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Abstract

Recent work incorporates pre-trained word em-001
beddings such as BERT embeddings into Neu-002
ral Topic Models (NTMs), generating highly003
coherent topics. However, with high-quality004
contextualized document representations, do005
we really need sophisticated neural models to006
obtain coherent and interpretable topics? In007
this paper, we conduct thorough experiments008
showing that directly clustering high-quality009
sentence embeddings with an appropriate word010
selecting method can generate more coherent011
and diverse topics than NTMs, achieving also012
higher efficiency and simplicity.013

1 Introduction014

Topic modelling is an unsupervised method to un-015

cover latent semantic themes among documents016

(Boyd-Graber et al., 2017). Neural topic mod-017

els (NTMs) (Miao et al., 2016; Srivastava and018

Sutton, 2017) incorporating neural components019

have significantly advanced the modelling results020

than the traditional Latent Dirichlet Allocation021

(LDA; Blei et al. 2003). Later, contextualized022

word and sentence embeddings produced by pre-023

trained language models such as BERT (Devlin024

et al., 2019) have demonstrated the state-of-the-art025

results in multiple Natural Language Processing026

(NLP) tasks (Xia et al., 2020), which attracts atten-027

tions from the topic modelling community. Recent028

work has successfully incorporated these contextu-029

alized embeddings into NTMs, showing improved030

topic coherence than conventional NTMs that use031

Bag-of-Words (BoW) as document representations032

(Bianchi et al., 2021a,b; Jin et al., 2021). Despite033

the promising performance, existing NTMs are gen-034

erally based on a variational autoencoder frame-035

work (VAE; Kingma and Welling 2013), which036

suffers from hyper-parameters tuning and compu-037

tational overheads (Zhao et al., 2021). Moreover,038

the integration of the pre-trained embeddings to the039

standard VAE framework adds additional model040

complexity. With high-quality contextualized doc- 041

ument representations, do we really need sophisti- 042

cated NTMs to obtain coherent and interpretable 043

topics? 044

Recent work (Aharoni and Goldberg, 2020; Sia 045

et al., 2020; Thompson and Mimno, 2020) has 046

shown that directly congregating contextualized 047

embeddings can get semantically similar word or 048

document clusters. Specifically, Sia et al. (2020) 049

cluster vocabulary-level word embeddings and ob- 050

tain top words from each cluster using weigh- 051

ing and re-ranking, while Thompson and Mimno 052

(2020) consider polysemy and perform token-level 053

clustering. However, the use of term frequency 054

(TF) to select topic words fails to capture the se- 055

mantics of clusters precisely because words with 056

high frequency may be common across different 057

clusters. In addition, they only compare the perfor- 058

mance with the traditional LDA while ignoring the 059

promising NTMs proposed recently. 060

Is neural topic modelling better than simple em- 061

bedding clustering? This work compares the per- 062

formance of NTMs and contextualized embedding- 063

based clustering systematically. We employ a 064

straightforward framework for clustering. In addi- 065

tion, we explore different strategies to select topic 066

words for clusters. We evaluate our approach on 067

three datasets with various text lengths. 068

Our contributions are as follows: First, we find 069

that directly clustering high-quality sentence em- 070

beddings can generate as good topics as NTMs, 071

providing a simple and efficient solution to uncover 072

latent topics among documents. Second, we pro- 073

pose a new topic word selecting method, which is 074

the key to producing highly coherent and diverse 075

topics. Third, we show that the clustering-based 076

model is robust to the length of documents and 077

the number of topics. Reducing the embedding 078

dimensionality negligibly affects the performance 079

but saves runtime. 080
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2 Models081

