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Abstract— In robotic applications such as bin-picking or
block-stacking, learned predictive models have been developed
for manipulation of objects with varying but known dynamic
properties (e.g., mass distributions and friction coefficients).
When a robot encounters a new object, these properties
are often difficult to observe and must be inferred through
interaction, which can be expensive in both inference time
and number of interactions. We propose an encoder/decoder
action-feasibility model to efficiently adapt to new objects by
estimating their unobserved properties through interaction. The
encoder predicts a distribution over the unobserved parameters
while the decoder predicts action feasibility, which can be used
in an uncertainty-aware planner. An explicit representation
of uncertainty in the encoder enables information-gathering
heuristics to minimize adaptation interactions. The amortized
distributions are efficient to compute and perform comparably
to particle-based distributions in a grasping domain. Finally, we
deploy our method on a Panda robot to grasp heavy objects.

I. INTRODUCTION

In automated manipulation, tasks such as bin-picking or
block-stacking are often repeated for a large set of objects
that have a wide distribution of geometric and dynamics
parameters (e.g., masses, centers of mass, and friction co-
efficients). Previous work has shown that robots can learn
manipulation dynamics (e.g., stacking or throwing) entirely
from online data when the dynamics properties of the objects
are known [1] or have minimal impact on action outcome.
It is unreasonable, however, to expect that a robot should
be able to observe the dynamics properties of a novel
object. Robots without tactile or force feedback, for example,
will not be able to directly observe inertial and frictional
properties of objects. A robot may not even know which
properties will play a role in the manipulation dynamics.

Our goal is for robots to discover new objects’ unob-
served dynamics parameters through efficient interaction for
reliable prediction and planning. A standard approach to
handling unknown parameters is to use a Bayes filter [2]
to maintain a probability distribution or belief over the
unobserved properties. Every time a new action is executed,
the resulting observation (e.g., grasp success or failure) is
used to update the belief using an observation model that
relates the unknown parameters to observations.

When the observation is a simple function of the belief,
such as a linear function applied to a Gaussian distribution,
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Fig. 1: Our method allows a Panda (right) to infer unobserved prop-
erties of objects based on interaction history. This allows the robot
to efficiently grasp objects with non-uniform mass distributions such
as weighted blocks (left) or ShapeNet objects (center).

the belief update can be efficient. However, when the ob-
servation model is a complicated function, more expressive
belief representations, such as sets of particles, are required.
Particle-based approaches suffer from the curse of dimen-
sionality: the number of particles needed to represent the
belief scales exponentially with the number of unobserved
variables. For tasks such as grasping, there are five un-
knowns: mass, static friction, and three for center of mass.
Sampling and updating the belief can therefore be expensive.

When manipulating objects with unknown properties, a
robot will need to perform many belief updates as it interacts
and collects observations. Further, while planning, it is com-
mon to simulate belief updates to choose informative actions.
As such, the cost of the belief update is critical. Particle-
based representations quickly become intractable and limit
the amount of interaction possible within a fixed time budget.

To develop a dynamics model with an efficient belief
representation and update procedure, we propose to jointly
learn (1) inference networks that are trained to predict
posterior distributions over the unobserved parameters given
a history of interactions and their outcomes, and (2) an
action feasibility classifier that can be used for planning. The
model uses an encoder/decoder architecture based on Neural
Processes [3] for unsupervised learning of an object-level
latent space shared between the inference network (encoder)
and feasibility classifier (decoder). For our grasping task, the
input to the inference network is a set of labeled grasps for
a specific object. The posterior over the latent parameters is
computed as a single forward pass through the inference net-
work/encoder, which only scales linearly with the number of
observed grasps irrespective of the number of unobservable
parameters. The feasibility classifier/decoder can in turn be
used for planning by consuming samples from the posterior
and predicting the success probability for candidate grasps.

We show that our model, called a Grasping Neural Process
(GNP), can classify stable grasps comparably to particle-



based methods at a fraction of the computational cost. In
addition, the distributions produced by the inference network
can effectively be used in information-gathering heuristics to
adapt with fewer grasps. In simulation, we deploy the GNP
in an uncertainty-based planner to robustly grasp objects with
the minimal required force. We also demonstrate the GNP,
trained in simulation, can be deployed to successfully adapt
and grasp weighted blocks on a physical robot (see Fig. 1).

