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Abstract

Knowledge of the medical decision process,001
which can be modeled as medical decision002
trees (MDTs), is critical to building clinical003
decision support systems. However, the cur-004
rent MDT construction methods rely heavily005
on time-consuming and laborious manual an-006
notation. In this work, we propose a novel007
task, Text2MDT, to explore the automatic ex-008
traction of MDTs from medical texts such009
as medical guidelines and textbooks. We010
normalized the form of the MDT and cre-011
ated an annotated Text2MDT dataset in Chi-012
nese with the participation of medical experts.013
We investigate two different methods for the014
Text2MDT tasks: (a) an end-to-end frame-015
work that only relies on a GPT style large lan-016
guage models (LLM) instruction tuning to gen-017
erate all the node information and tree struc-018
tures. (b) The pipeline framework decomposes019
the Text2MDT task into three subtasks. Ex-020
periments on our Text2MDT dataset demon-021
strate that (a) the end-to-end method based on022
LLMs (7B parameters or larger) shows promis-023
ing results and successfully outperforms the024
pipeline methods. (b) The chain-of-thought025
(COT) prompting method (Wei et al., 2022)026
can improve the performance of the fine-tuned027
LLMs on the Text2MDT test set. (c) the028
lightweight pipelined method based on encoder-029
based pre-trained models also performs well030
with LLMs with model complexity two magni-031
tudes smaller.1.032

1 Introduction033

As a typical application of artificial intelligence034

in the medical field, clinical decision support sys-035

tems (CDSS) have been widely concerned by re-036

searchers (Tsumoto, 1998; Fotiadis et al., 2006;037

Machado et al., 2017). CDSS can suggest experi-038

enced doctors of all the options and problems to be039

1Our Text2MDT dataset and the source codes are open-
sourced, and we will make the dataset and the source codes
openly available upon acceptance.

considered when making decisions, help inexperi- 040

enced medical students to learn clinical knowledge, 041

or give medical advice to patients without medical 042

background (IoannisVourgidis et al., 2018). The 043

core of building a CDSS is the knowledge of med- 044

ical decision processes, which are rules that link 045

given conditions to medical decisions (Abraham, 046

2005) and are usually modeled as medical deci- 047

sion trees (MDTs). However, existing methods 048

for constructing MDTs rely on manual tree con- 049

struction by medical experts (Saibene et al., 2021), 050

which is time-consuming, laborious, and cannot 051

absorb the latest research timely. All these hinder 052

the construction, dissemination, and maintenance 053

of large-scale CDSS (Nohria, 2015). There is an 054

unmet need to explore automated pipelines to pre- 055

cisely extract MDTs from vast and rapidly growing 056

medical knowledge sources. 057

It is computationally challenging to automati- 058

cally extract MDTs for the following reasons: 1) 059

the current MDT lacks a normalized and structured 060

form, leading to ambiguity in understanding med- 061

ical decision knowledge and therefore hinders au- 062

tomated knowledge extraction; 2) the NLP com- 063

munity lacks a benchmark dataset for training and 064

validating MDT extraction tasks; and constructing 065

such data is challenging in that annotating medical 066

decision trees requires in-depth domain knowledge; 067

3) existing methods for medical information extrac- 068

tion are not directly applicable for MDT extraction. 069

In this work, we formally define Text-to-MDT 070

(Text2MDT), the task of automatic extraction of 071

MDTs from medical texts. As shown in Figure 072

1, the knowledge of a medical decision process 073

embedded in the medical text can be modeled as a 074

binary decision tree. In this work, we construct the 075

first Text2MDT benchmark dataset with the help 076

of well-trained annotators and medical experts. 077

With the constructed Text2MDT benchmark, we 078

systematically evaluate different pre-trained model- 079

based methods. The first cohort of methods we 080
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Figure 1: An example of a medical decision tree contained in a medical text from an epilepsy clinical guideline.
English translations are provided in brackets.

consider is from the pipeline framework, in which081

the Text2MDT task is decomposed into three sub-082

tasks: triplet extraction, node grouping, and tree083

assembling. The second cohort of methods are all084

end-to-end (end2end) methods utilizing pretrained085

generative LMs, especially the current large lan-086

guage models. Notably, the chain-of-thought (Wei087

et al., 2022) (COT) style reasoning is also utilized088

and demonstrated to be beneficial. Experiments on089

our Text2MDT benchmark show promising results.090

In summary, the main contributions of this work091

are:092

• We propose a well-defined novel task,093

Text2MDT, to extract MDTs from medical094

text automatically. We construct the first095

Text2MDT benchmark dataset with the help096

of medical experts.097

• Both the pipeline and end2end models are in-098

vestigated, including encoder-based methods099

and LLM fine-tuning methods. The experi-100

ments show that LLMs can perform strongly101

on our Text2MDT benchmark. However, the102

encoder-based models can also perform well103

under the pipeline framework.104

• The Text2MDT dataset and source codes will105

be openly available to facilitate future re-106

search.107

2 Related Work 108

Due to limited length, we put the Related Work 109

for medical natural language processing and medi- 110

cal information extraction in the Appendix A. 111

2.1 Text2Tree modeling 112

There is a rich history of NLP tasks that aim to 113

extract tree structures from a given text. The most 114

fundamental task in NLP is syntax analysis, which 115

aims to express the syntactic structure of a sentence 116

into a syntactic tree (Zhang, 2020). Parsing often 117

relies on a specific grammar, which is used to re- 118

fine the output structures of syntax and semantics. 119

Two of the most popular grammars are constituent 120

parsing and dependency parsing. Text2Tree is also 121

seen in many application scenarios. Math word 122

problems (MWPs) (Zhang et al., 2022c; Zhao et al., 123

2023) extract mathematical expressions from the 124

unstructured texts and try to improve the neural 125

networks’ capabilities in math problem solving by 126

asking the model to understand the tree structure. 127

Semantic parsing (Kamath and Das, 2018), which 128

transforms unstructured text into an SQL query, 129

has promising application potential in areas like di- 130

alogue systems, search engines, and business intel- 131

ligence. Our Text2MDT task is novel compared to 132

the literature in the following sense: (a) Text2MDT 133

focuses on extracting medical decision trees from 134

unstructured medical texts. (b) our task has a differ- 135
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ent granularity from the existing Text2Tree tasks136

