
Published as a conference paper at ICLR 2024

CivRealm: A LEARNING AND REASONING ODYSSEY
IN Civilization FOR DECISION-MAKING AGENTS

Siyuan Qi1*† Shuo Chen1* Yexin Li1* Xiangyu Kong1* Junqi Wang1*

Bangcheng Yang1 Pring Wong1 Yifan Zhong1,2 Xiaoyuan Zhang1,2

Zhaowei Zhang1,2 Nian Liu1,3 Yaodong Yang2,1 Song-Chun Zhu1,2

1National Key Laboratory of General Artificial Intelligence, BIGAI 2Peking University 3BUPT

ABSTRACT

The generalization of decision-making agents encompasses two fundamental ele-
ments: learning from past experiences and reasoning in novel contexts. However,
the predominant emphasis in most interactive environments is on learning, often
at the expense of complexity in reasoning. In this paper, we introduce CivRealm,
an environment inspired by the Civilization game. Civilization’s profound align-
ment with human society requires sophisticated learning and prior knowledge,
while its ever-changing space and action space demand robust reasoning for gen-
eralization. Particularly, CivRealm sets up an imperfect-information general-sum
game with a changing number of players; it presents a plethora of complex fea-
tures, challenging the agent to deal with open-ended stochastic environments that
require diplomacy and negotiation skills. Within CivRealm, we provide inter-
faces for two typical agent types: tensor-based agents that focus on learning, and
language-based agents that emphasize reasoning. To catalyze further research,
we present initial results for both paradigms. The canonical RL-based agents ex-
hibit reasonable performance in mini-games, whereas both RL- and LLM-based
agents struggle to make substantial progress in the full game. Overall, CivRealm
stands as a unique learning and reasoning challenge for decision-making agents.
The code is available at https://github.com/bigai-ai/civrealm.

1 INTRODUCTION

Human intelligence behaves very differently from contemporary AI. From the earliest use of stone
tools, our ancestors spent 18,000,000 years progressing to the control of fire [21]. If we were to learn
and explore in a manner similar to modern AI agents, it would take even longer to transition from the
industrial age to the information age. This is due to the exponential growth of our toolkit and action
space A, where finding a meaningful development trajectory τ in the vast realm of possibilities
would seem nearly impossible. Yet, human society not only thrives but also at an ever-accelerating
pace. In fact, it merely took 247 years from the invention of the steam engine to the birth of the digital
computer [19; 30] . This is truly remarkable from a decision-making perspective: it is our ability to
learn from past experience and reason in novel contexts that defies the probabilistic expectations.

In this paper, we present CivRealm, an interactive environment designed to push the boundaries of
decision-making agents’ learning and reasoning. CivRealm is inspired by the iconic game Civi-
lization, where each agent acts as a player to guide a civilization, mirroring the course of human
history. Within this game, players are confronted with decisions including resource management,
strategic planning, diplomacy, and warfare. The game rules profoundly align with the mechanics
governing human society, and decision-making in the game span from long-term strategic vision
(e.g., development prioritization) to fine-grained tactical maneuvers (e.g., unit control) (Figure 1).

As a multi-agent interactive environment, CivRealm distinguishes itself through unique features that
demand robust reasoning capabilities to adapt to its ever-changing conditions (Table 1). It estab-
lishes an imperfect-information general-sum game where the number of players fluctuates during
gameplay. Within this setting, agents must adeptly navigate open-ended and stochastic environ-
ments with rapidly expanding state and action spaces, driven by technological advancements and
societal progress. Additionally, effective interaction and communication between agents necessitate
diplomatic and negotiation skills, akin to challenges encountered in real-world decision-making.

∗Equal contribution. † Corresponding author.

1

https://github.com/bigai-ai/civrealm

Published as a conference paper at ICLR 2024

(a) Game interface. (b) Examples of long-term strategies.

Figure 1: The gameplay of Civilization [73] requires deep reasoning, involving long-term strategic
planning and fine-grained tactical controls. The figure depicts a hypothetical situation that resembles
a historical scenario, with the Romans securing Sicily against Carthage while nurturing a friendly
diplomatic relationship with a declining Egypt. This decision is made in a highly complex con-
text: players need to consider various aspects of long-term developmental strategies like technology,
military, and diplomacy in the given geographical and diplomatic context. They also engage in fine-
grained control actions, e.g., border exploration, vessel building, and road construction.

As interactive environments become increasingly complex [6; 76; 70; 2; 8; 15; 42; 43; 37; 44; 18],
it is important to note that many lack the same degree of reasoning sophistication and dynamic
complexity as CivRealm. One closely related environment is StarCraft [79]. However, being a real-
time strategy game, it places a greater emphasis on quick tactical reactions, with a typical game
concluding within 30 minutes for human players. In contrast, Civilization is a turn-based strategy
game that simulates the development of human society, where a single game can span from several
hours to even days to complete. This extended duration reflects the need for profound reasoning in
this expanding decision space. On the other hand, statistics [83] show that human players learn to
play the game reasonably well within 23 hours, which typically amounts to about 3-4 full games.
This presents the learning challenges for decision-making agents to match human speed.

In addition to the full game, CivRealm offers mini-games across three core aspects: development,
battle, and diplomacy. The development mini-games challenge players to nurture their civilization’s
growth, including aspects like population, production, and economy. In battle mini-games, players
need to master the control of multiple units against opposing forces. The diplomacy mini-games
demand players to employ diplomatic actions (e.g., trading), to foster their civilization’s prosperity.

To stimulate future research, we provide both tensor and language APIs, accommodating two typical
genres of decision-making agents: reinforcement learning (RL) and large language models (LLM)
agents. We have developed a canonical RL method as well as two language model-based approaches.
The first approach BaseLang mirrors AutoGPT [72], while the second, named Mastaba, is a hier-
archical amalgamation of individual BaseLang models. We present the preliminary results of our
initial endeavors. The RL agent demonstrates reasonable performance in mini-games. However, for
both RL- and LLM-based agents, substantial progress in the full game remains a challenge.

In summary, this paper makes three major contributions. First, we introduce an interactive envi-
ronment for a Civilization-based game that poses new challenges in both learning and reasoning,
enriched with mini-games and support for two distinct types of APIs. Second, we outline the design
of baseline methods and present a language model-based approach. Third, we share the preliminary
results of our explorations, laying the groundwork for further research in this landscape.

2 RELATED WORK

Complex Interactive Environments. Interactive decision-making environments have exhibited
increasing complexity with two key dimensions. Task complexity has grown in both physics-based
and game environments, transitioning from simpler forms like MuJuCo [76] and ALE [6] to more
realistic [1; 54; 59; 66; 44] or more intricate open-ended settings (e.g., MineCraft [37; 18] and so
on [2; 39; 38; 64]) that feature partially observable worlds and tasks with real-world resemblances.
However, unlike CivRealm, their state and action spaces typically remain static during gameplay.

Simultaneously, the complexity has expanded from single-agent scenarios to multi-agent challenges.
Multi-agent environments introduce additional difficulties due to non-unique learning objectives,

2

Published as a conference paper at ICLR 2024

Table 1: Comparison with existing environments. CivRealm features the following characteristics
for learning and reasoning. Imperfect info: The full state is partially observable. Stochastic: The
dynamics of the environment is non-deterministic. Multi-goal: There are multiple victory condi-
tions in the game. Dynamic space: The state and action space of a single player change dynamically
in a game. Multi-agent: There are multiple interacting players in the game. General-sum: It is a
mixed motive game, where cooperation and competition coexist. Changing players: The number
of players can increase or decrease during a single game. Comm.: players can explicitly communi-
cate in the game. Tensor & Lang.: The environment provides both tensor and language APIs.

Environment Imperfect info Stochastic Multi-goal Dynamic space Multi-agent General-sum Changing players Comm. Tensor & Lang.

MineDojo [18] ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓

MPE [50] ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗

Hanabi [5] ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗

Hold’em [10] ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Diplomacy [51] ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓

Melting pot [43] ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗

Google Football [42] ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Stratego [53] ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

SMAC [58] ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Dota 2 [8] ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗

StarCraft II [79] ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗

CivRealm ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

non-stationarity, and diverse information structures [90; 84]. Examples such as MPE [50], Melting
Pot [43], Neural MMO [70], Stratego [53], Diplomacy [51; 17], and StarCraft [79; 80], each offer
distinct perspectives on the complexities of multi-agent decision-making. In comparison, CivRealm
stands out for its comprehensive features for generalization, characterized by ever-changing in-game
conditions. For a more detailed comparison, please refer to Table 1. In summary, CivRealm offers a
platform for assessing decision-making agents’ reasoning abilities at a broader scale.

Reinforcement Learning Agents with Reasoning. Reinforcement learning (RL) has witnessed
significant growth with a focus on model-free methods [47; 61; 62; 22; 80]. As a culmination,
AlphaStar [80] achieved mastery in StarCraft II. However, it still has generalization issues, relying
heavily on human demonstrations and prolonged training. To overcome these challenges, knowledge
representation and reasoning are crucial as shown in early work on Civilization [12; 11]. To integrate
RL and reasoning, typical ways include search-based methods that select actions based on potential
outcomes [13; 68; 69; 60], model-based RL that learns a dynamic model of the environment [49;
36; 86; 40; 23; 24; 26; 67; 28], and hierarchical RL that employ temporal and state abstractions [35;
78; 63; 16; 25; 3]. Despite these advances, solving highly complex tasks remains difficult for RL
agents. CivRealm comprehensively benchmarks these agents’ generalization ability.

Large-Language-model-based Agents with Learning. In the past two years, there has been sig-
nificant progress in the development of LLM-based agents for task planning and reasoning in (multi-
agent) interactive environments [14; 55; 87; 46; 89; 52; 56; 31; 34; 33; 29; 45; 27]. These agents have
evolved from not incorporating learning [82; 93; 91] to becoming more adaptive with memory [71],
self-reflection mechanisms [85; 65; 48], and learning capabilities [81; 92; 88; 65]. Nonetheless, re-
search has revealed certain shortcomings in the reasoning capabilities of LLMs [7; 77; 9; 32]. Given
the extensive human knowledge LLMs have acquired, CivRealm is an ideal environment to as-
sess their ability to learn from interactions and apply knowledge for reasoning.

3 ENVIRONMENT

In this section, we begin by introducing the open-ended characteristics of CivRealm, followed by its
engineering features. Subsequently, we describe both the full game and the mini-games supported
by CivRealm, along with a discussion of their research values for building decision-making agents.

There are various characteristics of this environment that make it open-ended (Table 1): Imperfect
information, where players only have access to information discovered by their own units and
cities. Stochastic dynamics with random events and crises that can disrupt plans. Multiple victory
paths are possible (e.g., conquer, science, or highest score), requiring a balance between economic
expansion, military development, diplomacy, culture, and technology. A dynamic game space with
continuous changes in state and action space for a single agent. Multi-agent interactions with built-

3

Published as a conference paper at ICLR 2024

Unknown Peace War Alliance

The Gunpowder Age The Space AgeThe Industrial AgeThe Bronze Age

Settler Musketeer Transport Stealth plane

Granary City wall Power plant Space infra

Technology

Building

Unit

Diplomacy

Figure 2: Civilization evolves as the game unfolds, and the potential state and action space explode.
This figure focuses on 4 of the 8 ages, wherein technological advancements unlock a greater number
of buildings and units. Throughout the course of the game, the state can grow from 1015 to 10650,
and the action space can expand from 104 to 10166 (§ D). This figure only shows some example
elements; the full game includes 87 types of technologies, 68 types of buildings, 52 types of units, 6
government types, and 5 diplomatic states, all subject to the rule sets used and are customizable.

in AI players or other models, providing the potential for self-play. General-sum game that allows
alliance formation during gameplay, which changes the game structure and makes the victories of
different players non-exclusive. Changes in the number of players during a game due to revolts
or conquers, leading to significant alterations in the joint state and action space. Communication
between players through diplomatic actions and natural language chat, allowing agents to use their
natural language capabilities. In summary, CivRealm presents unique challenges and complexities,
making it an open-ended testbed for decision-making agents. Please see § A.1 for more details.