II. PROBLEM FORMULATION

Given a previously unseen object with unknown dynamics
properties, our goal is for a robot to reliably manipulate
(e.g., grasp or place) it using a small number of adaptation
interactions. To do so, we take a model-based approach
where we aim to predict action feasibility in a way that
allows the model to rapidly adapt to novel objects.

Formally, we consider a robot interacting with K objects,
where each object’s state is divided into observed and unob-
served properties. The observed state of object k at time t,
x
(k)
t , can be time-varying, whereas the unobserved state, z(k),

is assumed to be static. Many time-varying properties (e.g.,
pose or velocity) can be extracted from a perception system,
while static properties often cannot be directly observed (e.g.,
friction, mass, or coefficients of restitution).

Our objective is to learn a model that predicts the feasibil-
ity of an action for a specific object1 yt ∈ {0, 1} (e.g., grasp
stability). This model can then be integrated with a task and
motion planning system for long-horizon manipulation tasks.
Concretely, the goal is to estimate p(yt|xt, z, at), where
at ∈ A is the action space (e.g., grasps or pushes).

We assume the robot’s operation is divided into three
distinct phases: training, adaptation, and testing. In the
training phase, the set of objects is fixed, and the robot
has some finite amount of time to act in the environment
without any task descriptions. In this work, we assume we
already have a dataset of completed interactions provided
to us for the training phase. In the adaptation phase, the
robot is given a new object and a short amount of time
to experiment and adapt by selecting information-gathering
interactions. Finally, there is a testing phase, in which a robot
is given a task to be performed, and interacts with the objects
to complete the task. No further adaptation or learning is
performed in the testing phase.

III. METHODS

We primarily focus on the adaptation phase. How can a
robot efficiently, in both computational and sample efficiency,
adapt to objects with unknown dynamics properties?

We take a probabilistic approach where we per-
form posterior estimation of the unknown properties, z,
given an increasing amount of observed data, Dt =
{(x1, a1, y1), . . . , (xt, at, yt)}. Rather than estimate the pos-
terior distribution through an expensive online computa-
tion, we propose to amortize the inference procedure by
first training an inference network, qϕ, to directly predict

1We will omit the superscript k when referring to a single object.

Fig. 2: After executing t actions and observing their outcomes, Dt,
the robot can predict a posterior over the unobserved properties,
qϕ(z|Dt). pθ(y′|x′, z, a′) uses this posterior along with unlabeled
actions, a′, and observed properties, x′, to predict feasibility, y′.

the parameters of the posterior distribution (Section III-A).
This model is learned jointly with the feasibility model,
pθ(y|x, z, a). The resulting posterior distribution, qϕ(z|Dt)
(which we will refer to as an amortized distribution), can be
used directly for informative action planning (Section III-B)
or in conjunction with the feasibility model for uncertainty
aware planning (Section III-C). See Fig. 3 for an overview.

A. Amortized Posterior Updates

When interacting with a novel object, the robot must
update its posterior after each interaction, which can be a
time-intensive operation. To address this issue, we propose
to use amortized inference for constant-cost posterior distri-
butions. Instead of performing an expensive online posterior
update, we will train a neural network to predict the posterior
distribution given the online samples, Dt, observed so far.
The inference network, qϕ(z|Dt), will need to approximate
true posterior distributions p(z|Dt) for all possible timesteps,
t, and observation realizations. We take qϕ(z|Dt) to be a
multi-dimensional Gaussian distribution.

At any timestep, t, during the adaptation phase, the graph-
ical model in Fig. 2 represents the data generation process.
Note that this graphical model represents a single timestep
of the adaptation phase where we have already observed the
labels for t actions, Dt, but have not yet observed the label,
y′, for a new action, a′, with observed state, x′. In order
to learn both a feasibility model, pθ(y′|z, x′, a′) that can be
used for planning and an inference network, qϕ(z|Dt), we
take an amortized variational inference approach.

In training, for a single object, we seek to minimize:

Ez [log pθ(y
′|x′, a′, z)]−DKL (qϕ(z|DT )||qϕ(z|Dt)) , (1)

where DT = Dt∪{(y′, a′, x′)}. Note that we do not require
labels for the unobserved properties as the latent space is
learned (and need not be human-interpretable).

