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Abstract

Fact-checking is a crucial natural language
processing (NLP) task that verifies the
truthfulness of claims by considering reliable
evidence. Traditional methods are labour-
intensive, and most automatic approaches focus
on using documents as evidence. In this paper,
we focus on the relatively under-researched
fact-checking with Knowledge Graph data
as evidence and experiment on the recently
introduced FactKG benchmark. We present
FactGenius, a novel method that enhances fact-
checking by combining zero-shot prompting of
large language models (LLMs) with fuzzy text
matching on knowledge graphs (KGs). Our
method employs LLMs for filtering relevant
connections from the graph and validates
these connections via distance-based matching.
The evaluation of FactGenius on an existing
benchmark demonstrates its effectiveness, as
we show it significantly outperforms state-of-
the-art methods.

1 Introduction

Fact-checking is a critical task in natural language
processing (NLP) that involves automatically
verifying the truthfulness of a claim by considering
evidence from reliable sources (Thorne et al., 2018).
This task is essential for combating misinformation
and ensuring the integrity of information in digital
communication (Cotter et al., 2022). Traditional
fact-checking is performed by domain experts and
is a labour-intensive process. Automatic fact-
checking systems have been introduced to address
this, but most of them work with textual data as
evidence sources (Vladika and Matthes, 2023).
Recent advancements in large language models
(LLMs) have shown promise in enhancing fact-
checking capabilities (Choi and Ferrara, 2024).
LLMs, with their extensive pre-training on diverse
textual data, possess a vast amount of embedded
knowledge (Yang et al., 2024). However, their

outputs can sometimes be erroneous or lacking in
specificity, especially when dealing with complex
reasoning patterns required for fact-checking.
External knowledge, such as knowledge graphs
(KGs) (Hogan et al., 2021), can aid in fact-
checking.

In this paper, we propose FactGenius, a novel
approach that combines zero-shot prompting of
LLMs with fuzzy relation-mining techniques
to improve reasoning on knowledge graphs.
Specifically, we leverage DBpedia (Lehmann et al.,
2015), a structured source of linked data, to
enhance the accuracy of fact-checking tasks.

Our methodology involves using the LLM to
filter potential connections between entities in
the KG, followed by refining these connections
through Levenshtein distance-based fuzzy
matching. This two-stage approach ensures that
only valid and relevant connections are considered,
thereby improving the accuracy of fact-checking.

We evaluate our method using the FactKG
dataset (Kim et al., 2023b), which comprises
108,000 claims constructed through various
reasoning patterns applied to facts from DBpedia.
Our experiments demonstrate that FactGenius
significantly outperforms existing baselines (Kim
et al.,, 2023a), particularly when fine-tuning
RoBERTa (Liu et al., 2019) as a classifier,
achieving superior performance across different
reasoning types.

In summary, the integration of LLMs with KGs
and the application of fuzzy matching techniques
represent a promising direction for advancing fact-
checking methodologies. Our work contributes to
this growing body of research by proposing a novel
approach that effectively combines these elements,
yielding significant improvements in fact-checking
performance.
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Figure 1: Overall pipeline of FactGenius: The process starts with LLM-based Connection Filtering using a
knowledge graph (see Section 4.1.1). In Fuzzy Relation Mining (see Section 4.1.2), Stage-I matches one-hop
connections of entities, and optionally, Stage-II includes all entities” connections. The classifier (BERT, RoBERTa,
or Zero-Shot LLM; see Section 4.3) then determines if the claim is supported or refuted.

2 Literature Review

Fact-checking has become an increasingly vital
aspect of natural language processing (NLP)
due to the proliferation of misinformation
in digital communication (Guo et al.,, 2022).
Traditional approaches to fact-checking have
typically relied on manually curated datasets
and rule-based methods, which, while effective
in controlled environments, often struggle with
scalability and adaptability to new types of
misinformation (Saquete et al., 2020; Guo et al.,
2022). The labour-intensive nature of these
methods also poses significant challenges in rapidly
evolving information landscapes (Nakov et al.,
2021; Zeng et al., 2021).