since each node in our task consists of one or more137

triplets. (c) the tree structure, or the links among138

different nodes, have different meanings from the139

existing Text2Tree tasks.140

Regarding the model architectures for the exist-141

ing Text2Tree methods, we have seen a trend from142

idiosyncratic models to more unified model archi-143

tectures. The field of syntactic analysis has seen144

many different model architectures, such as recur-145

sive neural network (Socher et al., 2011), CRF (Sut-146

ton and McCallum, 2010), transition-based mod-147

els like (Fernandez Astudillo et al., 2020; Zhang148

et al., 2016), graph-based models (Pei et al., 2015).149

With the rise of pre-trained encoder models (Devlin150

et al., 2019), a series of works apply pre-trained151

models like BERT to enhance the performances on152

the Text2Tree tasks. For example, (Dozat and Man-153

ning, 2017) proposes to install a Biaffine module on154

top of a pre-trained BERT for the dependency pars-155

ing task. This method models the relations among156

token pairs as a table-filling task and decodes the157

tree structures of the entire input sequence in one158

forward pass. With the advances of generative lan-159

guage models, many works apply the pretrained160

sequence-to-sequence (Seq2Seq) models or GPT161

style models to Text2Tree tasks (Wang et al., 2018;162

Zhong et al., 2017). Since the generative models163

generate sequences that ignore the constraints of164

the tree, a series of approaches (Xie and Sun, 2019;165

Yu et al., 2018) are devoted to adding constraints for166

tree-structured decoders by utilizing the structural167

information or syntactic rules. In this work, we con-168

tribute to the existing literature by systematically169

evaluating the encoder-based and generation-based170

methods, especially the open-sourced or commer-171

cial LLMs.172

3 The Text2MDT Task173

3.1 Task formulation174

As shown in Figure 1, the Text2MDT task fo-175

cuses on extracting the medical decision trees from176

a given text containing the medical decision pro-177

cess from medical guidelines or textbooks. We178

denote a medical text with ntext words as X =179

[x1, x2, ......, xntext ], the goal of Text2MDT is to180

generate the pre-order sequence of nnode nodes181

in the MDT T = [N1, N2, ......, Nnnode
]. The182

pre-order sequence of the nodes in the MDT can183

uniquely represent this tree.184

Node structure Nodes in a MDT consist of three185

parts: role, triplets, and logical relationship be- 186

tween triplets. We denote a node by 187

Node = {Role, Triplets, Logical_Rel}, 188

Role = 3 or 2, 189

Triplets = (t1, t2, ..., tntri), 190

Logical_Rel = and, or, null, (1) 191

where: (a) Role denotes the role of the node. 192

Role = 3 means that the node is a condition node 193

describing certain statuses of patients (presented as 194

diamond-shaped nodes in Figure 1), while Role = 195

2 means that the node is a decision node demon- 196

strating how to treat the patients given certain con- 197

ditions. (b) Triplets = (t1, t2, ..., tntri) denotes the 198

collection of ntri triplets extracted from the given 199

text, where each triplet t = (sub, rel, obj) con- 200

sists of a subject sub, a relation rel, and a object 201

obj. These triplets are used to describe medical 202

contents, either a patient’ medical condition or sta- 203

tus, or a medical decision representing the medical 204

procedure to treat the patients. (c) Logical_Rel de- 205

notes the logical relationship (and/or/null relation) 206

among the Triplets in a node. Note that the logical 207

relation is null if and only if the number of triplets 208

ntri in the node is less or equal to 1. 209

Tree structure. A medical decision tree represents 210

the structured process for physicians’ decision- 211

making. As depicted in Figure 1, medical pro- 212

fessionals need to identify the condition of patients 213

and make the appropriate decisions. Sometimes, 214

medical conditions are complex, so one may have 215

to differentiate many levels of conditions before 216

one can make a valid medical decision. There- 217

fore, we define an MDT as a binary tree consisting 218

of condition and decision nodes, where non-leaf 219

nodes are called conditional nodes, and leaf nodes 220

are decision nodes. For the condition node, when 221

the conditional judgment result is "Yes" ("No"), it 222

will go to the left (right) branch for the following 223

condition judgment or decision. Note that each 224

condition node has left and right child nodes. If the 225

subsequent operation that needs to be done after 226

the result of the condition judgment is "Yes" ("No") 227

is not reflected in the text, a decision node without 228

triplets is used as the left (right) child node. After 229

this operation, a decision tree can be represented 230

by a preorder sequence of its nodes. 231

Figure 1 shows a concrete example of MDT. In 232

the example, the medical decision process embed- 233

ded in the medical text above can be modeled by 234

the MDT below: 1) Firstly, the condition "whether 235
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Tree_Depth Amount Proportion
2 402 26.80%
3 906 60.40%
4 192 12.80%

Table 1: Statistics of the medical decision tree in
Text2MDT dataset.

Relation_Name Amount Proportion
clinical_feature 4122 42.51%

therapeutic_drug 2730 28.15%
medical_option 1683 17.36%

usage_or_dosage 666 6.87%
forbidden_drug 249 2.57%

basic_information 246 2.54%

Table 2: Statistics of the triplet relations in Text2MDT
dataset.

valproic acid is applicable for patients with general-236

ized tonic-clonic seizures" is determined, and if the237

result is "Yes," i.e., valproic acid is applicable, then238

go to the left branch and make the corresponding239

decision, i.e., valproic acid is used for treatment;240

2) if the result is "No," that is, valproic acid is not241

applicable, next go to the right branch and make242

another conditional judgment, i.e., the condition243

"whether the patient has myoclonic seizures or sus-244

pected juvenile myoclonic epilepsy" is determined,245

and go to different branches according to the result.246

3.2 Dataset construction247

We construct our dataset using two types of re-248

sources: (a) clinical guidelines published by au-249

thoritative medical institutions about 30 clinical250

departments from 2011 to 2023; (b) undergraduate251

clinical medical textbooks published by People’s252

Health Publishing House2. The Text2MDT dataset253

is annotated first by 15 medical school students pur-254

suing master’s degrees. Then, a panel of 5 experts255

will review each sample’s annotation. The detailed256

annotation procedures are described in Appendix257

B.258

3.3 Data Statistics259

Table 1 reports the statistics of the tree depth in260

the Text2MDT dataset. There are 1500 text-tree261

pairs in the Text2MDT dataset with tree depths262

equal to 2 to 4. The average number of nodes per263

tree is 3.76, and the average number of triplets264

per tree is 6.46. There are 5688 nodes in the265

dataset. In terms of the nodes’ role labels, the266

2http://www.pph166.com/.

dataset includes 2802 decision nodes, 2886 condi- 267

tional nodes. In terms of the nodes’ logical relation 268

labels, the dataset includes 1428 “or” nodes, 1101 269

“and” nodes, and 3159 “null” nodes. Table 2 re- 270

ports the statistics of the types of triplet relations 271

in the Text2MDT dataset. Our Text2MDT dataset 272

has six types of relationships with an in-balanced 273

distribution. 274

3.4 Manual evaluation of quality and 275

usefulness 276

To evaluate the quality and usefulness of the an- 277

notated medical decision tree and whether it can 278

help make medical decisions, we invited ten medi- 279

cal practitioners (with more than two years’ work 280

experience in hospitals) and ten people without 281

medical background to complete the following two 282

evaluation tasks: 1) We observed the participants’ 283

performance (accuracy and time spent) in answer- 284

ing medical decision problems of similar difficulty 285

under two settings (with medical texts or decision 286

trees as a reference). 2) We asked participants to 287

evaluate the ability of the medical decision trees to 288

represent the medical decision process (complete- 289

ness, readability, helpfulness). 290

Most of the participants could answer the 291

decision-making questions more accurately or 292

faster with the help of the MDTs and thought that 293

our annotated MDTs are more readable and helpful 294

for understanding the knowledge of the medical 295

decision process while providing a comprehensive 296

representation of decision knowledge in medical 297

texts. This demonstrates the quality of our annota- 298

tions and the strength of the decision tree in terms 299

of expressive power. The detailed results of the 300

evaluations are provided in Appendix C. 301

Figure 2: Overview of our pipeline framework.
Text2MDT consists of 3 subtasks: triplet extraction,
node grouping and tree assembling.
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3.5 Evaluation Metrics302