The proposed method is an instantiation of Neural Pro-
cesses [3] for robotic manipulation. The training objective is
derived from the evidence lower bound (ELBO) for amor-
tized variational inference over functions (i.e., each sample
of the latent space represents a different action-feasibility
classifier). The first term of this objective incentivizes the
model to make accurate and object-consistent predictions,
using the latent space when necessary. The second term is
the KL-divergence between the full posterior qϕ(z|DT ) and



Fig. 3: Grasp Neural Processes (GNPs) use an offline training phase (left) to jointly learn an action feasibility model, pθ , and an inference
network, qϕ, that predicts a posterior distribution over unobserved properties. During the adaptation phase (center), the learned inference
network can be used for efficient online posterior updates and action selection. Finally, in the testing phase (right), the robot can use the
current belief, z, along with the feasibility model to perform manipulation tasks.

the partial posterior qϕ(z|Dt). The partial posterior includes
only a subset of the full data and the KL-term encourages it
to be as accurate as possible with limited data. This ensures
the partial posteriors will be useful even when only a few
labeled interactions are available during the adaptation phase.

During training, Eq. 1 is optimized using stochastic gradi-
ent descent. Mini-batches are sampled where each element of
a batch corresponds to D

(k)
T for many objects, k. Each D

(k)
T

is further divided into partial datasets D
(k)
t by uniformly

sampling t between 0 and T (N (0, 1) is used for qϕ(z|Dt)
when t = 0). This ensures the encoder can represent posterior
distributions for variable input sizes.

B. Informative Action Selection

We have shown so far how to perform efficient posterior
updates at a single timestep: evaluate qϕ(z|Dt). We are also
interested in minimizing the total number of time-consuming
interactions used to collect observations. While selecting a
random action may be quick, many interactions are likely
required before reaching a sufficient performance level.

Instead, it is common to take an information-theoretic
approach. Actions are selected which maximize the infor-
mation gain at a single timestep (a greedy, but often good,
approximation to optimizing over sequences of actions [4]):

max
at+1

H(qϕ(z|Dt))− Eyt+1
[H(qϕ(z|Dt, xt+1, at+1, yt+1))]

(2)
One way to solve this maximization is via a simple pool-
based approach: first generate a collection of M unlabeled
samples, then score each according to this objective. How-
ever, computing expected information gain requires two
posterior updates, which can be expensive with particle-
based methods: O(MN) if N is the number of particles.

Using the inference network within the information gain
computation has a much more favorable complexity, scaling
linearly with the number of unlabeled samples: O(M). Given
a similar computational budget to baselines, more unlabeled
samples can be considered, leading to more informative
actions and therefore fewer expensive interactions.

C. Uncertainty Aware Planning

After seeing a limited number of adaptation actions, cap-
tured by Dt, there will always be some level of remaining
uncertainty about the unknown properties. This uncertainty,

or model confidence, can be incorporated into task planning
to ensure robust behavior.

We consider two task formulations. The first is to simply
find an action that is feasible. We use the learned networks,
qϕ and pθ, to find the most feasible action:

a∗ = argmaxa∈A p(y|x, a) (3)

We also consider bandit-style tasks specified by a reward
function, R(a), where we must trade off maximizing the
reward with current uncertainty:

a∗ = argmaxa∈A Ey∼p(y|x,a)[R(a)] (4)

The predictive posterior used in both task formulations
is computed using the learned distributions: p(y|x, a) =∫
pθ(y|x, z, a)qϕ(z|Dt)dz. This integral is approximated us-

ing Monte-Carlo sampling.

IV. GRASPING TASK

We focus on grasping objects with non-visible dynamics
parameters. Grasping is important for many manipulation
tasks and success depends on understanding properties such
as mass and friction. For example, to grasp a table leg for
furniture assembly, the robot must grasp as close to the center
of mass as possible to avoid slip. Concretely, we aim to
predict grasp stability (i.e., force closure) of candidate grasps
given an object’s observable properties, xt, which consist of
object geometry and grasp pose. The amortized posterior will
need to infer center of mass (CoM), friction, and mass from
a sequence of interactions to form an accurate prediction.
We refer to our model as a Grasp Neural Process (GNP).

A. Dataset Generation

All experiments are run on two synthetic datasets in
PyBullet: box primitives (Boxes), and a post-processed set
of objects derived from 191 ShapeNet classes (see Fig. 1,
center) [5].2 For the training phase, we use 1000 unique
object geometries with 5 dynamic property samples each.
This leads to datasets with 5000 objects and 50 labeled
grasps per object.