Agent-architecture-agnostic framework. CivRealm empowers each agent to act as a player in
the open-source turn-based strategy game Freeciv [74]. CivRealm employs a server-proxy-client
framework and implements proxy APIs so that a server hosts the game and the proxy establishes
the connection between agents (i.e., clients) and the server. The proxy distributes the game states
received from the server to each agent and submits the actions returned by agents to the server. By
this design, agents with various architectures can seamlessly engage in Freeciv by interpreting the
observations provided by the proxy and generating actions that adhere to CivRealm’s specifications.
LLM-based-agent-friendly. Freeciv is a turn-based game that operates without the need for real-
time reactions. This affords players ample time for thoughtful deliberation. This pace aligns well
with the operation of LLM agents, which typically demand substantial time for inference.
Evaluation platform for generalization ability. CivRealm offers multiple convenient methods to
create novel scenarios, such as generating random maps with diverse landscapes and varying player
and unit numbers, or modifying the rule sets that define the fundamental game rules. These elements
result in new configurations, demanding agents to reason the underlying game mechanics rather than
relying solely on memorized experiences and public knowledge. Therefore, CivRealm serves as an
effective platform for assessing the generalization capabilities of decision-making agents.
Support for a variety of tasks. CivRealm offers a wide range of learning and reasoning tasks. These
tasks include not only the comprehensive full game of Freeciv, but also smaller-scale mini-games
designed using Lua scripts. In § 3.2, we will provide detailed descriptions of these tasks.

3.1 FULL GAME DESCRIPTION

In CivRealm, players take the role of civilization leaders with the objective of guiding their civi-
lization from its humble beginnings to greatness, where full games can last from several hours to
several days. Civilizations evolve through eras, with an explosion in the number of controllable
objects as the game progresses, resulting in vast state spaces and joint actions (Figure 2). Decisions
in the game have multifaceted impacts, encompassing both long-term strategic consequences and
short-term tactical outcomes. This complexity necessitates a thought process that carefully weighs
the implications of these decisions since greedy moves can easily be non-optimal in the long term.

Observations. Instead of directly processing raw pixel data of the game interface, we extract repre-
sentative discrete information from graphics observed during human gameplay. These observations
encompass data related to the map, units, cities, government, technology, and diplomacy. The map

4

Published as a conference paper at ICLR 2024

`

I give you Guerilla Warfare, can

you give me Advanced Flight?

That’s not very good for us.

And how about Electronics?

Yes, that would make a deal.

Diplomacy: TradeTechsBattle: LandBattleModern Battle: NavalBattleModern

Development: WorkerBuildInfraDevelopment: TransBuildCity

Food: 15

Trade:13

Development: CityTileWonder

Expedition - transport settlers City work tile view

Prod: 17

Produce:

Pyramid

(12 turns left)

Figure 3: Examples of different types of the designed mini-games.

information includes whether a particular tile is observable, where a “tile” refers to a square space
on the grid-based map. The map provides details like the terrain type, owner of the tile, resource
output, additional infrastructure, and units present on the tile. The unit information provides insights
into a unit’s health, location, owner, attack/defense strength, remaining movement points (indicating
the actions the unit can take in a turn), maintenance costs, etc. The city information covers details
such as a city’s location, owner, size, population, shield value, resource production, and more. The
government information indicates the current government type of the civilization, the tax rate, etc.
The technology information displays the technologies that have been researched and the technology
currently being researched. The diplomacy information comprises data regarding diplomatic rela-
tionships with other players. For a comprehensive list of these observations, please refer to § A.1.1.

Actions. We have implemented a rich set of action classes that encompass the five primary facets
of gameplay: unit, city, government, technology, and diplomacy. The unit actions are responsible
for controlling a player’s units. They can be categorized into three main types: engineering actions,
which handle tasks like city construction, planting, mining, and more; movement actions, including
moving, transportation, embarking, and so on; and military actions, such as attacking, fortifying,
bribing, etc. The city actions pertain to the development and management of a city. They include unit
production, building construction, city worker assignment, and more. The government actions allow
players to change their government type to gain corresponding political benefits, adjust tax rates to
balance economic expansion and citizen happiness, etc. The technology actions enable players to set
immediate or long-term goals for their technology research. The diplomacy actions empower players
to initiate negotiations, such as trading technologies, negotiating ceasefires, forming alliances, etc.
For an exhaustive list of the implemented actions, please refer to § A.1.2.

Evaluation Metrics. CivRealm offers evaluation metrics to assess playing performance across var-
ious dimensions, including population, constructed cities, researched technologies, produced units,
explored land, etc. An aggregated score is provided for overall evaluation. Please refer to § A.1.3.

3.2 MINI-GAME BENCHMARKS

CivRealm requires players to balance multiple factors, including economic expansion, military de-
velopment, diplomatic influence, cultural achievements, and technological research, when making
decisions. To provide a comprehensive benchmark and support for various learning paradigms (e.g.,
curriculum learning), we built a collection of mini-games that focus on specific aspects of the full
game. These mini-games are generated using the same rule sets as the full game, but with a smaller
map size and fewer players. The mini-games are designed to be challenging, requiring agents to
master specific skills to achieve victory. The key features of the benchmark are as follows.

Unlimited task generation. The benchmark offers an automatic mini-game generation tool, which
introduces randomness across various aspects, including the map landscape, initial position of units
and cities, tile resources, etc. Consequently, this provides access to an inexhaustible pool of mini-

5

Published as a conference paper at ICLR 2024

Oasis

Pheasant

Ivory

Resources

Coal

Fish

Buffalo

Game

Wine

Spice

Furs

Iron

Whales

Wheat

Silk

Oil

Peat

Gems

Gold

Terrain Types

R
eso

u
rce

T
y

p
es

(a) BuildCity statistics.

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
0

250

500

750

1000

1250

Co
un

t

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
Inter-player Ratio on unit numbers

0

200

400

600

Co
un

t

Inter-player Ratio on average (attack + defense)

(b) LandBattleModern statistics.

2000 1500 1000 500 0 500 1000 1500
Inter-player difference on average advance values

0

200

400

600

800

Co
un

t

40 30 20 10 0 10 20 30
Inter-player difference on advance numbers

0

100

200

300

400

Co
un

t

(c) TradeTechs statistics.

Figure 4: The generated mini-games are diverse and balanced. (a) Terrain and resource distribution
and corresponding joint food/production/trade metrics. (b) Unit numbers and strength: inter-player
ratio’s distribution. (c) Technology number and value: inter-player difference’s distribution.

games, allowing the assessment of agents’ generalization abilities in smaller-scale tasks.
High customizability. The benchmark utilizes Lua scripts to specify the reward structure of mini-
games conveniently. This modular design enables users to customize the victory condition of mini-
games and train algorithms with different paradigms (e.g., curriculum learning and meta learning).
Compatibility with full game. Mini-games adhere to the same input and output format as the full
game. Agents trained in mini-games can be seamlessly migrated to the full game, and vice versa.

In CivRealm, we design 10 types of mini-games and use the generation tool to produce 10,000
instances for each type. They can be categorized into three groups: development, battle, and diplo-
macy (as exemplified in Figure 3). The development mini-games aim at nurturing cities, focusing on
factors like population growth, production efficiency, and economic prosperity. These elements are
closely linked to a civilization’s overall strength and advancement. The battle mini-games revolve
around tactical warfare between opposing groups of units. Skilled commanders aim to defeat their
enemies while minimizing their own losses. The diplomacy mini-games represent a unique feature
of civilization games. Mastering diplomatic skills is pivotal, as maintaining positive relationships
with other players can significantly influence the course of gameplay. Please refer to § A.2 for
specific game definitions and the criteria we use to determine victory in these games.

Task variation statistics. The benchmark manipulates crucial configurations in each mini-game to
increase the diversity of mini-game instances (§ A.2.2). In development mini-games, we introduce
variations in terrain types and extra infrastructures on tiles, both of which impact resource outputs
(food/production/trade). In battle mini-games, we alter the number of units and their attack/defense
strengths. In diplomacy mini-games, we adjust the number and type of technologies held by each
player. Figure 4 illustrates the benchmark effectively generates a diverse set of mini-games.
Task difficulty level. Owing to the varied configurations of mini-game instances, we classify their
difficulty into three levels: easy, normal, and hard (§ A.2.1), based on whether the player controlled
by our agent holds an advantage or disadvantage compared to the opposing player.

4 METHODS

We design three approaches as baseline methods, including: 1) a canonical tensor-based RL method
inspired by AlphaStar [80], 2) an LLM method BaseLang that works similarly as AutoGPT, and 3)
Mastaba, a hierarchical amalgamation of individual BaseLang models. In this section, we introduce
these models as well as the challenges encountered. For more discussion, please see § E.

4.1 TENSOR-BASED REINFORCEMENT LEARNING

Challenges in CivRealm for tensor-based RL methods include the following. Complex dynamics:
CivRealm’s complex game mechanics mimic human society, posing difficulties for tensor-based
learning. It involves diplomacy, economics, technology, and military strategy, making it hard for
both model-free and model-based approaches. Overwhelming information: agents face extensive
information from units, cities, players, etc, while lacking semantic understanding. Multi-Level ac-
tions: CivRealm’s action space is complex and hierarchical, requiring sequential decision-making
and neural network adaptation. Sparse, delayed rewards: Rewards are sparse, delayed, and asyn-
chronous due to the turn-based and society-simulating nature CivRealm. Diverse victory paths:

6

Published as a conference paper at ICLR 2024

There are 1 Forest … in the

current block;

There are 3 Phalanx… in

block_south_1...

We have 1 Ocean, 1 Forest, 1

Minor Tribe Village , ...,

tile_south_2_east_1:{'Grassla

nd', '1 Archer belong to

myself player 0' }

Zoom-in Obs

Zoom-out Obs

We have 6 units: 2 settlers, 2

workers;

We can see 0 enemy units. We

have 0 cities of total size 0...

World Obs

Advisor

Worker

Expand our territory ASAP; Settlers

should build cities and produce

more settlers.

Advice

I am controlling Settlers 103. Advisor

tells us to build cities near, ...

Thought

Build city

Action

Reasoning

Action

Obs

LLMs

Thought

Command

Look up

Manual

Knowledge

Manual

Tools utilization

Thoughts

Mastaba

Advice

I can see wheat and Coal around me

within distance 2, and a river, ...

The surrounding environment is

good. I should build city now.

Reasoning

Command

BaseLang

Figure 5: Architecture of LLM-based approaches. Left: BaseLang. Right: Mastaba.