In order to evaluate how different models per-303

form on the Text2MDT task, we now define the304

following evaluation metrics:305

• For triplet extraction, we follow (Zhu et al.,306

2023) to adopt the triplet-level precision307

(Prec), recall (Rec) and F1 scores as evalu-308

ation metrics.309

• For node grouping, we define a Levenshtein310

ratio (Navarro, 2001) style score, NG_LR, for311

this subtask.312

• For the tree assembling subtask and also the313

whole Text2MDT task, we define three met-314

rics: (a) the accuracy of decision tree extrac-315

tion (Tree_Acc); (b) the F1 score of decision316

paths (DP_F1); (c) Lenvenshtein ratio of the317

decision tree (Tree_LR).318

The formal definitions of the above metrics are319

detailed in Appendix E.320

4 Methods of modeling Text2MDT321

In this section, we will elaborate on our pro-322

posed methods for modeling the task of Text2MDT.323

First, we will present each module of the pipeline324

framework for Text2MDT. Then, we will discuss325

the end-to-end framework.326

4.1 Pipelined framework327

Figure 2 demonstrates the pipeline for328

Text2MDT, which consists of three steps: triple329

extraction, node grouping, and tree assembling.330

Triplet Extraction The first step is to extract331

all the triplets representing either decisions or con-332

ditions from medical texts with a unified triplet333

extraction model TEModel():334

{t1, ..., tntri} = TEModel ([x1, ......, xntext ]) ,
(2)335

where ti = (si, ri, oi) is the i-th triplet in the text,336

representing a part of a decision or a condition. si337

and oi are two entity spans from the given text, and338

ri is a relation between the two entities and is one339

of the relation types presented in Table 2.340

Node grouping Given the medical text X =341

[x1, ......, xntext ] and the triplets {t1, ..., tntri} ex-342

tracted from this text, we now need to group these343

triplets into different groups, i.e., nodes, with344

Logical_Rel ∈ (and, or, null) (a triple constitutes345

a group if it has the null relation with other triples).346

These groups will be the main components of nodes 347

of the MDT. 348

Tree assembling To assemble the nodes into 349

a medical decision tree, one has to assign a role 350

(condition or decision) to each node and determine 351

whether a pair of nodes is connected. Considering 352

the node’s role as the node’s named entity label 353

and whether a pair of nodes are connected in the 354

decision tree as a directional relation, the tree as- 355

sembling task can also be regarded as a joint task 356

of entity type classification and relation extraction. 357

Note that the Text2MDT task is complex. How- 358

ever, we decompose it into the three subtasks, 359

making it more tractable for relatively traditional 360

encoder-based models like BERT (Devlin et al., 361

2019). We now present the methods for the sub- 362

tasks. 363

Encoder-based pipeline framework The above 364

three subtasks can be addressed by different vari- 365

ants of the Biaffine model (Yu et al., 2020a). For 366

example, triplet extraction is addressed by many 367

recent works like CASREL (Wei et al., 2020), 368

TPLinker (Wang et al., 2020) or UNIRE (Wang 369

et al., 2021), and the above models all utilize a 370

Biaffine-style module on top of a pretrained en- 371

coder. For completeness, we present the details on 372

using the Biaffine-based models to deal with the 373

above three subtasks in the Appendix D. 374

LLM-based pipeline framework We can for- 375

mulate each subtask of the Text2MDT into a 376

prompt-response generation task. In Appendix H, 377

we present the prompt template and response for- 378

mat for each subtask in the pipeline framework. 379

Note that for the generative LMs like LlaMA-2 to 380

excel at the three tasks, we need to construct the 381

designated datasets for each subtask so that LMs 382

can be finetuned. The details of constructing each 383

subtask’s dataset are presented in the Appendix G. 384

4.2 End-to-end framework 385

For the end2end framework, due to the complex- 386

ity of this task, it is challenging for the encoder- 387

based models to deal with the Text2MDT task in an 388

end2end fashion. Thus, we mainly utilize the gen- 389

erative LMs for the end-to-end framework. Since 390

this task is complex, it is natural that the idea of 391

chain-of-thought (COT) (Wei et al., 2022) could 392

benefit our task. In this task, we constructed a se- 393

ries of different COT-style prompts and responses 394

(with prompt and response templates in Appendix 395

H). 396
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Thus, for the end2end framework, we consider397

the following variations:398

direct generation (Gen), in which an LM is asked399

to generate the final MDT information given the400

text inputs directly.401

COT-Gen-1, which decomposes the Text2MDT402

task precisely as the pipeline framework and asks403

the LM first to generate the extracted triplets, then404

node grouping, and then tree assembly, in a sin-405

gle generation run before generating the end-of-406

sentence token.407

COT-Gen-2 decomposes the task into a more fine-408

grained subtask. It asks the model to generate en-409

tities, triplets, node assignments, node roles, and410

finally the entire tree.411

COT-Gen-3 asks the LM to extract triplets and412

then generate the whole MDT.413

COT-Gen-4 decomposes the triplet extraction sub-414

task by asking the LM to extract entities, then gen-415

erate the triplets, and finally generate the whole416

MDT.417

5 Experiments418

5.1 Implementation Details419

Our code was implemented with Pytorch3 and420

Huggingface Transformers4.421

For generative LMs, we consider a collection422

of well-known language models of different sizes.423

(a) GPT-2 Chinese5. (b) Randeng-T5-784M6. (c)424

BLOOMZ-7.1B-mt7. (d) ChatGLM-6B-2. (e)425

ChatMed8, which is adapted from the LlaMA-426

7B backbone. (f) Chinese-LLaMA-2 7B/13B9,427

which are the Chinese version of LlaMA-2 mod-428

els (Touvron et al., 2023) from Meta. (g) Ziya-429

13B-medical10 is also further pre-trained with the430

LlaMA-2 models. (h) Baichuan-2 7B/13B mod-431

els(Yang et al., 2023), which are one of the most432

recent open-sourced Chinese LLMs, and have433

achieved excellent performances in many evalu-434

ation benchmarks like (Li et al., 2023a). Unless435

stated otherwise, we will use Baichuan-2 7B as the436

default generative LM backbone. For generative437

3https://pytorch.org/.
4https://github.com/huggingface/transformers.
5https://huggingface.co/uer/gpt2-chinese-

cluecorpussmall
6https://huggingface.co/IDEA-CCNL/Randeng-T5-

784M-MultiTask-Chinese
7https://huggingface.co/bigscience/bloomz-7b1-mt
8https://github.com/michael-wzhu/ChatMed
9https://github.com/michael-wzhu/Chinese-LlaMA2

10https://huggingface.co/shibing624/ziya-llama-13b-
medical-lora

LMs with parameters fewer than 500 million, we 438

fine-tune all the model parameters. For larger mod- 439

els, we will fine-tune with LoRA (Hu et al., 2021) 440

with rank 24. The LoRA parameters are fine-tuned 441

with a learning rate 1e-4, batch size 16, and warm- 442

up steps of 50. The rest of the hyper-parameters 443

are kept the same with the Transformers package. 444

For each method, we validate the model perfor- 445

mance on the dev set and choose the checkpoint 446

with the best dev performance to predict on the 447

test set. Each experiment is run with different ran- 448

dom seeds five times, and the average scores are 449

reported. 450

The implementation details of the encoder based 451

models are put in Appendix F. 452

5.2 Datasets 453

We construct train/dev/test splits for (a) the 454

end2end framework, both in the structural and 455

prompt-response formats. (b) the pipeline frame- 456

work, where each subtask requires a designated 457

dataset. We put the detailed explanation of con- 458

structing the datasets for each subtask to Appendix 459

G, and the prompt-response templates to Appendix 460

H. 461

5.3 Competing Methods 462

Encoder-based pipeline framework We now 463

present the competing methods for the encoder- 464

based pipeline framework: 465

For the triplet extraction subtask, we consider 466

the following methods: (a) UNIRE (Wang et al., 467

2021); (b) TPLinker (Wang et al., 2020); (c) Cas- 468

Rel (Wei et al., 2020); (d) Sep-Biaffine, which uses 469

a Biaffine model (Yu et al., 2020a) to conduct entity 470

recognition, and another one for relation classifica- 471

tion between entity pairs. 472

For the node grouping subtask, we consider the 473

following methods: (a) the NG-Biaffine method 474

and (b) the NG-TableFill method described in Ap- 475

pendix D. 476

For the tree assembling subtask, we consider 477

the following methods: (a) TreeAssemble-Biaffine 478

method and (b) TreeAssemb-TableFill described in 479

Appendix D. 480

To complete the whole task under the pipeline 481

framework, one has to include three models for the 482

three subtasks. We denote the complete pipeline 483

method as Enc-Pipe. Enc-Pipe first uses Sep- 484

Biaffine for triplet extraction, then uses the NG- 485

Biaffine for node grouping, and finally applies 486

6
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Subtask Triplet extract Node Grouping Tree assembling
Metric Prec Rec F1 NG_LR Tree_Acc DP_F1 Tree_LR

Encoder-based methods
UNIRE 0.913 0.881 0.896
TPinker 0.909 0.878 0.893
CasRel 0.882 0.891 0.886

Sep-Biaffine 0.893 0.897 0.895
NG-Biaffine 0.962

NG-TableFilling 0.961
TreeAssemble-Biaffine 0.735 0.841 0.937

TreeAssemble-TableFilling 0.741 0.838 0.933
Generation-based methods

Gen 0.901 0.894 0.897 0.965 0.745 0.848 0.943
COT-Gen 0.898 0.904 0.901 0.968 0.748 0.852 0.947

GPT-4 + ICL 0.783 0.815 0.798 0.916 0.672 0.786 0.893

Table 3: Results for each subtask of the pipeline framework, and the overall result of the Text2MDT task when
applying the framework. The average results in five different runs are reported. The best results are in bold.