Object Generation: The CoM is uniformly sampled
within the convex hull of the object, and lateral friction and
mass are chosen from a uniform distribution over [0.1, 0.3].

2The ShapeNet objects were post-processed to be watertight for simula-
tion and rescaled so they could fit in the robot gripper as in [6].



Grasp Generation: We assume access to object meshes
and a floating Panda gripper to check grasp stability. The
mesh is first used to sample grasp points that are within a
specified antipodal tolerance (30 degrees). We then sample a
random gripper orientation around the line connecting the
grasp points and ensure there are no collisions with the
gripper. Finally a grasp force is uniformly sampled in the
range [5, 20]N . The stability label is generated by closing
the gripper in simulation and applying perturbation forces in
random directions (a force closure approximation).

B. Network Architectures

Grasp Neural Processes (GNPs) use an encoder/decoder
architecture (representing the inference net and learned feasi-
bility model respectively) with domain-specific structure for
grasping data. The encoder accepts an arbitrary number of
grasps representing the history of grasps tried so far.

Input Features: Each object is represented by a global
point cloud of 256 points sampled uniformly from the surface
of the mesh. Each grasp is further represented by a local
point cloud. The local point cloud is in the reference frame
of the gripper and only includes points within 3cm of either
grasp point. The global point cloud allows the network to
reason about object-level properties like volume and moments
of inertia while the local point cloud allows reasoning about
local features like curvature and surface normals. Each grasp
is further represented by the grasp points as well as the
grasping force. The encoder will have access to the grasp’s
label while the decoder will not.

Auxiliary Networks: We use PointNets [7] to encode both
local and global point clouds. A separate PointNet instance
is used for each point cloud type and maps the set of points
into a single fixed-length embedding.

Encoder: The GNP encoder takes as input a collection
of grasps. It outputs the parameters of a d-dimensional
diagonal Gaussian distribution, µz, σz ∈ Rd. We repurpose
the PointNet architecture to operate over a set of grasps.

Decoder: Finally, the GNP decoder takes as input a set
of unlabeled grasps, and a latent sample, z ∼ N (µz, σ

2
z), to

output a grasp stability probability using an MLP.

V. EXPERIMENTS

In our experiments, we evaluate whether GNPs yield well-
performing grasp-detectors with faithful uncertainty rep-
resentations of the unknown dynamic parameters in the
ShapeNet and Boxes datasets. We first compare the proposed
method to an accurate (but expensive) particle-based base-
line, achieving comparable performance at a fraction of the
cost (Section V-A). Then, we show how the learned posterior
can be leveraged for faster information-gathering (Section V-
B). Finally, we evaluate the model as part of an uncertainty-
aware planner for a grasping task (Sections V-C and V-D),
and deploy the model on a real Franka Emika Panda robot.

A. Particle Filter Baseline

To understand the trade-off between efficiency and pre-
diction performance of GNPs, we compare our approach

Fig. 4: GNP vs. PF The proposed method achieves comparable
adaptation performance to an expensive particle filter baseline
with many particles. Lines show the median Average Precision of
the grasp classifier across 500 novel objects. Shaded regions are
between the top and bottom quartiles.

Fig. 5: Particle Filter Analysis (Boxes) The particle filter per-
formance is dependent on the number of particles (left) yet the
inference time scales poorly with the number of particles (right),
compared to the proposed amortized inference method. Timing
results represent the mean/std across 2500 inference runs.

to a particle filter. We reuse our decoder architecture and
train it to predict grasp stability using the known dynamics
parameters with a standard cross-entropy loss. This model is
then used during the fitting phase as the observation model
of a standard particle filter found in Chopin et al. [8]. The
filter is initialized with a varying number of particles (N =
10, 100, 1000, 10000) sampled from a uniform distribution
over the range of valid dynamics parameters.

Fig. 4 shows the performance of our GNP method com-
pared to the particle filter using a large number of particles
(N = 10, 000). We report average precision3 of the grasp
stability classifier evaluated over time as the model collects
more adaptation grasps. We find that GNPs perform compa-
rably to the particle filter at a fraction of the online inference
cost used by the baseline as shown in Fig. 5.

B. Efficient Information Gathering

We evaluate if the amortized posteriors can be used to
gather data more efficiently using an information-gain (IG)
acquisition function (Section III-B). A useful uncertainty
representation should permit the model to reason about what
inputs are more informative than others.

