POSH: USING SCENE GRAPHS TO GUIDE LLMS-AS-A-JUDGE FOR DETAILED IMAGE DESCRIPTIONS

Anonymous authors

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

028

029

031

032

034

038

040

041

042

043

044

046 047

048

051

052

Paper under double-blind review

ABSTRACT

While vision-language models (VLMs) have advanced into detailed image description, evaluation remains a challenge. Standard metrics (e.g. CIDEr, SPICE) were designed for short texts and tuned to recognize errors that are now uncommon, such as object misidentification. In contrast, long texts require sensitivity to attribute and relation attachments and scores that localize errors to particular text spans. In this work, we introduce POSH, a metric for detailed image description that uses scene graphs as *structured rubrics* to guide LLMs-as-a-Judge, producing aggregate scores grounded in fine-grained errors (e.g. mistakes in compositional understanding). PoSH is replicable, interpretable and a better proxy for human raters than existing metrics (including GPT4o-as-a-Judge). To validate POSH, we introduce a new dataset, DOCENT. This novel benchmark contains artwork, paired with expert-written references, and model-generated descriptions, augmented with granular and coarse judgments of their quality from art history students. Thus, DOCENT enables evaluating both detailed image description metrics and detailed image description itself in a challenging new domain. We show that PoSH achieves stronger correlations (+0.05 Spearman ρ) with the human judgments in DOCENT than the best open-weight alternatives, is robust to image type (using CapArena, an existing dataset of web imagery) and is a capable reward function, outperforming standard supervised fine-tuning. Then, using POSH, we characterize the performance of open and closed models in describing the paintings, sketches and statues in DOCENT and find that foundation models struggle to achieve full, error-free coverage of images with rich scene dynamics, establishing a demanding new task to gauge VLM progress. Through both POSH and DOCENT, we hope to enable advances in important areas such as assistive text generation. We make our metric and our benchmark available at https://anonymous.4open.science/r/posh.

1 Introduction

A picture is worth a thousand words – can vision-language models (VLMs) capture all of them? VLMs have saturated traditional image understanding benchmarks from short captioning to question answering (Li et al., 2025). New, more challenging tasks are needed to measure VLM progress. Detailed image description is of particular interest as it requires *comprehensive* understanding – e.g., in Fig. 1, a VLM must correctly specify *who* is pouring the water. This deep perception is a better proxy for the demands of the real world, where diverse user queries may not be reflected in VQA benchmarks (Chen et al., 2024). Moreover, it enables meaningful applications such as image assistive ("alt") text generation that could greatly expand accessibility online (Mack et al., 2021).

However, making progress on detailed description requires cheap, reliable methods for scoring models. Human evaluation is costly, involving the painstaking comparison of long texts. Even so, there is often no substitute as most metrics were designed for short texts and older models (Berger et al., 2024). Moreover, while metrics that produce a single coarse score of overall quality allow for the ranking of models, they offer little insight into the granular issues driving performance. Granular issues include *mistakes* in each generation, like the positions of the people in Fig. 1, and *omissions* in each reference, like the details of the bird's beak in Fig. 3. Automatically localizing such errors is critical as long generations with similar coarse scores may differ in multiple dimensions of interest

Description A (better)

...In the center stands a figure draped in white cloth around the waist, shown in a humble, bowed posture. To the right, a muscular figure wearing blue robes holds a vessel and is pouring water. On the left, a figure in vibrant orange....

Description B (worse)

...with three figures, all nude. The central figure is a man who appears to be pouring water from a vessel into a basin... To his right, there is another man who is seated on a rock... On the left side, a woman...

BLEU B
METEOR B
CIDEr B
Bert-S B
SPICE B
CAPTURE B

a-Judge PoSh J A

LLM-as-

Figure 1: Failures in attribute/relation attachment are common in detailed image description, especially in dynamic scenes. Here, the *man pouring water* is not *central*. PoSH catches such errors.

(e.g., facial features, body orientations, etc.). Otherwise, prompt and/or model iteration necessitates expensive manual inspection to understand which description aspects need improvement.

In this work, we propose POSH¹, a metric for evaluating detailed descriptions that addresses these challenges. POSH extracts scene graphs from a generated description and its reference to use as *structured rubrics* for an LLM to granularly identify mistakes and omissions (see Fig. 2), pinpointing the textual spans containing errors like attribute/relation mis-attachment. Then, it aggregates these localized errors into coarse scores for mistakes, omissions and overall quality. Thus, POSH weds the strengths of structured methods like scene graphs (Anderson et al., 2016), which reduce descriptions to their consequential visual components, with the strengths of LLMs/VLMs-as-a-Judge (Zheng et al., 2023), which flexibly compare these visual components against diverse surface realizations.

As PoSH's coarse scores are grounded in its granular scores, it is interpretable, providing clear insights into the errors driving model performance. Moreover, because PoSH is entirely openweight, it is inexpensive to use and perfectly replicable, an important pre-requisite for both adoption by researchers and deployment by practitioners that is not afforded by closed models.

Efforts to introduce metrics for longer generations have been constrained by a lack of human judgments, especially at a granular scale and for diverse imagery (see Table 1). To address this, we introduce DOCENT, a novel benchmark whose focus is visual art. DOCENT contains paintings, sketches and sculptures with expert-written assistive text that exhaustively describes features like clothing, physical orientation, relative positioning and gaze, drawn from the U.S. National Gallery of Art (see Figs. 2 and 3). It includes generations from current VLMs with judgments from art history students of their mistakes, omissions and overall quality at two resolutions: granular and coarse. Thus, DOCENT enables evaluating description² metrics and descriptions themselves.

We validate PoSH against the human judgments in DOCENT. We show that PoSH recovers human description rankings more often (+3 percentage points) and achieves stronger correlations with human-derived scores (+0.05 Spearman ρ) than existing overlap and open-weight alternatives (e.g. SPICE, CAPTURE, LLaVa-Critic), even surpassing GPT4o-as-a-Judge. Moreover, using judgments in CapArena (Cheng et al., 2025), we show this strength is robust to image type. Then, given its calibration, we experiment with using PoSH as a reward function for describing the images in DOCENT and find that this yields meaningfully better descriptions than supervised fine-tuning (SFT).

Finally, using POSH, we characterize the performance of open and closed models in describing the artwork in DOCENT, establishing a difficult new task. In so doing, we extend detailed description to a technically challenging and socially impactful domain: assistive text generation for artwork, whose visual complexity and diversity stress VLMs (Bengamra et al., 2024) (see Fig. 1).

In summary, our contributions are:

¹PoSH (PrOofing Scene grapHs) can judge if your detailed descriptions are what you (really really) want.

²AI research often uses *caption* and *alt-text* interchangeably. However, according to Web Content Accessibility Guidelines, *captions* are related to an image while *alt-text* conveys the information in an image. As our focus is evaluating generations that could serve as *alt-text*, we use the term *description*.

- 1. We propose POSH, a new metric for detailed description evaluation. POSH is interpretable, producing *coarse* scores grounded in *granular* scores that are localized to text spans.
- 2. We present DOCENT, a new detailed description benchmark with 1,750 expert-written art descriptions and 900 *granular & coarse* judgments of generations from informed raters.
- 3. We show PoSH correlates more with DOCENT's judgments than existing metrics and GPT40 while being replicable. On CapArena, we confirm PoSH is robust to image type.
- 4. We demonstrate that using PoSH as a reward function outperforms SFT on DOCENT.
- 5. Using POSH and DOCENT, we evaluate both open and closed models on detailed description of artwork, establishing a socially impactful new task to gauge VLM progress.

2 RELATED WORK

Image description is under-specified – the correct way to describe an image is often task-specific. This is especially true for assistive text which has context-dependent requirements (Kreiss et al., 2022). Moreover, in such sensitive applications, correlated failures between reference-free metrics and VLMs relying on similar components could prove dangerous to end users (Deutsch et al., 2022). Thus, our focus is reference-based evaluation. Traditional metrics were not designed to evaluate long text and can involve truncation due to limited context length (e.g. CLIPScore) (Papineni et al., 2002; Lin, 2004; Banerjee & Lavie, 2005; Vedantam et al., 2015; See et al., 2017; Hessel et al., 2021; Sarto et al., 2023). Recent work has explored LLMs/VLMs-as-Judges though this requires potentially expensive API calls and offers limited replicability (Chan et al., 2023; Cheng et al., 2025). Even when replicable, they do not provide interpretable, grounded granular scores (Xiong et al., 2024).

While prior metrics like SPICE and CAPTURE leverage scene graphs, they forgo their rich structure by ignoring object attachment (Anderson et al., 2016; Dong et al., 2024). This favors generations with misattributed details (as in Fig. 1). In summarization, Scialom et al. (2021) use question generation and answering (QA) to compare a summary and its source. In text-to-image generation, Cho et al. (2024) use GPT4 to extract and verify a scene graph from a visual prompt. POSH extends these approaches to detailed description evaluation that is replicable and interpretable. With small models, it extracts scene graphs to use as structured rubrics for guiding an open-weight LLM-as-a-Judge.