TreeAssemble-Biaffine for the tree assembling sub-487

task.488

Generation-based pipeline framework For489

each step of the generation-based pipeline frame-490

work, we consider the COT style generation (COT-491

Gen) for each subtask. We denote the whole492

pipeline based on generative LMs as CGen-Pipe,493

which utilizes the COT-Gen method for each sub-494

task.495

To demonstrate the need for fine-tuning for our496

task, we also compare the method of in-context497

learning with the currently most powerful com-498

mercial LLM, GPT-4 (OpenAI, 2023). For each499

subtask, we give five demonstration samples ran-500

domly selected from the training set to GPT-4 and501

ask it to make predictions on the samples of the test502

set. We will denote this method as GPT-4 + ICL.503

End2end framework Following Section 4, we504

consider the following end2end methods: (a) Gen;505

(b) four variations of COT-style generation, (b1)506

COT-Gen-1; (b2) COT-Gen-2; (b3) COT-Gen-3;507

(b4) COT-Gen-4. We also consider GPT-4 + ICL508

(with five demonstration samples) for the end-to-509

end generation of medical decision trees.510

5.4 Main experimental results511

5.4.1 Performances on each subtask512

The results of each subtask are reported in Ta-513

ble 3. We can see that: (a) Despite being heavy in514

model sizes, the Baichuan-2 7B model performs515

better than the encoder-based models on all the sub-516

tasks. The clear advantage of generative models is517

a unified task format and a unified model architec-518

ture. (b) COT-Gen helps the LLMs to achieve better519

performances on all three sub-tasks in LLM fine-520

Method Tree_Acc DP_F1 Tree_ER
Pipeline methods

Enc-Pipe 0.450 0.612 0.884
CGen-Pipe 0.470 0.631 0.897

End2end methods
Gen 0.440 0.619 0.885

COT-Gen-1 0.470 0.628 0.894
COT-Gen-2 0.450 0.623 0.889
COT-Gen-3 0.490 0.632 0.898
COT-Gen-4 0.450 0.626 0.892

GPT-4 + ICL 0.312 0.529 0.776

Table 4: Overall results of the pipeline framework and
the end2end methods. The average results in five differ-
ent runs are reported. The best results are in bold.

tuning, consistent with the observations of (Zhu 521

et al., 2023). (c) We can see that GPT-4 + ICL 522

can not perform satisfactorily on the three subtasks 523

without fine-tuning. 524

5.4.2 Performances on whole task 525

We now evaluate the performance of differ- 526

ent methods on the whole task. From Table 4, 527

we can see that (a) the CGen-Pipe achieves better 528

performances than the Enc-Pipe method, which is 529

natural since COT-Gen performs better than the 530

encoder-based models on all three subtasks. (b) 531

Interestingly, the pipeline method CGen-Pipe per- 532

forms better than the Gen method but not better 533

than COT-Gen-3. Intuitively, the pipeline method 534

CGen-Pipe suffers from error propagation from 535

different steps in the pipeline. (c) The COT style 536

generation methods perform better than the direct 537

generation method, which is intuitively sound. Our 538

Text2MDT task is a complex information extrac- 539

tion task containing multiple steps. The COT-based 540
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depth
CGen-Pipe COT-Gen-3

Tree_Acc DP_F1 Tree_Acc DP_F1
2 0.750 0.833 0.750 0.833
3 0.428 0.607 0.442 0.603
4 0.454 0.648 0.545 0.676

Table 5: Model performance on medical decision trees
of different depths.

Backbone Tree_Acc DP_F1 Tree_ER
The Enc-Pipe method

MedBERT 0.450 0.612 0.884
BERT-www-ext 0.440 0.615 0.882

BERT-base Chinese 0.390 0.583 0.867
Erlangshen-ZEN1 0.410 0.596 0.873

The COT-Generation-3 method
GPT-2 base Chinese 0.030 0.121 0.238
Randeng-T5-784M 0.080 0.253 0.352
BLOOMZ-7.1B-mt 0.330 0.536 0.782

ChatGLM-6B-2 0.380 0.592 0.849
ChatMed 0.420 0.596 0.864

Chinese-LlaMA-2 7B 0.410 0.581 0.868
Chinese-LlaMA-2 13B 0.460 0.623 0.890

Ziya-13B-medical 0.450 0.614 0.886
Baichuan2 7B 0.490 0.632 0.898

Baichuan2 13B 0.490 0.628 0.896

Table 6: The effects of the pre-trained backbones on the
Enc-Pipe and COT-Generation-3 methods.

generative methods inject priors on how the models541

should solve the task. Thus, LLMs can be more542

informed to use the results of the previously gen-543

erated contents for future token generation. (d)544

Intuitively, the generative LMs should benefit more545

from detailed and fine-grained COT instructions.546

However, Table 4 shows that COT-Gen-3 performs547

the best. COT-Gen-3’s thought steps have a rel-548

atively smaller response length, which is helpful549

for the LMs to keep track of the generation con-550

tents. (e) with in-context learning, GPT-4 performs551

relatively worse than the fine-tuned open-sourced552

LLM.553

5.5 Discussions and further analysis554

Impact of tree depth In table 5, we present the555

results of CGen-Pipe, and COT-Gen-3 on different556

MDT depths. We can see that the two methods557

obtain the same performance metrics on the MDTs558

with depth 2. The performance difference between559

the two methods mainly lies in MDTs with higher560

depth. We can see that the performances on the561

MDTs with a depth larger than 2 are significantly562

worse than those on the MDTs with a depth of 2.563

Impact of backbone models Table 6 reports the564

experimental results for different backbone models,565

and the following observations can be made: (a) 566

for the Enc-Pipe method, the in-domain pre-trained 567

model, MedBERT performs the best among the 568

four pre-trained encoders, showing that further in- 569

domain pretraining is beneficial. This observation 570

aligns with (Zhu, 2021b; Guo et al., 2021a; Zhu 571

et al., 2023b). (b) For the generative LMs, models 572

with small parameter sizes perform unsatisfyingly 573

in our task. Among the open-sourced generative 574

LMs we experiment with, the Baichuan2 models 575

perform the best. Baichuan2’s advantage results 576

from its large-scale pretraining and complete in- 577

struction alignment pipeline. 578

Case studies On the test set of the Text2MDT 579

task, COT-Generation-3 achieves the best perfor- 580

mance. Figure 16 and 17 (in Appendix J) report 581

two examples where COT-Generation-3 can not 582

predict the same MDTs with the ground truth. In 583

Figure 16, COT-Generation-3 misses the triplet (患 584

者, 治疗药物, 缓解充血药) ((patient, treatment, 585

decongestant)) in the second node, and the triplet 586

(患者, 治疗药物, 退热药) ((patient, therapeutic 587

drug, antipyretic drug)) in the fourth node, during 588

prediction. These errors are mainly from the triplet 589

extraction subtask, the first step of tackling MDTs. 590

In Figure 17, COT-Generation-3 made an error in 591

triplet extraction regarding the basic status of the 592

patients and, as a result, made a mistake in node 593

grouping. 594

6 Conclusion 595

In this study, we propose a novel task, 596

Text2MDT, which aims to automatically extract 597

medical decision trees from medical texts that are 598

significant for intelligent medicine. We constructed 599

the first Text2MDT dataset in the NLP community 600

with the participation of medical experts. Since 601

there are no existing neural network-based meth- 602

ods that can directly deal with our novel tasks, we 603

propose two cohorts of methods: (a) the pipeline- 604

based method, which decomposes the Text2MDT 605

task into three subtasks and utilizes the existing 606

methods to complete the subtasks; (b) the end2end 607

method, which is challenging and can not be han- 608

dled by the encoder-based models. We utilize the 609

recent open-sourced LLMs and chain-of-thought 610

prompting for the end-to-end methods. Experi- 611

ments show that the LLMs can achieve promising 612

results on the Text2MDT benchmark end-to-end 613

with the help of chain-of-thought prompting. 614
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Limitations615

Our work is the first exploration of extracting616

MDTs from medical texts, and our work is cur-617

rently applicable to some simple scenarios, specifi-618

cally: 1) The logic expression of nodes is limited.619

The triplets between nodes are only "and" and "or,"620

while in more complex scenarios, there should be621

a combination of multiple logical relationships; 2)622

The expressiveness of the tree is limited—our de-623

cision tree aborts after reaching a decision. The624

actual scenario should be a process of continuous625

judgment and decision-making. 3) The length of626

the text is limited. We only contend with extracting627

one paragraph of medical text; in fact, much medi-628

cal knowledge must be based on multiple sections629

or chapters. We will improve on these shortcom-630

ings in our future work.631

Ethics Statement632

This study, focusing on developing a dataset and633

methodologies for extracting medical decision trees634

from medical texts, is conducted carefully, consid-635

ering ethical principles and potential risks associ-636

ated with the research.637

Firstly, it is essential to note that the dataset638

utilized in this study is derived from medical text-639

books and guidelines and, thus, does not contain640

any personally identifiable information. However,641

ethical considerations regarding patient privacy and642

confidentiality remain paramount despite the ab-643

sence of direct personal information. We have644

taken measures to ensure that no sensitive patient645

data is included in the dataset and that all informa-646

tion extracted is solely for research purposes.647

Furthermore, the participation of medical experts648

in constructing the Text2MDT dataset is essential649

for ensuring the accuracy and relevance of the data.650

We have obtained informed consent from all con-651

tributors, emphasizing the voluntary nature of their652

participation and the intended use of the dataset for653

research purposes.654

Moreover, while our study focuses on advancing655

the field of intelligent medicine through developing656

novel techniques, we acknowledge the importance657

of transparency and accountability in AI-driven658

healthcare applications. As such, we are commit-659

ted to openly sharing our findings, methodologies,660

and datasets with the research community, facilitat-661

ing peer review, reproducibility, and further ethical662

scrutiny.663

In conclusion, this study underscores our com- 664

mitment to upholding ethical standards in research, 665

particularly in healthcare and artificial intelligence. 666

By proactively addressing potential risks and ethi- 667

cal considerations, we aim to contribute responsi- 668

bly to advancing medical knowledge and technol- 669

ogy. 670
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A Appendix: additional related work1089