Given a trained GNP, we simulate the adaptation phase
under the random and information-gain (IG) strategies. At
each timestep, we sample 20 unlabeled grasps from the novel
object. The random strategy chooses a single grasp from this
pool. The IG strategy computes the expected information-
gain metric for each grasp, and greedily chooses the grasp

3Average precision focuses on positive grasps (balancing precision and
recall), which shows how the classifier would perform in downstream tasks.



Fig. 6: GNP Performance as a Grasp Detector Number of adaptation grasps needed to reach a desired Grasp Success Rate. The GNP
chooses the most likely grasp considering the current uncertainty arising from limited data. We consider easy and hard versions of the
task that use different force limits. The IG adaptation strategy tends to produce higher success rates with fewer adaptation grasps.

Fig. 7: Information Gain GNP encoders can be exploited for
faster information-gathering. Average Precision per grasp for IG
and random adaptation strategies. Solid lines are medians, and error
ranges are the upper and lower quartiles across 500 test objects.

with maximal IG. To evaluate performance, we again report
the average precision of the grasp classifier (Fig. 7).

On the Boxes dataset, our results show that a greedy IG
heuristic produces better performance with less acquisition
data. This suggests that amortized posteriors are still useful
for probabilistic reasoning. On the ShapeNet dataset, the
IG heuristic has a smaller performance improvement over
random. We attribute this to the significant influence of object
geometry on grasp stability. Some objects have irregular
geometries that are difficult to learn. For other objects, grasp
stability is governed primarily by their geometry (e.g. an
hourglass that is only graspable at the center), rather than
their underlying dynamics parameters. Since all boxes have a
similar geometry, the stability of a grasp is far more sensitive
to the dynamics parameters than those of ShapeNet.

C. Finding Stable Grasps for Novel Objects

To evaluate the utility of GNPs for practical grasping tasks,
we integrate the model into the grasp planner discussed in
Section III-C. In simulation, we first generate a novel object
and perform the adaptation phase using both IG and random
strategies. After each observation, we use a sampling-based
approximation of Eq. 3 to select the most likely grasp.

In Fig. 6, we report how many adaptation grasps are
required to reach a desired grasp success rate (how often the
chosen grasp is actually successful) on ShapeNet and Boxes
datasets (with 500 novel objects per dataset). We consider
two task difficulty levels: where the chosen grasp must be
either < 20N (easy) or < 10N (hard). Using a smaller grasp
force requires better understanding of dynamics properties.

Across both datasets and adaptation strategies, GNPs are
able to successfully adapt to novel objects: performance

increases with the number of adaptation grasps (requiring
as little as 5 grasps to achieve high success rates). The IG
strategy shows small improvements for easy grasps (< 20N
force; smaller bars are better). For hard grasps (< 10N
force), IG shows a larger gain, sometimes needing as few as
half the required adaptation grasps for similar performance
to random (e.g., to achieve 85% grasp success rate).

D. Uncertainty-Aware Planning

Another task that requires understanding dynamics prop-
erties is that of grasping an object with minimal force.
Succeeding at this task requires grasping as close to the
center of mass as possible to avoid slip. We formalize this
task using the reward function:

R(G) =

{
Fmax − FG, grasp is stable,
Rfailure, otherwise.

Grasp forces are in the range [5, 20]N and smaller forces
lead to larger reward. FG is the force of the chosen grasp,
and we choose a large negative reward (Rfailure = −Fmax)
to prefer robust behaviour where the robot uses larger forces
in the face of uncertainty (as opposed to dropping the object).

We perform this task using an uncertainty aware plan-
ner (Eq. 4), with sampling-based optimization (using 200
samples). We evaluate task performance with 500 objects
after each adaptation grasp. In Fig. 8, we report how often
the chosen grasp was successful and the normalized regret
achieved for successful grasps.

We compare our approach that uses the uncertainty from
the amortized posterior distributions (Monte Carlo) to an
ablation that only uses the mean of the posterior distribution
when planning (Most Likely). This ablation evaluates the
utility of learned posteriors for robust grasp planning un-
der uncertainty. Monte Carlo achieves higher success rates,
showing robust behaviour even with few adaptation grasps.
This comes at a cost of higher initial regrets, but task
performance improves as the model collects more infor-
mation, which is the desired robust behaviour. We also
evaluate the Monte Carlo planner with the particle filter
baseline (Fig. 9). There is a larger performance gap between
particles and GNPs than for the avg. precision evaluation
(Fig. 5). Achieving low regret requires grasping close to the
classifier’s decision boundary where uncertainty is likely to
be higher. Thus it is important to have a good uncertainty
representation (which requires many particles).