Evaluating such a metric requires human judgments of model generations. Though there are many detailed image description benchmarks (Urbanek et al., 2024; Onoe et al., 2024; Garg et al., 2024; Lu et al., 2025; Ye et al., 2025), most release no such judgments. One notable exception is CapArena which contains coarse rankings of descriptions for web imagery (Cheng et al., 2025). In contrast, our new dataset, DOCENT contains both *granular* and *coarse* judgments, enabling the evaluation of fine-grained metrics like POSH. Moreover, it expands detailed description to artwork whose scene dynamics and expert-written references are considerably more complex (see Table 1).

Table 1: Detailed image description benchmarks with summaries of their images, reference descriptions (where detail is average # of entities + attributes + relations) and judgments (where source is the type of annotator used and time is the average time per judgment). Most benchmarks release no human judgments. In contrast, DOCENT contains both granular and coarse judgments of long descriptions of visually complex artwork elicited from annotators knowledgeable in art.

Name	Images	Referen	ce Descr	iptions	Judgments					
Name	Source	Source	Words	Detail	Source	Type	Time (min)	#		
DCI	web	crowd	133	71						
DOCCI	web	crowd	122	66	no judgments					
CompreCap	web	crowd	-	-						
DeCapBench	u	ses Image	eInWords		1					
ImageInWords	web	crowd+	193	113	no.	judgments	s with reference	es^3		
DetailCaps	web	model	154	95	model	coarse	-	14.4K		
CapArena		uses Do	OCCI		skilled	coarse	2.4	5.6 K		
DOCENT	ort	avnart	051	161	skilled	granular	18	300		
(ours)	art	expert	251	101	Skilled	coarse	5	600		

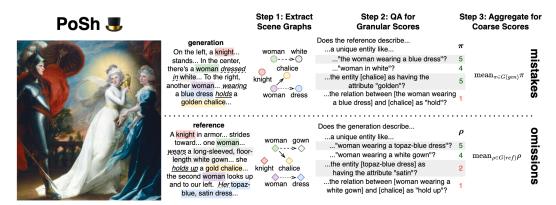


Figure 2: POSH, a metric for detailed description evaluation, that produces granular and coarse scores. **Step 1:** Given a generated description and its reference, POSH extracts scene graphs that reduce each text's surface diversity to its objects, attributes and relations. **Step 2:** Using each scene graph as a *structured rubric*, POSH produces granular scores for the presence of its components in the other text through QA. **Step 3:** POSH aggregates these granular scores for each scene graph to produce interpretable coarse scores for mistakes and omissions.

3 PoSh: A New Metric for Detailed Image Description

POSH is a reference-based metric for detailed image description evaluation that takes two descriptions, a generation and its reference, and then extracts scene graphs from each to use as *structured rubrics* for granular and coarse evaluation of mistakes (i.e. precision) and omissions (i.e. recall).

It does so in three steps (Fig. 2): **Step 1**) It extracts scene graphs from a generation and its reference that preserve object attachments. **Step 2**) It evaluates the presence of generation scene graph components in the reference (and reference scene graph components in the generation) through question answering with an LLM to identify granular mistakes (and omissions). **Step 3**) It produces coarse scores for mistakes and omissions grounded in these granular scores. We discuss each step below.

Scene Graph Extraction As in SPICE (Anderson et al., 2016), given a description d, a scene graph G(d) is a structured representation of d. Specifically, $G(d) = \langle O(d), E(d), K(d) \rangle$ where $O(d) \subseteq C$ is a set of objects, $E(d) \subseteq O(d) \times A$ is a set of attributes associated with each object and $K(d) \subseteq O(d) \times R \times O(d)$ are a set of relation edges between objects. C, A and R are open-world sets of all possible object, attribute and relation classes.

Given a generation gen with its reference ref we extract sentence-level scene graphs $G_i(gen), G_j(ref)$ for each using off-the-shelf dependency parsing and combine them via coreference resolution (Honnibal et al., 2020; Martinelli et al., 2024). This produces scene graphs with full coverage of each text where each component is localized to text spans, allowing for grounded, interpretable scoring. We provide pseudocode for this extraction in Appendix A.1.1.

Granular Scoring Given a description d, its scene graph G(d) and a different description d', we apply the function Ψ to every component $c \in G(d)$ to produce a score reflecting its presence in d'.

We implement this function via question answering. We produce templated questions for each scene graph component (object, attribute and relation) $c \in G(d)$ and prompt an open-weight LLM to quantify the degree to which c is described in d'. This avoids forcing an alignment between the components of G(d) and G(d'). For example, in Fig. 2, the reference describes the figures in the image as a "trio." Question answering ensures that a generation that refers to all three individually is not penalized for failing to include such collectives.

As objects with the same class may appear many times in a scene graph (e.g., a description of multiple men), questions require the use of unique identifiers (e.g., "woman in white" in Fig. 2) to

³The judgments in IIW compare 1) paired references and 2) paired generations for images with no references. As such, they cannot be used to evaluate a reference-based metric.

DOCENT m

Reference omissions

Granular Judgments

A bird in flight with its hooked beak wide open, wings held high, holds a shimmering green and white fish in its talons in this vertical painting. The bird and fish fill the composition against a pale, hazy landscape... The bird surges forward, to our left, its head low...

Generation mistakes

The painting portrays a dynamic scene of a falcon in flight. The falcon, with its wings fully spread, is positioned in the upper left quadrant of the canvas...The falcon's head is turned slightly to the right, giving the impression of movement...

Coarse Judgments

Generation 1

The painting portrays a dynamic scene of a falcon in flight. The falcon, with its wings fully spread, is positioned in the upper left quadrant of the canvas...The falcon's head is turned slightly to the right...

The painting depicts a majestic hawk in mid-flight, its wings fully extended against a light blue sky with wispy white clouds. The hawk's plumage is predominantly white, with dark brown wings and tail feathers featuring lighter brown stripes...

Generation 2

Mistakes: Generation 2 is much better

Omissions: Generation 2 is slightly better

Overall: Generation 2 is much better

Figure 3: DOCENT, our newly introduced benchmark, is the first to contain both *granular* (top) and *coarse* (bottom) judgments from informed raters of detailed descriptions of artwork.

disambiguate such instances in d'. As the identifier used in d' (if any) is not known a priori, we test candidate identifiers in three passes, first considering only objects not part of any other objects in G(d) (e.g., "man" but not "face of the man"), then objects that are part of other objects in G(d) (e.g., "face of the man") and finally attributes and relations of objects identified as present in d'.

When collecting unique candidate identifiers for an object $o \in O(d)$, we consider its class name (e.g. "man"), its surface form (e.g. "musician"), its attributes (e.g. "tall man"), its relations (e.g. "man on horse") and if part of a previously identified object, its "part-of" relation (e.g. "face of tall man"). We re-write these identifiers using our LLM to improve their fluency and then test each one in bulk for their presence in d'. We use the simplest identifier confirmed present by our LLM (if any) to evaluate o's attributes and relations. We provide pseudocode for this templating in Appendix A.1.2.

We produce granular mistake scores π for every component of G(gen) and granular omission scores ρ for every component of G(ref):

$$\pi(c_{gen}) = \Psi(c_{gen}, ref), \forall c_{gen} \in G(gen)$$
 $\rho(c_{ref}) = \Psi(c_{ref}, gen), \forall c_{ref} \in G(ref)$

Coarse Scoring To maintain interpretability, we calculate coarse scores for mistakes (i.e. precision) and omissions (i.e. recall) by averaging over our granular scores directly:

$$\mbox{Mistakes} = \mbox{mean}_{c \in O(\mbox{\it gen})}(\pi(c)) \qquad \qquad \mbox{Omissions} = \mbox{mean}_{c \in O(\mbox{\it ref})}(\rho(c))$$

We note this is a natural place to introduce tunable weights (as in Dong et al. (2024)) to adapt PoSH to particular datasets. As we aim to demonstrate robustness, we leave these terms unweighted.

4 DOCENT: A New Benchmark for Detailed Description of Art

DOCENT is a benchmark for evaluating detailed description metrics and detailed descriptions themselves. It consists of 1,750 works of art with expert-written references from the Open Data Program at the U.S. National Gallery of Art (NGA)⁴. For 100 of these images, we produce four generations from current small and frontier VLMs and collect 300 granular (for 75 images) and 600 coarse judgments from annotators knowledgeable in art of *mistakes* and *omissions*⁵. On average, coarse judgments took 5 minutes and granular judgments took 18 minutes (six annotation days). This highlights both the cost of manual evaluation and the need for metrics that are reliable proxies.