To address challenges in understanding machine-
readable concepts in text, FactKG introduces
a new dataset for fact verification with claims,
leveraging knowledge graphs, encompassing
diverse reasoning types and linguistic patterns,
aiming to enhance reliability and practicality in
KG-based fact verification (Kim et al., 2023b).
Similarly, the Fact Extraction and VERification
(FEVER) dataset (Thorne et al., 2018) pairs claims
with Wikipedia sentences that support or refute
them, providing a benchmark for fact-checking
models. The authors employed a combination of
natural language inference models and information
retrieval systems to assess claim veracity. The
GEAR framework (Zhou et al., 2019) improves
fact verification by using a graph-based method
to aggregate and reason over multiple pieces of
evidence, surpassing previous methods by enabling
evidence to interact.

Recent advancements in large language models
(LLMs) have demonstrated considerable potential

in enhancing fact-checking processes (Kim et al.,
2023a; Choi and Ferrara, 2024). LLMs have been
pre-trained on vast and diverse corpora (Yang et al.,
2024), enabling them to generate human-like text
and possess a broad knowledge base (Choi and
Ferrara, 2024). However, despite their impressive
capabilities, LLMs can produce outputs that are
erroneous or lack the specificity required for
complex fact-checking tasks (Choi and Ferrara,
2024). This is particularly evident when
intricate reasoning and contextual understanding
are necessary to verify claims accurately (Chai
et al., 2023). Several studies have explored the
integration of LLMs with external knowledge
sources to improve their performance in fact-
checking tasks (Cui et al., 2023; Ding et al., 2023).

The incorporation of knowledge graphs (KGs)
into fact-checking frameworks has also garnered
attention. KGs, such as DBpedia (Lehmann et al.,
2015), provide structured and linked data that can
enhance the contextual understanding of LLMs.

Knowledge graphs have been used to improve
various NLP tasks by providing additional context
and relationships between entities, as demonstrated
by initiatives for knowledge-aware language
models (Li et al., 2023; Logan Iv et al., 2019)
and KG-BERT (Yao et al., 2019).

Approximate string matching (Navarro, 2001),
also called fuzzy string matching, is a technique
used to identify partial matches between text
strings. Fuzzy matching techniques (Navarro,
2001) have been applied to enhance the integration
of LLMs and KGs (Wang et al., 2024).

Levenshtein distance-based similarity
measure (Levenshtein et al., 1966) helps in
identifying strings which have approximate
matches which can be useful for finding relevant



connections between entities by accommodating
minor discrepancies in data representation This
approach has been beneficial in refining the outputs
of LLMs, ensuring that only valid and contextually
appropriate connections are considered (Guo et al.,
2023).

Our proposed method, FactGenius, builds
on these advancements by combining zero-shot
prompting of LLMs with a fuzzy relation-mining
technique to improve reasoning over KGs. This
methodology leverages DBpedia as a structured
source of linked data to enhance fact-checking
accuracy. By using LLMs to filter potential
connections between entities and refining these
connections through fuzzy matching, FactGenius
aims to address the limitations of existing fact-
checking models.

3 Preliminaries

A Knowledge Graph (KG) G is a set of triples
(s,r,0) with s,0 € E and r € R, where F is
the set of entities and R is the set of relations
connecting those entities. A KG can be viewed
either as a set of tiples or as a graph with nodes in
E and edge labels in R. Hence, when we discuss
the 1-hop neighbourhood of a certain entity e we
refer to a set of entities connected to e through an
edge in this graph. For a triple s, 7, 0 we consider
s to be connected to o through the edge labelled
as r, whereas we consider o to be connected to s
through the edge labelled as ~r, where ~r denotes
the inverse relation of 7.

We consider natural language sentences in the
intuitive sense.

Given as input a claim in natural language C', a
KG G with entities F, and a set of entities relevant
to the claim F¢, the fact verification with KG
evidence task is to predict whether the claim C
is supported or not according to the evidence in G.