Fig. 8: Planning Success and Normalized Regret for the minimum force grasping task. Regret only includes successful grasps. We ablate
our GNP model to show the impact of the explicit uncertainty representation. Lines are means and shaded regions are a standard deviation.

Fig. 9: Planning Success and Normalized Regret for the minimum
force grasping task for the particle filter baseline with varying
numbers of particles (for the boxes dataset).

Block 1 Block 2
Mass (g) 236 196
Dims (cm) 6.0/14.0/5.5 5.5/9.0/5.5
COM (cm) -0.2/3.4/-0.1 -0.2/1.9/-0.15
Succ. (@0) 8 / 20 15 / 20
Succ. (@10) 18 / 20 19 / 20

Fig. 10: Robot Demo [Left] Grasp success rate for two novel
blocks. The baseline method (@0) only uses visual information
while the GNP method (@10) uses 10 adaptation interactions. COM
is relative to the object center. [Right] After 10 adaptation grasps,
the robot consistently grasps the object near the CoM (green dot).

E. Panda Grasping Demo

We deploy the trained model on a Franka Emika Panda
robot. The training phase is performed solely in simulation
using the Boxes dataset, but we perform the adaptation
and testing phases on the real robot (Fig. 10) using two
heavy blocks with different masses and offsets of center
of mass (i.e., only grasps on one side of the object will
succeed). In the real world, we only sample grasps of 5N
that are kinematically feasible, and grasps are labeled based
on whether they slip in the gripper after lifting the arm.

We compare to an antipodal grasp sampler that chooses
grasps based solely on object geometry. For our method,
we allow the robot 10 adaptation grasps chosen using the
IG strategy. For both blocks, the GNP model successfully
leverages the adaptation phase to achieve better performance
than a baseline that only uses visual information. Please see
Fig. 10 and the accompanying video for more robot results.

VI. RELATED WORK

Several previous works have introduced Bayesian models
for rapid adaptation to novel environment dynamics. For ex-
ample, [9] and [10] both use latent variables to parameterize

a task and Gaussian Processes as the global dynamics. [11]
has a similarly structured model, but uses a BNN as the
dynamics model. [12] and [13] use both deep ensembles
and low-dimensional latent variables within their models.
For grasping, [14] developed adaptive grasp classifiers using
a similar approach to ours. We extend their approach by
considering probabilistic latent spaces that can be used for
robust planning and efficient adaptation.

Other work has focused on learning object dynamics with
unobservable object properties. In some works, the authors
assume the global dynamics are known a priori, which
can inform the values of object-specific properties [15],
[16], [17], [18]. In our work, we desire to jointly infer the
dynamics and object properties. Related work which does
not assume the dynamics are known often rely on either a
fixed dataset at adaption time [19], [20], [21], [22] or a task
definition in order to infer the latent properties [23], [9], [24],
[10]. Instead, we use information-gain heuristics with respect
to model uncertainty, which is applicable even when the task
is unknown. Furthermore, our approach can yield zero-shot
performance on a new task, because all the experimentation
was performed in a task-agnostic adaptation phase.

Disentangling object properties through interaction,
termed ‘interactive and active perception’ [25], is a common
strategy. Applications include understanding object kinemat-
ics [26], [27] or object geometry [28], [29]. Bandit-style
approaches to grasp selection require a large number of
grasps to be effective [30], [31]. Grasping-specific solutions
have also been found [32], [33]. Unlike our approach, very
few methods except for [27], [29] address model uncertainty
over dynamic and geometric information, and only [29]
leverages uncertainty for efficient information-gathering.

VII. CONCLUSIONS

We present Grasp Neural Processes: an action feasibility
model with an explicit representation of uncertainty over
a novel object’s dynamics parameters. We experimentally
verify that the amortized posterior distributions are more
efficient than particle filters while achieving comparable
performance. When integrated with downstream grasp plan-
ners, the learned uncertainty representation leads to increased
robustness and enables info-gain heuristics. In the future, we
plan to extend our models to partially-observed geometry
and multiple actions that share the same latent space.
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