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ABSTRACT

While vision-language models (VLMs) have advanced into detailed image de-
scription, evaluation remains a challenge. Standard metrics (e.g. CIDEr, SPICE)
were designed for short texts and tuned to recognize errors that are now uncom-
mon, such as object misidentification. In contrast, long texts require sensitivity
to attribute and relation attachments and scores that localize errors to particular
text spans. In this work, we introduce POSH, a metric for detailed image de-
scription that uses scene graphs as structured rubrics to guide LLMs-as-a-Judge,
producing aggregate scores grounded in fine-grained errors (e.g. mistakes in com-
positional understanding). POSH is replicable, interpretable and a better proxy
for human raters than existing metrics (including GPT4o-as-a-Judge). To validate
POSH, we introduce a new dataset, DOCENT. This novel benchmark contains
artwork, paired with expert-written references, and model-generated descriptions,
augmented with granular and coarse judgments of their quality from art history
students. Thus, DOCENT enables evaluating both detailed image description
metrics and detailed image description itself in a challenging new domain. We
show that POSH achieves stronger correlations (+0.05 Spearman ρ) with the hu-
man judgments in DOCENT than the best open-weight alternatives, is robust to
image type (using CapArena, an existing dataset of web imagery) and is a capa-
ble reward function, outperforming standard supervised fine-tuning. Then, using
POSH, we characterize the performance of open and closed models in describing
the paintings, sketches and statues in DOCENT and find that foundation models
struggle to achieve full, error-free coverage of images with rich scene dynam-
ics, establishing a demanding new task to gauge VLM progress. Through both
POSH and DOCENT, we hope to enable advances in important areas such as
assistive text generation. We make our metric and our benchmark available at
https://anonymous.4open.science/r/posh.

1 INTRODUCTION

A picture is worth a thousand words – can vision-language models (VLMs) capture all of them?
VLMs have saturated traditional image understanding benchmarks from short captioning to question
answering (Li et al., 2025). New, more challenging tasks are needed to measure VLM progress.
Detailed image description is of particular interest as it requires comprehensive understanding –
e.g., in Fig. 1, a VLM must correctly specify who is pouring the water. This deep perception is a
better proxy for the demands of the real world, where diverse user queries may not be reflected in
VQA benchmarks (Chen et al., 2024). Moreover, it enables meaningful applications such as image
assistive (“alt”) text generation that could greatly expand accessibility online (Mack et al., 2021).

However, making progress on detailed description requires cheap, reliable methods for scoring mod-
els. Human evaluation is costly, involving the painstaking comparison of long texts. Even so, there
is often no substitute as most metrics were designed for short texts and older models (Berger et al.,
2024). Moreover, while metrics that produce a single coarse score of overall quality allow for the
ranking of models, they offer little insight into the granular issues driving performance. Granular
issues include mistakes in each generation, like the positions of the people in Fig. 1, and omissions
in each reference, like the details of the bird’s beak in Fig. 3. Automatically localizing such errors is
critical as long generations with similar coarse scores may differ in multiple dimensions of interest
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Figure 1: Failures in attribute/relation attachment are common in detailed image description, espe-
cially in dynamic scenes. Here, the man pouring water is not central. POSH catches such errors.

(e.g., facial features, body orientations, etc.). Otherwise, prompt and/or model iteration necessitates
expensive manual inspection to understand which description aspects need improvement.

In this work, we propose POSH1, a metric for evaluating detailed descriptions that addresses these
challenges. POSH extracts scene graphs from a generated description and its reference to use as
structured rubrics for an LLM to granularly identify mistakes and omissions (see Fig. 2), pinpointing
the textual spans containing errors like attribute/relation mis-attachment. Then, it aggregates these
localized errors into coarse scores for mistakes, omissions and overall quality. Thus, POSH weds the
strengths of structured methods like scene graphs (Anderson et al., 2016), which reduce descriptions
to their consequential visual components, with the strengths of LLMs/VLMs-as-a-Judge (Zheng
et al., 2023), which flexibly compare these visual components against diverse surface realizations.

As POSH’s coarse scores are grounded in its granular scores, it is interpretable, providing clear
insights into the errors driving model performance. Moreover, because POSH is entirely open-
weight, it is inexpensive to use and perfectly replicable, an important pre-requisite for both adoption
by researchers and deployment by practitioners that is not afforded by closed models.

Efforts to introduce metrics for longer generations have been constrained by a lack of human judg-
ments, especially at a granular scale and for diverse imagery (see Table 1). To address this, we
introduce DOCENT, a novel benchmark whose focus is visual art. DOCENT contains paintings,
sketches and sculptures with expert-written assistive text that exhaustively describes features like
clothing, physical orientation, relative positioning and gaze, drawn from the U.S. National Gallery
of Art (see Figs. 2 and 3). It includes generations from current VLMs with judgments from art
history students of their mistakes, omissions and overall quality at two resolutions: granular and
coarse. Thus, DOCENT enables evaluating description2 metrics and descriptions themselves.

We validate POSH against the human judgments in DOCENT. We show that POSH recovers hu-
man description rankings more often (+3 percentage points) and achieves stronger correlations with
human-derived scores (+0.05 Spearman ρ) than existing overlap and open-weight alternatives (e.g.
SPICE, CAPTURE, LLaVa-Critic), even surpassing GPT4o-as-a-Judge. Moreover, using judgments
in CapArena (Cheng et al., 2025), we show this strength is robust to image type. Then, given its
calibration, we experiment with using POSH as a reward function for describing the images in DO-
CENT and find that this yields meaningfully better descriptions than supervised fine-tuning (SFT).

Finally, using POSH, we characterize the performance of open and closed models in describing the
artwork in DOCENT, establishing a difficult new task. In so doing, we extend detailed description
to a technically challenging and socially impactful domain: assistive text generation for artwork,
whose visual complexity and diversity stress VLMs (Bengamra et al., 2024) (see Fig. 1).

In summary, our contributions are:
1POSH (PrOofing Scene grapHs) can judge if your detailed descriptions are what you (really really) want.
2AI research often uses caption and alt-text interchangeably. However, according to Web Content Accessi-

bility Guidelines, captions are related to an image while alt-text conveys the information in an image. As our
focus is evaluating generations that could serve as alt-text, we use the term description.

2
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1. We propose POSH, a new metric for detailed description evaluation. POSH is interpretable,
producing coarse scores grounded in granular scores that are localized to text spans.

2. We present DOCENT, a new detailed description benchmark with 1, 750 expert-written art
descriptions and 900 granular & coarse judgments of generations from informed raters.

3. We show POSH correlates more with DOCENT’s judgments than existing metrics and
GPT4o while being replicable. On CapArena, we confirm POSH is robust to image type.

4. We demonstrate that using POSH as a reward function outperforms SFT on DOCENT.

5. Using POSH and DOCENT, we evaluate both open and closed models on detailed descrip-
tion of artwork, establishing a socially impactful new task to gauge VLM progress.