4 Methodology

We introduce the FactGenius system for the fact
verification with KG evidence task. Our system has
two main components: a graph filtering component
that selects the relevant KG evidence for the input
claim, and a classifier component which uses this
evidence together with the claim to predict whether
the claim is supported or not.

FactGenius leverages the capabilities of a Large
Language Model (LLM) to filter the set of triples
in the input graph GG. More concretely, an LLM is

used in a zero-shot setting to select the relevant
relations from the 1-hop neighborhood of the
entities Fc associated with claim C. Since the
output of LLMs can be erroneous, the triples are
further validated against the unfiltered set using
fuzzy matching techniques. Finally, the classifier,
which can be fine-tuned over pre-trained models
like BERT (Devlin et al., 2019) or RoBERTa (Liu
et al., 2019), or a Zero-Shot LLM, determines
whether the claim is supported or refuted. The
overall pipeline is shown in Figure 1.

4.1 FactGenius: Relation filtering with LLM
and Fuzzy Matching

The first step in our FactGenius pipeline is
identifying the graph evidence relevant to the input
claim. We select the relevant relations in the 1-hop
neighborhood of the claim entities by employing
LLM-based filtering. Once we have the relevant
relations, we select the 1-hop neighborhood triples.
These will be turned into strings and used together
with the claim by the classifier.

4.1.1 LLM promt-based filtering

We are utilizing an LLM, particularly the Llama3-
Instruct model, to identify and filter potential
connections between entities based on a given
claim.

This is done in the following way. First, we must
select a set of relations to filter using the LLM.
Given that KGs can be very large, for example with
DBpedia having billions of triples and thousands
of edges (Lehmann et al., 2015), considering the
full set of relations in an LLM prompt is infeasible.
In FactGenius we choose to look only at the 1-hop
neighborhood of the given set of claim entities F¢
to generate the initial set of relations. We therefore
construct a set of 1-hop relations for each entity
e, i.e. {r|(e,r,e1) € G}, which we will denote
with R (e). Then, the LLM is given as input the
claim C, and the set of relations Rc(e) for each
entity relevant to the input claim (each e € E¢),
and has to output subsets of each Rc(e), which
we can denote with R%4™ (). A prompt example is
given in Figure 2.

A retry mechanism is employed to handle
potential failures in LLM responses. If the LLM
output is inadequate (e.g., empty or nonsensical),
the request is retried up to a specified maximum
number of attempts, in practice 10. Throughout our
experiments, however, we did not encounter any
cases where the retry exceeded this limit. If this



System prompt:
You are given a single claim and connection

Your task is to filter the Connections options that
could be relevant to connect given entities to
fact-check Claiml. ~ ( tilde ) in the beginning
means the reverse connection.

You are an intelligent graph connection finder.

options for the entities present in the claim.

User prompt:

Claiml1:

<<<Well, The celestial body known as 1097
Vicia has a mass of 4.1kg.»>

## TASK:

- For each of the given entities given in the DICT
structure below:

Filter the connections strictly from the given
options that would be relevant to connect given
entities to fact-check Claiml.

- Think clever, there could be multi-step hidden
connections, if not direct, that could connect the
entities somehow.

- Prioritize connections among entities and
arrange them based on their relevance. Be extra
careful with signs.

- No code output. No explanation. Output only
valid python DICT of structure:

<<<

{
"1097_Vicia": ["...", " ]

# options (strictly choose from): discovered,
formerName, epoch, periapsis, apoapsis, ...,
Planet/temperature "4.1": ["...", "...", ... ],
# options (strictly choose from): ~length,
~ethnicGroups, ~percentageOfAreaWater,
~populationDensity, ~engine, ..., ~number

}

>>>

Figure 2: Filtering prompt example. The text inside
< < < and > > > changes with each input.

limit is exceeded, the non-filtered sets of relations
can be returned.

4.1.2 LLM output validation

As mentioned, the LLM could output relations that
are not in G. That is, R (e) is not necessarily a
subset of R¢(e) or even R.