CivRealm offers multiple paths to victory, complicating RL training that relies on reward signals.
Network Design We implement a hierarchical approach inspired by AlphaStar [80] to handle di-
verse inputs effectively. Our network has three main parts (Figure 11). Representation: we use
MLP, Transformer, and CNN models to extract features based on input type (vector, sequence, or
image-based). These features are globally connected through a transformer, and an RNN combines
current-state features with a memory state for historical context. Action Selection: we leverage the
learned representations to make decisions. The actor module selects the primary action category
(e.g., unit, city, government, or turn termination), followed by a pointer network choosing the spe-
cific action ID. Value Estimation: we include a value prediction head to enable actor-critic learning,
sharing the representation for training efficiency. We train the network using Proximal Policy Opti-
mization [62] and parallelize tensor environments with Ray [4] (see § E.1.3 for training details).

4.2 BASELANG: BASELINE LANGUAGE-BASED AGENT

Necessity and challenges The need for developing an LLM-based agent in CivRealm arises from
two factors. 1) LLMs are capable of task generation and problem-solving, augmented by their exten-
sive human knowledge base. Their capabilities and knowledge are promising for solving decision-
making problems. 2) LLM is not yet sufficiently sophisticated for complex reasoning [77; 7]. In
CivRealm, LLM is advantageous due to its ability to use natural language, prioritize strategic game-
play, and handle diplomatic interactions. However, constructing such an agent faces several chal-
lenges, including managing multiple in-game roles, handling sparse and complex observations, ad-
dressing the long-term impact of actions, and improving the agent’s decision-making over time.
Design We design the baseline language-based agent composed of three components (Figure 5):
observation, reasoning, and commands. For observation, a 5x5 tile-based observation is employed,
centered on each unit’s location, optimizing tactical information provision while accommodating
strategic depth. The reasoning module mimics AutoGPT [72] and outputs in three stages: thought,
reasoning, and command. Commands empower the agent with the choice between “manual and
history search” and “final decision” commands, enabling data retrieval from a vector database or
selecting available actions to execute based on environmental and historical context. Finally, indi-
vidual LLMs are assigned to each unit, with their context histories, to facilitate detailed planning.

4.3 MASTABA1: ENHANCING BASELANG BY A HIERARCHICAL STRUCTURE

To facilitate cooperation between independent entities, Mastaba introduces a hierarchical structure,
organizing LLM workers, observations, and decision-making into a pyramid-like structure.
LLM Workers. Within Mastaba, LLM workers are structured as two layers. At the pinnacle is
the “advisor”, tasked with overseeing all other LLM workers. The advisor monitors the holistic
nationwide perspective, including unit counts, city metrics, and enemy/player information. At the
operational level, Mastaba maintains LLM workers that resemble BaseLang’s structure.
Observation. Mastaba adopts a pyramid-like map view, condensing data from a 15× 15 tile region
into 9 blocks, each spanning 5 × 5 tiles. This design enables entities to grasp information within a
broader range while managing prompt loads effectively, thereby elevating map awareness.
Decision-making. Mastaba’s decision-making workflow follows its agent structure. The advisor

1Ancient Egyptian tomb before pyramids. The first pyramid in Egypt is considered a stack of Mastabas.

7

Published as a conference paper at ICLR 2024

(a) CityTileWonder (b) SettlerBuildCity (c) LandBattleDefendCity

Figure 6: Performance of the RL method over training on three mini-tasks; the diverse mini-tasks
exhibit varying degrees of stochasticity and complexity that lead to different success rates. In the
“SettlerBuildCity" task, the RL method exhibited shortcut learning [20] in hard level.

(a) Game scores (b) technologies researched (c) units built

Figure 7: Scores over the training course on the full game for the RL method. CivRealm provides
different metrics to gauge the performance of the model from different aspects to provide further
insights; these metrics also reflect the multi-goal nature of the environment (§ A.1.3).

initiates each turn with a nationwide assessment, encompassing cities, units, and potential threats.
It generates suggestions during each turn and communicates them to other LLM workers, who in-
dependently select actions for their entities. Additionally, workers possess the capability to query a
vector database for knowledge, enabling informed decisions based on manual or stored experiences.

5 EXPERIMENTS

5.1 TENSOR-BASED REINFORCEMENT LEARNING

To evaluate the performance of our tensor baseline across various mini-tasks and full games, we kept
the same architecture and training hyper-parameters and trained our models from scratch.
Minitask For each minitask of a given difficulty level, we trained tensor baseline models for over
40,000 steps with 3 random seeds. Figure 6 shows 3 representative tasks with the success rates.
While a small number of development minitasks, such as ‘CityTileWonder’, could be solved with a
high success rate (∼ 90%), most minitasks still pose a hierarchy of increasingly difficult challenges
to our tensor baseline. These results highlight the strengths and limitations of current tensor-based
RL models in handling different types of tasks in CivRealm. Specifically, RL models exhibit better
learning capabilities for tasks offering immediate rewards and requiring relatively short-term plan-
ning. However, when confronted with tasks with sparse and delayed rewards, requiring long-term
strategic planning, these models encounter significant difficulties in identifying viable solutions.
Fullgame For full games, we trained tensor baseline models for over 2 million steps. The overall
performance is measured by the average score at the end of each game as shown in Figure 7. The
score is a multi-facet metric calculated from a weighted sum of important game stats including pop-
ulation, technology researched, units built/killed, etc. Our RL model exhibits progressive learning,
primarily focusing on unit production to enhance its score. However, it is important to note that this
approach is myopic in nature. A more strategic and long-term approach involves prioritizing the
establishment of additional cities to foster exponential growth in both technology and economics,
although this strategy results in an initial decrease in population (and subsequently the score) in the
short term. These observations underscore the existing limitations of RL methodologies. In this
context, CivRealm emerges as an ideal platform for future research endeavors.

8

Published as a conference paper at ICLR 2024

Figure 8: Evolution of the civilization. Top: BaseLang; Bottom: Mastaba. From left to right, this
visual illustrates the progression of the empire through various phases: inception, establishment of
a new colony, peak expansion of the realm, encountering invasion, and approaching collapse.

Figure 9: Stats on metrics of LLM-based agents against game turns for 50 individual games each.

5.2 LANGUAGE-BASED AGENTS: BASELANG AND MASTABA

We compared Mastaba with BaseLang on 10 maps with distinct geography. Each method plays 5 full
games on each map. Figure 8 and Figure 9 show the qualitative and quantitative results, respectively.
Note that one of the games lasts longer than the others, resulting in no variance in the later stage.

As depicted in Figure 9, Mastaba’s development significantly outpaces that of BaseLang. Mastaba
evolved with a larger population, a greater number of military units, and a higher score. Figure 8
shows Mastaba achieves a more extensive explored and settled area by turn 113, surpassing Base-
Lang’s progress by turn 210. In some games, BaseLang manages to survive longer than Mastaba.
This is a consequence of Freeciv’s built-in mechanics, which trigger pirate invasion when a player’s
score exceeds a certain threshold. Consequently, Mastaba encounters invasions at an earlier stage.

Our experiments offer valuable insights into LLM-based methods. Firstly, it is challenging to con-
trol a large number of objects (e.g., units, cities) based on their local observations due to the context
limit of LLM. BaseLang’s sluggish expansion pace underscores the absence of a global perspective,
whereas Mastaba’s pyramid-like structure empowers the advisor to oversee the overall progress,
establish a comprehensive context, and thus assist each local object in making well-informed de-
cisions. The performance contrast between Mastaba and BaseLang highlights the necessity of a
hierarchical decision architecture for tackling the complex scenarios presented by CivRealm.
Secondly, these results expose the weakness in LLM’s grounding ability. Despite exposure to a vast
amount of human knowledge, LLM-based agents still exhibit inefficiencies in their reasoning within
CivRealm, which mirrors human society. Even with a global context, Mastaba manages to achieve
only moderate economic expansion performance while failing to defend against pirate invasions.
This signifies LLM’s difficulty in discerning the most critical issues within the current context and
its struggles to effectively balance various aspects of gameplay. Consequently, CivRealm serves as
an ideal platform for evaluating and advancing the reasoning capabilities of LLM-based agents.

6 CONCLUSION

We present CivRealm, a distinctive challenge for decision-making agents, placing simultaneous em-
phasis on learning and reasoning abilities, which are evaluated across various mini-games and full
games using diverse metrics. Experiments in CivRealm unveil limitations of contemporary methods,
with tensor methods often yielding myopic strategies, and LLM-based agents still struggling with
intricate reasoning tasks. To surmount these challenges, future research directions could involve in-
tegrating the strengths of RL and LLM, creating decision-making agents that combine adaptability
and sophisticated reasoning. CivRealm serves as an ideal testing ground for these approaches.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENT

The work of CivRealm is built upon several open-source projects, including Freeciv [74], Freeciv-
web [75], FCIV-NET [73], and Freeciv-bot [57].

This work was supported by the National Natural Science Foundation of China. This work was
also supported by Wuhan East Lake High-Tech Development Zone, National Comprehensive Ex-
perimental Base for Governance of Intelligent Society.

REPRODUCIBILITY STATEMENT

To help readers understand the environment details, we discuss the tensor-based API in § B,
language-based API in § C, and method details in § E. For LLM experiments, we used GPT3.5-turbo
provided by Azure’s OpenAI API.

ETHICS STATEMENT

CivRealm can potentially contribute to the development of more socially aware AI agents, which
could have applications in areas like policy-making, economic simulations, conflict resolution, and
education. Moreover, the learning from such simulations could offer insights into the dynamics
of human society, historical event outcomes, and potential future societal trajectories. Overall, the
societal impacts of CivRealm and similar social simulation platforms can be profound, aiding in the
development of AI that is more aligned with human values and societal goals.

The development of CivRealm is committed to fostering cultural and social inclusivity. It is de-
veloped upon the open-source game Freeciv [74], with a conscious effort made to incorporate a
wide array of civilizations. Should any instances of marginalization or misrepresentation arise, we
encourage and facilitate contributions to the source code for rectification.

