily match the relations in RC(e) to the relations 264

in Rllm
C (e) using Levenshtein distance. Naturally, 265

we consider a threshold on this distance to decide 266

whether two relations match or not. 267

The limitation of the first validation type is 268

that if the LLM suggests the correct relation, but 269

associates it with the wrong entity, this relevant 270

relation is removed through the first validation type. 271

We will exemplify this on the prompt in Figure 272

2. The model is given the entities 1097_Vicia 273

and 4.1, each with the list of possible relations. 274

If the model identifies Planet/temperature but 275

associates it with 4.1 instead of 1097_Vicia this 276

relation is removed using Stage A validation. 277

To address this limitation we introduce Stage B 278

of validation. In this type of validation we consider 279

the full set of relations that were generated by the 280

LLM model, for all entities associated with the 281

input claim, i.e. Rllm
C = Rllm

C (e1) ∪ ... ∪Rllm
C (en) 282

for all e1, ..., en ∈ EC . Similarly to Stage A, we 283

use the Levenshtein to compare the relations in 284

RC(e) with the filtered relations, but we consider 285

the full filtered set Rllm
C instead of the entity- 286

specific set Rllm
C (e). The details are explained in 287

Algorithm 1. 288

4.2 Claim-driven relation filtering 289

To measure the effectiveness of LLM in relation 290

filtering in 4.1, we create a baseline that ensures 291

that only the relations most pertinent to the claim, 292

based on lexical similarity, are selected. To 293

filter relations relevant to a claim, we begin by 294

tokenizing the claim sentence, excluding stop 295

words, to obtain a list of significant word tokens. 296

Next, for each entity e ∈ EC present in the claim, 297

we gather all 1-hop relations RC(e). We then apply 298

a fuzzy matching process to each tokenized word 299

in the claim, comparing it to the relations in RC(e) 300
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Algorithm 1 LLM output validation
1: Input: EC = {e1, ...., en} - entities in the claim;
2: RC(e1), ..., RC(e_n): relations in the 1-hop neighborhood for

each entity in the claim;
3: Rllm

C (e1), ..., Rllm
C (en): relation sets outputed by the LLM;

stage: validation stage, either A or B
4: Output: R′

C(e1), ..., R′
C(e_n)- Validated relation sets.

5: procedure VALIDATERELATION
6: Initialize: probable_connections: {}

7: for each e ∈ EC do
8: for each r ∈ RC(e) do
9: if stage = A then

10: Rllm−compare = Rllm
C (e)

11: else
12: Rllm−compare = Rllm

C (e1) ∪ ... ∪Rllm
C (en)

13: end if
14: for each rllm ∈ Rllm−compare do
15: d = LEVENSHTEINDISTANCE(r, rllm)
16: if d > 90 then
17: R′