We therefore pass the LLM output through a
validation stage, which is one of two stages, namely
Stage A or Stage B,

In Stage A, we perform validation of the relation
set for each entity from the claim. That is, for each
entity e € E¢, we select the subset of R¢(e) that
best matches the LLM output R (e). To do so we
fuzzily match the relations in R (e) to the relations
in R (e) using Levenshtein distance. Naturally,
we consider a threshold on this distance to decide
whether two relations match or not.

The limitation of the first validation type is
that if the LLM suggests the correct relation, but
associates it with the wrong entity, this relevant
relation is removed through the first validation type.
We will exemplify this on the prompt in Figure
2. The model is given the entities 1097_Vicia
and 4.1, each with the list of possible relations.
If the model identifies Planet/temperature but
associates it with 4.1 instead of 1097_Vicia this
relation is removed using Stage A validation.

To address this limitation we introduce Stage B
of validation. In this type of validation we consider
the full set of relations that were generated by the
LLM model, for all entities associated with the
input claim, i.e. R4™ = R (eq) U ... U Rl (ey,)
for all ey, ...,e, € FE¢. Similarly to Stage A, we
use the Levenshtein to compare the relations in
R (e) with the filtered relations, but we consider
the full filtered set Rgm instead of the entity-
specific set R4™(e). The details are explained in
Algorithm 1.

4.2 Claim-driven relation filtering

To measure the effectiveness of LLM in relation
filtering in 4.1, we create a baseline that ensures
that only the relations most pertinent to the claim,
based on lexical similarity, are selected. To
filter relations relevant to a claim, we begin by
tokenizing the claim sentence, excluding stop
words, to obtain a list of significant word tokens.
Next, for each entity e € E¢ present in the claim,
we gather all 1-hop relations R (e). We then apply
a fuzzy matching process to each tokenized word
in the claim, comparing it to the relations in R (e)



Algorithm 1 LLM output validation

1: Input: Ec = {e1,...., en } - entities in the claim;

2: Rc(e1), ..., Ro(e_n): relations in the 1-hop neighborhood for
each entity in the claim;

3: Rgm(el), - Rgm(en): relation sets outputed by the LLM;
stage: validation stage, either A or B

4: Output: R (e1), ..., R, (e_n)- Validated relation sets.
5: procedure VALIDATERELATION

6: Initialize: probable_connections: {}

7 for each e € Ec do

8: for each r € R¢ (e) do

9: if stage = A then

10: Rllmfcompare — R%m(e)

11: else

12: Rlm—compare _ R%m(el) U..u R%m(en)
13: end if

14: for each rllm ¢ Rllm—compare g¢

15: d = LEVENSHTEINDISTANCE(r, r1!")
16: if d > 90 then ,

17: Ri(e) = R(e)U{r}

18: end if

19: end for

20: end for

21: end for

22: end procedure

using the Levenshtein distance. This process yields
a subset of relations Ry (e), where each relation’s
similarity to the claim words exceeds a predefined
threshold.

4.3 With Evidence Classifier

In this configuration, the model is supplied with
both the claim and graphical evidence as input,
and it then makes predictions regarding the label.
FactGenius utilizes graph filtering, as explained in
Section 4.1, to ensure retention of the most relevant
and accurate connections.

4.4 Evidence Stringification

To effectively pass evidence tiples to the language
model, we must first convert these tiples
into a string format. For each entity e in
the claim with its associated relations {r |
(e,r,e1) € G} extracted from the graph G, we
transform each triplet (e,r,e;) into the string
format "|{e} > —{e}— > {e_1}". For multiple
tiples of evidence, the resulting strings are
simply concatenated into a single evidence string,
preserving the order and structure of the tiples.
This approach ensures a seamless and coherent
integration of structured graph data into the
language model’s input.

4.5 Zero-shot LLM as Fact Classifier

This involves utilizing Llama-3-Instruct as a fact
classifier, to predict Supported or Refuted for the
given input claim and evidence string. A retry

mechanism is implemented to handle potential
failures in LLM responses. A prompt example
with evidence is shown in Figure 3.