This study compares embedding clustering-based082

models with LDA and a series of existing NTMs083

as follows. Implementation details are supplied in084

Appendix A.085

LDA (Blei et al., 2003): the representative tradi-086

tional topic model in history.087

ProdLDA (Srivastava and Sutton, 2017): a088

prominent NTM that employs the VAE to recon-089

struct the BoW representation.090

CombinedTM (Bianchi et al., 2021a): extends091

ProdLDA by concatenating the contextualized092

SBERT (Reimers and Gurevych, 2019) embed-093

dings with the original BoW as the new input to094

feed into the VAE framework.095

ZeroShotTM (Bianchi et al., 2021b): also builds096

upon ProdLDA, but it replaces the original BoW097

with SBERT embeddings entirely.098

BERT+KM (Sia et al., 2020): a clustering-based099

method that uses TF to weight and re-rank words100

to obtain topic words.101

Our Methods: we use a simple clustering frame-102

work with contextualized embeddings for topic103

modelling, as shown in Figure 1. We first encode104

pre-processed documents to obtain contextualized105

sentence embeddings through pre-trained language106

models. After that, we lower the dimension of the107

embeddings before applying clustering methods108

(e.g., K-Means; KM) to group similar documents.109

Each cluster will be regarded as a topic. Finally, we110

adopt a weighting method to select representative111

words as topics.112

We believe that high-quality document embed-113

dings are critical for clustering-based topic mod-114

elling. We thus experiment with different embed-115

dings including BERT, RoBERTa (Liu et al., 2019),116

and SBERT. We also adopt SimCSE (Gao et al.,117

2021), a recently proposed sentence embeddings118

of contrastive learning, that has shown the state-of-119

the-art performance on multiple semantic textual120

similarity tasks. Both supervised and unsupervised121

SimCSE are investigated in our experiment (e.g.,122

Table 2).123

Pre-trained contextualized sentence embeddings124

often have high dimensionalities. To reduce the125

computational cost, we apply the Uniform Mani-126

fold Approximation Projection (UMAP) (McInnes127

et al., 2018) in our implementation to reduce the128

dimensionality while maintaining the essential in-129

formation of the embeddings. We find that reducing130

dimensionality before clustering has a negligible131

UMAP K-Means

Contextualized 
embeddings

topic2

topic3

topic1

Figure 1: Architecture of our method. Reducing em-
bedding dimension is optional but can save runtime (see
Section 4.4).

impact on performance (Section 4.4). 132

We cluster the dimension-reduced sentence em- 133

beddings using K-Means because of its efficiency 134

and simplicity. Semantically close documents are 135

gathered together, and each cluster is supposed to 136

represent a topic. 137

3 Topic Words for Clusters 138

Once we have a group of clustered documents, se- 139

lecting representative topic words is vital to identify 140

semantics of topics. Inspired by Term Frequency- 141

Inverse Document Frequency (TFIDF) (Ramos 142

et al., 2003), we explore several weighting met- 143

rics to obtain topic words in clusters. Let nt,d be 144

the frequency of word t in document d,
∑

t′ nt′,d 145

be the total words’ frequency in the document, 146

and D be the entire corpus. TFIDF is defined as 147

TFIDF =
nt,d∑
t′ nt′,d

· log
(

|D|
|{d∈D:t∈d}|

)
. While 148

capturing the word importance across the entire 149

corpus, TFIDF ignores that semantically similar 150

documents have been grouped together. To address 151

this issue, we consider two alternative strategies. 152

First, we concatenate the documents within a clus- 153

ter to be a single long document and calculate the 154

term frequency of each word in each cluster: 155

TFi =
nt,i∑
t′ nt′,i

(1) 156

where nt,i is the frequency of word t in cluster i, 157∑
t′ nt′,i is the total word frequency in the cluster. 158

Second, for each cluster i, we apply TFIDF: 159

TFIDFi =
nt,di∑
t′ nt′,di

· log
(

|Di|
|{d ∈ Di : t ∈ d}|

)
(2) 160

where nt,di denotes the frequency of word t in 161

document d, which is in cluster i, and |Di| is the 162

number of documents in cluster i. 163

Besides the two local cluster-based strategies, 164

we further incorporate the global word importance 165

with local term frequency within each cluster: 166

TFIDF×TFi = TFIDF ·TFi (3) 167
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and we combine the global word importance with168

term frequency across clusters:169

TFIDF× IDFi = TFIDF · log
(

|K|
|{t ∈ K}|

)
(4)170

where |K| is the number of clusters and |{t ∈ K}|171

is the number of clusters that word t appears.172

4 Experiments173

4.1 Datasets174

We adopt three datasets of various text lengths in175

our experiments, namely 20Newsgroups1, M10176

(Lim and Buntine, 2015), and BBC News (Greene177

and Cunningham, 2006). We follow OCTIS (Ter-178

ragni et al., 2021) to pre-process these raw datasets.179

The statistics of the datasets are shown in Table 1.180

Dataset D V L Nd

20Newsgroups 16,309 1,612 20 48
M10 8,355 1,696 10 5.9
BBC News 2,225 2,949 5 120

Table 1: Statistics of the pre-processed datasets, where
D denotes the total number of documents, V denotes
the vocabulary size, L denotes the number of corpus
categories, and Nd denotes the average number of words
per document.