REFERENCES

[1] Josh Abramson, Arun Ahuja, Iain Barr, Arthur Brussee, Federico Carnevale, Mary Cassin,
Rachita Chhaparia, Stephen Clark, Bogdan Damoc, Andrew Dudzik, et al. Imitating interactive
intelligence. arXiv preprint arXiv:2012.05672, 2020. 2

[2] Joshua Albrecht, Abraham Fetterman, Bryden Fogelman, Ellie Kitanidis, Bartosz Wróblewski,
Nicole Seo, Michael Rosenthal, Maksis Knutins, Zack Polizzi, James Simon, et al. Avalon:
A benchmark for rl generalization using procedurally generated worlds. Advances in Neural
Information Processing Systems, 35:12813–12825, 2022. 2

[3] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experi-
ence replay. Advances in neural information processing systems, 30, 2017. 3

[4] Anyscale, Inc. Ray: Productionizing and scaling python ml workloads simply, 2023. URL
https://www.ray.io/. 7, 27

[5] Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H Francis Song,
Emilio Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, et al. The hanabi
challenge: A new frontier for ai research. Artificial Intelligence, 280:103216, 2020. 3

[6] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013. 2

[7] Lukas Berglund, Meg Tong, Max Kaufmann, Mikita Balesni, Asa Cooper Stickland, Tomasz
Korbak, and Owain Evans. The reversal curse: Llms trained on "a is b" fail to learn "b is a".
arXiv preprint arXiv:2309.12288, 2023. 3, 7

10

https://www.ray.io/

Published as a conference paper at ICLR 2024

[8] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak,
Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2
with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019. 2, 3

[9] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von
Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the
opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021. 3

[10] Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-up limit
hold’em poker is solved. Science, 347(6218):145–149, 2015. 3

[11] Satchuthanan R Branavan, David Silver, and Regina Barzilay. Non-linear monte-carlo search
in civilization ii. In AAAI Press/International Joint Conferences on Artificial Intelligence,
2011. 3

[12] SRK Branavan, David Silver, and Regina Barzilay. Learning to win by reading manuals in a
monte-carlo framework. Journal of Artificial Intelligence Research, 43:661–704, 2012. 3

[13] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowl-
ing, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon
Colton. A survey of monte carlo tree search methods. IEEE Transactions on Computational
Intelligence and AI in games, 4(1):1–43, 2012. 3

[14] Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca
Dragan. On the utility of learning about humans for human-ai coordination. Advances in
neural information processing systems, 32, 2019. 3

[15] Benjamin Ellis, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan, Jakob N
Foerster, and Shimon Whiteson. Smacv2: An improved benchmark for cooperative multi-agent
reinforcement learning. arXiv preprint arXiv:2212.07489, 2022. 2

[16] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018. 3

[17] Meta Fundamental AI Research Diplomacy Team (FAIR)†, Anton Bakhtin, Noam Brown,
Emily Dinan, Gabriele Farina, Colin Flaherty, Daniel Fried, Andrew Goff, Jonathan Gray,
Hengyuan Hu, et al. Human-level play in the game of diplomacy by combining language
models with strategic reasoning. Science, 378(6624):1067–1074, 2022. 3

[18] Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew
Tang, De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended em-
bodied agents with internet-scale knowledge. In Advances in Neural Information Processing
Systems, 2022. 2, 3

[19] Eugene S Ferguson. The origins of the steam engine. Scientific American, 210(1):98–107,
1964. 1

[20] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11):665–673, 2020. 8

[21] John AJ Gowlett. The discovery of fire by humans: a long and convoluted process. Philosoph-
ical Transactions of the Royal Society B: Biological Sciences, 371(1696):20150164, 2016. 1

[22] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870. PMLR, 2018. 3

[23] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:
Learning behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019. 3

[24] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. arXiv preprint arXiv:2010.02193, 2020. 3

11

Published as a conference paper at ICLR 2024

[25] Danijar Hafner, Kuang-Huei Lee, Ian Fischer, and Pieter Abbeel. Deep hierarchical planning
from pixels. Advances in Neural Information Processing Systems, 35:26091–26104, 2022. 3

[26] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse do-
mains through world models. arXiv preprint arXiv:2301.04104, 2023. 3

[27] Cheng Han, James Chenhao Liang, Qifan Wang, Majid Rabbani, Sohail Dianat, Raghuveer
Rao, Ying Nian Wu, and Dongfang Liu. Image translation as diffusion visual programmers.
International Conference on Learning Representations, 2024. 3

[28] Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predic-
tive control. arXiv preprint arXiv:2203.04955, 2022. 3

[29] Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhit-
ing Hu. Reasoning with language model is planning with world model. arXiv preprint
arXiv:2305.14992, 2023. 3

[30] Douglas Rayner Hartree. The eniac, an electronic computing machine. Nature, 158(4015):
500–506, 1946. 1

[31] Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Ceyao Zhang, Zili Wang, Steven
Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, et al. Metagpt: Meta programming for
multi-agent collaborative framework. arXiv preprint arXiv:2308.00352, 2023. 3

[32] Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A
survey. arXiv preprint arXiv:2212.10403, 2022. 3

[33] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as
zero-shot planners: Extracting actionable knowledge for embodied agents. In International
Conference on Machine Learning, 2022. 3

[34] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng,
Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied
reasoning through planning with language models. In Conference on Robot Learning, pp.
1769–1782. PMLR, 2023. 3

[35] Matthias Hutsebaut-Buysse, Kevin Mets, and Steven Latré. Hierarchical reinforcement learn-
ing: A survey and open research challenges. Machine Learning and Knowledge Extraction, 4
(1):172–221, 2022. 3

[36] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model:
Model-based policy optimization. Advances in neural information processing systems, 32,
2019. 3

[37] Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The malmo platform for
artificial intelligence experimentation. In Ijcai, pp. 4246–4247, 2016. 2

[38] Arthur Juliani, Ahmed Khalifa, Vincent-Pierre Berges, Jonathan Harper, Ervin Teng, Hunter
Henry, Adam Crespi, Julian Togelius, and Danny Lange. Obstacle tower: a generalization
challenge in vision, control, and planning. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence, pp. 2684–2691, 2019. 2

[39] Arthur Juliani, Vincent-Pierre Berges, Ervin Teng, Andrew Cohen, Jonathan Harper, Chris
Elion, Chris Goy, Yuan Gao, Hunter Henry, Marwan Mattar, and Danny Lange. Unity: A
general platform for intelligent agents. arXiv preprint arXiv:1809.02627, 2020. 2

[40] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel:
Model-based offline reinforcement learning. Advances in neural information processing sys-
tems, 33:21810–21823, 2020. 3

[41] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 12 2014. 27

12

Published as a conference paper at ICLR 2024

[42] Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zając, Olivier Bachem, Lasse Espeholt,
Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research
football: A novel reinforcement learning environment. In Proceedings of the AAAI conference
on artificial intelligence, volume 34, pp. 4501–4510, 2020. 2, 3

[43] Joel Z Leibo, Edgar A Dueñez-Guzman, Alexander Vezhnevets, John P Agapiou, Peter Sune-
hag, Raphael Koster, Jayd Matyas, Charlie Beattie, Igor Mordatch, and Thore Graepel. Scal-
able evaluation of multi-agent reinforcement learning with melting pot. In International con-
ference on machine learning, pp. 6187–6199. PMLR, 2021. 2, 3

[44] Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivastava, Roberto
Martín-Martín, Chen Wang, Gabrael Levine, Michael Lingelbach, Jiankai Sun, et al. Behavior-
1k: A benchmark for embodied ai with 1,000 everyday activities and realistic simulation. In
Conference on Robot Learning, pp. 80–93. PMLR, 2023. 2

[45] Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard
Ghanem. Camel: Communicative agents for" mind" exploration of large language model
society. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. 3

[46] Wenhao Li, Dan Qiao, Baoxiang Wang, Xiangfeng Wang, Bo Jin, and Hongyuan Zha. Se-
mantically aligned task decomposition in multi-agent reinforcement learning. arXiv preprint
arXiv:2305.10865, 2023. 3

[47] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
arXiv preprint arXiv:1509.02971, 2015. 3

[48] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe,
Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refine-
ment with self-feedback. arXiv preprint arXiv:2303.17651, 2023. 3

[49] Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al. Model-based
reinforcement learning: A survey. Foundations and Trends® in Machine Learning, 16(1):
1–118, 2023. 3

[50] Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-
agent populations. In Proceedings of the AAAI conference on artificial intelligence, 2018. 3

[51] Philip Paquette, Yuchen Lu, Seton Steven Bocco, Max Smith, Satya O-G, Jonathan K Kum-
merfeld, Joelle Pineau, Satinder Singh, and Aaron C Courville. No-press diplomacy: Modeling
multi-agent gameplay. Advances in Neural Information Processing Systems, 32, 2019. 3

[52] Joon Sung Park, Joseph C O’Brien, Carrie J Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. arXiv
preprint arXiv:2304.03442, 2023. 3

[53] Julien Perolat, Bart De Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vincent
de Boer, Paul Muller, Jerome T Connor, Neil Burch, Thomas Anthony, et al. Mastering the
game of stratego with model-free multiagent reinforcement learning. Science, 378(6623):990–
996, 2022. 3

[54] Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio
Torralba. Virtualhome: Simulating household activities via programs. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 8494–8502, 2018. 2

[55] Xavier Puig, Tianmin Shu, Shuang Li, Zilin Wang, Yuan-Hong Liao, Joshua B Tenenbaum,
Sanja Fidler, and Antonio Torralba. Watch-and-help: A challenge for social perception and
human-ai collaboration. arXiv preprint arXiv:2010.09890, 2020. 3

[56] Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu,
and Maosong Sun. Communicative agents for software development. arXiv preprint
arXiv:2307.07924, 2023. 3

13

Published as a conference paper at ICLR 2024

[57] Christian Rockstroh. Freeciv-bot, 2023. URL https://github.com/chris1869/
freeciv-bot. 10

[58] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas
Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon White-
son. The starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019. 3

[59] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana
Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for
embodied ai research. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 9339–9347, 2019. 2

[60] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Si-
mon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering
atari, go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.
3

[61] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International conference on machine learning, pp. 1889–1897.
PMLR, 2015. 3

[62] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017. 3, 7, 27

[63] Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-
aware unsupervised discovery of skills. arXiv preprint arXiv:1907.01657, 2019. 3

[64] Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits:
An open-domain platform for web-based agents. In International Conference on Machine
Learning, pp. 3135–3144. PMLR, 2017. 2

[65] Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dy-
namic memory and self-reflection. arXiv preprint arXiv:2303.11366, 2023. 3

[66] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mot-
taghi, Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded
instructions for everyday tasks. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10740–10749, 2020. 2

[67] Harshit Sikchi, Wenxuan Zhou, and David Held. Learning off-policy with online planning. In
Conference on Robot Learning, pp. 1622–1633. PMLR, 2022. 3

[68] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-
tot, et al. Mastering the game of go with deep neural networks and tree search. nature, 529
(7587):484–489, 2016. 3

[69] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game
of go without human knowledge. nature, 550(7676):354–359, 2017. 3

[70] Joseph Suarez, Yilun Du, Phillip Isola, and Igor Mordatch. Neural mmo: A massively
multiagent game environment for training and evaluating intelligent agents. arXiv preprint
arXiv:1903.00784, 2019. 2, 3

[71] Theodore Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L Griffiths. Cognitive ar-
chitectures for language agents. arXiv preprint arXiv:2309.02427, 2023. 3

[72] The AutoGPT team. Autogpt: the heart of the open-source agent ecosystem.
https://github.com/Significant-Gravitas/AutoGPT, 2023. 2, 7, 28

[73] The FCIV-NET project. Fciv-net: the 3d version of the freeciv strategy game, 2023. URL
https://github.com/fciv-net/fciv-net. 2, 10

14

https://github.com/chris1869/freeciv-bot
https://github.com/chris1869/freeciv-bot
https://github.com/fciv-net/fciv-net

Published as a conference paper at ICLR 2024

[74] The Freeciv project. Freeciv: An empire-building strategy game, 2023. URL http://
freeciv.org/. 4, 10

[75] The Freeciv-web project. Freeciv-web: An open-source turn-based strategy game, 2023. URL
https://github.com/freeciv/freeciv-web. 10

[76] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
5026–5033. IEEE, 2012. doi: 10.1109/IROS.2012.6386109. 2

[77] Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Large
language models still can’t plan (a benchmark for llms on planning and reasoning about
change). In NeurIPS 2022 Foundation Models for Decision Making Workshop, 2022. 3, 7

[78] Vivek Veeriah, Tom Zahavy, Matteo Hessel, Zhongwen Xu, Junhyuk Oh, Iurii Kemaev, Hado P
van Hasselt, David Silver, and Satinder Singh. Discovery of options via meta-learned subgoals.
Advances in Neural Information Processing Systems, 34:29861–29873, 2021. 3