4.6 Fine-tuning pre-trained models

Pre-trained BERT-base-uncased' and RoBERTa-
base are finetuned with claim and evidence string
as inputs to predict whether the claim is supported
or refuted. In addition, an ablation evaluates
the contributions of each stage of our approach.
This involved sequentially removing Stage-B and
measuring the performance of the system after
the removal. The results of the ablation study
allowed us to quantify the impact of both stages on
the overall performance of the model. Accuracy
as an evaluation metric across all reasoning
types was employed to quantify the performance
improvements resulting from the ablation study.

4.7 Implementation

Our FactGenius system implementation leverages
several advanced tools and frameworks to
ensure efficient and scalable processing. The
Llama3-Instruct inference server is set up using
vLLM (VLLM Project, 2024; Kwon et al., 2023),
running on an NVIDIA A100 GPU (80 GB
vRAM) to facilitate rapid inference. This server
runs standalone, integrating seamlessly with the
FactGenius pipeline.

For model fine-tuning and evaluation, we employ
the Hugging Face Transformers library, utilizing
the Trainer class for managing the training
process. This setup allows for the fine-tuning
of pre-trained models like BERT and RoBERTa
on our pipeline.  Hyper-parameters such as
batch size, learning rate, and training epochs
are configured to optimize performance, with
computations accelerated by PyTorch.

The models were fine-tuned on a single NVIDIA
V100 GPU, with RoBERTa requiring around 25
minutes per epoch with a batch size of 32 and
BERT taking around 8 minutes per epoch with a
batch size of 64. The fine-tuning process utilized
the Adam optimizer with settings of betal=0.9,
beta2=0.98, and epsilon=1e-6 for ROBERTa. In
contrast, BERT was fine-tuned using Adam
optimizer settings of betal=0.9, beta2=0.99, and
epsilon=1e-8. A weight decay of 0.01 was used
over all the layers. A learning rate of 5e-6 was
used with early stopping over validation loss for 3

"huggingface.co/google-bert/bert-base-uncased
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epochs, retaining the weight at the best epoch.

5 Experiments

To evaluate the performance of our proposed
methods, we conducted a series of experiments
comparing different strategies for fact-checking on
the FactKG (Kim et al., 2023b) benchmark.

5.1 Dataset

The FactKG dataset (Kim et al., 2023b) is
used which comprises 108,000 claims constructed
through various reasoning patterns applied to facts

sourced from DBpedia (Lehmann et al., 2015).

Each data point consists of a natural language claim
in English, the set of DBpedia entities mentioned in
the claim, and a binary label indicating the claim’s
veracity (Supported or Refuted). The distribution
across labels and five different reasoning types
is shown in Table 1. The relevant relation paths
starting from each entity in the claim are known
which aids in the evaluation and development of
models for claim verification tasks.

The dataset is accompanied by a two-processed
version of the FactKG Knowledge Graph dataset
derived from DBpedia 2015. The first version
encompasses the entire DBpedia dataset with the
directionality of edges removed by incorporating
reverse relation triples, say DBpedia-Full. The
second version is a curated subset of the first,
containing only the relations pertinent to FactKG,
thus enabling focused and efficient analysis, named
DBpedia-Light.

Set Train | Valid | Test
Total Rows 86367 | 13266 | 9041
True (Supported) | 42723 | 6426 | 4398
False (Refuted) 43644 | 6840 | 4643
One-hop 15069 | 2547 | 1914
Conjunction 29711 | 4317 | 3069
Existence 7372 930 870

Multi Hop 21833 | 3555 | 1874
Negation 12382 | 1917 | 1314

Table 1: Data distribution across labels and five

reasoning types.

5.2 Results

Following prior work (Kim et al., 2023b,a), we
run experiments with two types of approaches,
approaches that take as input only the claim,
referred to as Claim Only, and approaches that

also integrate KG information, referred to as With
Evidence. The goal of this comparison is to assess
whether the required knowledge is already stored
in the weights of pre-trained large language models,
or injecting KG information is beneficial. The
results are summarized in Table 2.