We include summary statistics in Table 1 and example judgments in Fig. 3.

⁴https://www.nga.gov/open-access-images/open-data.html

⁵We forgo fluency as recommended by Kasai et al. (2022)

Image / Reference Selection While the majority of these works are paintings, they include sketches, statues and lithographs (e.g., the bird in Fig. 3), all in the public domain. These images span a diverse set of styles (e.g., Baroque, Renaissance, Impressionism, Post-Impressionism), themes (e.g., war, courtship, still life, religion) and topics (e.g., fishing, drinking, animals, boating).

The accompanying references are detailed descriptions whose purpose is accessibility – as such, they follow guidelines⁶ that include tips for describing color (e.g., "color can be likened to temperature") and handling ambiguity (e.g., "describe what makes something ambiguous"). These context informed requirements highlight the need for reference based metrics (Kreiss et al., 2022).

Compared to existing detailed image description benchmarks, DOCENT contains considerably more visual complexity (see Table 1). On average, its images contain 16% more objects and nearly twice as many people⁷ who require description of their orientation, features, clothing, etc. Consequently, the average length and scene graph size of its reference descriptions are nearly double.

Model Selection We generate detailed descriptions for 100 images in DOCENT from four current VLMs that span transparency and model size (from open data/open weight to frontier models): LLaVA-1.6-7B (Liu et al., 2024), Molmo-D-7B (Deitke et al., 2024), GPT40 and Claude Sonnet 3.5. A metric that discriminates among these generations similarly to their human judgments could gauge progress in detailed image description in small and large VLMs over time. Additional details (prompts, date of API access) can be found in Appendix A.2.1.

Annotators Given the complexity of our images and the detail of their expert descriptions, we recruit 24 art history undergraduate majors, masters students and PhD students with domain familiarity to provide high quality judgments of generations. All annotators were sighted with full color vision and native speakers of English. They were compensated at a rate of \$22/hour for their time.⁸

Granular Judgments Half of our annotators identify *mistakes* and *omissions* in our model generations. For each image, an annotator is shown its reference and then its four model generations in random order. First, they look at the image, read the reference and then the current generation. Next, by selecting narrow text spans, annotators first identify *mistakes* in the generation (i.e. precision errors) and then *omissions* in the reference that are not in the generation (i.e. recall errors). When identifying omissions, as in Kasai et al. (2022), we ask annotators to mentally correct narrow mistakes in the generation first to avoid double-penalizing a model for both incorrect specificity and lack of specificity. For example, a generation that describes a *woman* as a *man* is an error in precision but not in recall. We include our task instructions and interface⁹ screenshots in Figs. 4 and 6.

Coarse Judgments The other half of our annotators provide coarse judgments of our model generations. For a given image, an annotator is shown its reference and two generations (#1 and #2) in random order and asked to rank the generations in terms of mistakes (i.e. precision), omissions (i.e. recall) and overall quality. These pairwise judgments avoid some of the inter-annotator inconsistency of Likert ratings, especially for long text (Novikova et al., 2018).

Annotators select among five choices for each dimension: #1 much better, #1 slightly better, equal, #2 slightly better and #2 much better. As with our granular judgments, we ask annotators to mentally correct narrow mistakes (i.e. precision errors) in each generation before judging omissions. To avoid favoring previously seen generations, we ensure no annotator sees the same generation more than once. We include our task instructions and screenshots of our annotation interface⁹ in Figs. 5 and 7.

Agreement For a given image, each generation / pair of generations receives at least one granular and one coarse judgment respectively. For 15% of our tasks, we collect additional judgments from our annotators (2 for coarse, 1 for granular). Additionally, for 20 granular tasks and 30 coarse tasks, we collect expert judgments from a PhD in art history who authors assistive text at an art

 $^{^{6} \}verb|www.nga.gov/visit/accessibility/collection-image-descriptions|$

⁷As measured by OneFormer Jain et al. (2023)

⁸This study was conducted under an approved IRB which will be specified upon publication.

⁹Hosted on Label Studio (https://labelstud.io)

museum. We use these extra judgments to calculate agreement in two ways (among our annotators and between our annotators and our expert). We report agreement in Tables 4 and 5 of the Appendix.

For our granular judgments, as recommended by Hripcsak & Rothschild (2005) for span annotation tasks where the boundaries of negative examples (i.e. non-errors) are ill-defined, we measure agreement using the relaxed F1 (matching spans that contain 50% overlapping tokens). Under this measure, our student annotators exhibit strong agreement among themselves and with our expert.

Our coarse judgments exhibit moderate inter-annotator agreement, with Krippendorf's $\alpha=0.509$, 0.409 and 0.459 for mistakes, omissions and overall quality (Landis & Koch, 1977). This level of agreement is unsurprising for coarse detailed description evaluation – judgment requires weighing the relative importance of each text's granular errors and is consequently more subjective. Nevertheless, our student annotators exhibit moderate to strong correlations with our expert, with significant Pearson ρ values of 0.727, 0.501 and 0.492 for mistakes, omissions and overall quality respectively.

How well do these VLMs describe art? When considering the performance of the four models included in DOCENT, we observe expected trends, adding to our confidence in the quality of our judgments: the smaller models make more mistakes and have more omissions than the larger models (see Tables 4 and 5). Though most of the models make few mistakes, they all struggle with omissions. The best model, gpt 40 covers only 44.0% of the visual information conveyed in DOCENT's references. Raising this requires continued prompt iteration, highlighting the need for an automated metric that can reliably measure both granular and coarse differences in mistakes and omissions.

5 EXPERIMENTS

Posh We extract sentence-level scene graphs using en_core_web_trf from Honnibal et al. (2020), a transformer trained to perform dependency parsing. To merge objects across these scene graphs while preserving attribute and relation attachments, we use maverick-mes-ontonotes from Martinelli et al. (2024) to perform co-reference resolution. Our QA scorer Ψ is qwen-3-14b (Yang et al., 2025). We template evaluation questions for each scene graph component (as in Fig. 2), re-write candidate identifiers using Ψ to improve fluency and then prompt Ψ to answer each templated presence question by predicting a number between 1 and 5. We extract scores by taking the weighted average over the token logits for each number as in Liu et al. (2023). When determining object presence, we use a threshold of 2, determined through tuning on a small hand-annotated validation set. We provide further implementation details and all prompts used in Appendix A.1.

Benchmarks We evaluate PoSH against the judgments in DOCENT and CapArena.

DOCENT is our new detailed description benchmark containing judgments from knowledgeable human annotators: granular mistake and omission spans for 300 individual generations and coarse scaled rankings of mistakes, omissions and overall quality of 600 paired generations. We evaluate granular metrics on this benchmark using macro F1 where we credit/penalize a model for predicting each annotated/unannotated token. Our coarse judgments are in the form $(text_1, text_2, score)$ where score indicates how much better or worse $text_1$ is than $text_2$. We evaluate each coarse metric m by calculating its 1) pairwise accuracy (whether it picks the better text or a tie, using a tie threshold inferred from the gold tie rate) and 2) Spearman rank ρ and Kendall's τ correlations between $m(text_1) - m(text_2)$ and score, a common practice in machine translation metric evaluation (Kocmi et al., 2021). More details can be found in Appendix A.3.4.

CapArena (Cheng et al., 2025) contains 3,361 images and 10,348 detailed descriptions generated from 14 current VLMs. 5,599 pairs of these generations receive coarse judgments from human raters of the better generation (or "tie"). We include CapArena, which contains diverse images drawn from the web, to validate metric robustness. However, we note the dramatic simplicity of its images and references compared to those in DOCENT (see Table 1). 64% of its images 10 contain fewer than two objects and 95% depict fewer than two people (compared to 27% and 52% in DOCENT). A metric is evaluated on CapArena at the caption-level (whether it picks the better text or a tie, using a tie threshold inferred from the gold tie rate) and at the model-level (Spearman's rank and Kendall's τ correlation between ELO rankings derived from metric predictions and gold judgments).

¹⁰As measured by OneFormer (Jain et al., 2023)

Table 2: Granular metrics evaluated on DOCENT. Reported numbers are the maximum F1 when identifying mistakes and omissions across all alerting thresholds. POSH is best at predicting both mistakes (which are relatively rare) and omissions (which are relatively common). As POSH's coarse scores are aggregated from its granular scores, this demonstrates its interpretability.

	Random	4GramEmbed	SGEmbed	PoSH
Mistakes F1	0.386	0.513	0.513	0.559
Omissions F1	0.491	0.505	0.634	0.680

Granular Baselines Our work is the first to introduce both a metric and a benchmark for granular evaluation of detailed descriptions. As such, this limits our baselines to those able to predict *localized* mistakes and omissions (i.e., the spans where errors occur). We consider two embedding-based approaches, using <code>Qwen/Qwen3-Embedding-8B</code> from Yang et al. (2025): **4GramEmbed**, which embeds and compares 4-grams from a generation and its reference, and **SGEmbed**, which embeds and compares components from the scene graphs of a generation and its reference. As these approaches (and PoSH) produce span scores, we report the maximum F1 scores for mistakes and omissions across all alerting thresholds. More details can be found in Appendix A.3.2.