[79] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets,
Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, et al.
Starcraft ii: A new challenge for reinforcement learning. arXiv preprint arXiv:1708.04782,
2017. 2, 3

[80] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik,
Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grand-
master level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–
354, 2019. 3, 6, 7, 27

[81] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi
Fan, and Anima Anandkumar. Voyager: An open-ended embodied agent with large language
models. arXiv preprint arXiv:2305.16291, 2023. 3

[82] Zihao Wang, Shaofei Cai, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe, explain, plan and
select: Interactive planning with large language models enables open-world multi-task agents.
arXiv preprint arXiv:2302.01560, 2023. 3

[83] The HongLongToBeat Website. Sid meierś civilization vi. https://howlongtobeat.
com/game/37867, 2023. 2

[84] Yaodong Yang and Jun Wang. An overview of multi-agent reinforcement learning from game
theoretical perspective. arXiv preprint arXiv:2011.00583, 2020. 3

[85] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models. In The Eleventh
International Conference on Learning Representations, 2022. 3

[86] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural
Information Processing Systems, 33:14129–14142, 2020. 3

[87] Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang, Guanghe Li, Yihang Sun, Cheng Zhang,
Zhaowei Zhang, Anji Liu, Song-Chun Zhu, et al. ProAgent: Building proactive cooperative
AI with large language models. arXiv preprint arXiv:2308.11339, 2023. 3

[88] Danyang Zhang, Lu Chen, Situo Zhang, Hongshen Xu, Zihan Zhao, and Kai Yu.
Large language model is semi-parametric reinforcement learning agent. arXiv preprint
arXiv:2306.07929, 2023. 3

[89] Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B Tenenbaum,
Tianmin Shu, and Chuang Gan. Building cooperative embodied agents modularly with large
language models. arXiv preprint arXiv:2307.02485, 2023. 3

15

http://freeciv.org/
http://freeciv.org/
https://github.com/freeciv/freeciv-web
https://howlongtobeat.com/game/37867
https://howlongtobeat.com/game/37867

Published as a conference paper at ICLR 2024

[90] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A se-
lective overview of theories and algorithms. Handbook of reinforcement learning and control,
pp. 321–384, 2021. 3

[91] Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo
Zhao, Yu Zhang, Yulong Chen, et al. Siren’s song in the ai ocean: A survey on hallucination
in large language models. arXiv preprint arXiv:2309.01219, 2023. 3

[92] Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel:
Llm agents are experiential learners. arXiv preprint arXiv:2308.10144, 2023. 3

[93] Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang, Gao Huang, Bin
Li, Lewei Lu, Xiaogang Wang, et al. Ghost in the minecraft: Generally capable agents for
open-world enviroments via large language models with text-based knowledge and memory.
arXiv preprint arXiv:2305.17144, 2023. 3

16

Published as a conference paper at ICLR 2024

Appendices
Content

A Environment 18

A.1 More on Full Game and CivRealm Features . 18

A.2 Mini-game Details . 22

B Tensor Environment 22

B.1 Observation . 22

B.2 Action . 23

C Language Environment 23

C.1 Observation . 23

C.2 Action . 25

D Estimation of State / Action Space Sizes 25

E Method Details 26

E.1 Tensor-based Reinforcement Learning . 26

E.2 BaseLang: Baseline Language-based Agent . 27

E.3 Mastaba: Enhancing BaseLang by a Hierarchical Structure 29

F More Experiment Results 29

17

Published as a conference paper at ICLR 2024

A ENVIRONMENT

A.1 MORE ON FULL GAME AND CivRealm FEATURES

In the full game, each player acts as a civilization leader. The agents can be customized to be
controlled by our agents or by the built-in AI algorithms. The objective of players is to guide their
civilization from its humble beginnings to the greatest civilization and one full game can last from
several hours to several days2. As depicted in Figure 2, civilizations evolve through eras from
the Bronze Age to the Space Age and the number of controllable objects (units, cities, diplomatic
relations, etc.) explodes as the game progresses. In addition, each decision made typically carries a
multi-faceted impact, encompassing both long-term strategic consequences and short-term tactical
outcomes. It is worth noting that a favorable tactical outcome may not necessarily translate into a
positive strategic outcome. For instance, the immediate construction of a city at the beginning of the
game can yield greater resources in the early stages (a tactical advantage). In contrast, settling in a
resource-rich area after thorough exploration may result in substantial resource accumulation over
the long haul (a strategic advantage). This complexity underscores the necessity for a learning and
reasoning process that judiciously weighs the implications of long-term and short-term decisions.

Besides the long decision-making horizon, multi-faceted decision impacts, and huge state-action
spaces, our environment exhibits additional characteristics (Table 1) that elevate its complexity:

Imperfect info. Players typically only gain the information discovered by their own units and cities,
resulting in partially observable states. Players may also obtain others’ vision by diplomatic actions.

Stochastic. The dynamics of the environment is stochastic. Moreover, there exist random events
and crises that can disrupt plans, forcing players to adapt on the fly and make tough decisions.

Multi-goal. There are multiple victory paths, i.e., (1) military: conquering all other civilizations;
(2) science: being the first civilization that launches a spacecraft destined for Alpha Centauri; and
(3) time: obtaining the highest score, computed based on criteria such as civilization size, wealth,
cultural accomplishments, and scientific advancements, before reaching a predetermined number
of turns, in case the first two conditions are not met. These paths necessitate a delicate balance
between economic expansion, military development, diplomatic influence, cultural achievements,
and technological research, which poses a high requirement for learning and reasoning.

Dynamic space. As the game unfolds, players continuously produce new units, construct additional
cities, engage in battles, and conquer other players. Consequently, the state and action space of a
player undergoes dynamic changes throughout the gameplay. Designing an effective decision model
for the agent to adapt to this evolving space presents a significant challenge.

Multi-agent. Multiple players can interact with one another, including hand-crafted AI players
provided by Freeciv on the server side. CivRealm allows multiple agents to connect to the same
game simultaneously, facilitating self-play training.

General-sum. Players are free to form alliances or wage war against others, rendering the full game
a general-sum game that necessitates considerations of both cooperative and competitive strategies.

Changing players. The number of players can fluctuate during a game due to factors like revolts or
civilization conquests, introducing new players controlled by built-in AI or removing existing ones.
Such changes often result in significant alterations to the state-action space.

Comm.. Players can communicate explicitly using two types of communication: diplomatic actions
(e.g., adding a clause) and natural language chat through a chat box. This feature enriches player
interactions and enables LLM agents to fully leverage their natural language processing capabilities.

A.1.1 OBSERVATIONS

In Freeciv, players primarily interact with a map composed of tiles where units and cities are situated.
Additionally, Freeciv offers three tabs for conducting operations related to technology, diplomacy,
and government. Consequently, the observations we extract from the Freeciv graphics encompass
information pertaining to map tiles, units, cities, technology, diplomacy, and government.

2According to a poll: https://gamefaqs.gamespot.com/boards/938528-sid-meiers-civilization-v/66782899

18

Published as a conference paper at ICLR 2024

CivRealm provides a set of feature layers for the observations of maps. We list these layers in
Table 2, where M × N denotes the map size. Specifically, status, type of terrain, owner of tiles,
unit owner, and city owner are layers with categorical values; infrastructures and output are layers
with binary values; unit distribution layers are with scalar values. The upper bound of the unit
number on one tile and the player number is 255, covering all possible scenarios in gameplay. The
status being 0 means a tile has never been explored, being 1 means a tile has been explored before
while being covered by war fog currently, and being 2 means a tile is within the vision range of
the objects controlled by our agent. The type of terrain and owner of tiles denote the terrain type
and owner of each tile, respectively. The infrastructure and output represent whether each tile has
the corresponding infrastructure and resource output, respectively. The unit distribution means how
many units of each specific type are on each tile. The unit owner and city owner record the owner
of the units and city on each tile respectively.

Observations of a unit are listed in Table 3. For each unit in the game, if it belongs to other players,
its features of common unit field can be known, while features of both common unit field and my
unit field can be known if it belongs to our agent. For features of my unit field, its default value is
set as -1 for units of others. The upper bounds of some features, which can be theoretically infinite,
are set to very large values to cover all possible scenarios in gameplay. These settings also apply
to the subsequent features related to diplomacy (Table 4), government (Table 5), city (Table 6), and
technology (Table 7). Please refer to these tables for details.

A.1.2 ACTIONS

We list the details of the actions supported by CivRealm in Table 11. These actions fall into five
groups: unit, city, diplomacy, government, and technology. The unit actions demand precise control
from players, enabling them to explore the map, execute tactical maneuvers, and construct infras-
tructure on the map. Additionally, there are miscellaneous unit actions we do not mention in the
main text, including unit upgrading, trade route establishment, etc. The city actions empower play-
ers to produce units within their cities and enhance urban development to boost production outputs.
The diplomacy actions facilitate the establishment of diplomatic relationships and the exchange of
information, such as vision and technology. The government actions grant players the ability to
instigate revolutions to change their government type and adjust tax, science, and luxury weights to
balance various aspects of their civilizations. The technology actions enable players to define the
direction of their technological development.

It is worth noting that certain actions are parameter-free, meaning their targets are self-evident (e.g.,
increasing the tax rate). Conversely, other actions are parameterized, requiring additional parame-
ters to specify their targets (e.g., the embarking action necessitates specifying which boat the unit
embarks on). Due to the dynamic change (i.e., the number of units, cities, and players) in Freeciv,
the parameter space of parameterized actions can also vary, which requires additional consideration
when designing decision-making agents.

The specific design of the parameter space for unit actions also deserves a detailed explanation.
It’s essential to note that the game map can be of arbitrary size, and certain unit actions require
specifying a target on the map. Consequently, if we were to allow unit actions to specify arbitrary
targets anywhere on the map, the action space would become excessively vast. To address this
challenge, we restrict units to specifying targets within a range of nine tiles. This range includes

Table 2: Observations of Map.

Fields Attributes Value domains Descriptions

Basic map

Status [0, 2]

Size: M ×NType of terrain [0, 13]

Owner of tiles [0, 255]

Infrastructures
0 or 1

34 layers of size M ×N

Output 6 layers of size M ×N for 6 output types

Units and city
on each tile

Unit owner
[0, 255]

Size: M ×N
City owner

Unit distribution 52 layers of size M ×N for 52 unit types

19

Published as a conference paper at ICLR 2024

Table 3: Observations of Unit.

Fields Attributes Value domains Descriptions

Common unit field

X [0,M] X-coordinate
Y [0, N] Y-coordinate

Owner [0, 255] Player the unit belongs to
HP

[0, 65535]
Health point of the unit

Produce cost Cost needed to produce this type of unit
Veteran

0 or 1
Whether the unit is veteran

Can transport Whether the unit can transport other units
Unit type

[0, 51]
One of 52 unit types

Obsoleted by The unit type this unit can upgrade to
Attack strength

[0, 65535]
Affect the attack success rate

Defense strength
Firepower The damage of a successful attack

My unit field

Unit ID

[0, 32767]

-
Moves left Actions the unit can take in this turn
Home city City supports this unit

Upkeep shield
Resources needed to support this unitUpkeep gold

Upkeep food

Table 4: Observations of Diplomacy.