A.1 Medical natural language processing1090

The developments in neural networks and nat-1091

ural language processing has advanced the field1092

of medical natural language processing (MedNLP)1093

(Zhou et al., 2021; Hahn and Oleynik, 2020; Zhu1094

et al., 2021b). In the pre-BERT era, firstly, RNNs1095

like LSTM/GRU are used for processing sequen-1096

tial medical data such as text and speech (Beeksma1097

et al., 2019). Convolutional networks are also used1098

for medical text classificaiton (Hughes et al., 2017).1099

The techniques of Graph neural networks are also1100

explored for diagnose recommendations (Li et al.,1101

2020). In this period, many different model ar-1102

chitectures are specially designed for better per-1103

formances on a specific MedNLP task (Zhu et al.,1104

2021b,c; Zhang et al., 2021). Since BERT (De-1105

vlin et al., 2019), the pretrained language models1106

(PLMs) become the deafult solution for MedNLP.1107

In this stage, researchers become less interested 1108

in modifying the model architecture, but instead 1109

trying to pretrain or further pretrain a PLM from 1110

the open domain to the medical domain (Guo et al., 1111

2021b; Zhu, 2021b; Gu et al., 2020). With the wide 1112

study of LLMs, the field of MedNLP is also being 1113

revolutionized. There are already works on adapt- 1114

ing LLM backbones to the medical domain ques- 1115

tion answering (Zhu and Wang, 2023). And (Zhu 1116

et al., 2023) propose PromptCBLUE, a prompt 1117

learning based benchmark dataset for examing the 1118

LLMs’ ability in MedNLP tasks. This work can 1119

also serve as a testbed for the current commercial 1120

or open-sourced LLMs, since the complexity of our 1121

novel task will pose great challenges for them. 1122

A.2 Information extraction from medical texts 1123

Information Extraction (IE) is a research topic of 1124

long history that aims to extract structured knowl- 1125

edge or factual information from unstructured texts 1126

(Yang et al., 2022). The field of IE includes a wide 1127

range of tasks, such as named entity recognition 1128

(Das et al., 2022; Landolsi et al., 2023), relation 1129

extraction (RE) (Zhu et al., 2020; Li et al., 2022), 1130

event extraction (Hsu et al., 2022), aspect-level 1131

sentiment analysis (CHENG et al., 2023). Since 1132

the raise of pre-trained models like BERT (Devlin 1133

et al., 2019), the performances on IE tasks have ad- 1134

vanced greatly (Zhu, 2021b). But one has to have 1135

different model structures for different fine-grained 1136

IE tasks, for instance, the SOTA nested NER mod- 1137

els (Zhang et al., 2022a) are different from those 1138

of discontinuous NER tasks (Zhang et al., 2022b). 1139

Recently, there is a trend that all the IE task should 1140

be solved by a unified paradigm, that is, Seq2Seq 1141

generation. (Yan et al., 2021) proposes the frame- 1142

work of BartNER which solves all types of NER 1143

tasks with a BART model (Lewis et al., 2019). UIE 1144

(Lu et al., 2022) takes a step ahead and proposes 1145

to use prompts and a unified structural language 1146

to deal with many types of IE tasks with a single 1147

model checkpoint. 1148

Medical information extraction is an important 1149

research field, and it has broad applications like 1150

medical search engine, automatic electronic health 1151

record analysis, online health consultation, and 1152

medical knowledge graph construction (Sun et al., 1153

2020; Guo et al., 2021a; Zhu et al., 2019; Zhou 1154

et al., 2019; Zhu et al., 2021b,a; Zhang et al., 1155

2023a). Compared with open-domain IE tasks, the 1156

IE tasks are known for their complexity. For exam- 1157
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ple, discontinuous or nested entities are common1158

in the medical field. And knowledge in the medical1159

domain may be too complex to be expressed as1160

triplets (Zhu et al., 2023a). For example, (Jiang1161

et al., 2019) introduced the role of “condition” and1162

argued that a fact triplet is established based on1163

some conditional triplets in the biomedical field. In1164

the CMedCausal (Li et al., 2023b) task, a triplet1165

may be the result of a subject conducting certain1166

behaviour, expressing the causal relations. With1167

the rise of LLMs, the research field of IE and med-1168

ical IE is also under revolution. In this work, we1169

compliment the existing literature by constructing1170

the challenging Text2MDT task, where not only1171

triplets have to be extracted, but also they need to1172

arranged into nodes of a binary tree to express a1173

complex medical decision process.1174

B Appendix for dataset construction1175

Resources We choose clinical practice guide-1176

lines and clinical medicine textbooks as our data1177

sources. Clinical practice guidelines are systemat-1178

ically developed multidisciplinary clinical guide-1179

lines that help clinicians, patients, and other stake-1180

holders make appropriate management, selection,1181

and decisions about specific clinical issues. Clini-1182

cal medicine textbooks are the primary means med-1183

ical students acquire medical knowledge and can1184

be used as a reference for clinical decision-making.1185

We collected over 500 clinical guidelines published1186

by authoritative medical institutions and about 301187

clinical departments from 2011 to 2021 and over1188

100 undergraduate clinical medical textbooks pub-1189

lished by People’s Health Publishing House11 to1190

build our dataset. We obtain the informed consents1191

from the resources’ owners.1192

Since medical texts are long and contain rich1193

and various medical knowledge, we used section-1194

based filtering and trigger/template-based filtering1195

to locate segments of medical texts that contain1196

the medical decision process based on the analysis1197

of medical texts and the help of specialized doc-1198

tors. First, we selected the chapters with a high1199

density of medical decision knowledge, such as1200

"Treatment", "Drug Selection" and "Medical Solu-1201

tions" in the source data. Then, we analyzed and1202

summarized the structure and pattern of the med-1203

ical decision text construct templates and trigger1204

words for medical decision knowledge. We filtered1205

the text based on the template and triggers to obtain1206

11http://www.pph166.com/.

the text fragments containing the knowledge of the 1207

medical decision process. 1208

Annotation procedures Our data collection pro- 1209

tocols are approved by our institution’s ethics re- 1210

view board. And we recruit our annotators from 1211

a medical school in Shanghai. Annotators of our 1212

dataset include (a) 15 annotators who are master 1213

students from medical schools and (b) five medical 1214

experts with medical doctoral degrees, more than 1215

ten years of clinical experience, and at least two 1216

years of experience with medical text data annota- 1217

tion. All the annotators have been instructed with 1218

detailed and formal annotation principles for at 1219

least two hours, including understanding the medi- 1220

cal decision-making process, the judgment of logi- 1221

cal relationships, and the annotation specifications 1222

of triplets and decision trees. Every three annota- 1223

tors will form a group, and they first independently 1224

annotate each text and revise the initial annotation 1225

after discussion inside the group. Medical experts 1226

will examine their annotations. If the five experts 1227

agree on the annotation unanimously, the annota- 1228

tion enters the dataset collection. If not, they will 1229

provide feedback on improvement, and the annota- 1230

tion group will revise the annotation until approval. 1231

Furthermore, we calculate Cohen’s Kappa (Co- 1232

hen, 1960) to measure the agreements between 1233

each pair of annotators. The Kappa coefficient 1234

for triplet annotation is 0.83 before in-group dis- 1235

cussion or experts’ feedback and 0.94 after. The 1236

Kappa coefficient for the whole medical decision 1237

tree annotations is 0.65 before in-group discussion 1238

or experts’ feedback and 0.83 after. The results en- 1239

sure the annotation consistency of our Text2MDT 1240

benchmark. 1241

C Appendix: Manual Evaluation of 1242

Annotated MDTs 1243

The detail of our manual evaluation of medical 1244

decision trees are as follows: 1245

1. We observed the participants’ performance 1246

on medical decision problems of similar difficulty 1247

under medical texts and MDTs. Specifically, par- 1248

ticipants will answer three sets of medical decision 1249

questions, each group providing texts or decision 1250

trees containing the medical knowledge needed to 1251

answer the medical decision question. We observe 1252

their accuracy and time spent answering the deci- 1253

sion question. Each set of questions is randomly 1254

selected from the question pool and is guaranteed 1255

to be of similar difficulty. 1256
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2. We invited participants to rate medical texts1257