Coarse Baselines Though PoSH is a text-only reference-based metric, we select a representative set of reference-free (requiring only an image) and reference-based (requiring a gold standard) pointwise metrics (i.e. produce numerical scores) as our baselines. These include n-gram overlap metrics like BLEU (Papineni et al., 2002), ROUGE-L-Sum (See et al., 2017), METEOR (Banerjee & Lavie, 2005) and CIDER (Vedantam et al., 2015) and model-based metrics like SPICE (Anderson et al., 2016), CLIPScore (Hessel et al., 2021) and CAPTURE (Dong et al., 2024). Additionally, we consider several LLMs/VLMs-as-a-Judge¹¹: FLEUR (Lee et al., 2024), Prometheus (Kim et al., 2023), LLaVA-Critic (Xiong et al., 2024), DCScore Ye et al. (2025), Qwen-3 (Yang et al., 2025) and GPT4o/GPT5 in three settings (reference-free with image, reference-based without image and reference-based with image). More details can be found in Appendix A.3.3.

Reward Function Finally, given the potential of a well-calibrated metric as a verifier in reinforcement learning (RL), we evaluate PoSH as a reward function. We train Qwen2.5-VL-7B on the 1,000 images in DOCENT's training set in two settings: 1) supervised fine-tuning (SFT), and 2) RL with DAPO (Yu et al., 2025) using PoSH. We collect coarse judgments (as in Section 4) for 40 generation pairs from graduate students in NLP. More details can be found in Appendix A.3.5.

6 RESULTS & DISCUSSION

PoSh as a Granular Metric Table 2 presents the performance of POSH and our selected metrics on identifying the mistakes and omissions in DOCENT. Given the imbalanced nature of our data (where mistakes are infrequent and omissions are common), we report macro averages for each subtask, measuring how well each approach localizes errors within a generation and its reference respectively. First, we note that this task is difficult. The considerable room for improvement highlights the value of a benchmark like DOCENT that contains granular judgments of textual spans. Even so, **POSH achieves the highest F1 in mistake** (0.564) **and omission** (0.675) **localization**. As its coarse scores are aggregated from these granular scores, this demonstrates its interpretability.

PoSh as a Coarse Metric Table 3 presents the performance of POSH and the best baselines on predicting the coarse judgments in DOCENT and CapArena (full results in Appendix A.4.1).

On DOCENT, across all three dimensions, **PoSH outperforms every existing replicable metric** (i.e., metrics not reliant on an API), yielding a 0.11 increase in Spearman ρ for mistakes (25% \uparrow), a 0.07 increase for omissions (14% \uparrow) and a 0.05 increase for overall quality (9% \uparrow) over the next best. It even outperforms GPT4o (in all settings) and text-only GPT5 (on omissions and overall

¹¹CLAIR/Faithscore were not included due to complications with their codebases (Chan et al., 2023; Jing et al., 2024). Due to cost (estimated at \$1,000), we only evaluate DCScore (Ye et al., 2025) on DOCENT.

Table 3: Selected coarse metrics evaluated on DOCENT and CapArena, identified with Θ (parameter count, in billions), \blacksquare (requires a reference), \blacksquare (requires an image) and \blacksquare (replicable). "acc" indicates accuracy at predicting the better generation (or "tie") in each judged pair. For DOCENT, ρ / τ indicate the Spearman rank / Kendall's τ correlations between differences in the metric and differences in the rank of the generations in each pair. For CapArena, ρ / τ indicate the Spearman rank / Kendall's τ correlations between model ELO rankings derived from metric scores and human judgments. **Bold** indicates the best replicable metric while <u>underlining</u> indicates the best metric overall. Gray cells indicate correlations that are *not* statistically significant at $\alpha = 0.05$. PoSH beats

nearly all baselines, including GPT40, across both benchmarks in all settings (caption ranking of

mistakes, omissions and overall quality & model ranking) while remaining perfectly replicable.

						DOCENT									CapArena		
		l_				Mistakes			Omissions			Overall Quality			Mo	del	
	Θ		=	2	acc	ρ	au	acc	ρ	au	acc	ρ	au	acc	ρ	τ	
length				\checkmark	30.5	-0.270	-0.206	37.8	-0.002	-0.001	38.0	-0.160	-0.121	58.7	0.710	0.582	
SPICE		V		✓	41.3	0.308	0.234	55.0	0.464	0.360	58.5	0.458	0.349	41.7	0.275	0.231	
CAPTURE		√		\checkmark	43.3	0.259	0.194	53.8	0.447	0.340	56.0	0.453	0.347	52.5	0.613	0.538	
Qwen3	32	V		✓	57.7	0.282	0.235	53.5	0.286	0.253	61.2	0.289	0.257	56.2	0.899	0.714	
LLaVa Critic	72	✓	✓	\checkmark	<u>62.8</u>	0.412	0.351	57.0	0.509	0.430	66.8	0.546	0.461	<u>64.0</u>	<u>0.987</u>	<u>0.934</u>	
DCScore		V	√		62.8	0.541	0.422	54.0	0.395	0.298	62.8	0.471	0.362	-	-	-	
GPT4o		V	✓		58.5	0.484	0.396	56.0	0.380	0.303	67.3	0.510	0.402	55.4	0.890	0.802	
GPT5		✓			62.5	0.511	0.423	53.2	0.421	0.332	68.0	0.540	0.440	59.1	0.956	0.846	
PoSH	14	√		✓	60.5	0.517	0.404	62.3	<u>0.579</u>	<u>0.450</u>	<u>70.0</u>	<u>0.596</u>	<u>0.464</u>	59.5	0.938	0.802	

quality). Among all metrics, DCScore (Ye et al., 2025) proves best at predicting mistakes. However, its reliance on GPT40 to extract and verify factoids fails to achieve full coverage of reference detail, underperforming in predicting omissions and overall quality. Despite employing a smaller LLM, POSH's use of dependency parsing and coreference resolution to extract scene graphs avoids this.

On CapArena, PoSH achieves higher caption-level accuracies and model-ranking correlations than nearly every existing open-weight metric and GPT4o. The sole exception is LLaVa Critic, a much larger VLM-as-a-Judge (Xiong et al., 2024). This is driven in part by the simplicity of CapArena (see Table 1). On the subset of CapArena depicting three or more people (167 judgments), each of whom requires careful description, **PoSH outperforms LLaVa Critic with model ranking correlations** of $\rho = 0.776$, $\tau = 0.648$ compared to $\rho = 0.686$, $\tau = 0.550$. Thus, PoSH is robust to image type, excelling in visually complex cases that are of particular interest in detailed image description.

PoSh as a Reward Function In Table 7 of the Appendix, we report annotator agreement and aggregate preferences between SFT and DAPO with PoSH. In each dimension of interest, a PoSH generation earns a score between -2 and 2 based on how much worse or better it is than its SFT counterpart. While PoSH-tuned generations had more mistakes (an average score of -0.243), these were incurred in service of **much fewer missing details** (+0.432), **resulting in higher overall quality** (+0.135). This speaks to the strength of PoSH when optimized directly.

DOCENT Leaderboard Finally, in Fig. 9, we plot the POSH scores of VLMs in describing the art in DOCENT. While closed models like Gemini 2.5 Pro lead, open models remain competitive. Improvements will require continued iteration, informed in part by POSH's granular scores.

7 CONCLUSION

We present POSH, a novel metric for detailed image description that extracts scene graphs to use as structured rubrics for guiding LLMs-as-a-Judge, providing interpretable, replicable scores. To validate POSH, we introduce DOCENT, a new benchmark with expert-written descriptions of visually complex artwork along with granular and coarse judgments of generations from knowledgeable raters. We show that POSH correlates better than other metrics with these judgments, is robust to image type and is a capable reward function. Through POSH and DOCENT, we introduce a leader-board for a new challenging task, detailed image description of artwork. It is our hope that this work will drive progress in meaningful areas such as assistive text generation for artwork and beyond.

8 ETHICS STATEMENT

The judgments in DOCENT were collected under an approved IRB protocol with all annotator data anonymized and participants receiving fair compensation (at \$22/hour) for their time and expertise.

All of the 1,750 artwork images in DOCENT are in the public domain, and the expert-written reference descriptions were published by the U.S. National Gallery of Art under their Open Data Program¹² specifically for research purposes, ensuring appropriate use and attribution.

While this work aims to benefit accessibility applications for blind and low-vision users, we acknowledge that direct community involvement in the development process would strengthen future iterations. However, we note that the expert reference descriptions were written according to the National Gallery of Art's accessibility guidelines¹³ which lay out best practices for assistive text.