5.3 Claim Only

For the Claim Only scenario we compared four
methods, two from the previous literature and
two designed by us. We chose two of the best-
performing methods from prior work, namely the
BERT-based claim only model introduced together
with the FactKG dataset by Kim et al. (Kim
et al., 2023b), and the ChatGPT-based model
subsequently introduced by Kim et al. (Kim
et al., 2023a). We additionally experimented
with two models: we used the Meta-Llama-3-
8B-Instruct’> (Meta, 2024) model with zero-shot
prompting, as well as a RoBERTa-base (Liu et al.,
2019) model which we fine-tuned on the fact
verification task. An example of the prompt we
used for Meta-Llama-3-8B-Instruct is found in
Appendix B.

Our results show that RoBERTa outperformed
the reported accuracy of BERT (Kim et al., 2023b),
achieving an accuracy of 0.68, which is on par with
the 12-shot ChatGPT model reported in the KG-
GPT paper (Kim et al., 2023a). This suggests that
RoBERTza inherently stores knowledge relevant in
fact checking, at least on the FactKG benchmark.
Our prompting approach on the other hand obtained
a score of 0.61, underperforming on the task.

5.4 With Evidence

In the with evidence setting we compared different
versions of our FactGenius system with two
systems from prior work (Kim et al., 2023b,a).
For our FactGenius approach, we experimented
with 5 versions, using either a LLM classifier with
prompting, Llama3-Instruct-zero-shot in Table 2,
or a fine-tuned LLM as the classifier, either BERT-
based (Devlin et al., 2019) or RoBERTa-based (Liu
et al., 2019). For both of the BERT-based and
RoBERTa-based system we we experimented with
both stage A and stage B output validation.

5.4.1 On DBpedia-Light Knowledge Graph

First, our results show that adding evidence to the
Llama3-Instruct model’s instructions significantly
improved its accuracy from 0.61 to 0.68. This

’huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
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‘ Input type ‘ Source ‘ Model ‘ One-hop ‘ Conjunction ‘ Existence ‘ Multi-hop ‘ Negation ‘ Total ‘
| | Prior (Kim et al., 2023b) | BERT* | 069 | 063 | 061 | 070 | 063 |065]
| ClaimOnly | Prior (Kimetal,2023a) | ChatGPT (12-shoty* | - | - I | 0.68 |
| | Ours | Llama3-Instruct-zero-shot | 0.61 | 067 | 059 | 061 | 053 |06l |
| | Ours | RoBERTa | 071 | 072 | 052 | 074 | 054 | 068 |
| | Fact-KG | GEAR* | o8 | 077 | 081 | 068 | 079 | 077 |
| | KG-GPT |  KG-GPT (12-shot)* |- - I I | 072 |
| With Evidence | ours on DBpedia-Light | Claim-driven relation filtering | 081 | 071 | 098 | 071 | 076 |078 |
| | FactGenius (Ours) | Llama3-Instruct-zero-shot | 072 | 075 | 076 | 062 | 052 | 068 ]
| |  onDBpedia-Light | BERT-stage-A | 08 | 08 | 091 | 079 | 078 |081]
| | | BERT-stage-B | 08 | 08 | 08 | 081 | 073 |082]
| | | RoBERTa-stage-A | 084 | 08 | 08 | 082 | 077 |084]
| | | RoBERTa-stage-B | 08 | 08 | 093 | 083 | 078 | 087 |
‘ ‘ FactGenius (Ours) ‘ Llama3-Instruct-zero-shot ‘ 0.72 ‘ 0.76 ‘ 0.72 ‘ 0.61 ‘ 0.51 ‘ 0.68 ‘
| |  onDBpedia-Full | BERT-stage-A | o8 | 08 | 067 | 080 | 056 | 076 |
| | | BERT-stage-B | 081 | o081 | 067 | 080 | 056 |[0.76 ]
| | | RoBERTa-stage-A | o8 | 08 | 091 | 079 | 082 | 084 |
| | | RoBERTa-stage-B | 08 | 08 | 09 | 082 | 079 |084]