2 RELATED WORK

Image description is under-specified – the correct way to describe an image is often task-specific.
This is especially true for assistive text which has context-dependent requirements (Kreiss et al.,
2022). Moreover, in such sensitive applications, correlated failures between reference-free metrics
and VLMs relying on similar components could prove dangerous to end users (Deutsch et al., 2022).
Thus, our focus is reference-based evaluation. Traditional metrics were not designed to evaluate long
text and can involve truncation due to limited context length (e.g. CLIPScore) (Papineni et al., 2002;
Lin, 2004; Banerjee & Lavie, 2005; Vedantam et al., 2015; See et al., 2017; Hessel et al., 2021; Sarto
et al., 2023). Recent work has explored LLMs/VLMs-as-Judges though this requires potentially
expensive API calls and offers limited replicability (Chan et al., 2023; Cheng et al., 2025). Even
when replicable, they do not provide interpretable, grounded granular scores (Xiong et al., 2024).

While prior metrics like SPICE and CAPTURE leverage scene graphs, they forgo their rich structure
by ignoring object attachment (Anderson et al., 2016; Dong et al., 2024). This favors generations
with misattributed details (as in Fig. 1). In summarization, Scialom et al. (2021) use question gener-
ation and answering (QA) to compare a summary and its source. In text-to-image generation, Cho
et al. (2024) use GPT4 to extract and verify a scene graph from a visual prompt. POSH extends these
approaches to detailed description evaluation that is replicable and interpretable. With small models,
it extracts scene graphs to use as structured rubrics for guiding an open-weight LLM-as-a-Judge.

Evaluating such a metric requires human judgments of model generations. Though there are many
detailed image description benchmarks (Urbanek et al., 2024; Onoe et al., 2024; Garg et al., 2024;
Lu et al., 2025; Ye et al., 2025), most release no such judgments. One notable exception is CapArena
which contains coarse rankings of descriptions for web imagery (Cheng et al., 2025). In contrast, our
new dataset, DOCENT contains both granular and coarse judgments, enabling the evaluation of
fine-grained metrics like POSH. Moreover, it expands detailed description to artwork whose scene
dynamics and expert-written references are considerably more complex (see Table 1).

Table 1: Detailed image description benchmarks with summaries of their images, reference descrip-
tions (where detail is average # of entities + attributes + relations) and judgments (where source is
the type of annotator used and time is the average time per judgment). Most benchmarks release
no human judgments. In contrast, DOCENT contains both granular and coarse judgments of long
descriptions of visually complex artwork elicited from annotators knowledgeable in art.

Name Images Reference Descriptions Judgments
Source Source Words Detail Source Type Time (min) #

DCI web crowd 133 71

no judgmentsDOCCI web crowd 122 66
CompreCap web crowd - -
DeCapBench uses ImageInWords

ImageInWords web crowd+ 193 113 no judgments with references3

DetailCaps web model 154 95 model coarse - 14.4K
CapArena uses DOCCI skilled coarse 2.4 5.6K
DOCENT art expert 251 161 skilled granular 18 300

(ours) coarse 5 600

3
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Figure 2: POSH, a metric for detailed description evaluation, that produces granular and coarse
scores. Step 1: Given a generated description and its reference, POSH extracts scene graphs that
reduce each text’s surface diversity to its objects, attributes and relations. Step 2: Using each scene
graph as a structured rubric, POSH produces granular scores for the presence of its components in
the other text through QA. Step 3: POSH aggregates these granular scores for each scene graph to
produce interpretable coarse scores for mistakes and omissions.

3 POSH: A NEW METRIC FOR DETAILED IMAGE DESCRIPTION

POSH is a reference-based metric for detailed image description evaluation that takes two descrip-
tions, a generation and its reference, and then extracts scene graphs from each to use as structured
rubrics for granular and coarse evaluation of mistakes (i.e. precision) and omissions (i.e. recall).

It does so in three steps (Fig. 2): Step 1) It extracts scene graphs from a generation and its reference
that preserve object attachments. Step 2) It evaluates the presence of generation scene graph com-
ponents in the reference (and reference scene graph components in the generation) through question
answering with an LLM to identify granular mistakes (and omissions). Step 3) It produces coarse
scores for mistakes and omissions grounded in these granular scores. We discuss each step below.

Scene Graph Extraction As in SPICE (Anderson et al., 2016), given a description d, a scene
graph G(d) is a structured representation of d. Specifically, G(d) = ⟨O(d), E(d),K(d)⟩ where
O(d) ⊆ C is a set of objects, E(d) ⊆ O(d)×A is a set of attributes associated with each object and
K(d) ⊆ O(d)×R×O(d) are a set of relation edges between objects. C, A and R are open-world
sets of all possible object, attribute and relation classes.

Given a generation gen with its reference ref we extract sentence-level scene graphs
Gi(gen), Gj(ref) for each using off-the-shelf dependency parsing and combine them via corefer-
ence resolution (Honnibal et al., 2020; Martinelli et al., 2024). This produces scene graphs with
full coverage of each text where each component is localized to text spans, allowing for grounded,
interpretable scoring. We provide pseudocode for this extraction in Appendix A.1.1.

Granular Scoring Given a description d, its scene graph G(d) and a different description d′, we
apply the function Ψ to every component c ∈ G(d) to produce a score reflecting its presence in d′.

We implement this function via question answering. We produce templated questions for each scene
graph component (object, attribute and relation) c ∈ G(d) and prompt an open-weight LLM to
quantify the degree to which c is described in d′. This avoids forcing an alignment between the
components of G(d) and G(d′). For example, in Fig. 2, the reference describes the figures in the
image as a “trio.” Question answering ensures that a generation that refers to all three individually
is not penalized for failing to include such collectives.

As objects with the same class may appear many times in a scene graph (e.g., a description of
multiple men), questions require the use of unique identifiers (e.g., “woman in white” in Fig. 2) to

3The judgments in IIW compare 1) paired references and 2) paired generations for images with no refer-
ences. As such, they cannot be used to evaluate a reference-based metric.
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Figure 3: DOCENT, our newly introduced benchmark, is the first to contain both granular (top)
and coarse (bottom) judgments from informed raters of detailed descriptions of artwork.

disambiguate such instances in d′. As the identifier used in d′ (if any) is not known a priori, we
test candidate identifiers in three passes, first considering only objects not part of any other objects
in G(d) (e.g., “man” but not “face of the man”), then objects that are part of other objects in G(d)
(e.g., “face of the man”) and finally attributes and relations of objects identified as present in d′.

When collecting unique candidate identifiers for an object o ∈ O(d), we consider its class name (e.g.
“man”), its surface form (e.g. “musician”), its attributes (e.g. “tall man”), its relations (e.g. “man on
horse”) and if part of a previously identified object, its “part-of” relation (e.g. “face of tall man”).
We re-write these identifiers using our LLM to improve their fluency and then test each one in bulk
for their presence in d′. We use the simplest identifier confirmed present by our LLM (if any) to
evaluate o’s attributes and relations. We provide pseudocode for this templating in Appendix A.1.2.