Finally, as with other computer vision systems, this work could theoretically be applied to surveil-lance contexts, but our focus on detailed description does not introduce novel privacy risks beyond those inherent to existing image analysis technologies. The primary intended application—improving accessibility—aligns with beneficial societal outcomes.

9 REPRODUCIBILITY STATEMENT

A core motivation behind POSH is improving replicability in detailed image description evaluation through the introduction of a performant open-weight metric. In that spirit, we ensure full reproducibility of our findings by:

- 1. including comprehensive technical details in the Appendix
- 2. publishing the code for both our metric and our metric evaluations at https://anonymous.4open.science/r/posh
- 3. publishing our benchmark at https://anonymous.4open.science/r/posh/docent.
- 4. making our models and our benchmark available to the broader research community on HuggingFace

REFERENCES

Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. Spice: Semantic propositional image caption evaluation. In *Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part V 14*, pp. 382–398. Springer, 2016.

Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with improved correlation with human judgments. In *Proceedings of the acl workshop on intrinsic and extrinsic evaluation measures for machine translation and/or summarization*, pp. 65–72, 2005.

Siwar Bengamra, Olfa Mzoughi, André Bigand, and Ezzeddine Zagrouba. A comprehensive survey on object detection in visual art: taxonomy and challenge. *Multimedia Tools and Applications*, 83(5):14637–14670, 2024.

Uri Berger, Gabriel Stanovsky, Omri Abend, and Lea Frermann. Surveying the landscape of image captioning evaluation: A comprehensive taxonomy and novel ensemble method. *arXiv* preprint arXiv:2408.04909, 2024.

David Chan, Suzanne Petryk, Joseph Gonzalez, Trevor Darrell, and John Canny. Clair: Evaluating image captions with large language models. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 13638–13646, 2023.

¹²https://github.com/NationalGalleryOfArt/opendata

¹³https://www.nga.gov/visit/accessibility/collection-image-descriptions

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language models? In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.

Kanzhi Cheng, Wenpo Song, Jiaxin Fan, Zheng Ma, Qiushi Sun, Fangzhi Xu, Chenyang Yan, Nuo Chen, Jianbing Zhang, and Jiajun Chen. Caparena: Benchmarking and analyzing detailed image captioning in the llm era. *arXiv* preprint arXiv:2503.12329, 2025.

- Jaemin Cho, Yushi Hu, Jason Michael Baldridge, Roopal Garg, Peter Anderson, Ranjay Krishna, Mohit Bansal, Jordi Pont-Tuset, and Su Wang. Davidsonian scene graph: Improving reliability in fine-grained evaluation for text-to-image generation. In *The Twelfth International Conference on Learning Representations*, 2024.
- Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park, Mohammadreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, et al. Molmo and pixmo: Open weights and open data for state-of-the-art multimodal models. *CoRR*, 2024.
- Daniel Deutsch, Rotem Dror, and Dan Roth. On the limitations of reference-free evaluations of generated text. In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pp. 10960–10977, 2022.
- Hongyuan Dong, Jiawen Li, Bohong Wu, Jiacong Wang, Yuan Zhang, and Haoyuan Guo. Benchmarking and improving detail image caption. *arXiv* preprint arXiv:2405.19092, 2024.
- Roopal Garg, Andrea Burns, Burcu Karagol Ayan, Yonatan Bitton, Ceslee Montgomery, Yasumasa Onoe, Andrew Bunner, Ranjay Krishna, Jason Michael Baldridge, and Radu Soricut. ImageInWords: Unlocking hyper-detailed image descriptions. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 93–127, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.6. URL https://aclanthology.org/2024.emnlp-main.6/.
- Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-free evaluation metric for image captioning. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*, pp. 7514–7528, 2021.
- Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degeneration. In *International Conference on Learning Representations*.
- Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd. spacy: Industrial-strength natural language processing in python. 2020. doi: 10.5281/zenodo.1212303.
- George Hripcsak and Adam S Rothschild. Agreement, the f-measure, and reliability in information retrieval. *Journal of the American medical informatics association*, 12(3):296–298, 2005.
- Jitesh Jain, Jiachen Li, Mang Tik Chiu, Ali Hassani, Nikita Orlov, and Humphrey Shi. One former: One transformer to rule universal image segmentation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 2989–2998, 2023.
- Liqiang Jing, Ruosen Li, Yunmo Chen, and Xinya Du. Faithscore: Fine-grained evaluations of hallucinations in large vision-language models. In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 5042–5063, 2024.
- Jungo Kasai, Keisuke Sakaguchi, Lavinia Dunagan, Jacob Morrison, Ronan Le Bras, Yejin Choi, and Noah A. Smith. Transparent human evaluation for image captioning. In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (eds.), *Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pp. 3464–3478, Seattle, United States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.254. URL https://aclanthology.org/2022.naacl-main.254/.

- Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang, Shayne Longpre, Hwaran Lee, Sangdoo Yun, Seongjin Shin, Sungdong Kim, James Thorne, et al. Prometheus: Inducing fine-grained evaluation capability in language models. In *The Twelfth International Conference on Learning Representations*, 2023.
 - Tom Kocmi, Christian Federmann, Roman Grundkiewicz, Marcin Junczys-Dowmunt, Hitokazu Matsushita, and Arul Menezes. To ship or not to ship: An extensive evaluation of automatic metrics for machine translation. In *Proceedings of the Sixth Conference on Machine Translation*, pp. 478–494, 2021.
 - Elisa Kreiss, Cynthia Bennett, Shayan Hooshmand, Eric Zelikman, Meredith Ringel Morris, and Christopher Potts. Context matters for image descriptions for accessibility: Challenges for referenceless evaluation metrics. In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pp. 4685–4697, 2022.
 - J Richard Landis and Gary G Koch. The measurement of observer agreement for categorical data. *biometrics*, pp. 159–174, 1977.
 - Yebin Lee, Imseong Park, and Myungjoo Kang. Fleur: An explainable reference-free evaluation metric for image captioning using a large multimodal model. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 3732–3746, 2024.
 - Zongxia Li, Xiyang Wu, Hongyang Du, Huy Nghiem, and Guangyao Shi. Benchmark evaluations, applications, and challenges of large vision language models: A survey. *arXiv preprint arXiv:2501.02189*, 2025.
 - Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In *Text summarization branches out*, pp. 74–81, 2004.
 - Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 26296–26306, 2024.
 - Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: Nlg evaluation using gpt-4 with better human alignment. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 2511–2522, 2023.
 - Fan Lu, Wei Wu, Kecheng Zheng, Shuailei Ma, Biao Gong, Jiawei Liu, Wei Zhai, Yang Cao, Yujun Shen, and Zheng-Jun Zha. Benchmarking large vision-language models via directed scene graph for comprehensive image captioning. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 19618–19627, 2025.
 - Kelly Mack, Emma McDonnell, Dhruv Jain, Lucy Lu Wang, Jon E. Froehlich, and Leah Findlater. What do we mean by "accessibility research"? a literature survey of accessibility papers in chi and assets from 1994 to 2019. In *Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems*, pp. 1–18, 2021.
 - Giuliano Martinelli, Edoardo Barba, and Roberto Navigli. Maverick: Efficient and accurate coreference resolution defying recent trends. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 13380–13394, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.722. URL https://aclanthology.org/2024.acl-long.722/.
 - Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. Rankme: Reliable human ratings for natural language generation. In *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)*, pp. 72–78, 2018.
 - Yasumasa Onoe, Sunayana Rane, Zachary Berger, Yonatan Bitton, Jaemin Cho, Roopal Garg, Alexander Ku, Zarana Parekh, Jordi Pont-Tuset, Garrett Tanzer, et al. Docci: Descriptions of connected and contrasting images. In *European Conference on Computer Vision*, pp. 291–309. Springer, 2024.

- Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation of machine translation. In *Proceedings of the 40th annual meeting of the Association for Computational Linguistics*, pp. 311–318, 2002.
 - Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bertnetworks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing*. Association for Computational Linguistics, 11 2019. URL http://arxiv.org/ abs/1908.10084.
 - Sara Sarto, Manuele Barraco, Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. Positive-augmented contrastive learning for image and video captioning evaluation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 6914–6924, 2023.
 - Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier, Benjamin Piwowarski, Jacopo Staiano, Alex Wang, and Patrick Gallinari. Questeval: Summarization asks for fact-based evaluation. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*, pp. 6594–6604, 2021.
 - Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summarization with pointer-generator networks. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 1073–1083, 2017.
 - Jack Urbanek, Florian Bordes, Pietro Astolfi, Mary Williamson, Vasu Sharma, and Adriana Romero-Soriano. A picture is worth more than 77 text tokens: Evaluating clip-style models on dense captions. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 26700–26709, 2024.
 - Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based image description evaluation. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 4566–4575, 2015.
 - Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement learning. https://github.com/huggingface/trl, 2020.
 - Tianyi Xiong, Xiyao Wang, Dong Guo, Qinghao Ye, Haoqi Fan, Quanquan Gu, Heng Huang, and Chunyuan Li. Llava-critic: Learning to evaluate multimodal models. 2024. URL https://arxiv.org/abs/2410.02712.
 - An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025.
 - Qinghao Ye, Xianhan Zeng, Fu Li, Chunyuan Li, and Haoqi Fan. Painting with words: Elevating detailed image captioning with benchmark and alignment learning. In *The Thirteenth International Conference on Learning Representations*, 2025.
 - Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at scale. *arXiv preprint arXiv:2503.14476*, 2025.
 - Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena. *Advances in Neural Information Processing Systems*, 36:46595–46623, 2023.