Table 2: Comparing our method with other strategies and methods in terms of reported accuracies in the test set.
The * symbol indicates results taken directly from prior works, whereas - indicates results were not reported by

prior works.

indicates that even for such large language models,
incorporating relevant evidence can enhance fact-
checking performance in a zero-shot learning
scenario. However, directly applying zero-shot
prompting with Llama3-Instruct did not yield
superior performance even in comparison to claim-
driven relation filtering. The performance was
boosted when using fine-tuned BERT or RoOBERTa
as a classifier. It was seen that the performance of
the pipeline increases further when stage-B is used
instead of stage-A relation mining. It was seen that
fine-tuned RoBERTa performed better than BERT.

To assess the contribution of the validation
stages, we apply both stages to our best-performing
model, the RoBERTa-based one. What we observe
is that employing stage A of filtering results in an
accuracy of 0.84. Incorporating stage B instead
further improved the performance to 0.87. The
second stage enhanced performance across most
reasoning types, with notable improvements in
conjunction and negation tasks. We achieved the
highest performance by fine-tuning RoBERTa with
stage-B relation mining, leading to an accuracy
of 0.87 on the DBpedia-Light knowledge graph.
To the best of our understanding, FactKG utilizes
DBpedia-Light, while KG-LLM employs DBpedia-
Full, as inferred from their respective public
implementations.

5.4.2 On DBpedia-Full Knowledge Graph

With the DBpedia-Full knowledge graph, we
observed a decrease in performance for all model
variants compared to the DBpedia-Light setting.
The Llama3-Instruct-zero-shot approach showed
a similar performance gain. Fine-tuned BERT
with stage-A and with stage-B both maintained
moderate scores, indicating stability but not
improvement. ROBERTa-stage-A and RoBERTa-
stage-B models showed a better performance
at 0.84, with both stages performing similarly,
indicating that stage-B processing does not
significantly outperform stage-A in the more
complex graphs. These results highlight challenges
associated with scaling to larger and more complex
knowledge graphs.

6 Discussion

The improved performance of FactGenius,
particularly in Conjunction, Existence, and
Negation reasoning, can be attributed to its
innovative combination of zero-shot prompting
with large language models and fuzzy text
matching on knowledge graphs.

The evidence-based filtering approaches
revealed significant findings. The stage-B
validation approach enhances accuracy compared
to stage-A. However, the model shows moderate
performance improvement in Multi-hop reasoning,



indicating the need for more advanced techniques
to handle its complexity.

The two-step approach of filtering and validating
connections proved to be particularly effective.
In the first step, the LLM helps to narrow down
potential connections based on the context provided
by the claim. This initial filtering significantly
reduces the search space, making the subsequent
validation stage more efficient. The second step
further refines these connections through fuzzy
matching, ensuring that only the most relevant and
accurate connections are retained. The comparative
study confirmed the importance of each step,
showing that the second step particularly enhances
performance in conjunction and negation reasoning
tasks.

While the fine-tuned LLM models (BERT and
RoBERTa) generally outperformed the zero-shot
Llama3-Instruct as well as claim-driven relation
filtering, the increase in graph complexity in
the DBpedia-Full compared to DBpedia-Light
limited the gains from fine-tuning. This can
be attributed to the input token limitations of
both BERT and RoBERTa, which truncate inputs
after 512 tokens. This truncation is more likely
to occur with the larger DBpedia-Full graph,
potentially excluding relevant information from the
processing, which diminishes the effectiveness of
evidence-based filtering. Furthermore, the similar
performance of stage-A and stage-B relation
mining in the full graph setting suggests that the
added complexity of stage-B does not translate
into better accuracy, likely due to these input
constraints. These observations underscore the
need for adaptations or enhancements in model
architecture or preprocessing methods to handle
larger datasets more effectively.

As having an LLM inference server is a crucial
component of this framework, we employed
vLLM (VLLM Project, 2024) to streamline rapid
inference with a single NVIDIA A100 GPU. In our
experiment, the LLM inference speed was around
15 queries per second, including retries in case of
failure. This rate is feasible, considering that LLM
inference is continually optimized with the latest
technologies. Embedding LLLM in a framework has
proven to be a wise choice.