We produce granular mistake scores π for every component of G(gen) and granular omission scores
ρ for every component of G(ref):

π(cgen) = Ψ(cgen, ref),∀cgen ∈ G(gen) ρ(cref) = Ψ(cref, gen),∀cref ∈ G(ref)

Coarse Scoring To maintain interpretability, we calculate coarse scores for mistakes (i.e. preci-
sion) and omissions (i.e. recall) by averaging over our granular scores directly:

Mistakes = meanc∈O(gen)(π(c)) Omissions = meanc∈O(ref)(ρ(c))

We note this is a natural place to introduce tunable weights (as in Dong et al. (2024)) to adapt POSH
to particular datasets. As we aim to demonstrate robustness, we leave these terms unweighted.

4 DOCENT: A NEW BENCHMARK FOR DETAILED DESCRIPTION OF ART

DOCENT is a benchmark for evaluating detailed description metrics and detailed descriptions
themselves. It consists of 1, 750 works of art with expert-written references from the Open Data
Program at the U.S. National Gallery of Art (NGA)4. For 100 of these images, we produce four
generations from current small and frontier VLMs and collect 300 granular (for 75 images) and 600
coarse judgments from annotators knowledgeable in art of mistakes and omissions5. On average,
coarse judgments took 5 minutes and granular judgments took 18 minutes (six annotation days).
This highlights both the cost of manual evaluation and the need for metrics that are reliable proxies.

We include summary statistics in Table 1 and example judgments in Fig. 3.

4https://www.nga.gov/open-access-images/open-data.html
5We forgo fluency as recommended by Kasai et al. (2022)
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Image / Reference Selection While the majority of these works are paintings, they include
sketches, statues and lithographs (e.g., the bird in Fig. 3), all in the public domain. These im-
ages span a diverse set of styles (e.g., Baroque, Renaissance, Impressionism, Post-Impressionism),
themes (e.g., war, courtship, still life, religion) and topics (e.g., fishing, drinking, animals, boating).

The accompanying references are detailed descriptions whose purpose is accessibility – as such,
they follow guidelines6 that include tips for describing color (e.g., “color can be likened to temper-
ature”) and handling ambiguity (e.g, “describe what makes something ambiguous”). These context
informed requirements highlight the need for reference based metrics (Kreiss et al., 2022).

Compared to existing detailed image description benchmarks, DOCENT contains considerably
more visual complexity (see Table 1). On average, its images contain 16% more objects and nearly
twice as many people7 who require description of their orientation, features, clothing, etc. Conse-
quently, the average length and scene graph size of its reference descriptions are nearly double.

Model Selection We generate detailed descriptions for 100 images in DOCENT from four cur-
rent VLMs that span transparency and model size (from open data/open weight to frontier models):
LLaVA-1.6-7B (Liu et al., 2024), Molmo-D-7B (Deitke et al., 2024), GPT4o and Claude
Sonnet 3.5. A metric that discriminates among these generations similarly to their human judg-
ments could gauge progress in detailed image description in small and large VLMs over time. Ad-
ditional details (prompts, date of API access) can be found in Appendix A.2.1.

Annotators Given the complexity of our images and the detail of their expert descriptions, we
recruit 24 art history undergraduate majors, masters students and PhD students with domain famil-
iarity to provide high quality judgments of generations. All annotators were sighted with full color
vision and native speakers of English. They were compensated at a rate of $22/hour for their time.8

Granular Judgments Half of our annotators identify mistakes and omissions in our model gen-
erations. For each image, an annotator is shown its reference and then its four model generations
in random order. First, they look at the image, read the reference and then the current generation.
Next, by selecting narrow text spans, annotators first identify mistakes in the generation (i.e. pre-
cision errors) and then omissions in the reference that are not in the generation (i.e. recall errors).
When identifying omissions, as in Kasai et al. (2022), we ask annotators to mentally correct narrow
mistakes in the generation first to avoid double-penalizing a model for both incorrect specificity and
lack of specificity. For example, a generation that describes a woman as a man is an error in precision
but not in recall. We include our task instructions and interface9 screenshots in Figs. 4 and 6.

Coarse Judgments The other half of our annotators provide coarse judgments of our model gen-
erations. For a given image, an annotator is shown its reference and two generations (#1 and
#2) in random order and asked to rank the generations in terms of mistakes (i.e. precision),
omissions (i.e. recall) and overall quality. These pairwise judgments avoid some of the
inter-annotator inconsistency of Likert ratings, especially for long text (Novikova et al., 2018).

Annotators select among five choices for each dimension: #1 much better, #1 slightly
better, equal, #2 slightly better and #2 much better. As with our granular judg-
ments, we ask annotators to mentally correct narrow mistakes (i.e. precision errors) in each gener-
ation before judging omissions. To avoid favoring previously seen generations, we ensure no anno-
tator sees the same generation more than once. We include our task instructions and screenshots of
our annotation interface9 in Figs. 5 and 7.

Agreement For a given image, each generation / pair of generations receives at least one granular
and one coarse judgment respectively. For 15% of our tasks, we collect additional judgments from
our annotators (2 for coarse, 1 for granular). Additionally, for 20 granular tasks and 30 coarse
tasks, we collect expert judgments from a PhD in art history who authors assistive text at an art

6www.nga.gov/visit/accessibility/collection-image-descriptions
7As measured by OneFormer Jain et al. (2023)
8This study was conducted under an approved IRB which will be specified upon publication.
9Hosted on Label Studio (https://labelstud.io)
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museum. We use these extra judgments to calculate agreement in two ways (among our annotators
and between our annotators and our expert). We report agreement in Tables 4 and 5 of the Appendix.

For our granular judgments, as recommended by Hripcsak & Rothschild (2005) for span annota-
tion tasks where the boundaries of negative examples (i.e. non-errors) are ill-defined, we measure
agreement using the relaxed F1 (matching spans that contain 50% overlapping tokens). Under this
measure, our student annotators exhibit strong agreement among themselves and with our expert.

Our coarse judgments exhibit moderate inter-annotator agreement, with Krippendorf’s α = 0.509,
0.409 and 0.459 for mistakes, omissions and overall quality (Landis & Koch, 1977). This level of
agreement is unsurprising for coarse detailed description evaluation – judgment requires weighing
the relative importance of each text’s granular errors and is consequently more subjective. Neverthe-
less, our student annotators exhibit moderate to strong correlations with our expert, with significant
Pearson ρ values of 0.727, 0.501 and 0.492 for mistakes, omissions and overall quality respectively.