A APPENDIX

A.1 PoSH

A.1.1 Scene Graph Extraction

While we provide the complete implementation for our scene graph extraction in our codebase, we include simplified pseudocode below:

```
702
      def GetGraph(text):
703
          doc = ParseTextWithSpacy(text)
704
           components = ExtractComponents(doc)
705
          corefs = GetCorefWithMaverick(doc)
706
707
          entities, relations = [], []
          for each component:
708
             if IsNoun(component):
709
               if HasEarlierMention(component):
710
                 UpdateExistingEntity(
711
                   entities, component
712
                 )
713
               else:
714
                 CreateNewEntity(
715
                   entities, component
716
                 )
717
718
          for each component:
             if IsAdjective (component):
719
               UpdateAtributes(
720
                 entities, component
721
722
             elif IsVerb(component):
723
               UpdateVerbRelations(
724
                 relations, component
725
726
             elif IsPrep(component):
727
               UpdatePrepRelations (
728
                 relations, component
729
730
          return (entities, relations)
731
732
```

A.1.2 GRANULAR QA TEMPLATING

733 734

735

736

While we provide the complete implementation for our question templating in our codebase, we include simplified pseudocode below:

```
737
      def TemplateEntityQuestions(
738
        text, entities
739
      ):
740
        colls = GetCollisions(
741
           entities
743
        questions = []
744
        for e in entities:
745
           identifiers = []
746
           if IsEmpty(colls):
747
             identifiers.add(e.text)
748
749
           for each attr in e:
750
             if IsUnique(attr, colls):
751
               identifiers.add(
752
                 attr + e.text
753
               )
754
           if len(identifiers) > 0:
755
             AddToQuestions (identifiers)
```

```
756
             continue
758
           for each rel in e:
759
             if IsUnique(rel, colls)
760
               identifiers.add(
                 rel.head +
761
                 rel.text +
762
                 rel.tail
763
764
765
          AddToQuestions(identifiers)
766
767
        ReWriteIdentifiers(questions)
768
769
      def TemplateAttrRelQuestions(
770
        text, entities
771
      ):
        questions = []
772
        for e in entities:
773
          for attr in e:
774
             AddToQuestions(
775
               attr, e.identifier
776
777
778
           for rel in e:
779
             AddToQuestions(
780
               rel, e.identifier
781
782
```

A.1.3 PROMPTS

Entity Identifier Rewrite Prompt (for attributes)

Rewrite '' $\{entity_identifier\}$ " into a grammatically correct noun phrase, keeping all details. For example, ''dog small" should be rewritten as ''the small dog". Output ONLY the phrase

Entity Identifier Rewrite Prompt (for relations)

Rewrite ''{entity_identifier}" into a grammatically correct noun phrase, keeping all details. ''cat jumps on window" should be rewritten as ''the cat jumping on the window". Output ONLY the phrase.

```
if {precision}
    DESCRIPTION1: {target_text}
    DESCRIPTION2: { source_text}
{else}
    DESCRIPTION: { target_text}
{if entity}
    Q: Is an entity matching "{entity_identifier}"
    (from DESCRIPTION2) mentioned in (the) DESCRIPTION(1)?
{elif attribute}
    Q: Is ''{ entity_identifier }" (from DESCRIPTION2)
    described as "{ attribute }" in (the) DESCRIPTION(1)?
{else}
    O: Is the relation between "{entity1_identifier}"
    and "{entity2_identifier}" (in DESCRIPTION2)
    described as "{relation}" in (the) DESCRIPTION(1)?
Consider paraphrases but do NOT infer unstated details.
Scoring guide -> 1: absent; 2: weak hint; 3: partial;
4: clear; 5: explicit & unambiguous.
Respond ONLY with an integer 1-5.
```

A.2 DOCENT

A.2.1 GENERATIONS

We produce generations from the following models:

- 1. llava-v1.6-mistral-7b-hf on HuggingFace (Liu et al., 2024)
- 2. Molmo-7B-D-0924 on HuggingFace (Deitke et al., 2024)
- 3. gpt-40-2024-08-06, accessed on 1/31/25
- 4. claude-3-5-sonnet-20241022, accessed on 1/31/25

We use the same prompt (included below). For LLaVA-1.5-7B and Molmo-D-7B, we use nucleus sampling Holtzman et al. with p=0.9 and a temperature of 0.7.

```
[IMAGE]

Generate a detailed description of this painting, avoiding interpretation and focusing on only its visual elements.
```

A.2.2 AVOIDING DOUBLE PENALTIES

In Kasai et al. (2022), after identifying an error in precision, the authors correct the error before annotating recall. This avoids doubly penalizing a description for errors in specificity which would unfairly favor more generic descriptions (which are only penalized once, for recall). We instruct our annotators to do the same. Below, we have manually identified a few cases of its application from our granular annotations though we note that annotators found our models to be reasonably precise (Table 4) so this rule was infrequently required.

Granular Evaluation of Image Descriptions

Hello, thanks for being part of our research study. Our goal is to accurately characterize the performance of vision-language models (i.e., Al systems that can describe images). By doing so, you'll help us gauge how well such systems would perform in consequential settings such as the automatic generation of accessibility text for people who are blind or have low vision.

In our annotation interface, you'll see 1) an image, 2) a **CORRECT** description of the image and 3) a **GENERATED** description of the image. Your task is to first identify **minimal** spans in the **GENERATED** description that are **mistakes** (e.g. incorrectly added details that are not true of the image; identifications of nouns, their descriptors or their relationships that are not true of the image) and then identify **minimal** spans in the **CORRECT** description that are **missing** (e.g. details not reflected in the **GENERATED** description). For each task, please follow the instructions below:

1) Look at the image. Get a quick sense of any relevant people or objects, their actions and their broader setting.

2) Read the **CORRECT** description of the image.

3) Read the **GENERATED** description of the image.

4) Read the **GENERATED** description of the image again. As you encounter **mistakes** (e.g., incorrectly added details that are not true of the image or nouns, their descriptors or their

Figure 4: The beginning of our granular annotation instructions. The full instructions can be found on our GitHub: https://anonymous.4open.science/r/posh/docent/annotation_instructions/granular.pdf.

Evaluation of Image Descriptions

Hello, thanks for being part of our research study. Our goal is to accurately characterize the performance of vision-language models (i.e., Al systems that can describe images). By doing so, you'll help us gauge how well such systems would perform in consequential settings such as the automatic generation of accessibility text for people who are blind or have low vision.

In our annotation interface, you'll see 1) an image, 2) a **CORRECT** description of the image and 3) two **GENERATED** descriptions of the image. Your task is to provide **relative grades** of the **GENERATED** descriptions across *three dimensions*: **mistakes**, **missing details** and **overall quality**.

Mistakes in GENERATED descriptions are incorrectly added details or identifications of nouns, their descriptors or their relationships that are not true of the image. Missing details are details in the CORRECT description that are not accounted for in the GENERATED descriptions after correcting their mistakes. Overall quality is more subjective – we want you to grade the generations by which one is the best stand-in for the CORRECT description.

For each task, please follow the instructions below:

 Look at the image. Get a quick sense of any relevant people or objects, their actions and their broader setting.

Figure 5: The beginning of our coarse annotation instructions. The full instructions can be found on our GitHub: https://anonymous.4open.science/r/posh/docent/annotation_instructions/coarse.pdf.

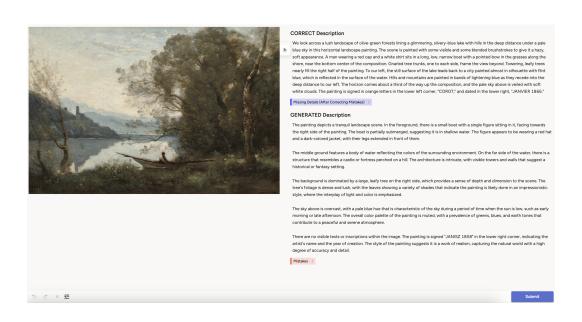


Figure 6: Our granular annotation interface, hosted on Label Studio (https://labelstud.io).