C(e) = R′
C(e) ∪ {r}

18: end if
19: end for
20: end for
21: end for
22: end procedure

using the Levenshtein distance. This process yields301

a subset of relations R′
C(e), where each relation’s302

similarity to the claim words exceeds a predefined303

threshold.304

4.3 With Evidence Classifier305

In this configuration, the model is supplied with306

both the claim and graphical evidence as input,307

and it then makes predictions regarding the label.308

FactGenius utilizes graph filtering, as explained in309

Section 4.1, to ensure retention of the most relevant310

and accurate connections.311

4.4 Evidence Stringification312

To effectively pass evidence tiples to the language313

model, we must first convert these tiples314

into a string format. For each entity e in315

the claim with its associated relations {r |316

(e, r, e1) ∈ G} extracted from the graph G, we317

transform each triplet (e, r, e1) into the string318

format "|{e} > −{e}− > {e_1}". For multiple319

tiples of evidence, the resulting strings are320

simply concatenated into a single evidence string,321

preserving the order and structure of the tiples.322

This approach ensures a seamless and coherent323

integration of structured graph data into the324

language model’s input.325

4.5 Zero-shot LLM as Fact Classifier326

This involves utilizing Llama-3-Instruct as a fact327

classifier, to predict Supported or Refuted for the328

given input claim and evidence string. A retry329

mechanism is implemented to handle potential 330

failures in LLM responses. A prompt example 331

with evidence is shown in Figure 3. 332

4.6 Fine-tuning pre-trained models 333

Pre-trained BERT-base-uncased1 and RoBERTa- 334

base are finetuned with claim and evidence string 335

as inputs to predict whether the claim is supported 336

or refuted. In addition, an ablation evaluates 337

the contributions of each stage of our approach. 338

This involved sequentially removing Stage-B and 339

measuring the performance of the system after 340

the removal. The results of the ablation study 341

allowed us to quantify the impact of both stages on 342

the overall performance of the model. Accuracy 343

as an evaluation metric across all reasoning 344

types was employed to quantify the performance 345

improvements resulting from the ablation study. 346

4.7 Implementation 347

Our FactGenius system implementation leverages 348

several advanced tools and frameworks to 349

ensure efficient and scalable processing. The 350

Llama3-Instruct inference server is set up using 351

vLLM (vLLM Project, 2024; Kwon et al., 2023), 352

running on an NVIDIA A100 GPU (80 GB 353

vRAM) to facilitate rapid inference. This server 354

runs standalone, integrating seamlessly with the 355

FactGenius pipeline. 356

For model fine-tuning and evaluation, we employ 357

the Hugging Face Transformers library, utilizing 358

the Trainer class for managing the training 359

process. This setup allows for the fine-tuning 360

of pre-trained models like BERT and RoBERTa 361

on our pipeline. Hyper-parameters such as 362

batch size, learning rate, and training epochs 363

are configured to optimize performance, with 364

computations accelerated by PyTorch. 365

The models were fine-tuned on a single NVIDIA 366

V100 GPU, with RoBERTa requiring around 25 367

minutes per epoch with a batch size of 32 and 368

BERT taking around 8 minutes per epoch with a 369

batch size of 64. The fine-tuning process utilized 370

the Adam optimizer with settings of beta1=0.9, 371

beta2=0.98, and epsilon=1e-6 for RoBERTa. In 372

contrast, BERT was fine-tuned using Adam 373

optimizer settings of beta1=0.9, beta2=0.99, and 374

epsilon=1e-8. A weight decay of 0.01 was used 375

over all the layers. A learning rate of 5e-6 was 376

used with early stopping over validation loss for 3 377

1huggingface.co/google-bert/bert-base-uncased
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epochs, retaining the weight at the best epoch.378

5 Experiments379

To evaluate the performance of our proposed380

methods, we conducted a series of experiments381

comparing different strategies for fact-checking on382

the FactKG (Kim et al., 2023b) benchmark.383

5.1 Dataset384

The FactKG dataset (Kim et al., 2023b) is385

used which comprises 108,000 claims constructed386

through various reasoning patterns applied to facts387

sourced from DBpedia (Lehmann et al., 2015).388

Each data point consists of a natural language claim389

in English, the set of DBpedia entities mentioned in390

the claim, and a binary label indicating the claim’s391

veracity (Supported or Refuted). The distribution392

across labels and five different reasoning types393

is shown in Table 1. The relevant relation paths394

starting from each entity in the claim are known395

which aids in the evaluation and development of396

models for claim verification tasks.397

The dataset is accompanied by a two-processed398

version of the FactKG Knowledge Graph dataset399

derived from DBpedia 2015. The first version400

encompasses the entire DBpedia dataset with the401

directionality of edges removed by incorporating402

reverse relation triples, say DBpedia-Full. The403

second version is a curated subset of the first,404

containing only the relations pertinent to FactKG,405

thus enabling focused and efficient analysis, named406

DBpedia-Light.407

Set Train Valid Test
Total Rows 86367 13266 9041
True (Supported) 42723 6426 4398
False (Refuted) 43644 6840 4643
One-hop 15069 2547 1914
Conjunction 29711 4317 3069
Existence 7372 930 870
Multi Hop 21833 3555 1874
Negation 12382 1917 1314

Table 1: Data distribution across labels and five
reasoning types.