General Attributes Values Descriptions

Common player field

Player ID
[0, 255] -

Team
Name text -
Is alive 0 or 1 -
Score

[0, 65535]
-

Turns alive How many turns the player has lived for
Nation [0, 559] -

Embassy text
text

Describe if there are embassies between players
Love Describe players’ attitudes to others

My player field
Mood 0 or 1 Peaceful or Combat

Diplomacy state [0, 6]
A categorical vector of my diplomacy states with

other players: armistice, war, ceasefire, etc.

Table 5: Observations of Government.

General Attributes Values Descriptions

Common government fields
Government ID [0, 6]

-
Government name text

My government fields

Goal government [0, 6] Goal of revolution
Gold

[0, 65535]
Gold in treasury

Revolution finishes # turns for current revolution to complete
Science

[0, 100]
Government investment for each aspect.

Sum to 100.Tax
Luxury

the eight neighboring tiles (north, northwest, west, southwest, south, southeast, east, and northeast),
along with the tile on which the unit is currently located. For targets beyond this predefined range,
units must first move to a neighboring position and then designate those targets. This approach
ensures that we maintain a manageable unit action space.

A.1.3 EVALUATION METRICS

CivRealm adopts game scores across 16 dimensions provided by the game engine to assess playing
performance, including population, economics, production, cities, researched technologies, military
units, wonders, research speed, land area, settled area, gold, units built, units killed, units lost, and

20

Published as a conference paper at ICLR 2024

Table 6: Observations of City.

General Attributes Value domains Descriptions

Common city field

City name text -
X [0,M] X-Coordinate
Y [0, N] Y-Coordinate

Owner
[0, 255]

Player this city belongs to
Size -

My city field

City ID

[0, 32767]

-
Food stock

Shield stock
Granary size

Buy cost Cost to buy the undergoing production
Turns to complete # turns to finish the current production

Luxury

Resource outputs in each turn

Science
Food
Gold

Shield
Trade
Bulbs

City waste
-City corruption

City pollution
Growth in text # turns for city population to grow

State [0, 2] City state: disorder, peace, etc.
Production kind [0, 1] Unit or building
Production value [0, 67] Unit or building type being produced

People angry

[0, 127] Number of people of each mood
People unhappy
People content
People happy
Surplus food

[−32768, 32767] -
Surplus gold

Surplus shield
Surplus trade
Can build unit

0 or 1 Binary vectors corresponding
to units or buildingsCan build building

Having Buildings

Last completion turn [0, 32767]
Turn No. when city

completed the last production

Table 7: Observations of Technology.

General Attributes Values Descriptions

Common technology fields
Research name text -

Researching [0, 87] the technology being researched
Tech of each type 0 or 1 If each technology has been researched

My technology fields

Bulbs researched

[0, 65535]

Accumulated technology bulbs
Tech upkeep Cost to keep current technologies
Science cost

-
Researching cost

Tech goal
[0, 87]

-
Techs researched Last researched technology

units used, as well as an aggregated score for the overall performance evaluation. This aggregated
score aggregates multiple factors, i.e., population, researched technologies, wonders, units built and
killed, culture, and if spaceship criteria is achieved by the player.

21

Published as a conference paper at ICLR 2024

Table 8: Definition of mini-games.

Category ID Name Introduction

Development

1 SettlerBuildCity Move settler to suitable areas for building a city.
2 WorkerBuildInfra Command workers to build infrastructures for improving cities.
3 CityTileWonder Arrange work tiles to speed up producing a world wonder.
4 TransBuildCity Transport settlers by ships to another continent and build cities.

Battle

5-9 LandBattle[Ancient,
Medieval, Industry, Modern] Defeat enemy units on land tiles (units from various ages).

10 LandBattleAttackCity Conquer an enemy city.
11 LandBattleDefendCity LandBattleDefendCity against enemy invasion for a certain number of turns.
12 NavalBattle Defeat enemy fleet on the ocean (with Middle Times frigates).
13 NavalBattleModern Defeat enemy fleet on the ocean (with several classes of modern ships).

Diplomacy 14 TradeTechs Trade technologies with another civilization.

A.2 MINI-GAME DETAILS

We provide the concrete definition of each mini-game in Table 8. The mini-games belong to three
classes -development, battle, and diplomacy, covering a diversity of typical sub-tasks of the Civiliza-
tion game. The development class of mini-games is closely related to city tile’s combined resource
outputs (food, production, and trade), while the battle class of mini-games focuses more on unit
movement/attack operations. The player should be aware of the unit attack/defense/HP points to
make full use of them. As for the last class of mini-game: diplomacy, it is about the art of trade and
negotiation to achieve maximal interests for the player’s civilization.

A.2.1 VICTORY CONDITIONS, SCORE/REWARD SETTINGS AND DIFFICULTY LEVELS

Based on each mini-game’s characteristics, we design a set of evaluation principles for them. For
instance, we assess development mini-games by verifying whether the combined resource outputs
(food, production, and trade) from city tiles surpass a predetermined threshold. The success of battle
mini-games is determined by the successful annihilation of enemy units or the conquest/defense of
designated cities. We determine the achievement of diplomacy mini-games based on whether the
agent negotiates favorable agreements with other players, such as exchanging valuable technologies.
For the details of reward settings and the computation of victory conditions, please refer to Table 9.

We additionally partition the mini-games into different difficulty levels (easy, normal, and hard) to
better evaluate the models’ capability as well as enable curriculum design in future work. Specific
criteria for the difficulty level divisions can be found in Table 9.

A.2.2 MINI-GAME RANDOMIZATION

To ensure sufficiently diverse and balanced mini-game instances, we conduct a set of randomization
processing during mini-game generation. Table 10 gives exact perspectives on which randomization
operations are performed for each type of mini-game.

B TENSOR ENVIRONMENT

Fix Space Size Deep reinforcement learning algorithms generally demand a constant size of the ob-
servation space and the action space, but the numbers of units and cities vary through the gameplay
of CivRealm, introducing inherent conflicts. To solve this problem, a tensor environment embeds
size-varying observations into a large constant-size observation space by truncating excessive enti-
ties and masking out non-existent ones.

B.1 OBSERVATION

The tensor environment provides API for tensor models. Observation of tensor environment is a
big tensor including all observations of map, unit, city, diplomacy, government, and technology in
§ A.1.1.

22

Published as a conference paper at ICLR 2024

Table 9: Score, victory, reward, and difficulty of mini-games.

ID Score Setting Victory Condition Stepwise Reward Difficulty

1
ρ = 0.4× food + 0.4× product + 0.2× trade ≥ q80%

(∑
top−6 ρ

)
ρc =

∑
top−6 ρ δρtile hard, ρc ≤ 2.5

2
∑

city ρ ≥ q80%

(∑
city ρ

)
normal, ρc > 2.5 & ρc ≤ 7

3
τmax − τWB ,

τWB == 0
easy, ρc > 7

τWB is the number of turns to complete the wonder

4
No

cb

No
cb > 0

hard, τmax = 5

No
cbis the number of city built on another land normal, τmax = 10

easy, τmax = 15

5-9
δ (Nunit) = Na

unit −N b
unit, N b

unit == 0 δ (Nunit)
Na

unit, N
b
unit are unit counts of player a and b

10 δ (Ncity,unit) = Na
unit +Na

city −N b
unit −N b

city N b
city == 0 δ (Ncity,unit) hard, N b

unit/N
a
unit > 1.1 & N b

unit/N
a
unit ≤ 2

11 δ (Ncity,unit) = Na
unit +Na

city −N b
unit −N b

city Na
city > 0 and τ == τmax δ (Ncity,unit) normal, N b

unit/N
a
unit > 0.9 & N b

unit/N
a
unit ≤ 1.1

12 δ (Nunit) = Na
unit −N b

unit N b
unit == 0 δ (Nunit) easy, N b

unit/N
a
unit > 0.5 & N b

unit/N
a
unit ≤ 0.9

13 δ (Nunit) = Na
unit −N b

unit N b
unit == 0 δ (Nunit)

14 Ntechget Ntechget > 0 AI-skill level

Table 10: Randomization setting of mini-games.

ID Terrain Resource Unit City Tech
type location type location type location number location degree

1 ✓ ✓ ✓ ✓ ✓

2 ✓ ✓ ✓ ✓ ✓ ✓ ✓

3 ✓ ✓ ✓ ✓ ✓ ✓ ✓

4 ✓ ✓ ✓ ✓

5-9 ✓ ✓ ✓ ✓ ✓ ✓ ✓

10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

11 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

12 ✓ ✓ ✓ ✓ ✓ ✓

13 ✓ ✓ ✓ ✓ ✓ ✓

14 ✓

B.2 ACTION

There are five types of actors in the tensor environment, i.e., unit, city, diplomacy, government, and
technology. Each type of actor has its corresponding action space and the overall action space is
the joint action space of all actor types. For an actor, each action in its action space is denoted by
an action class name associated with parameters. For example, an action in action class Go to a
target tile is denoted by the action key: goto_num where goto is the action class name and num is a
parameter describing the direction, thus action Go to the north tile is denoted as goto_1 where the
parameter 1 corresponds to the north direction.

A chosen action returned to the tensor environment is a triplet including the actor type, actor ID, and
the action key. For example, assuming action Go to the north tile is chosen for a unit whose ID is
121, then the action triplet returned to the tensor environment is (unit, 121, goto_1).

C LANGUAGE ENVIRONMENT

C.1 OBSERVATION

Language environment provides API for language models. Observation of language environment is
a dictionary containing a world observation, and the observation of each actor.

To understand the global situation and circumstances, world observation consists of multiple sen-
tences summarizing the game board. It includes statistics on our units, cities, enemy units, enemy
cities, and if we are in a time of peace or war, etc., for example, "We have 10 units: 3 Warriors, 4
Workers, 1 Settlers, 1 Diplomacy and 1 Explorer. We can see 4 enemy units. We have 5 cities of a
total size of 14. We can see 1 enemy city and 0 other cities. We are under attack.".

Observation of each actor consists of the actor’s name, a list of its available actions, a zoomed-out,
and a zoomed-in observation dictionary corresponding to its macro- and micro-observations. The

23

Published as a conference paper at ICLR 2024

Table 11: The actions supported by CivRealm

Component Action description Parameter

Unit

Go to a target tile
the target tile

Enter a hut in the target tile for random events
Embark on a target boat mooring in an ocean tile

the target boat unit
Disembark from a target boat mooring in an ocean tile

Unload all units carried by the transporter unit
-Board a boat mooring in the city of the current tile

Deboard a boat mooring in the city of the current tile
Fortify in the current tile -

Attack the unit in a target tile the target tile
Bribe a unit of other players to join us the target unit
Conquer a city belongs to other players

the target citySabotage a city belongs to other players
Steal technology from a city belongs to other players

Mine in the current tile

-

Irrigate in the current tile
Build road in the current tile

Build railroad in the current tile
Plant trees in the current tile
Build a city in the current tile

Build airbase in the current tile
Build fortress in the current tile

Transform the terrain of the current tile
Pillage an infrastructure in the current tile

Cultivate the forest in the current tile into a plain
Upgrade the unit

-
Disband the unit itself to save cost

Keep the current activity in this turn
Set the unit’s home city as the city in the current tile

Join the city in the current tile (increase city population)
Sell goods in the target city’s marketplace

the target city
Investigate a target city belongs to other players

Establish embassy in a target city belongs to other players
Establish a trade route from the unit’s home city to the target city

City

Choose a working tile for city
the target tile

Do not work on a tile
Buy building or unit -

Change the type of a specialist type of the target specialist
Sell a building

the target building
Construct a building

Produce a unit the target unit

Diplomacy

Start a negotiation

target player ID
End a negotiation

Accept treaty
Cancel treaty
Cancel vision

Add a basic clause target player ID + target basic clause type
Add a trading tech clause target player ID + giver ID + target technology ID
Add a trading gold clause target player ID + giver ID + how much gold
Add a trading city clause target player ID + giver ID + target city ID

Remove a clause target player ID + parameters of the target clause

Government
Revolution the target Government

Set rates of luxury + science + tax Rates of luxury + science + tax

Technology research
Set a current research goal

the target technology
Set a future research goal

zoomed-in observation dictionary corresponds to a mini-map, centered on the location of the actor,
with a customized length and width. The zoomed-out observation dictionary is similar but corre-
sponds to a larger sub-map, with a larger length and width, at the expense of granularity. Hence, the
zoomed-in observation describes the detailed surroundings of the actor, while the zoomed-out ob-
servation represents its general perception of the distant surroundings. Instead of using coordinates
that are not natural language friendly, we use tile_dir_num_dir_num or block_dir_num_dir_num

24

Published as a conference paper at ICLR 2024

to describe a location related to the actor. For example, tile_north_1_east_1 means the tile whose
coordinates are (1, 1) related to the actor’s location. The tile_south_1_west_2 means the tile whose
coordinates are (−2,−1) related to the actor’s location.