Figure 7: Our coarse annotation interface, hosted on Label Studio (https://labelstud.io).

Due to the length of the generations and descriptions in DOCENT, please consult our codebase for example judgments: https://anonymous.4open.science/r/posh/docent

A.2.3 DOCENT: AGREEMENT AND JUDGMENT SUMMARY

Table 4: Granular judgments of mistakes and omissions in DOCENT. Left: inter-annotator agreement (relaxed F1, using overlap thresholds of ≥ 1 token and $\geq 50\%$ of tokens); additionally, the recall R of our expert annotations. Our student judgments exhibit strong inter-annotator agreement and good coverage of our more sparing (see Fig. 8) error annotations. Right: the average percentage of tokens *not* marked as mistakes/omissions for each model (higher is better).

	stu	ıdent		ex	pert		llovo	malma	alanda	ant1a
	F1	ident F1@50	R	F1	R@50	F1@50	nava	шошо	ciaude	gpt40
mistakes	0.980	0.604	1.000	0.890	0.652	0.250	0.863	0.898	0.952	0.947
omissions	1.000	0.754	1.000	1.000	0.927	0.475	0.300	0.416	0.399	0.437

Table 5: Coarse judgments of precision, recall and overall quality in DOCENT. Top: interannotator agreement (Krippendorff α for student, Pearson ρ and average difference for expert). Bottom: the average relative score of each row model compared to each column model (1 indicates the row is much better, 5, the column is much better).

mistakes					omission	ıs	overall quality				
$\begin{array}{c} \textbf{student} \; (\alpha) \\ \textbf{expert} \; (\rho, \Delta) \end{array}$		0.509 0.727, 0.633			0.409 0.501, 0.6	44	0.459 0.492, 0.788				
	llava	molmo	claude	llava	molmo	claude	llava	molmo	claude		
molmo	2.42			2.32			2.14				
claude gpt4o	1.92 1.86	$\frac{2.37}{2.3}$	3.0	2.16 2.01	$2.74 \\ 2.54$	2.61	1.87 1.68	$\frac{2.5}{2.21}$	2.63		

A.2.4 DOCENT: Granular Agreement Details

We additionally calculate granular agreement using a more conservative threshold ($\geq 50\%$ token overlap). Here, relaxed F1 remains strong among our art history student annotators (0.612 for mistakes, 0.773 for omissions). Though we observe drops in relaxed F1 when compared to our expert, it is driven by two factors: annotation style, with our expert favoring sparsity, and a relative strictness on the part of our student annotators. This is reflected in the expert annotation recall values in Table 4 where a majority of the spans identified by our expert were also marked by our student annotations for both mistakes (0.652) and omissions (0.927). Thus, our expert annotations are a subset of our stricter student annotations. We provide a side-by-side example of a student annotation and an expert annotation in Fig. 8.

A.3 EVALUATION

A.3.1 METRICS

Spearman's Rank Correlation Coefficient (ρ) assesses the monotonic relationship by calculating Pearson's correlation on the ranks of two continuous variables rather than their raw values. It ranges from -1 to +1, with +1 indicating perfect monotonic increasing relationship and -1 indicating perfect monotonic decreasing relationship. It's less sensitive to outliers than Pearson's and can detect monotonic non-linear relationships. As the coarse annotations in DOCENT specify the rank of two generated image descriptions, Spearman is well suited for evaluating

Kendall's τ measures the ordinal association between two variables based on the ranks of the data. It ranges from -1 to +1, where +1 indicates perfect agreement between the two rankings, 0 indicates no association, and -1 indicates perfect disagreement. Unlike Pearson's, Kendall's tau is non-parametric and robust to outliers, making it appropriate for non-linear relationships and non-normally distributed data.

GENERATED Description

This is a religious painting that appears to be from the Renaissance period. The composition shows four figures in a scene with architectural elements and a landscape background.

In the center, two figures in flowing robes - one wearing bright blue and red, the other in dark brown/black - are shown greeting each other or in conversation. Both wear head coverings in light fabric.

On either side of these central figures are two seated elderly men with gray beards. The figure on the left wears red robes and is reading from an open book. The figure on the right, dressed in green and red garments, appears to be writing and wears what looks like early spectacles. He has various trems near him including what appears to be a walking stick.

The background shows a detailed landscape with architectural elements - towers or buildings on both sides, rolling hills, and small trees. In the distance, there are smaller figures and buildings depicted on the hillsides. The sky is painted with light clouds against blue.

The painting exhibits careful attention to detail in the rendering of fabrics, with rich colors and elaborate folds in the garments. The composition is symmetrically balanced, with the two standing figures in the center framed by the seated figures on either side.

The floor appears to be a stone or marble platform, and there are some small spherical objects (possibly fruit or stones) scattered on it. The overall style and execution suggest this is a carefully composed religious scene from the Renaissance and the state of the

A Student Judgment of Omissions

An Expert Judgment of Omissions

CORRECT Description Two women stand clasping hands between two seated men, all against a deep landscape with hills and a town in this nearly square painting. Dozens of people are gathered in the town to our right, and several cluster in front of a building to our left. All the people have pale, peachy side. Close to us, the two women both have translucent, plate is halos. They stand with their bodies angled toward each other, and they look at each other. He woman to our left. Mart, has smooth shin with a delicating profiles from warra a gold-adapt, and they look at each other. He woman to our left. Mart, has smooth shin with a delicating profile. He was not one of the standard and the standard standard with their profiles of the warra a gold-adapt, ultransamer but note innet with forest green over a long-alexed, fully-red diress. Sandard toes peak under the ham. An eggate-le-while and gold scorf drapes over her Blond halt, which is pulled basis, and over he about the standard of the standard sta

CORRECT Description

Two women stand clasping hands between two seated men, all against a deep landscape with hills and a town in this nearly square painting. Discrims of pacible are gathered in the town to our right, and several culture in north of a building to our left. All the people have people, people will be considered that the people have people, people will be considered that the people have people, people will be considered that the people have people people and they look it each other. The woman to our left, Many, has smooth skin with a delicate profile, she were as gold-edged, utnamen-bulk or being with finest generol ore a long-sleeved, have been described to go be a long-stand of the people have people back, and over her shoulders. Learning though the people have the hern An egistell-white and gold scarf drapes over her blook hav, which is pulled back, and over her houlders. Learning though the people have been people back and over her houlders. Learning the clask Elizabeth shoulders. They stand to be copting; so only a silver of the background landscape is visible between their clasks. Elizabeth was an amonomed described, because the people will be people with the scarf drapes over her head and ties loosely on her chest. Her free, left hand is raised, the palm facing Many. The women stand on a slightly raised platform is the delety men st on either side, their bodies anyeld toward the women. Both men whe left is below yields have for only an expectate profile and the loose of gray hard and long, gray beauds. They force the bodies and the long of gray hard and long, gray beauds. Their forceheads are beenly linear with windless and they look down long, straight longs at their logs. To our left, the man were stack forced clock over a harve-yellow parenter with gray allowed. He haves the book and an into lay, the women so can arrow piece of parchment with a quil on a closed, blue-covered book he backes the book and an into lay that which will be allowed in a native to be under the bodies of parchment

Figure 8: A comparison of our student and expert judgments of omissions for the same generation. Most differences are due to 1) students preferring the specificity of terms like "women" over "figures" and 2) students annotating all the attributes and relations of entities marked as missing, e.g., "skin", "halos", "noses", and the span beginning "painted with a scene...". Generally, expert judgments are a subset of our student judgments for these reasons.

A.3.2 GRANULAR BASELINES

4GramEmbed We extract all of the 4-grams from each sentence of a generation and its reference, embed them using <code>Qwen/Qwen3-Embedding-8B</code> (Reimers & Gurevych, 2019; Yang et al., 2025) and then calculate the maximum pairwise similarities between generation 4-grams and reference 4-grams. Generation text spans and reference text spans with maximum pairwise similarity scores lower than 0.7 were predicted as mistakes and omissions respectively, a threshold chosen to maximize the macro F1 scores reported for **4GramEmbed** in Table 2.

SGEmbed We extract all of the components (objects, attribute-object pairs, and object-relation-object triples) from the scene graphs of a generation and its reference extracted for PoSh in Section 3, embed them using <code>Qwen/Qwen3-Embedding-8B</code> (Reimers & Gurevych, 2019; Yang et al., 2025) and then calculate the maximum pairwise similarities between the generation components and the reference components. Generation components and reference components with maximum pairwise similarity scores lower than 0.8 were predicted as mistakes and omissions respectively, a threshold chosen to maximize the macro F1 scores reported for SGEmbed in Table 2.

A.3.3 COARSE BASELINES

When prompting GPT40 and GPT5¹⁴ to evaluate our generated detailed image descriptions, we use three different prompts depending on whether we are including the image (reference free) or including the reference. Additionally, we experiment with a more complicated prompt that includes a detailed scoring rubric for each score type (mistakes, omissions and overall quality) though we find that this setting underperforms the simpler prompts below.