5.2 Results408

Following prior work (Kim et al., 2023b,a), we409

run experiments with two types of approaches,410

approaches that take as input only the claim,411

referred to as Claim Only, and approaches that412

also integrate KG information, referred to as With 413

Evidence. The goal of this comparison is to assess 414

whether the required knowledge is already stored 415

in the weights of pre-trained large language models, 416

or injecting KG information is beneficial. The 417

results are summarized in Table 2. 418

5.3 Claim Only 419

For the Claim Only scenario we compared four 420

methods, two from the previous literature and 421

two designed by us. We chose two of the best- 422

performing methods from prior work, namely the 423

BERT-based claim only model introduced together 424

with the FactKG dataset by Kim et al. (Kim 425

et al., 2023b), and the ChatGPT-based model 426

subsequently introduced by Kim et al. (Kim 427

et al., 2023a). We additionally experimented 428

with two models: we used the Meta-Llama-3- 429

8B-Instruct2 (Meta, 2024) model with zero-shot 430

prompting, as well as a RoBERTa-base (Liu et al., 431

2019) model which we fine-tuned on the fact 432

verification task. An example of the prompt we 433

used for Meta-Llama-3-8B-Instruct is found in 434

Appendix B. 435

Our results show that RoBERTa outperformed 436

the reported accuracy of BERT (Kim et al., 2023b), 437

achieving an accuracy of 0.68, which is on par with 438

the 12-shot ChatGPT model reported in the KG- 439

GPT paper (Kim et al., 2023a). This suggests that 440

RoBERTa inherently stores knowledge relevant in 441

fact checking, at least on the FactKG benchmark. 442

Our prompting approach on the other hand obtained 443

a score of 0.61, underperforming on the task. 444

5.4 With Evidence 445

In the with evidence setting we compared different 446

versions of our FactGenius system with two 447

systems from prior work (Kim et al., 2023b,a). 448

For our FactGenius approach, we experimented 449

with 5 versions, using either a LLM classifier with 450

prompting, Llama3-Instruct-zero-shot in Table 2, 451

or a fine-tuned LLM as the classifier, either BERT- 452

based (Devlin et al., 2019) or RoBERTa-based (Liu 453

et al., 2019). For both of the BERT-based and 454

RoBERTa-based system we we experimented with 455

both stage A and stage B output validation. 456

5.4.1 On DBpedia-Light Knowledge Graph 457

First, our results show that adding evidence to the 458

Llama3-Instruct model’s instructions significantly 459

improved its accuracy from 0.61 to 0.68. This 460

2huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
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Input type Source Model One-hop Conjunction Existence Multi-hop Negation Total

Claim Only

Prior (Kim et al., 2023b) BERT* 0.69 0.63 0.61 0.70 0.63 0.65

Prior (Kim et al., 2023a) ChatGPT (12-shot)* - - - - - 0.68

Ours Llama3-Instruct-zero-shot 0.61 0.67 0.59 0.61 0.53 0.61

Ours RoBERTa 0.71 0.72 0.52 0.74 0.54 0.68

With Evidence

Fact-KG GEAR* 0.83 0.77 0.81 0.68 0.79 0.77

KG-GPT KG-GPT (12-shot)* - - - - - 0.72

Ours on DBpedia-Light Claim-driven relation filtering 0.81 0.71 0.98 0.71 0.76 0.78

FactGenius (Ours) Llama3-Instruct-zero-shot 0.72 0.75 0.76 0.62 0.52 0.68

on DBpedia-Light BERT-stage-A 0.85 0.80 0.91 0.79 0.78 0.81

BERT-stage-B 0.85 0.83 0.88 0.81 0.73 0.82

RoBERTa-stage-A 0.84 0.86 0.88 0.82 0.77 0.84

RoBERTa-stage-B 0.89 0.89 0.93 0.83 0.78 0.87

FactGenius (Ours) Llama3-Instruct-zero-shot 0.72 0.76 0.72 0.61 0.51 0.68

on DBpedia-Full BERT-stage-A 0.81 0.83 0.67 0.80 0.56 0.76

BERT-stage-B 0.81 0.81 0.67 0.80 0.56 0.76

RoBERTa-stage-A 0.86 0.85 0.91 0.79 0.82 0.84

RoBERTa-stage-B 0.86 0.86 0.90 0.82 0.79 0.84

Table 2: Comparing our method with other strategies and methods in terms of reported accuracies in the test set.
The * symbol indicates results taken directly from prior works, whereas - indicates results were not reported by
prior works.