and MDTs in terms of readability, completeness,1258

and helpfulness. Specifically, we randomly se-1259

lected five medical texts and MDTs expressing the1260

same knowledge. We asked participants to score1261

(0-3) them in terms of whether they were clear1262

and easy to understand (readability), whether they1263

were comprehensive and detailed (completeness),1264

and whether they were helpful in understanding or1265

studying medical knowledge (helpfulness).1266

A T R C H
Text 0.64 31.5 2.26 2.70 2.33
DT 0.86 25.4 2.74 2.72 2.62
Text 0.94 21.6 2.50 2.74 2.68
DT 0.94 18.4 2.66 2.62 2.76

Table 7: Results of manual evaluation of annotated
MDTs. The results in the first field are for subjects
without medical background, and the results in the sec-
ond field are for medical practitioners. A represents
the average accuracy of answering the medical decision
questions. T represents the average seconds spent an-
swering the medical decision questions. R, C, and H
represent the readability, completeness, and helpfulness
average scores.

The results of the manual evaluation are shown1267

in Table 7. We can draw the following conclusions:1268

For subjects without medical background, the1269

medical decision tree helped them make more cor-1270

rect decisions in less time compared with the medi-1271

cal text and gained the highest scores for readabil-1272

ity, completeness, and helpfulness. Theoretically,1273

the completeness of the medical text should be bet-1274

ter than the medical decision tree. Still, due to1275

the poor readability of the medical text, the sub-1276

jects may not have gained complete access to the1277

knowledge contained in the medical text.1278

For medical practitioners, the medical decision1279

tree group achieved the same accuracy on the med-1280

ical decision questions as the medical text group,1281

but the former took less time. The medical decision1282

trees gained the highest readability and helpfulness1283

scores and slightly lower completeness than the1284

medical texts. The results demonstrate that the1285

medical decision tree can help people make treat-1286

ment decisions faster and better and can model1287

medical decision knowledge clearly and intuitively,1288

which can help readers better understand medical1289

decision knowledge.1290

D Details of the encoder based models for 1291

the subtasks 1292

D.1 Triplet Extraction 1293

1294

Triplet extraction is widely studied task (Zhu, 1295

2021a; Gao et al., 2023; Zhu, 2021c; Zhu et al., 1296

2021c), and there are many recent works that can 1297

be utilized to complete this subtask. One line of 1298

work is based on semantic encoders like BERT (De- 1299

vlin et al., 2019) and a table-filling module (Dozat 1300

and Manning, 2016; Zhang et al., 2023b). The rep- 1301

resentative methods in this direction is: CASREL 1302

(Wei et al., 2020), TPLinker (Wang et al., 2020) and 1303

UNIRE (Wang et al., 2021). For completeness, we 1304

now demonstrate how UNIRE (Wang et al., 2021) 1305

applies a biaffine module to complete the entity 1306

mention detection and relation classification tasks 1307

simultaneously. 1308

With a given sentence input X , a pre-trained 1309

encoder like BERT or RoBERTa will encode the 1310

semantic information and provide hidden represen- 1311

tations for X
′
. Denote the hidden vector corre- 1312

sponding each token xi as hi ∈ Rd. Denote the set 1313

of entity types as Ke, and the set of relation types 1314

as Kr. UNIRE targets at identifying the label li,j 1315

of each token pair (i, j). That is, if the token pair 1316

(i, j) is classified as an entity type ke ∈ Ke, we 1317

will consider the text span starting from the i-th 1318

token and ending at the j-th token as an entity of 1319

type ke. And if the token pair (i, j) is classified as 1320

an relation type kr ∈ Kr, and token i and j are the 1321

starting tokens of two entity mentions, we will con- 1322

sider that these two entities have a relation of type 1323

kr. To complete the two tasks with a single calcu- 1324

lation step, the UNIRE construct a biaffine module 1325

which maps each token pair (i, j) to a probability 1326

distribution of dimension K = |Ke|+ |Kr|+1: 12 1327

P (li,j) = Biaffine (hi, hj) , (3) 1328

where Biaffine() is given by 1329

Biaffine(h1, h2) = hT1 Uh2 +W (h1 ⊕ h2) , (4) 1330

Since we need to calculate the scores for K cate- 1331

gories, U is a d×K×d tensor, and W is a 2d×K 1332

tensor.13 Since the above method is analogeous as 1333

12Adding 1 for the null type.
13Note that in the BERT biaffine NER (Yu et al., 2020b),

two feed forward layers are designated to transform the two
features passing to the biaffine module. However, we find
that dropping the two feed forward layers will not result in
significant performance changes.
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filling in a ntext×ntext sized table, we often refer to1334

the biaffine method as the table-filling method. De-1335

noting the ground truth of li,j as yi,j , then the train-1336

ing objective is the summation of cross-entropy1337

loss at each of1338

L = − 1

|ntext|2

|ntext|∑
i=1

|ntext|∑
j=1

logP (li,j = yi,j) .

(5)1339

After the above BERT-based biaffine model is1340

trained, the inference procedure follows UNIRE1341

(Wang et al., 2021).1342

D.2 Node grouping1343

Given the medical text X = [x1, ......, xntext ]1344

and the triplets {t1, ..., tntri} extracted from this1345

text, we now need to group these triplets into1346

different groups, i.e., nodes, with relation l ∈1347

(and, or, null) (a triple constitutes a group if it has1348

the null relation with other triples). These groups1349

will be the main components of nodes of the MDT.1350

Now we will demonstrate the model for this1351

subtask: node-grouping biaffine (NG-Biaffine),1352

which is to adapt the idea of biaffine model to1353

the node grouping task. Note that if a triple be-1354

longs to a node with relation l ∈ KNG (where1355

KNG = and, or, null is the set of the logical rela-1356

tions among triplets.), it will have relation l with1357

any other triplet within the group and null rela-1358

tion with other triplets in the other groups. Thus,1359

the key step for node grouping is to determine the1360

relationships among the triplets, which can be con-1361

veniently modeled by a table-filling task similar to1362

Equation 3. Denote the augmented text input as1363

X
′
= [X, [t], t1, ..., [t], tntri ], where [] denotes the1364

text concatenation operation. Note that we add a1365

special token [t] before each triplet. A pre-trained1366

encoder like BERT or RoBERTa will encode the1367

semantic information and provide hidden repre-1368

sentations for X
′
, and obtain the semantic repre-1369

sentation of triplet ti by taking the hidden vector1370

corresponding the special token right before ti (de-1371

noted as h(ti)). Then a biaffine module will handle1372

the classification task for each triplet pair (ti, tj)1373

by calculating its probability P (lti,tj ) distribution1374

over all the relation categories.1375

During inference, we will consider a score based1376

decoding procedure for resolving possible conflicts.1377

For each triplet pair (ti, tj), its label lti,tj is ob-1378

tained by choosing the relation category that re-1379

ceives the highest probability mass. And denote1380

the probability mass of lti,tj as mti,tj . During in- 1381

ference, we first calculate mti,tj and lti,tj for each 1382

triplet pair (ti, tj) in a single forward pass. And we 1383

rank lti,tj by mti,tj . The relation lti,tj that receives 1384

the highest mti,tj value will first be established, 1385

and any conflicting relation predictions with lower 1386

scores will be rejected. Here, a conflict arises when 1387

a triplet ti has the and relation with tj , but also 1388

has the or relation with another triplet tj′ . Then 1389

we will establish the relation prediction with the 1390

second highest probability mass that has not been 1391

discarded. Repeting the above procedures till all 1392

the triplets are included in the established relations, 1393

and we will have the complete prediction for node 1394

grouping. The logical relation for each node will 1395

be the relation type among the triplets inside the 1396

node. 1397

Note that we can consider a variant of the NG- 1398

Biaffine model, NG-TableFill, which substitute the 1399

biaffine module (Equation 3) in the NG-biaffine 1400

method to the table-filling module in (Wang et al., 1401

2020) (Equation 1 of (Wang et al., 2020)). 1402

D.3 Tree assembling 1403

Note that in the above procedure, we already 1404

has the nodes in the decision tree. To assemble the 1405

nodes to a medical decision tree, one has to assign 1406

a role (condition or decision) to each node, and 1407

determine whether a pair of nodes are connected. 1408

Considering the node’s role as the node’s named 1409

entity label, and whether a pair of nodes are con- 1410

nected in the decision tree as a directional relation, 1411

the tree assembling task can also be regarded as a 1412

joint task of entity type classification and relation 1413

extraction. 1414

We now elaborate on the model details for tree
assembling. Denote each unclassified node as
Nodei (i = 1, 2, ..., nnode). We formulate each
node as a text sequence by concatenating the logi-
cal relation name, role label name, and triplets’ text
contents, and we augment the text input X to