How well do these VLMs describe art? When considering the performance of the four models
included in DOCENT, we observe expected trends, adding to our confidence in the quality of our
judgments: the smaller models make more mistakes and have more omissions than the larger models
(see Tables 4 and 5).Though most of the models make few mistakes, they all struggle with omissions.
The best model, gpt4o covers only 44.0% of the visual information conveyed in DOCENT’s
references. Raising this requires continued prompt iteration, highlighting the need for an automated
metric that can reliably measure both granular and coarse differences in mistakes and omissions.

5 EXPERIMENTS

POSH We extract sentence-level scene graphs using en core web trf from Honnibal et al.
(2020), a transformer trained to perform dependency parsing. To merge objects across these scene
graphs while preserving attribute and relation attachments, we use maverick-mes-ontonotes
from Martinelli et al. (2024) to perform co-reference resolution. Our QA scorer Ψ is qwen-3-14b
(Yang et al., 2025). We template evaluation questions for each scene graph component (as in Fig. 2),
re-write candidate identifiers using Ψ to improve fluency and then prompt Ψ to answer each tem-
plated presence question by predicting a number between 1 and 5. We extract scores by taking the
weighted average over the token logits for each number as in Liu et al. (2023). When determin-
ing object presence, we use a threshold of 2, determined through tuning on a small hand-annotated
validation set. We provide further implementation details and all prompts used in Appendix A.1.

Benchmarks We evaluate POSH against the judgments in DOCENT and CapArena.

DOCENT is our new detailed description benchmark containing judgments from knowledgeable
human annotators: granular mistake and omission spans for 300 individual generations and coarse
scaled rankings of mistakes, omissions and overall quality of 600 paired generations. We evaluate
granular metrics on this benchmark using macro F1 where we credit/penalize a model for predict-
ing each annotated/unannotated token. Our coarse judgments are in the form (text1, text2, score)
where score indicates how much better or worse text1 is than text2. We evaluate each coarse met-
ric m by calculating its 1) pairwise accuracy (whether it picks the better text or a tie, using a tie
threshold inferred from the gold tie rate) and 2) Spearman rank ρ and Kendall’s τ correlations be-
tween m(text1)−m(text2) and score, a common practice in machine translation metric evaluation
(Kocmi et al., 2021). More details can be found in Appendix A.3.4.

CapArena (Cheng et al., 2025) contains 3, 361 images and 10, 348 detailed descriptions generated
from 14 current VLMs. 5, 599 pairs of these generations receive coarse judgments from human raters
of the better generation (or “tie”). We include CapArena, which contains diverse images drawn from
the web, to validate metric robustness. However, we note the dramatic simplicity of its images and
references compared to those in DOCENT (see Table 1). 64% of its images10 contain fewer than
two objects and 95% depict fewer than two people (compared to 27% and 52% in DOCENT). A
metric is evaluated on CapArena at the caption-level (whether it picks the better text or a tie, using a
tie threshold inferred from the gold tie rate) and at the model-level (Spearman’s rank and Kendall’s
τ correlation between ELO rankings derived from metric predictions and gold judgments).

10As measured by OneFormer (Jain et al., 2023)
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Table 2: Granular metrics evaluated on DOCENT. Reported numbers are the maximum F1 when
identifying mistakes and omissions across all alerting thresholds. POSH is best at predicting both
mistakes (which are relatively rare) and omissions (which are relatively common). As POSH’s
coarse scores are aggregated from its granular scores, this demonstrates its interpretability.

Random 4GramEmbed SGEmbed POSH

Mistakes F1 0.386 0.513 0.513 0.559

Omissions F1 0.491 0.505 0.634 0.680

Granular Baselines Our work is the first to introduce both a metric and a benchmark for gran-
ular evaluation of detailed descriptions. As such, this limits our baselines to those able to predict
localized mistakes and omissions (i.e., the spans where errors occur). We consider two embedding-
based approaches, using Qwen/Qwen3-Embedding-8B from Yang et al. (2025): 4GramEm-
bed, which embeds and compares 4-grams from a generation and its reference, and SGEmbed,
which embeds and compares components from the scene graphs of a generation and its reference.
As these approaches (and POSH) produce span scores, we report the maximum F1 scores for mis-
takes and omissions across all alerting thresholds. More details can be found in Appendix A.3.2.

Coarse Baselines Though POSH is a text-only reference-based metric, we select a representa-
tive set of reference-free (requiring only an image) and reference-based (requiring a gold standard)
pointwise metrics (i.e. produce numerical scores) as our baselines. These include n-gram overlap
metrics like BLEU (Papineni et al., 2002), ROUGE-L-Sum (See et al., 2017), METEOR (Banerjee
& Lavie, 2005) and CIDER (Vedantam et al., 2015) and model-based metrics like SPICE (Anderson
et al., 2016), CLIPScore (Hessel et al., 2021) and CAPTURE (Dong et al., 2024). Additionally,
we consider several LLMs/VLMs-as-a-Judge11: FLEUR (Lee et al., 2024), Prometheus (Kim et al.,
2023), LLaVA-Critic (Xiong et al., 2024), DCScore Ye et al. (2025), Qwen-3 (Yang et al., 2025)
and GPT4o/GPT5 in three settings (reference-free with image, reference-based without image and
reference-based with image). More details can be found in Appendix A.3.3.

Reward Function Finally, given the potential of a well-calibrated metric as a verifier in reinforce-
ment learning (RL), we evaluate POSH as a reward function. We train Qwen2.5-VL-7B on the
1, 000 images in DOCENT’s training set in two settings: 1) supervised fine-tuning (SFT), and 2)
RL with DAPO (Yu et al., 2025) using POSH. We collect coarse judgments (as in Section 4) for 40
generation pairs from graduate students in NLP. More details can be found in Appendix A.3.5.

6 RESULTS & DISCUSSION

PoSh as a Granular Metric Table 2 presents the performance of POSH and our selected met-
rics on identifying the mistakes and omissions in DOCENT. Given the imbalanced nature of our
data (where mistakes are infrequent and omissions are common), we report macro averages for each
subtask, measuring how well each approach localizes errors within a generation and its reference
respectively. First, we note that this task is difficult. The considerable room for improvement high-
lights the value of a benchmark like DOCENT that contains granular judgments of textual spans.
Even so, POSH achieves the highest F1 in mistake (0.564) and omission (0.675) localization. As
its coarse scores are aggregated from these granular scores, this demonstrates its interpretability.

PoSh as a Coarse Metric Table 3 presents the performance of POSH and the best baselines on
predicting the coarse judgments in DOCENT and CapArena (full results in Appendix A.4.1).