Please refer to Figure 10 as an example of an actor’s observation dictionary. Zoomed-in observation
corresponds to a 5× 5 mini-map centered on the actor’s location, thus it contains 25 tiles. Zoomed-
out observation corresponds to a 15× 15 sub-map. In this example, we define that a block is made
up of 5×5 tiles, thus the above 5×5 mini-map is the block where the actor is currently located, and
the remaining tiles in zoomed-out observation make up the 8 surrounding blocks. Based on these
settings, we get the observation of the actor. Each tile or block has a list containing its status, terrain,
and the infrastructures on it. Besides, the information on units and cities, as well as their owners is
also on the list. Unit and city owners are also associated with diplomacy tags, for example, units on
current_tile belong to myself player; 3 cities in block_north_1 belong to an Alliance player.

C.2 ACTION

The action returned to the language environment is a triplet including the type of the actor, actor ID,
and the name of the chosen action in available_actions. For example, in Figure 10, the type of the
actor is unit, its actor ID is 121, assuming that action Go to the north tile has been chosen, then the
final action return to language environment is (unit, 121, move North).

D ESTIMATION OF STATE / ACTION SPACE SIZES

The following estimations focus on a temporal section of the game. However, viewing the game
as a long-term planning task, the analysis may change a lot, but the result would also be of great
complexity. If we consider that the building actions are temporal, our decision is not single-turn
Markovian, the state space would be multiple times larger on the exponent.

On Turn 5. Under ruleset Civ2Civ3, each nation started with 2 Settlers, 2 Workers, and an
Explorer. On turn 5, each Settler has acted at most 5 times, so it could appear at 121 possible places
as itself, and could build a city at 81 positions. Each city originally had no less than 5 building
options, and 24 working options. Each Worker, at the same time, could occur at similar positions,
and when some work is done, the range it occurs will be smaller. Explorers could move 3 tiles per
turn. So state space for 2 Settlers (or the cities they turned into) is about 1

2 ((121 + 81 ∗ 5 ∗ 24)2 −
1521 ∗ 5 ∗ 24 − 121) ≈ 5 × 107 large (square of single Settlers status, counted in cases: a city is
not built / a city is built, with city options, then excluding all conflicting cases where cities are too
close to each other. Halving means two Settlers are identical in practice). Workers has states about
1
2 ((121 + 81 ∗ 3)2 − 121− 81 ∗ 3) = 66066. Explorer contributes 312 = 961 states. So total state
space is of size about 3× 1015.

With all units in their original form (no cities built), explorers can move in 9 directions and stay (9
moves in total), each Worker has 9 moves and two working options on each tile on average. Settlers
have 9 moves and a build city. So in this case, the action space is of size 19800.

With 100 units and 50 cities. A simple observation is: on a map of 80× 50 where half of the tiles
are lands (2000), each unit has 1000 free places to stay (the other half are deep in enemies’ territory).
Thus units may contribute 1000100 = 10300 different states. For the 50 city locations, suppose each
may find 10 options on average when they are built, then 1050 additional complexity becomes a
factor. The cities’ current improvement brings a lot more complexity. Given each city 20 possible
improvements to build, the number of states for each city may go up to 220 ≈ 106, providing 10300

states in total. Therefore, we may conclude that the state space is at least 10650 in size.

About the space of actions. 100 units bring at least 10100 actions from moving and sentry / defense
/ building. As for cities, with relatively high research levels, each city could produce at least 20
different units/improvements, thus the action space for cities is 2050 ≈ 1066. In total, we would
estimate the action space no smaller than 10166, even without considering the actions on tech,
research, tax rate, diplomacy, etc.

25

Published as a conference paper at ICLR 2024

E METHOD DETAILS

E.1 TENSOR-BASED REINFORCEMENT LEARNING

E.1.1 CHALLENGES

CivRealm presents several challenges for contemporary reinforcement learning methods, which can
be summarized as follows:

Complicated environment dynamics. CivRealm has an intricate and multifaceted game mecha-
nism that closely parallels the complexities of human society, making it an exceptionally challenging
domain for both model-free and model-based tensor-based learning methods. The game’s mechan-
ics encompass a wide array of elements, including diplomacy, economics, technology, and military
strategy, with decisions having far-reaching consequences akin to historical societal developments.
This intricate interplay of factors mirrors the multifaceted dynamics of real-world human societies,
rendering it challenging for tensor-based agents to effectively capture and navigate. Whether adopt-
ing model-free or model-based approaches, these agents struggle to interpret the nuanced interac-
tions, complex dependencies, and evolving conditions within the game, underscoring the nature of
this environment and the need for innovative strategies to tackle its dynamics.

Overwhelming observation information. One of the primary challenges faced by tensor-based
RL agents is the assimilation of vast amounts of information in a manner that lacks semantic un-
derstanding of the tensor values. In the context of CivRealm, the observation space is exceptionally
rich and expansive, providing intricate details about units, cities, players, governments, and more.
However, not all of this information holds immediate relevance for effective decision-making during
each turn. The dynamic, ever-changing nature of the information, coupled with its variable length,
presents a formidable obstacle for the agent to discern the significance of individual components and
to establish connections among different pieces of information. Moreover, the inherent dynamism of
the game, involving fluctuating player numbers and evolving game conditions, further compounds
the complexity of this challenge.

Dynamic multi-Level action space. CivRealm’s action space is complex and hierarchical, making
it impractical to model actions uniformly. Instead, actions need to be decomposed into multiple
levels, with decisions made sequentially for each component. This introduces design challenges
for neural networks and the selection of optimal actions, as the agent must navigate through this
multi-level action hierarchy.

Sparse, delayed, and asynchronous rewards. In the context of CivRealm, rewards are sparse,
delayed (e.g., it can take many turns to finish a building), and often asynchronous. The agent receives
a reward only when specific events or tasks are accomplished, making it challenging to provide
timely feedback for learning. Many crucial actions, such as exploration, do not yield immediate
rewards, and even actions that can lead to rewards are not individually rewarded. Instead, rewards
typically accumulate over a series of actions in multiple turns, making it difficult for the agent to
attribute its actions to future rewards. Additionally, rewards are received only at the end of a turn,
which may mislead the agent into favoring turn-ending actions over actions that contribute to long-
term objectives.

Diverse winning/termination conditions. Achieving victory in CivRealm is multifaceted, with var-
ious development paths, including military, technological, and temporal strategies. The evaluation
of the agent’s state varies depending on the chosen strategy, which complicates RL training. Tradi-
tional RL methods heavily reliant on reward signals may struggle to adapt to these diverse pathways
to success, where cooperation and competition coexist.

In summary, CivRealm poses significant obstacles for RL agents, necessitating innovative ap-
proaches to tackle the issues of sparse rewards, overwhelming information, complex actions, and
diverse victory conditions. Addressing these challenges will be essential for creating intelligent
agents capable of mastering the game of CivRealm.

E.1.2 FORMULATION OF GAME AS MDP

We consider a discrete-time infinite-horizon Markov decision process (MDP) defined by a tuple
(S,A, p0, P,R, γ), where S ⊆ Rds is the space of states, A ⊆ Rda the space of actions, p0 (s0)

26

Published as a conference paper at ICLR 2024

the distribution over initial states s0, P (st+1|st, at)the transition function, R the reward function,
and γ ∈ (0, 1] a discount factor. π(at|st; θ) is the policy parameterized by θ ∈ Rdθ . The objective
of an RL algorithm is to train a policy that maximizes the expected sum of discounted rewards:
J(θ) = Eτ∼p(τ ;θ)

[∑H
t=0 γ

tr(st,at)
]
. It is worth noting that, in the context of turn-based game

CivRealm, we consider timestep in the action level instead of the turn level. That is, every action
taken within a turn will lead to a change in timestep, and turn-done is also considered to be an action.

E.1.3 NETWORK DESIGN

To effectively handle multi-source and variable-length inputs, we draw inspiration from AlphaS-
tar [80] and implement a serialized hierarchical feature extraction and action selection approach.
This method involves generating layered actions and predicting value function outputs, and our neu-
ral network architecture comprises three main components: representation learning, action selection,
and value estimation.

Representation. At the representation level, we adopt a hierarchical structure. In the lower layer,
we extract controller features using various models like MLP, Transformer, and CNN, depending on
whether the input is a single vector, sequence, or image-based. These extracted features are then
fed into a transformer to facilitate attention across different entities, creating globally meaningful
representations. Additionally, we utilize an RNN to combine the current-state features with the
memory state, enabling conditional policy decisions based on the state history.

Action selection. At the action selection level, we leverage the learned representations to make
decisions. In the actor selection module, we determine the primary action category to be executed,
including options like unit, city, government, or termination. Subsequently, we employ a pointer
network to select the specific action ID to be executed, followed by the determination of the exact
action to be performed.

Value estimation. To enable the use of an actor-critic algorithm, we incorporate a value prediction
head after the representation learning phase. This shared representation part of the network benefits
both the actor and critic, enhancing training efficiency.

Training. We use the Proximal Policy Optimization (PPO) [62] algorithm to train the agent. To
mitigate the on-policy sample complexity of PPO, we harness Ray [4] for parallelizing tensor en-
vironments, optimizing training speed and efficiency. We configured the actor update for 5 epochs,
employing a clipped value loss with a clip parameter of 0.2, and using one mini-batch per epoch.
The coefficients assigned to the entropy term and value loss were 0.01 and 0.001, respectively. The
length of each episode was set at 125 steps, and we collected training data across 8 parallel environ-
ments. The learning rate for the Adam[41] optimizer was established at 0.0005, with an optimizer
epsilon of 0.00001. These parameter settings were carefully chosen to maintain a balance between
the effectiveness of learning and the stability of the algorithm.

E.2 BASELANG: BASELINE LANGUAGE-BASED AGENT

LLM’s emergent capabilities grant it a vast foundation of human knowledge, empowering it in vari-
ous areas such as task generation, open-world long-term planning, and solving complex problems.