7 Conclusion

In this paper, we introduced FactGenius, a novel
method that combines zero-shot prompting of large
language models with fuzzy relation mining for
superior reasoning on knowledge graphs. This

approach addresses several key challenges in
traditional fact-checking methods. First, the
integration of LLLMs allows for the leveraging of
extensive pre-trained knowledge in a zero-shot
setting. Second, the use of fuzzy text matching
with Levenshtein distance ensures that minor
discrepancies in entity names or relationships do
not hinder the relationship selection process, thus
improving robustness.

Our experiments on the FactKG dataset
demonstrated that FactGenius significantly
outperforms traditional fact-checking methods and
existing baselines, particularly when fine-tuning
RoBERTza as a classifier. The two-stage approach
of filtering and validating connections proved
crucial for achieving high accuracy across different
reasoning types.

The findings from this study suggest that
utilizing LLMs for KG evidence retrieval
holds great promise for advancing fact-checking
capabilities. Future work could explore the
application of this approach to other domains and
datasets, as well as the potential for incorporating
additional sources of structured data to further
enhance performance.

8 Limitation

The main limitation of this work is that we consider
the 1-hop neighbourhood only when constructing
the graph evidence. This already works very
well on the FactKG benchmark, but the method
might need adjustments if applied on different
benchmarks where the claims need more complex
graph evidence. The limitation also arises from the
input context of the fine-tuned models as well as
the LLMs themselves, particularly when dealing
with entities that have extensive connections within
the graph. This often leads to exceeding the input
limit, necessitating truncation.
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A Zero-shot fact checking with evidence

We experimented with a language model in the
zero-shot setting for fact verification including the
evidence. We prompted the model with the claim
and the evidence given as a list of triples — an
example of the prompt is shown in Figure 3.

[{

"role"”:"system”, "content”:

"You are an intelligent fact-checker. You are given
a single claim and supporting evidence for the entities
present in the claim, extracted from a knowledge graph.

Your task is to decide whether all the facts in the
given claim are supported by the given evidence.

Choose one of {True, False}, and output the
one-sentence explanation for the choice. "

)
"role":

":"user"”, "content”:
## TASK: . . .
Now let’s verify the Claim based on the evidence.
Claim:

< < < Well, The celestial body known as 1097 Vicia
has a

mass of 4.1kg.> > >

Evidences:

< <<

1999_Hirayama >- mass -> ""4.1""

1027;Vicia >- mass -> ""9.8"""

#Answer Template:
"True/False (single word answer),
One-sentence evidence.”

Y]

Figure 3: Example prompt given to Llama3-Instruct
with evidence for zero-shot fact-checking.

B Claim only models

A baseline is established using the Meta-Llama-3-
8B-Instruct® (Meta, 2024) model with zero-shot
promoting for claim verification, asking it to verify
the claim without evidence. Through instruction
prompt engineering, it is ensured that the model
responds with either ’true’ or ’false’. A retry
mechanism is implemented to handle potential
failures in LLM responses. A prompt example
is shown in Figure 4. A retry mechanism simply
retries calling the LLM up to a fixed number of
times and diverts to a default handling function if
the LLM is unable to provide a proper dictionary
output.

*huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
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L

"role":"system”, "content”:

"You are an intelligent fact checker trained on Wikipedia.
You are given a single claim and your task is to decide
whether all the facts in the given claim are supported
by the given evidence using your knowledge.

Choose one of {True, False}, and output the one-sentence
explanation for the choice. "

Ll

"role":

user”, "content”:

## TASK: . . .

Now let’s verify the Claim based on the evidence.
Claim:

< < < Well, The celestial body known as 1097 Vicia has a
mass of 4.1kg.> > >

#Answer Template:
"True/False (single word answer),
One-sentence evidence.”

1

Figure 4: Example prompt given to Llama3-Instruct
without evidence for zero-shot fact-checking.

< <<..>>>signs are added just to indicate that the content
inside is different for each prompt.
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