On DOCENT, across all three dimensions, POSH outperforms every existing replicable metric
(i.e., metrics not reliant on an API), yielding a 0.11 increase in Spearman ρ for mistakes (25% ↑),
a 0.07 increase for omissions (14% ↑) and a 0.05 increase for overall quality (9% ↑) over the next
best. It even outperforms GPT4o (in all settings) and text-only GPT5 (on omissions and overall

11CLAIR/Faithscore were not included due to complications with their codebases (Chan et al., 2023; Jing
et al., 2024). Due to cost (estimated at $1, 000), we only evaluate DCScore (Ye et al., 2025) on DOCENT.
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Table 3: Selected coarse metrics evaluated on DOCENT and CapArena, identified with Θ (param-
eter count, in billions), (requires a reference), (requires an image) and (replicable). “acc”
indicates accuracy at predicting the better generation (or “tie”) in each judged pair. For DOCENT,
ρ / τ indicate the Spearman rank / Kendall’s τ correlations between differences in the metric and
differences in the rank of the generations in each pair. For CapArena, ρ / τ indicate the Spearman
rank / Kendall’s τ correlations between model ELO rankings derived from metric scores and human
judgments. Bold indicates the best replicable metric while underlining indicates the best metric
overall. Gray cells indicate correlations that are not statistically significant at α = 0.05. POSH beats
nearly all baselines, including GPT4o, across both benchmarks in all settings (caption ranking of
mistakes, omissions and overall quality & model ranking) while remaining perfectly replicable.

DOCENT CapArena
Mistakes Omissions Overall Quality Desc Model

acc ρ τ acc ρ τ acc ρ τ acc ρ τ

length ✓ 30.5 -0.270 -0.206 37.8 -0.002 -0.001 38.0 -0.160 -0.121 58.7 0.710 0.582

SPICE ✓ ✓ 41.3 0.308 0.234 55.0 0.464 0.360 58.5 0.458 0.349 41.7 0.275 0.231
CAPTURE ✓ ✓ 43.3 0.259 0.194 53.8 0.447 0.340 56.0 0.453 0.347 52.5 0.613 0.538
Qwen3 32 ✓ ✓ 57.7 0.282 0.235 53.5 0.286 0.253 61.2 0.289 0.257 56.2 0.899 0.714
LLaVa Critic 72 ✓ ✓ ✓ 62.8 0.412 0.351 57.0 0.509 0.430 66.8 0.546 0.461 64.0 0.987 0.934
DCScore ✓ ✓ 62.8 0.541 0.422 54.0 0.395 0.298 62.8 0.471 0.362 - - -
GPT4o ✓ ✓ 58.5 0.484 0.396 56.0 0.380 0.303 67.3 0.510 0.402 55.4 0.890 0.802
GPT5 ✓ 62.5 0.511 0.423 53.2 0.421 0.332 68.0 0.540 0.440 59.1 0.956 0.846

POSH 14 ✓ ✓ 60.5 0.517 0.404 62.3 0.579 0.450 70.0 0.596 0.464 59.5 0.938 0.802

quality). Among all metrics, DCScore (Ye et al., 2025) proves best at predicting mistakes. However,
its reliance on GPT4o to extract and verify factoids fails to achieve full coverage of reference detail,
underperforming in predicting omissions and overall quality. Despite employing a smaller LLM,
POSH’s use of dependency parsing and coreference resolution to extract scene graphs avoids this.

On CapArena, POSH achieves higher caption-level accuracies and model-ranking correlations than
nearly every existing open-weight metric and GPT4o. The sole exception is LLaVa Critic, a much
larger VLM-as-a-Judge (Xiong et al., 2024). This is driven in part by the simplicity of CapArena (see
Table 1). On the subset of CapArena depicting three or more people (167 judgments), each of whom
requires careful description, POSH outperforms LLaVa Critic with model ranking correlations
of ρ = 0.776, τ = 0.648 compared to ρ = 0.686, τ = 0.550. Thus, POSH is robust to image
type, excelling in visually complex cases that are of particular interest in detailed image description.

PoSh as a Reward Function In Table 7 of the Appendix, we report annotator agreement and
aggregate preferences between SFT and DAPO with POSH. In each dimension of interest, a POSH
generation earns a score between −2 and 2 based on how much worse or better it is than its SFT
counterpart. While POSH-tuned generations had more mistakes (an average score of −0.243), these
were incurred in service of much fewer missing details (+0.432), resulting in higher overall
quality (+0.135). This speaks to the strength of POSH when optimized directly.

DOCENT Leaderboard Finally, in Fig. 9, we plot the POSH scores of VLMs in describing the
art in DOCENT. While closed models like Gemini 2.5 Pro lead, open models remain competitive.
Improvements will require continued iteration, informed in part by POSH’s granular scores.

7 CONCLUSION

We present POSH, a novel metric for detailed image description that extracts scene graphs to use
as structured rubrics for guiding LLMs-as-a-Judge, providing interpretable, replicable scores. To
validate POSH, we introduce DOCENT, a new benchmark with expert-written descriptions of visu-
ally complex artwork along with granular and coarse judgments of generations from knowledgeable
raters. We show that POSH correlates better than other metrics with these judgments, is robust to
image type and is a capable reward function. Through POSH and DOCENT, we introduce a leader-
board for a new challenging task, detailed image description of artwork. It is our hope that this work
will drive progress in meaningful areas such as assistive text generation for artwork and beyond.
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8 ETHICS STATEMENT

The judgments in DOCENT were collected under an approved IRB protocol with all annotator data
anonymized and participants receiving fair compensation (at $22/hour) for their time and expertise.

All of the 1, 750 artwork images in DOCENT are in the public domain, and the expert-written
reference descriptions were published by the U.S. National Gallery of Art under their Open Data
Program12 specifically for research purposes, ensuring appropriate use and attribution.

While this work aims to benefit accessibility applications for blind and low-vision users, we ac-
knowledge that direct community involvement in the development process would strengthen future
iterations. However, we note that the expert reference descriptions were written according to the
National Gallery of Art’s accessibility guidelines13 which lay out best practices for assistive text.

Finally, as with other computer vision systems, this work could theoretically be applied to surveil-
lance contexts, but our focus on detailed description does not introduce novel privacy risks be-
yond those inherent to existing image analysis technologies. The primary intended applica-
tion—improving accessibility—aligns with beneficial societal outcomes.