In CivRealm, LLM has three distinct advantages. Firstly, our environment prioritizes long-term
planning and strategic gameplay over low-level control, allowing the agent to interact with the en-
vironment in natural language rather than precise control actions. Secondly, Freeciv is a turn-based
game, not requiring real-time interaction, providing ample time for LLM to engage in long-term
planning. Thirdly, diplomatic operations are challenging for tensor-based algorithms as agreements
are usually achieved through conversations, but natural language allows for direct diplomatic inter-
actions. Additionally, LLM’s knowledge encompasses a wide range of human civilization evolution
knowledge, including history, warfare, politics, technology, etc., making it more akin to human
players in terms of prior knowledge.

E.2.1 CHALLENGES

Due to the high complexity of the Freeciv game itself, there are many challenges in the process of
constructing a language-based agent, including:

27

Published as a conference paper at ICLR 2024

Multiple role-playing. Different from agents for Minecraft, the agents for CivRealm must play
different roles at a time: controller of different units with different locations and abilities, Mayer
of different cities, leader of the nation deciding research directions and diplomatic strategies. A
language agent must play all these different but related identities simultaneously in a turn.

Sparse and complex observation. In the early stages of the game, there are extensive unseen
areas in the player’s field of view. This makes it necessary for early-stage agents to first learn to
efficiently explore the environment using powerful prior knowledge, posing a significant challenge
in constructing these agents. Additionally, the vast map size (4000-tile maps for our full game setup)
and complex information on each tile overwhelm the context window of all language models. Thus,
LLM agents have to prioritize reading the map properly and efficiently.

Long-term effect of actions. Freeciv is a game that requires a strong focus on long-term strategy
and planning, where early moves can have an impact on decisions hundreds of turns later. However,
the context length limitation of LLMs restricts their analysis to short time-frames, and figuring out
valuable action information within sparse reward temporal trajectory data is a significant challenge.

How does the agent improve itself. Training or fine-tuning LLM is a highly challenging task, and
the lengthy time span of CivRealm significantly increases the difficulty of collecting high-quality
data. Therefore, we can only choose to use an in-context approach, continuously enhancing LLM’s
decision-making ability based on experiential information gathered during interactions with the en-
vironment. However, extracting core information from such a complex game remains a challenge,
making it difficult to let the agent improve itself effectively.

E.2.2 STRUCTURE

We adopted an AutoGPT-like approach to build a baseline language-based agent. AutoGPT [72] is a
memory-equipped automated LLM agent capable of making autonomous decisions in context. The
following sections will delve into observation, reasoning, commands, and structure separately. ion.

Observation. Due to the various challenges mentioned above, we need to provide our language-
based agent with a more effective natural language-based observation. While, at the strategic level,
players require very detailed map information for effective long-term planning, for each specific unit,
providing only the most basic information it needs can fulfill its tactical requirements. Specifically,
we designate an area of 5x5 tiles, totaling 25 tiles, centered on the location of each unit, as the
observation provided to the agent.

Reasoning. For the reasoning module, we largely follow the design of AutoGPT, employing three
modules: thought, reasoning, and command, to analyze information. The thought module deter-
mines what actions the agent should take in the current state. The reasoning module analyzes
the current information to understand what additional actions are needed to achieve the current
thought and why. The command module summarizes the information from the previous two parts
and presents specific steps for each operation, which in our case is a command to execute. The
integration of these three parts forms the reasoning module of the language-based agent.

Commands. In our design, we allow language-based agents to choose between two commands
in the planning stage: "manual and history search" and "final decision." For the former, we first
store a document related to Freeciv in a vector database. The agent can then use this command to
query the database in a way that retrieves relevant information from the document based on semantic
similarity. As for the latter, the agent selects actions for the currently controlled unit based on the
current environmental information and the historical context information.

We represent this observation information using JSON, where the keys represent the relative posi-
tions of each tile with respect to the current unit’s tile. For example, “north_1_east_2” indicates a
position one tile north and two tiles east from the current unit’s tile. The value information for each
tile corresponds to the resources present on that tile and distinguishes between friendly and enemy
agents. We consolidate the information from these 25 tiles as the observation for the unit currently
controlled by the agent. For unexplored areas, we will not provide tile information.

Structure. After constructing our language-based agent, we created such an agent for each unit,
each having its own separate context history for planning and decision-making. In the initial design,
we used one agent to operate all players, but due to the inherent context limitations of the language

28

Published as a conference paper at ICLR 2024

model, it was not possible to perform very long-term planning for a unit’s behavior. Therefore, we
believed it was necessary to build a separate agent for each unit.

When the interaction information exceeds the maximum context limit, we use the Conversation-
SummaryBufferMemory module of Langchain to summarize the historical information. In addition
to this, we established a unit list within the system, taking turns allowing our language-based agent
to provide the corresponding action decisions, thereby achieving planning and control for each unit.

E.3 MASTABA: ENHANCING BASELANG BY A HIERARCHICAL STRUCTURE

BaseLang faced challenges due to the independent, isolated behavior of its entities. Mastaba builds
upon BaseLang and succeeds in managing a nation in the game. Each entity operated independently
with limited communication through observations, hindering efficient cooperation. To mitigate these
issues, BaseLang constrained each entity’s view to a 5×5 tile area, limiting long-range planning—a
significant drawback when communication between entities is restricted. Mastaba attempts to re-
solve these problems by introducing a primary pyramid structure to organize observations, agents,
and decision-making, where different layers of observation will be fed into different levels of LLM
units for decision-making.

E.3.1 DESIGN OVERVIEW

Hawk-Eye mapview. Inspired by the concept of hawk-eye vision, we have designed a multi-layer
observation. Recognizing that entities do not necessarily require detailed information beyond a local
5×5 tile area, we condense data from a 15×15 tile region into 9 blocks, each measuring 5×5 tiles.
The central block represents the immediate local area, while the remaining eight blocks correspond
to adjacent directions. This arrangement forms a 3×3 grid, as illustrated in Fig. 5. This pyramid-like
structure strikes a balance between map complexity and the richness of observations.

The role of the advisor. In our agent organization, each entity is associated with an independent
LLM instance for communication. Additionally, we introduce a crucial entity called the “advisor” to
oversee all other instances. The advisor is responsible for monitoring fundamental game information
concerning the entire nation. This includes data such as the total number of units (both military
and non-military), the number of cities owned by the entity, and the quantities of units and cities
belonging to both enemies and other players. Ultimately, the advisor receives a nation status report,
indicating whether the entity is currently being invaded, conducting invasions, maintaining a state of
relative peace, or experiencing a lack of communication. The advisor’s primary role is to generate
suggestions during each turn and disseminate them to all other agent prompts. This advisor entity
plays a pivotal role at the apex of a hierarchical structure within the agent framework.

Specialized worker units. The structure of our worker units closely follows the BaseLang frame-
work. In addition to the general worker prompt from BaseLang, we introduce three distinct types
of specialists: Settlers, Workers, and Explorers. The key distinction lies in the examples provided
within their instruction prompts, which are tailored to their respective unit types. For the general
LLM worker, we continue to employ the instruction prompt from BaseLang for all other entities.
Furthermore, we enhance the output accuracy by requiring each worker to reiterate the available
actions in their “thoughts”.

Decision workflow. Mastaba follows a decision-making workflow structured like a pyramid. Dur-
ing each turn, the advisor initiates the decision-making process with an overarching assessment of
the nation, taking into account cities, units, and potential threats from enemies. This decision is then
communicated to the prompts of all other worker units. Subsequently, each worker unit indepen-
dently selects an action for the entity it controls. Workers also have the opportunity to query a vector
database to obtain knowledge from manual or stored experiences. Following a query, a worker must
make a decision regarding the action to be taken by the entity under its control.

F MORE EXPERIMENT RESULTS

We provide more results of our tensor-based RL method for mini-games in this section.

29

Published as a conference paper at ICLR 2024

Figure 10: A language environment observation example. The length and width of the mini-map
and upper-map, as well as the size of the block, can be customarily set.

30

Published as a conference paper at ICLR 2024

ResNetTransformer Transformer Transformer

Actor Type

MLP

Actor ID

Pointer Net

Action Type

MLP

Global Transformer

Rules

MLP Transformer Transformer

Critic

MLP

GRU

Player
Other

players

Other

Cities
Other Units My Cities My Units Map

Major Category

of Actions

ID

MLP

Single Vector Sequence Image

Global Representation

Action Selection

Representation

Value

Figure 11: Network architecture of the tensor-based reinforcement learning agent.

(a) Rewards (b) Scores (c) Success rate (d) Policy loss (e) Value loss (f) Step reward

Figure 12: Battle ancient era.

(a) Rewards (b) Scores (c) Success rate (d) Policy loss (e) Value loss (f) Step reward

Figure 13: Battle attack city.

(a) Rewards (b) Scores (c) Success rate (d) Policy loss (e) Value loss (f) Step reward

Figure 14: Battle defend city.

(a) Rewards (b) Scores (c) Success rate (d) Policy loss (e) Value loss (f) Step reward

Figure 15: Battle industry era.

(a) Rewards (b) Scores (c) Success rate (d) Policy loss (e) Value loss (f) Step reward

Figure 16: Battle info era.

(a) Rewards (b) Scores (c) Success rate (d) Policy loss (e) Value loss (f) Step reward

Figure 17: Battle medieval.

31

Published as a conference paper at ICLR 2024

(a) Rewards (b) Scores (c) Success rate (d) Policy loss (e) Value loss (f) Step reward

Figure 18: Battle modern era.

(a) Rewards (b) Scores (c) Success rate (d) Policy loss (e) Value loss (f) Step reward

Figure 19: Battle naval.

(a) Rewards (b) Scores (c) Success rate (d) Policy loss (e) Value loss (f) Step reward

Figure 20: Battle naval modern.

(a) Rewards (b) Scores (c) Success rate (d) Policy loss (e) Value loss (f) Step reward

Figure 21: Development build city.

(a) Rewards (b) Scores (c) Success rate (d) Policy loss (e) Value loss (f) Step reward

Figure 22: Development build infra.

(a) Rewards (b) Scores (c) Success rate (d) Policy loss (e) Value loss (f) Step reward

Figure 23: Development citytile wonder.

(a) Rewards (b) Scores (c) Success rate (d) Policy loss (e) Value loss (f) Step reward

Figure 24: Development transport.

(a) Rewards (b) Scores (c) Success rate (d) Policy loss (e) Value loss (f) Step reward

Figure 25: Diplomacy trade tech.

32

	Introduction
	Related Work
	Environment
	Full Game Description
	Mini-game Benchmarks

	Methods
	Tensor-based Reinforcement Learning
	BaseLang: Baseline Language-based Agent
	MastabaAncient Egyptian tomb before pyramids. The first pyramid in Egypt is considered a stack of Mastabas.: Enhancing BaseLang by a Hierarchical Structure

	Experiments
	Tensor-based Reinforcement Learning
	Language-based Agents: BaseLang and Mastaba

	Conclusion
	Environment
	More on Full Game and CivRealm Features
	Mini-game Details

	Tensor Environment
	Observation
	Action

	Language Environment
	Observation
	Action

	Estimation of State / Action Space Sizes
	Method Details
	Tensor-based Reinforcement Learning
	BaseLang: Baseline Language-based Agent
	Mastaba: Enhancing BaseLang by a Hierarchical Structure

	More Experiment Results