X
′
= [X, [n],Nodei, ...[n],Nodennode

]

, where [] denotes the text concatenation opera- 1415

tion. Note that we add a special token [n] before 1416

each node. After being encoded with a pre-trained 1417

text encoder, we can obtain h(Nodei), the hidden 1418

states of the special token [n] right before each 1419

node. h(Nodei) is considered as the semantic rep- 1420

resentation of Nodei. A simple linear layer can 1421

operate as the node type prediciton module, and a 1422
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biaffine module will handle the relation classifica-1423

tion task for each node pair (Nodei,Nodej). Dur-1424

ing decoding, we employ the strategy described in1425

(Dozat and Manning, 2016) to resolve conflicting1426

predictions. We will refer to the above model as1427

TreeAssemble-Biaffine.1428

Note that we can consider a variant of1429

the TreeAssemble-Biaffine model, TreeAssemble-1430

TableFill, which substitute the biaffine module1431

(Equation 3) in the TreeAssemble-biaffine method1432

to the table-filling module in (Wang et al., 2020)1433

(Equation 1 of (Wang et al., 2020)).1434

E Appendix: detailed explanations of the1435

evaluation metrics1436

E.1 Metrics for the triplet extraction subtask1437

As described in Section 4, the most fundamental1438

step of Text2MDT is to extract triples from the1439

given text documents. Following (Zhu et al., 2023)1440

and (Zhu, 2021a), we adopt the triplet precision,1441

recall and F1 scores as evaluation metrics. These1442

metrics of triplet extraction are instance-level strict1443

performance metrics. Here, an instance means a1444

complete piece of information extracted from the1445

given document. In our triplet extraction subtask,1446

an instance consists of a head entity mention, a1447

tail entity mention, and the relation label name1448

between these two entities. And strict means that1449

the model predicts an instance correctly if and only1450

if it correctly predicts the all the components of the1451

instance.1452

E.2 Metrics for the node grouping subtask1453

Following (Wang and Cer, 2012), we now de-1454

fine an edit distance based metric to evaluate how1455

models perform in the node assignment task. Ac-1456

cording to Equation 1, one can express a predicted1457

node Npred to a tuple.1458

Npred =1459

(Rolepred, tpred1 , ..., tpredntri
, Logical_Relpred).

(6)
1460

Note that we treat each triplet in the same level1461

with the node role label and the logical relation1462

label. And denote a node in the ground truth as1463

Ngt = (Rolegt, tgt1 , ..., tgtntri
, Logical_Relgt).

(7)1464

Treating each element in the Npred and Ngt tuples1465

as indivisible, one can calculate the edit distance1466

between Npred and Ngt. In this scenario, the edit- 1467

ing operations include inserting and deleting ele- 1468

ments, and each operation has a cost of 1. Now 1469

we concatenate all the nodes in the node grouping 1470

prediction into a single tuple NG_Tuppred. Since 1471

we does not require the model to assign orders to 1472

each node in the node grouping step, we consider 1473

all the permutation m of nodes in the ground truth 1474

MDTgt, and we concatenate the nodes in each per- 1475

mutation (denoted as NG_Tupgt,m). And the edit 1476

distance between the whole node assignment pre- 1477

diction and the ground truth node assignment is 1478

defined as the minimum edit distance between the 1479

predicted node grouping and a permutation of the 1480

ground truth node grouping: 1481

NG_ED(NG_Tuppred,MDTgt) 1482

= min
m∈Permute(MDTgt)

ED(NG_Tuppred,NG_Tupgt,m),

(8)

1483

where ED(x, y) denotes the edit distance between 1484

tuple x and tuple y. Since the edit distance score 1485

NG_ED is an un-normalized metric, it is in-suitable 1486

for model comparisons. Thus, we now define 1487

the Levenshtein ratio (Navarro, 2001) (denoted as 1488

NG_LR) for the node grouping subtask: 1489

NG_LR(NG_Tuppred,MDTgt) 1490

=
NG_ED(NG_Tuppred,MDTgt)

max(len(NG_Tuppred), len(NG_Tupgt,m∗
)
(9)

1491

where len denotes the tuple length, and m∗ is the 1492

MDTgt’s permutation that obtains the lowest edit 1493

distance with the prediction: 1494

m∗ = 1495

argmin
m∈Permute(MDTgt)

ED(NG_Tuppred,NG_Tupgt,m).

(10)

1496

E.3 Metrics for the tree assembling subtask 1497

To properly evaluate a model’s performance in 1498

constructing medical decision trees from text, we 1499

adopt the following three evaluation metrics: 1500

• The accuracy of decision tree extraction 1501

(Tree_Acc). For this metric, the instance is 1502

the entire medical decision tree consisting of 1503

a series of nodes connected as a binary tree 1504

of a certain structure, and each node contains 1505

three components, logical relation, role and 1506
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triplets. A decision tree predicted by a model1507

is correct when it is precisely the same as the1508

ground truth. Thus, this metric is a very strict1509

metric.1510

• F1 score of decision paths (DP_F1). We1511

define a decision path in a medical decision1512

tree as a path from the root node to a leaf node.1513

Thus, in DPF1, an instance is a decision path,1514

and a model correctly predicts a decision path1515

if and only if it correctly predicts all the nodes1516

in the path and how they are connected.1517

• Lenvenshtein ratio of the decision tree1518

(Tree_LR). Similar to the definition of edit1519

ratio defined for the node grouping task, we1520

can arrange the contents of all nodes in the1521

predicted or ground-truth tree into a single1522

tuple in the in the order of depth-first search1523

(denoted as Tree_Tuppred and Tree_Tupgt, re-1524

spectively), and treat each triple, node role1525

label, node logical relation as indivisible ele-1526

ments. Thus Tree_LR is defined by1527

Tree_LR(Tree_Tuppred,Tree_Tupgt)1528

=
ED(Tree_Tuppred,Tree_Tupgt)

max(len(Tree_Tuppred), len(Tree_Tupgt))
.

(11)

1529

F Appendix for implementation details of1530

the encoder based methods1531

For pretrained encoder based methods, we use1532

the pre-trained Chinese medical BERT (denoted1533

as MedBERT) by (Guo et al., 2021a) as the de-1534

fault backbone model. For ablation studies, we1535

also consider the widely used BERT-wwm-ext14,1536

Google BERT-base Chinese (Devlin et al., 2019),1537

and Erlangshen-ZEN115. For the decoding module1538

such as the biaffine module (Dozat and Manning,1539

2016) and (Wang et al., 2021), we will use the1540

original authors’ default configurations. We will1541

fine-tune all the model parameters. Batch size is1542

set to 8, warm-up steps is set to 50, the number1543

of training epochs is set to 50, the learning rate1544

is set to 2e-5 with a linear schedule, and the opti-1545

mizer is AdamW (Loshchilov and Hutter, 2017).1546

The other hyper-parameters like gradient clipping,1547

Adam epsilon are kept the same with the Trans-1548

formers repository.1549

14https://huggingface.co/hfl/
chinese-bert-wwm-ext.

15https://huggingface.co/IDEA-CCNL/
Erlangshen-ZEN1-224M-Chinese.