9 REPRODUCIBILITY STATEMENT

A core motivation behind POSH is improving replicability in detailed image description evaluation
through the introduction of a performant open-weight metric. In that spirit, we ensure full repro-
ducibilty of our findings by:

1. including comprehensive technical details in the Appendix

2. publishing the code for both our metric and our metric evaluations at https://
anonymous.4open.science/r/posh

3. publishing our benchmark at https://anonymous.4open.science/r/posh/
docent

4. making our models and our benchmark available to the broader research community on
HuggingFace
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A APPENDIX

A.1 POSH

A.1.1 SCENE GRAPH EXTRACTION

While we provide the complete implementation for our scene graph extraction in our codebase, we
include simplified pseudocode below:
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def GetGraph(text):
doc = ParseTextWithSpacy(text)
components = ExtractComponents(doc)
corefs = GetCorefWithMaverick(doc)

entities, relations = [], []
for each component:

if IsNoun(component):
if HasEarlierMention(component):

UpdateExistingEntity(
entities, component

)
else:

CreateNewEntity(
entities, component

)

for each component:
if IsAdjective(component):

UpdateAtributes(
entities, component

)
elif IsVerb(component):

UpdateVerbRelations(
relations, component

)
elif IsPrep(component):

UpdatePrepRelations(
relations, component

)

return (entities, relations)

A.1.2 GRANULAR QA TEMPLATING

While we provide the complete implementation for our question templating in our codebase, we
include simplified pseudocode below:

def TemplateEntityQuestions(
text, entities

):
colls = GetCollisions(
entities

)

questions = []
for e in entities:

identifiers = []
if IsEmpty(colls):

identifiers.add(e.text)

for each attr in e:
if IsUnique(attr, colls):

identifiers.add(
attr + e.text

)

if len(identifiers) > 0:
AddToQuestions(identifiers)
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continue

for each rel in e:
if IsUnique(rel, colls)

identifiers.add(
rel.head +
rel.text +
rel.tail

)

AddToQuestions(identifiers)

ReWriteIdentifiers(questions)

def TemplateAttrRelQuestions(
text, entities

):
questions = []
for e in entities:

for attr in e:
AddToQuestions(

attr, e.identifier
)

for rel in e:
AddToQuestions(

rel, e.identifier
)

A.1.3 PROMPTS

Entity Identifier Rewrite Prompt (for attributes)

R e w r i t e ‘ ‘{ e n t i t y i d e n t i f i e r }” i n t o a g r a m m a t i c a l l y c o r r e c t
noun phra se , k e e p i n g a l l d e t a i l s . For example , ‘ ‘ dog s m a l l ”
s h o u l d be r e w r i t t e n as ‘ ‘ t h e s m a l l dog ” . Outpu t ONLY t h e p h r a s e .

Entity Identifier Rewrite Prompt (for relations)

R e w r i t e ‘ ‘{ e n t i t y i d e n t i f i e r }” i n t o a g r a m m a t i c a l l y c o r r e c t
noun phra se , k e e p i n g a l l d e t a i l s . ‘ ‘ c a t jumps on window ”
s h o u l d be r e w r i t t e n as ‘ ‘ t h e c a t jumping on t h e window ” .
Outpu t ONLY t h e p h r a s e .

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Verification Prompt

i f { p r e c i s i o n }
DESCRIPTION1 : { t a r g e t t e x t }

DESCRIPTION2 : { s o u r c e t e x t }
{ e l s e }

DESCRIPTION : { t a r g e t t e x t }

{ i f e n t i t y }
Q: I s an e n t i t y ma tch ing ‘ ‘{ e n t i t y i d e n t i f i e r }”
( from DESCRIPTION2 ) ment ioned i n ( t h e ) DESCRIPTION ( 1 ) ?

{ e l i f a t t r i b u t e }
Q: I s ‘ ‘{ e n t i t y i d e n t i f i e r }” ( from DESCRIPTION2 )
d e s c r i b e d as ‘ ‘{ a t t r i b u t e }” i n ( t h e ) DESCRIPTION ( 1 ) ?

{ e l s e }
Q: I s t h e r e l a t i o n between ‘ ‘{ e n t i t y 1 i d e n t i f i e r }”
and ‘ ‘{ e n t i t y 2 i d e n t i f i e r }” ( i n DESCRIPTION2 )
d e s c r i b e d as ‘ ‘{ r e l a t i o n }” i n ( t h e ) DESCRIPTION ( 1 ) ?

C o n s i d e r p a r a p h r a s e s b u t do NOT i n f e r u n s t a t e d d e t a i l s .

S c o r i n g g u i d e −> 1 : a b s e n t ; 2 : weak h i n t ; 3 : p a r t i a l ;
4 : c l e a r ; 5 : e x p l i c i t & unambiguous .

Respond ONLY wi th an i n t e g e r 1 −5.

A.2 DOCENT

A.2.1 GENERATIONS

We produce generations from the following models:

1. llava-v1.6-mistral-7b-hf on HuggingFace (Liu et al., 2024)
2. Molmo-7B-D-0924 on HuggingFace (Deitke et al., 2024)
3. gpt-4o-2024-08-06, accessed on 1/31/25
4. claude-3-5-sonnet-20241022, accessed on 1/31/25

We use the same prompt (included below). For LLaVA-1.5-7B and Molmo-D-7B, we use nu-
cleus sampling Holtzman et al. with p = 0.9 and a temperature of 0.7.

Detailed Description Prompt

[IMAGE]

G e n e r a t e a d e t a i l e d d e s c r i p t i o n o f t h i s p a i n t i n g , a v o i d i n g
i n t e r p r e t a t i o n and f o c u s i n g on on ly i t s v i s u a l e l e m e n t s .

A.2.2 AVOIDING DOUBLE PENALTIES

In Kasai et al. (2022), after identifying an error in precision, the authors correct the error before
annotating recall. This avoids doubly penalizing a description for errors in specificity which would
unfairly favor more generic descriptions (which are only penalized once, for recall). We instruct our
annotators to do the same. Below, we have manually identified a few cases of its application from
our granular annotations though we note that annotators found our models to be reasonably precise
(Table 4) so this rule was infrequently required.
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Figure 4: The beginning of our granular annotation instructions. The full instructions can
be found on our GitHub: https://anonymous.4open.science/r/posh/docent/
annotation_instructions/granular.pdf.

Figure 5: The beginning of our coarse annotation instructions. The full instructions can be found on
our GitHub: https://anonymous.4open.science/r/posh/docent/annotation_
instructions/coarse.pdf.
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Figure 6: Our granular annotation interface, hosted on Label Studio (https://labelstud.io).

Figure 7: Our coarse annotation interface, hosted on Label Studio (https://labelstud.io).

18

https://labelstud.io
https://labelstud.io


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Due to the length of the generations and descriptions in DOCENT, please consult our codebase for
example judgments: https://anonymous.4open.science/r/posh/docent

A.2.3 DOCENT: AGREEMENT AND JUDGMENT SUMMARY

Table 4: Granular judgments of mistakes and omissions in DOCENT. Left: inter-annotator agree-
ment (relaxed F1, using overlap thresholds of ≥ 1 token and ≥ 50% of tokens); additionally, the
recall R of our expert annotations. Our student judgments exhibit strong inter-annotator agreement
and good coverage of our more sparing (see Fig. 8) error annotations. Right: the average percentage
of tokens not marked as mistakes/omissions for each model (higher is better).

student expert llava molmo claude gpt4oF1 F1@50 R F1 R@50 F1@50

mistakes 0.980 0.604 1.000 0.890 0.652 0.250 0.863 0.898 0.952 0.947
omissions 1.000 0.754 1.000 1.000 0.927 0.475 0.300 0.416 0.399 0.437