indicates that even for such large language models,461

incorporating relevant evidence can enhance fact-462

checking performance in a zero-shot learning463

scenario. However, directly applying zero-shot464

prompting with Llama3-Instruct did not yield465

superior performance even in comparison to claim-466

driven relation filtering. The performance was467

boosted when using fine-tuned BERT or RoBERTa468

as a classifier. It was seen that the performance of469

the pipeline increases further when stage-B is used470

instead of stage-A relation mining. It was seen that471

fine-tuned RoBERTa performed better than BERT.472

To assess the contribution of the validation473

stages, we apply both stages to our best-performing474

model, the RoBERTa-based one. What we observe475

is that employing stage A of filtering results in an476

accuracy of 0.84. Incorporating stage B instead477

further improved the performance to 0.87. The478

second stage enhanced performance across most479

reasoning types, with notable improvements in480

conjunction and negation tasks. We achieved the481

highest performance by fine-tuning RoBERTa with482

stage-B relation mining, leading to an accuracy483

of 0.87 on the DBpedia-Light knowledge graph.484

To the best of our understanding, FactKG utilizes485

DBpedia-Light, while KG-LLM employs DBpedia-486

Full, as inferred from their respective public487

implementations.488

5.4.2 On DBpedia-Full Knowledge Graph 489

With the DBpedia-Full knowledge graph, we 490

observed a decrease in performance for all model 491

variants compared to the DBpedia-Light setting. 492

The Llama3-Instruct-zero-shot approach showed 493

a similar performance gain. Fine-tuned BERT 494

with stage-A and with stage-B both maintained 495

moderate scores, indicating stability but not 496

improvement. RoBERTa-stage-A and RoBERTa- 497

stage-B models showed a better performance 498

at 0.84, with both stages performing similarly, 499

indicating that stage-B processing does not 500

significantly outperform stage-A in the more 501

complex graphs. These results highlight challenges 502

associated with scaling to larger and more complex 503

knowledge graphs. 504

6 Discussion 505

The improved performance of FactGenius, 506

particularly in Conjunction, Existence, and 507

Negation reasoning, can be attributed to its 508

innovative combination of zero-shot prompting 509

with large language models and fuzzy text 510

matching on knowledge graphs. 511

The evidence-based filtering approaches 512

revealed significant findings. The stage-B 513

validation approach enhances accuracy compared 514

to stage-A. However, the model shows moderate 515

performance improvement in Multi-hop reasoning, 516
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indicating the need for more advanced techniques517