G Dataset details for model training 1550

The original Text2MDT has a 1200:150:150 1551

train/dev/test split. Since we are experiment- 1552

ing with different methods from the pipeline and 1553

end2end frameworks, we now need to construct 1554

different variations of the Text2MDT datasets. 1555

G.1 Datasets for the pipeline framework 1556

Since the pipeline framework has three subtasks, 1557

thus, we need to construct a different dataset for 1558

each subtask so that we can train an encoder-based 1559

model: 1560

• Text2MDT-TE, the Text2MDT triplet extrac- 1561

tion dataset, where the input is the medical 1562

text, and the target is the list of triplets in the 1563

structured format like JSON. This dataset has 1564

a 1200:150:150 train/dev/test split. 1565

• Text2MDT-NG, the Text2MDT node group- 1566

ing dataset, where the input is the medical text 1567

and the list of triplets in text sequence con- 1568

catenated together, and the output is the list 1569

of nodes in the structured format like JSON 1570

and each node contains a list of triplets and 1571

a logical relation label. For the Text2MDT- 1572

NG training set, we augment the original 1573

Text2MDT four times by shuffling the or- 1574

ders of triplets. Thus, this dataset has a 1575

4800:150:150 train/dev/test split. 1576

• Text2MDT-TA, the Text2MDT tree assem- 1577

bling dataset, where the input is the medical 1578

text and the list nodes in text sequence con- 1579

catenated together, and the output is the list 1580

of MDT nodes in the structured format like 1581

JSON and each node contains a list of triplets, 1582

a logical relation label and a role label. For the 1583

Text2MDT-TA training set, we augment the 1584

original Text2MDT four times by shuffling 1585

the orders of nodes in the input. Thus, this 1586

dataset has a 4800:150:150 train/dev/test split. 1587

For each of the above datasets, we will construct 1588

a prompt-based dataset for the generative LM meth- 1589

ods, with the prompt and response templates in the 1590

the Appendix. 1591

G.2 Datasets for the end2end framework 1592

For each end2end method, we will construct the 1593

end2end dataset with the prompt and response tem- 1594

plates in the the Appendix. So that each end2end 1595

dataset has a 1200:150:150 train/dev/test split. 1596
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Figure 3: Prompt and response templates for the triplet extraction subtask.

H Prompt templates and response1597

formats for the pipeline framework1598

H.1 The triplet extraction subtask1599

In the triplet extraction task asks a language1600

model to predict a series of triplets from the given1601

text. A triplet includes the head entity mention, tail1602

entity mention, and the relation between them. We1603

present the prompt and response template in Figure1604

3, in which the special token [Text] denotes the1605

input text, and [triplets] denotes a list of triplets.1606

An example pair of prompt and target response is1607

also presented in Figure 4.1608

With the idea of COT (Wei et al., 2022), the1609

prompt will ask the LLMs to first identify the rela-1610

tions in the given text, and then generate the triplets1611

one by one. We present the COT prompt and re-1612

sponse template in Figure 5, in which the COT1613

templates below, [relations] denotes the list of rela-1614

tion names. An example pair of COT prompt and1615

target response is also presented in Figure 6.1616

H.2 The node grouping subtask1617

In the node grouping task, we asks a language1618

model to predict which triplets form a node, and1619

which logical relation the node has. Figure 71620

presents the prompt and response templates, in1621

which the special token [Text] denotes the input1622

text, and [triplets] denotes the list of extracted1623

triplets, and [node] denotes the contents of the node.1624

An example pair of prompt and target response is1625

also presented in Figure 8.1626

H.3 The tree assembling subtask1627

In the tree assembling task, given the results of1628

the node grouping step, we ask the language model1629

to generate the whole decision tree. Figure 9 is the 1630

prompt and response templates, in which the spe- 1631

cial token [Text] denotes the input text, and [nodes] 1632

denotes the list of nodes from the previous subtask. 1633

In the response, [node_idx] denotes the index of a 1634

node, [triplets] denotes the list of extracted triplets 1635

in a node, [logical_rel] denotes the logical relation 1636

of the node, and [role] denotes the role label of 1637

the node. An example pair of prompt and target 1638

response is presented in Figure 8. 1639

I Prompt templates and response formats 1640

for the end2end framework 1641

I.1 The templates for the Gen method 1642

For the Generation method in the end2end frame- 1643

work, we ask the language model to generate the 1644

whole decision tree given the medical guideline 1645

text. Figure 11 is the prompt and response tem- 1646

plates, in which the special token [Text] denotes 1647

the input text. In the response, [node_idx] denotes 1648

the index of a node, [triplets] denotes the list of 1649

extracted triplets in a node, [logical_rel] denotes 1650

the logical relation of the node, and [role] denotes 1651

the role label of the node. 1652

I.2 The templates for the COT-Gen-1 method 1653

For the COT-Generation-1 method in the 1654

end2end framework, we ask the language model to 1655

generate the whole decision tree given the medical 1656

guideline text with the following steps: (a) generat- 1657

ing the triplets. (b) generating the node grouping 1658

results. (c) complete the tree assembling subtask 1659

and generate the whole medical decision tree. Fig- 1660

ure 12 is the prompt and response templates, in 1661

which the special token [Text] denotes the input 1662
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Figure 4: An example of the prompt and response for the triplet extraction subtask.

Figure 5: COT style prompt and response templates for the triplet extraction subtask.
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Figure 6: An example of the prompt and response with COT for the triplet extraction subtask.

Figure 7: Prompt and response templates for the node grouping subtask.
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Figure 8: An example of the prompt and response for the node grouping subtask.
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Figure 9: Prompt and response templates for the tree assembling subtask.

text. In the response, [node_idx] denotes the in-1663

dex of a node, [triplets] denotes a list of extracted1664

triplets, [logical_rel] denotes the logical relation of1665

the node, and [role] denotes the role label of the1666

node.1667

I.3 The templates for the COT-Generation-21668

method1669

For the COT-Generation-2 method in the1670

end2end framework, we ask the language model1671

to generate the whole decision tree given the med-1672

ical guideline text with the following steps: (a)1673

generating the entities; (b) extract the triplets; (c)1674

grouping the triplets into nodes; (d) determining1675

the role labels of the nodes; (e) and finally assem-1676

bling the whole medical decision tree. Figure 131677

is the prompt and response templates, in which the1678

special token [Text] denotes the input text. In the1679

response, [node_idx] denotes the index of a node,1680

[entities] denotes a list of entity mentions, [triplets]1681

denotes a list of extracted triplets, [role_labels] de-1682

notes a list of role labels, [logical_rel] denotes the1683

logical relation of the node, and [role] denotes the1684

role label of the node.1685

I.4 The templates for the COT-Generation-3 1686

method 1687

For the COT-Generation-3 method in the 1688

end2end framework, we ask the language model to 1689

generate the whole decision tree given the medical 1690

guideline text with the following steps: (a) gener- 1691

ating the triplets，and then (b) generate the whole 1692

medical decision tree. Figure 14 is the prompt 1693

and response templates, in which the special to- 1694

ken [Text] denotes the input text. In the response, 1695

[node_idx] denotes the index of a node, [triplets] 1696

denotes a list of extracted triplets, [logical_rel] de- 1697

notes the logical relation of the node, and [role] 1698

denotes the role label of the node. 1699

I.5 The templates for the COT-Generation-4 1700

method 1701

For the COT-Generation-4 method in the 1702

end2end framework, we ask the language model 1703

to generate the whole decision tree given the med- 1704

ical guideline text with the following steps: (a) 1705

generating the entity mentions, (b) generate the 1706

triplets，and then (c) generate the whole medical 1707

decision tree. Figure 15 is the prompt and response 1708

templates, in which the special token [Text] de- 1709
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Figure 10: An example of the prompt and response for the tree assembling subtask.
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Figure 11: Prompt and response templates for the Gen method.

notes the input text. In the response, [node_idx]1710

denotes the index of a node, [triplets] denotes a1711

list of extracted triplets, [logical_rel] denotes the1712

logical relation of the node, and [role] denotes the1713

role label of the node.1714

J Appendix for case studies1715

We report two case studies in Figure 16 and 17,1716

analyzing .1717
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Figure 12: Prompt and response templates for the COT-Gen-1 method.
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Figure 13: Prompt and response templates for the COT-Gen-2 method.
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Figure 14: Prompt and response templates for the COT-Gen-3 method.
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Figure 15: Prompt and response templates for the COT-Gen-4 method.
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Figure 16: Example (a), an error case of the COT-Generation-3 method on the Text2MDT test samples.

Figure 17: Example (b), an error case of the COT-Generation-3 method on the Text2MDT test samples.
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