Table 5: Coarse judgments of precision, recall and overall quality in DOCENT. Top: inter-
annotator agreement (Krippendorff α for student, Pearson ρ and average difference for expert).
Bottom: the average relative score of each row model compared to each column model (1 indicates
the row is much better, 5, the column is much better).

mistakes omissions overall quality
student (α) 0.509 0.409 0.459
expert (ρ,∆) 0.727, 0.633 0.501, 0.644 0.492, 0.788

llava molmo claude llava molmo claude llava molmo claude
molmo 2.42 2.32 2.14
claude 1.92 2.37 2.16 2.74 1.87 2.5
gpt4o 1.86 2.3 3.0 2.01 2.54 2.61 1.68 2.21 2.63

A.2.4 DOCENT: GRANULAR AGREEMENT DETAILS

We additionally calculate granular agreement using a more conservative threshold (≥ 50% token
overlap). Here, relaxed F1 remains strong among our art history student annotators (0.612 for mis-
takes, 0.773 for omissions). Though we observe drops in relaxed F1 when compared to our expert,
it is driven by two factors: annotation style, with our expert favoring sparsity, and a relative strict-
ness on the part of our student annotators. This is reflected in the expert annotation recall values in
Table 4 where a majority of the spans identified by our expert were also marked by our student an-
notations for both mistakes (0.652) and omissions (0.927). Thus, our expert annotations are a subset
of our stricter student annotations. We provide a side-by-side example of a student annotation and
an expert annotation in Fig. 8.

A.3 EVALUATION

A.3.1 METRICS

Spearman’s Rank Correlation Coefficient (ρ) assesses the monotonic relationship by calculat-
ing Pearson’s correlation on the ranks of two continuous variables rather than their raw values. It
ranges from −1 to +1, with +1 indicating perfect monotonic increasing relationship and −1 indi-
cating perfect monotonic decreasing relationship. It’s less sensitive to outliers than Pearson’s and
can detect monotonic non-linear relationships. As the coarse annotations in DOCENT specify the
rank of two generated image descriptions, Spearman is well suited for evaluating

Kendall’s τ measures the ordinal association between two variables based on the ranks of the
data. It ranges from −1 to +1, where +1 indicates perfect agreement between the two rankings, 0
indicates no association, and −1 indicates perfect disagreement. Unlike Pearson’s, Kendall’s tau is
non-parametric and robust to outliers, making it appropriate for non-linear relationships and non-
normally distributed data.
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Figure 8: A comparison of our student and expert judgments of omissions for the same genera-
tion. Most differences are due to 1) students preferring the specificity of terms like “women” over
“figures” and 2) students annotating all the attributes and relations of entities marked as missing,
e.g., “skin”, “halos”, “noses”, and the span beginning “painted with a scene...”. Generally, expert
judgments are a subset of our student judgments for these reasons.
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A.3.2 GRANULAR BASELINES

4GramEmbed We extract all of the 4-grams from each sentence of a generation and its refer-
ence, embed them using Qwen/Qwen3-Embedding-8B (Reimers & Gurevych, 2019; Yang et al.,
2025) and then calculate the maximum pairwise similarities between generation 4-grams and ref-
erence 4-grams. Generation text spans and reference text spans with maximum pairwise similarity
scores lower than 0.7 were predicted as mistakes and omissions respectively, a threshold chosen to
maximize the macro F1 scores reported for 4GramEmbed in Table 2.

SGEmbed We extract all of the components (objects, attribute-object pairs, and object-relation-
object triples) from the scene graphs of a generation and its reference extracted for POSH in Sec-
tion 3, embed them using Qwen/Qwen3-Embedding-8B (Reimers & Gurevych, 2019; Yang
et al., 2025) and then calculate the maximum pairwise similarities between the generation com-
ponents and the reference components. Generation components and reference components with
maximum pairwise similarity scores lower than 0.8 were predicted as mistakes and omissions re-
spectively, a threshold chosen to maximize the macro F1 scores reported for SGEmbed in Table 2.

A.3.3 COARSE BASELINES

When prompting GPT4o and GPT514 to evaluate our generated detailed image descriptions, we
use three different prompts depending on whether we are including the image (reference free) or
including the reference. Additionally, we experiment with a more complicated prompt that includes
a detailed scoring rubric for each score type (mistakes, omissions and overall quality) though we
find that this setting underperforms the simpler prompts below.

Image Only

[IMAGE]

G e n e r a t e d D e t a i l e d D e s c r i p t i o n : [GENERATION]

P l e a s e p r o v i d e n u m e r i c a l s c o r e s ( from 0 t o 5 ) f o r t h e p r e c i s i o n
( e . g . m i s t a k e s i n t h e g e n e r a t e d d e s c r i p t i o n ) , r e c a l l ( e . g .
m i s s i n g d e t a i l s from t h e image ) , and o v e r a l l q u a l i t y o f t h e
g e n e r a t e d d e t a i l e d d e s c r i p t i o n compared t o t h e image .
Outpu t your answer as a JSON d i c t i o n a r y wi th t h e keys
‘ p r e c i s i o n ’ , ‘ r e c a l l ’ , and ‘ o v e r a l l q u a l i t y ’ .

Reference Only

R e f e r e n c e D e t a i l e d D e s c r i p t i o n : [REFERENCE]

G e n e r a t e d D e t a i l e d D e s c r i p t i o n : [GENERATION]

P l e a s e p r o v i d e n u m e r i c a l s c o r e s ( from 0 t o 5 ) f o r t h e p r e c i s i o n
( e . g . m i s t a k e s i n t h e g e n e r a t e d d e s c r i p t i o n ) , r e c a l l ( e . g .
m i s s i n g d e t a i l s from t h e r e f e r e n c e d e s c r i p t i o n ) , and o v e r a l l
q u a l i t y o f t h e g e n e r a t e d d e s c r i p t i o n compared t o t h e r e f e r e n c e
d e s c r i p t i o n . Outpu t your answer as a JSON d i c t i o n a r y wi th t h e
keys ‘ p r e c i s i o n ’ , ‘ r e c a l l ’ , and ‘ o v e r a l l q u a l i t y ’ .

14gpt-4o-2024-08-06 and gpt-5-2025-08-07 (with minimal reasoning) accessed on 9/17/2025
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Image & Reference

[IMAGE]

R e f e r e n c e D e t a i l e d D e s c r i p t i o n : [REFERENCE]

G e n e r a t e d D e t a i l e d D e s c r i p t i o n : [GENERATION]

P l e a s e p r o v i d e n u m e r i c a l s c o r e s ( from 0 t o 5 ) f o r t h e p r e c i s i o n
( e . g . m i s t a k e s i n t h e g e n e r a t e d d e s c r i p t i o n ) , r e c a l l ( e . g .
m i s s i n g d e t a i l s from t h e r e f e r e n c e d e s c r i p t i o n ) , and o v e r a l l
q u a l i t y o f t h e g e n e r a t e d d e t a i l e d d e s c r i p t i o n compared t o t h e
image and t h e r e f e r e n c e d e s c r i p t i o n . Outpu t your answer as a
JSON d i c t i o n a r y wi th t h e keys ‘ p r e c i s i o n ’ , ‘ r e c a l l ’ , and
‘ o v e r a l l q u a l i t y ’ .