to handle its complexity.518

The two-step approach of filtering and validating519

connections proved to be particularly effective.520

In the first step, the LLM helps to narrow down521

potential connections based on the context provided522

by the claim. This initial filtering significantly523

reduces the search space, making the subsequent524

validation stage more efficient. The second step525

further refines these connections through fuzzy526

matching, ensuring that only the most relevant and527

accurate connections are retained. The comparative528

study confirmed the importance of each step,529

showing that the second step particularly enhances530

performance in conjunction and negation reasoning531

tasks.532

While the fine-tuned LLM models (BERT and533

RoBERTa) generally outperformed the zero-shot534

Llama3-Instruct as well as claim-driven relation535

filtering, the increase in graph complexity in536

the DBpedia-Full compared to DBpedia-Light537

limited the gains from fine-tuning. This can538

be attributed to the input token limitations of539

both BERT and RoBERTa, which truncate inputs540

after 512 tokens. This truncation is more likely541

to occur with the larger DBpedia-Full graph,542

potentially excluding relevant information from the543

processing, which diminishes the effectiveness of544

evidence-based filtering. Furthermore, the similar545

performance of stage-A and stage-B relation546

mining in the full graph setting suggests that the547

added complexity of stage-B does not translate548

into better accuracy, likely due to these input549

constraints. These observations underscore the550

need for adaptations or enhancements in model551

architecture or preprocessing methods to handle552

larger datasets more effectively.553

As having an LLM inference server is a crucial554

component of this framework, we employed555

vLLM (vLLM Project, 2024) to streamline rapid556

inference with a single NVIDIA A100 GPU. In our557

experiment, the LLM inference speed was around558

15 queries per second, including retries in case of559

failure. This rate is feasible, considering that LLM560

inference is continually optimized with the latest561

technologies. Embedding LLM in a framework has562

proven to be a wise choice.563

7 Conclusion564

In this paper, we introduced FactGenius, a novel565

method that combines zero-shot prompting of large566

language models with fuzzy relation mining for567

superior reasoning on knowledge graphs. This568

approach addresses several key challenges in 569

traditional fact-checking methods. First, the 570

integration of LLMs allows for the leveraging of 571

extensive pre-trained knowledge in a zero-shot 572

setting. Second, the use of fuzzy text matching 573

with Levenshtein distance ensures that minor 574

discrepancies in entity names or relationships do 575

not hinder the relationship selection process, thus 576

improving robustness. 577

Our experiments on the FactKG dataset 578

demonstrated that FactGenius significantly 579

outperforms traditional fact-checking methods and 580

existing baselines, particularly when fine-tuning 581

RoBERTa as a classifier. The two-stage approach 582

of filtering and validating connections proved 583

crucial for achieving high accuracy across different 584

reasoning types. 585

The findings from this study suggest that 586

utilizing LLMs for KG evidence retrieval 587

holds great promise for advancing fact-checking 588

capabilities. Future work could explore the 589

application of this approach to other domains and 590

datasets, as well as the potential for incorporating 591

additional sources of structured data to further 592

enhance performance. 593

8 Limitation 594

The main limitation of this work is that we consider 595

the 1-hop neighbourhood only when constructing 596

the graph evidence. This already works very 597

well on the FactKG benchmark, but the method 598

might need adjustments if applied on different 599

benchmarks where the claims need more complex 600

graph evidence. The limitation also arises from the 601

input context of the fine-tuned models as well as 602

the LLMs themselves, particularly when dealing 603

with entities that have extensive connections within 604

the graph. This often leads to exceeding the input 605

limit, necessitating truncation. 606
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A Zero-shot fact checking with evidence729

We experimented with a language model in the730

zero-shot setting for fact verification including the731

evidence. We prompted the model with the claim732

and the evidence given as a list of triples – an733

example of the prompt is shown in Figure 3.734

[{
"role":"system", "content":
"You are an intelligent fact-checker. You are given

a single claim and supporting evidence for the entities
present in the claim, extracted from a knowledge graph.

Your task is to decide whether all the facts in the
given claim are supported by the given evidence.

Choose one of {True, False}, and output the
one-sentence explanation for the choice. "

},{
"role":"user", "content":
'''
## TASK:
Now let’s verify the Claim based on the evidence.
Claim:
< < < Well, The celestial body known as 1097 Vicia

has a
mass of 4.1kg.> > >

Evidences:
< < <
1999_Hirayama >- mass -> ""4.1""
1097_Vicia >- mass -> ""9.8"""
> > >

#Answer Template:
"True/False (single word answer),
One-sentence evidence."
'''
}]

Figure 3: Example prompt given to Llama3-Instruct
with evidence for zero-shot fact-checking.

B Claim only models735

A baseline is established using the Meta-Llama-3-736

8B-Instruct3 (Meta, 2024) model with zero-shot737

promoting for claim verification, asking it to verify738

the claim without evidence. Through instruction739

prompt engineering, it is ensured that the model740

responds with either ’true’ or ’false’. A retry741

mechanism is implemented to handle potential742

failures in LLM responses. A prompt example743

is shown in Figure 4. A retry mechanism simply744

retries calling the LLM up to a fixed number of745

times and diverts to a default handling function if746

the LLM is unable to provide a proper dictionary747

output.748

3huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

[{
"role":"system", "content":
"You are an intelligent fact checker trained on Wikipedia.
You are given a single claim and your task is to decide
whether all the facts in the given claim are supported
by the given evidence using your knowledge.
Choose one of {True, False}, and output the one-sentence
explanation for the choice. "
},{
"role":"user", "content":
'''
## TASK:
Now let’s verify the Claim based on the evidence.
Claim:
< < < Well, The celestial body known as 1097 Vicia has a
mass of 4.1kg.> > >

#Answer Template:
"True/False (single word answer),
One-sentence evidence."
'''
}]

Figure 4: Example prompt given to Llama3-Instruct
without evidence for zero-shot fact-checking.
< < < ... > > > signs are added just to indicate that the content
inside is different for each prompt.
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