Image Only

[IMAGE]

Generated Detailed Description: [GENERATION]

Please provide numerical scores (from 0 to 5) for the precision (e.g. mistakes in the generated description), recall (e.g. missing details from the image), and overall quality of the generated detailed description compared to the image. Output your answer as a JSON dictionary with the keys 'precision', 'recall', and 'overall_quality'.

Reference Only

Reference Detailed Description: [REFERENCE]

Generated Detailed Description: [GENERATION]

Please provide numerical scores (from 0 to 5) for the precision (e.g. mistakes in the generated description), recall (e.g. missing details from the reference description), and overall quality of the generated description compared to the reference description. Output your answer as a JSON dictionary with the keys 'precision', 'recall', and 'overall_quality'.

¹⁴gpt-4o-2024-08-06 and gpt-5-2025-08-07 (with minimal reasoning) accessed on 9/17/2025

Image & Referenc

1137 [IMAGE]

Reference Detailed Description: [REFERENCE]

Generated Detailed Description: [GENERATION]

Please provide numerical scores (from 0 to 5) for the precision (e.g. mistakes in the generated description), recall (e.g. missing details from the reference description), and overall quality of the generated detailed description compared to the image and the reference description. Output your answer as a JSON dictionary with the keys 'precision', 'recall', and 'overall_quality'.

A.3.4 COARSE METRIC EVALUATION

We convert each coarse judgment of a generation pair (text₁, text₂, label) in DOCENT to a numerical score s that reflects the relative rank of text₁ and text₂. If text₁ was marked as much better than text₂, s=2; slightly better than text₂, s=1 and equal to text₂, s=0. Similarly, if text₂ was marked as slightly better than text₁, s=-1 and s=-2 if much better than text₁. These numerical scores reflect the relative rank of text₁ and text₂ and allow us to evaluate the correlation of different metrics m with the coarse judgments in DOCENT by comparing s to $m(\text{text}_1)-m(\text{text}_2)$ with appropriate measures of monotonicity like Spearman's rank correlation ρ .

A.3.5 REINFORCEMENT LEARNING

We train Qwen2.5-VL-7B on the 1,000 images in DOCENT's training set in two settings:

- 1. supervised fine-tuning (SFT) with full parameter updates using a learning rate of 1e-5, a linear warmup ratio of 0.1, and an effective batch size of 64 for 5 epochs, choosing the checkpoint with the lowest loss on DOCENT's validation set
- 2. DAPO (Yu et al., 2025) with full parameter updates, implemented with TRL (von Werra et al., 2020), using a learning rate of 1e-6, 20 warmup steps, 8 generations per sample (with a temperature of 1.0 and $top_p=0.7$), $\epsilon=0.28$, $\beta=0$, and an effective batch size of 64 for a single epoch, choosing the final checkpoint

We ask seven graduate students in NLP to compare and evaluate our SFT and DAPO generations (greedily sampled) for 40 images from DOCENT's test set. Additionally, we collect three annotations for five of these images to calculate agreement.

A.4 RESULTS

A.4.1 COARSE

 Table 6: All coarse metrics evaluated on DOCENT and CapArena, identified with Θ (parameter count, in billions), \blacksquare (requires a reference), \blacksquare (requires an image) and \blacksquare (replicable). "acc" indicates accuracy at predicting the better generation (or "tie") in each judged pair. For DOCENT, ρ / τ indicate the Spearman rank / Kendall's τ correlations between differences in the metric and differences in the rank of the generations in each pair. For CapArena, ρ / τ indicate the Spearman rank / Kendall's τ correlations between model ELO rankings derived from metric scores and human judgments. **Bold** indicates the best replicable metric while <u>underlining</u> indicates the best metric overall. **Gray cells** indicate correlations that are *not* statistically significant at $\alpha = 0.05$. PoSH beats all replicable baselines and GPT40 on DOCENT in all settings (mistakes, omissions and overall quality) while remaining perfectly replicable. Moreover, PoSH is robust, achieving the second best score among replicable metrics on CapArena.

						DOCENT CapArena								ıa		
						Mistake	s		Omissio	ns	O	verall Qu	ality	Desc	Mo	del
	Θ			2	acc	ρ	τ	acc	ρ	τ	acc	ρ	τ	acc	ρ	au
length				✓	30.5	-0.270	-0.206	37.8	-0.002	-0.001	38.0	-0.160	-0.121	58.7	0.710	0.582
BLEU-4		√		✓	34.2	-0.070	-0.053	42.5	0.118	0.087	42.8	0.051	0.038	47.4	0.424	0.319
CIDER		✓		✓	32.0	-0.118	-0.089	37.5	-0.009	-0.007	37.8	-0.106	-0.079	38.4	-0.279	-0.209
METEOR		✓		✓	36.0	-0.103	-0.078	46.2	0.260	0.197	44.8	0.113	0.084	57.6	0.785	0.582
ROUGE-LS		✓		\checkmark	37.5	0.251	0.190	44.0	0.214	0.161	47.3	0.210	0.158	45.8	0.180	0.199
SPICE		V		✓	41.3	0.308	0.234	55.0	0.464	0.360	58.5	0.458	0.349	41.7	0.275	0.231
CAPTURE	İ	✓		\checkmark	43.3	0.259	0.194	53.8	0.447	0.340	56.0	0.453	0.347	52.5	0.613	0.538
CLIPScore	İ		\checkmark	\checkmark	45.3	0.145	0.108	47.0	0.176	0.133	53.5	0.181	0.136	32.5	-0.574	-0.451
FLEUR	13		\checkmark	✓	35.2	-0.053	-0.040	38.5	0.029	0.020	41.2	-0.040	-0.031	45.8	0.393	0.297
Prometheus	8x7	✓		✓	51.2	0.014	0.011	49.8	0.136	0.116	58.5	-0.007	-0.007	53.9	0.859	0.648
Qwen3	32	✓		✓	57.7	0.282	0.235	53.5	0.286	0.253	61.2	0.289	0.257	56.2	0.899	0.714
LLaVa Critic	72	✓	\checkmark	\checkmark	62.8	0.412	0.351	57.0	0.509	0.430	66.8	0.546	0.461	<u>64.0</u>	<u>0.987</u>	<u>0.934</u>
DCScore		V	✓		62.8	0.541	0.422	54.0	0.395	0.298	62.8	0.471	0.362	-	-	-
GPT4o	İ		\checkmark		63.2	0.469	0.400	55.5	0.338	0.274	66.7	0.477	0.393	53.6	0.868	0.692
GPT4o	İ	✓			53.3	0.324	0.261	50.0	0.277	0.215	60.8	0.388	0.297	56.7	0.867	0.685
GPT4o	İ	✓	\checkmark		58.5	0.484	0.396	56.0	0.380	0.303	67.3	0.510	0.402	55.4	0.890	0.802
GPT5			\checkmark		66.0	0.584	0.476	55.5	0.454	0.345	69.2	0.593	0.466	56.9	0.916	0.802
GPT5		✓			62.5	0.511	0.423	53.2	0.421	0.332	68.0	0.540	0.440	59.1	0.956	0.846
GPT5		✓	\checkmark		<u>68.2</u>	0.604	0.494	56.3	0.477	0.366	67.2	0.602	0.475	62.1	0.934	0.846
РоЅн	14	√		√	60.5	0.517	0.404	<u>62.3</u>	0.579	0.450	<u>70.0</u>	0.596	0.464	59.5	0.938	0.802

Table 7: Annotator agreement (Krippendorff's α) and aggregate preferences between SFT and DAPO with PoSH. A PoSH generation earns a score between -2 and 2 based on how much worse or better it is than its SFT counterpart. Reported numbers are averages over these scores.

	Mistakes	Omissions	Overall Quality
α	0.235	0.464	0.184
PoSH vs SFT	-0.243	0.432	0.135

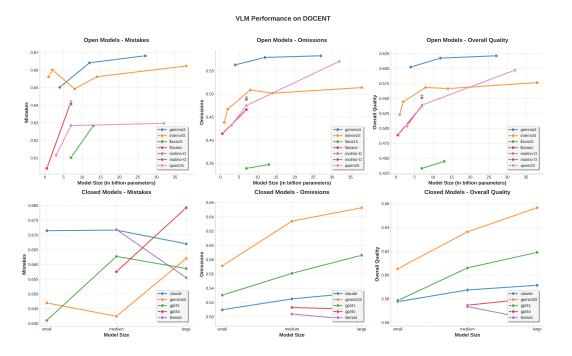


Figure 9: Performance of open and closed VLMs on DOCENT, as measured by PoSH. While open models are competitive when it comes to mistakes in their detailed descriptions, they lag behind in their omissions, covering less of DOCENT's reference descriptions than closed models.