A.3.4 COARSE METRIC EVALUATION

We convert each coarse judgment of a generation pair (text1, text2, label) in DOCENT to a numer-
ical score s that reflects the relative rank of text1 and text2. If text1 was marked as much better
than text2, s = 2; slightly better than text2, s = 1 and equal to text2, s = 0. Similarly, if
text2 was marked as slightly better than text1, s = −1 and s = −2 if much better than
text1. These numerical scores reflect the relative rank of text1 and text2 and allow us to evaluate
the correlation of different metrics m with the coarse judgments in DOCENT by comparing s to
m(text1)−m(text2) with appropriate measures of monotonicity like Spearman’s rank correlation ρ.

A.3.5 REINFORCEMENT LEARNING

We train Qwen2.5-VL-7B on the 1, 000 images in DOCENT’s training set in two settings:

1. supervised fine-tuning (SFT) with full parameter updates using a learning rate of 1e − 5,
a linear warmup ratio of 0.1, and an effective batch size of 64 for 5 epochs, choosing the
checkpoint with the lowest loss on DOCENT’s validation set

2. DAPO (Yu et al., 2025) with full parameter updates, implemented with TRL (von Werra
et al., 2020), using a learning rate of 1e − 6, 20 warmup steps, 8 generations per sample
(with a temperature of 1.0 and topp = 0.7), ϵ = 0.28, β = 0, and an effective batch size of
64 for a single epoch, choosing the final checkpoint

We ask seven graduate students in NLP to compare and evaluate our SFT and DAPO generations
(greedily sampled) for 40 images from DOCENT’s test set. Additionally, we collect three annota-
tions for five of these images to calculate agreement.

A.4 RESULTS

A.4.1 COARSE

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 6: All coarse metrics evaluated on DOCENT and CapArena, identified with Θ (parameter
count, in billions), (requires a reference), (requires an image) and (replicable). “acc”
indicates accuracy at predicting the better generation (or “tie”) in each judged pair. For DOCENT,
ρ / τ indicate the Spearman rank / Kendall’s τ correlations between differences in the metric and
differences in the rank of the generations in each pair. For CapArena, ρ / τ indicate the Spearman
rank / Kendall’s τ correlations between model ELO rankings derived from metric scores and human
judgments. Bold indicates the best replicable metric while underlining indicates the best metric
overall. Gray cells indicate correlations that are not statistically significant at α = 0.05. POSH beats
all replicable baselines and GPT4o on DOCENT in all settings (mistakes, omissions and overall
quality) while remaining perfectly replicable. Moreover, POSH is robust, achieving the second best
score among replicable metrics on CapArena.

DOCENT CapArena
Mistakes Omissions Overall Quality Desc Model

acc ρ τ acc ρ τ acc ρ τ acc ρ τ

length ✓ 30.5 -0.270 -0.206 37.8 -0.002 -0.001 38.0 -0.160 -0.121 58.7 0.710 0.582

BLEU-4 ✓ ✓ 34.2 -0.070 -0.053 42.5 0.118 0.087 42.8 0.051 0.038 47.4 0.424 0.319
CIDER ✓ ✓ 32.0 -0.118 -0.089 37.5 -0.009 -0.007 37.8 -0.106 -0.079 38.4 -0.279 -0.209
METEOR ✓ ✓ 36.0 -0.103 -0.078 46.2 0.260 0.197 44.8 0.113 0.084 57.6 0.785 0.582
ROUGE-LS ✓ ✓ 37.5 0.251 0.190 44.0 0.214 0.161 47.3 0.210 0.158 45.8 0.180 0.199

SPICE ✓ ✓ 41.3 0.308 0.234 55.0 0.464 0.360 58.5 0.458 0.349 41.7 0.275 0.231
CAPTURE ✓ ✓ 43.3 0.259 0.194 53.8 0.447 0.340 56.0 0.453 0.347 52.5 0.613 0.538
CLIPScore ✓ ✓ 45.3 0.145 0.108 47.0 0.176 0.133 53.5 0.181 0.136 32.5 -0.574 -0.451
FLEUR 13 ✓ ✓ 35.2 -0.053 -0.040 38.5 0.029 0.020 41.2 -0.040 -0.031 45.8 0.393 0.297
Prometheus 8x7 ✓ ✓ 51.2 0.014 0.011 49.8 0.136 0.116 58.5 -0.007 -0.007 53.9 0.859 0.648
Qwen3 32 ✓ ✓ 57.7 0.282 0.235 53.5 0.286 0.253 61.2 0.289 0.257 56.2 0.899 0.714
LLaVa Critic 72 ✓ ✓ ✓ 62.8 0.412 0.351 57.0 0.509 0.430 66.8 0.546 0.461 64.0 0.987 0.934
DCScore ✓ ✓ 62.8 0.541 0.422 54.0 0.395 0.298 62.8 0.471 0.362 - - -
GPT4o ✓ 63.2 0.469 0.400 55.5 0.338 0.274 66.7 0.477 0.393 53.6 0.868 0.692
GPT4o ✓ 53.3 0.324 0.261 50.0 0.277 0.215 60.8 0.388 0.297 56.7 0.867 0.685
GPT4o ✓ ✓ 58.5 0.484 0.396 56.0 0.380 0.303 67.3 0.510 0.402 55.4 0.890 0.802
GPT5 ✓ 66.0 0.584 0.476 55.5 0.454 0.345 69.2 0.593 0.466 56.9 0.916 0.802
GPT5 ✓ 62.5 0.511 0.423 53.2 0.421 0.332 68.0 0.540 0.440 59.1 0.956 0.846
GPT5 ✓ ✓ 68.2 0.604 0.494 56.3 0.477 0.366 67.2 0.602 0.475 62.1 0.934 0.846

POSH 14 ✓ ✓ 60.5 0.517 0.404 62.3 0.579 0.450 70.0 0.596 0.464 59.5 0.938 0.802

Table 7: Annotator agreement (Krippendorff’s α) and aggregate preferences between SFT and
DAPO with POSH. A POSH generation earns a score between −2 and 2 based on how much worse
or better it is than its SFT counterpart. Reported numbers are averages over these scores.

Mistakes Omissions Overall Quality

α 0.235 0.464 0.184

POSH vs SFT −0.243 0.432 0.135
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Figure 9: Performance of open and closed VLMs on DOCENT, as measured by POSH. While open
models are competitive when it comes to mistakes in their detailed descriptions, they lag behind in
their omissions, covering less of DOCENT’s reference descriptions than closed models.
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