4.2 Evaluation Metrics181

We evaluate the topic quality in terms of both topic182

diversity and topic coherence: Topic Diversity (TU)183

(Nan et al., 2019) measures the uniqueness of the184

words across all topics; Normalized Pointwise Mu-185

tual Information (NPMI) (Newman et al., 2010)186

measures topic coherence internally using a slid-187

ing window to count word co-occurrence patterns;188

Topic Coherence (CV ) (Röder et al., 2015) is a189

variant of NPMI that uses the one-set segmenta-190

tion to count word co-occurrences and the cosine191

similarity as the similarity measure.192

4.3 Results & Analysis193

We report the main results in Table 2. For the com-194

plete results using different embeddings, please195

refer to Appendix B.196

Directly clustering high-quality sentence em-197

beddings can generate good topics. From Table 2,198

it can be observed that SBERT and SimCSE-based199

clustering models achieve the best averaged topic200

1http://qwone.com/~jason/20Newsgroups/

coherence among the three datasets while maintain- 201

ing remarkable topic diversities. Conversely, clus- 202

tering RoBERTa achieves similar or worse results 203

than contextualized NTMs. The results suggest 204

that contextualized embeddings are essential to get 205

high-quality topics. 206

Topic words weighting method is vital. We 207

can see in Figure 2 that inappropriate word se- 208

lecting methods (TFIDF×TFi and TFi) lead 209

to worse topic coherence than the contextualized 210

NTMs (i.e., CombinedTM and ZeroShotTM), and 211

even the BoW-based ProdLDA. Moreover, from 212

Table 2, BERT+KM adopt TF to obtain top words 213

for each cluster, which ignores that the words may 214

also be prevalent in other clusters, thus having poor 215

topic diversities. Instead, our proposed method, 216

TFIDF× IDFi, considers the locally important 217

words and globally infrequent words at the same 218

time. We provide more comparison of the word 219

selecting methods in Section 4.4. 220

Clustering-based topic models are robust to 221

various lengths of documents. From Table 2 and 222

Figure 2, we find that clustering-based models with 223

high-quality embeddings (SBERT and SimCSE) 224

consistently perform better than conventional LDA 225

and NTMs, especially on the short text dataset M10, 226

even with different word selecting methods. 227

4.4 Ablation Studies 228

We further investigate the impact of the topic word 229

selecting methods, different embedding dimension- 230

alities, as well as the topic numbers. 231

Topic word selecting methods. Table 3 shows 232

the comparison between different word weighting 233

methods. TFIDF× IDFi achieves significantly 234

better results among all methods. This indicates 235

that TFIDF marks out the important words to 236

each document in the entire corpus, while IDFi 237

penalizes the common words in multiple clusters. 238

Conversely, the other three methods ignore that 239

frequent words in a cluster may also be prevalent 240

in other clusters, hence selecting such words lead- 241

ing to low topic diversities. A further analysis in 242

Appendix C also supports the observation. 243

Embedding dimensionality reduction. We ap- 244

ply UMAP to reduce the dimensionality of the sen- 245

tence embeddings before clustering. As shown in 246

Figure 3, the embeddings dimensionality negligibly 247

affects topic quality for all word selecting methods. 248

However, reducing to a lower dimensionality de- 249

creases the computational runtime (Appendix D). 250
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20Newsgroups M10 BBC News
Model TU NPMI CV TU NPMI CV TU NPMI CV

LDA 0.717 0.040 0.511 0.681 -0.177 0.336 0.312 -0.014 0.357
ProdLDA 0.736 0.045 0.574 0.650 -0.260 0.432 0.702 -0.044 0.540
CombinedTM(SBERTbase) 0.700 0.065 0.601 0.581 0.001 0.443 0.606 0.042 0.639
ZeroShotTM(SBERTbase) 0.729 0.069 0.614 0.633 -0.056 0.433 0.699 -0.050 0.531
BERTbase+KM† 0.346 0.065 0.521 0.484 0.116 0.588 0.529 0.111 0.637
BERTbase

∗ 0.562 0.118 0.649 0.763 0.146 0.725 0.689 0.129 0.700
RoBERTalarge∗ 0.404 0.014 0.440 0.669 0.001 0.506 0.673 0.046 0.555
BERTbase+UMAP∗ 0.589 0.128 0.671 0.794 0.159 0.706 0.716 0.135 0.716
RoBERTalarge+UMAP∗ 0.463 0.054 0.499 0.636 0.046 0.513 0.706 0.077 0.632
SBERTbase

∗ 0.668 0.126 0.658 0.832 0.164 0.742 0.727 0.137 0.719
SRoBERTabase∗ 0.670 0.128 0.654 0.815 0.149 0.713 0.719 0.131 0.699
SBERTbase+UMAP∗ 0.679 0.139 0.690 0.841 0.192 0.715 0.749 0.142 0.730
SRoBERTabase+UMAP∗ 0.680 0.138 0.684 0.830 0.192 0.722 0.747 0.135 0.716
Unsup-SimCSE(BERTbase)∗ 0.677 0.147 0.694 0.831 0.180 0.750 0.730 0.142 0.722
Unsup-SimCSE(BERTbase)+UMAP∗ 0.692 0.139 0.685 0.851 0.206 0.744 0.733 0.146 0.729
Sup-SimCSE(BERTbase)∗ 0.721 0.151 0.702 0.829 0.180 0.746 0.736 0.143 0.720
Sup-SimCSE(BERTbase)+UMAP∗ 0.714 0.146 0.698 0.815 0.202 0.730 0.739 0.143 0.724

Table 2: Topic coherence (NPMI and CV ) and topic diversity (TU) of the top 10 words. All results are averaged across the 5
settings of topic number (K = {ground truth, 25, 50, 75, 100}). Best results are in bold. †: we use the method from (Sia et al.,
2020). ∗: our methods adopt TFIDF× IDFi (Eq. 4) to select topic words. Dimensionality: base: 768, large: 1024.
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Figure 2: Topic coherence (CV ) and diversity (TU) of different models over different topic number K. Cluster models use
SBERTbase+UMAP and Sup-SimCSE(BERTbase)+UMAP.

Method Avg TU Avg NPMI Avg CV

TFi 0.442 0.081 0.555
TFIDFi 0.508 0.110 0.626
TFIDF×TFi 0.438 0.078 0.551
TFIDF× IDFi 0.689 0.145 0.702

Table 3: Comparison between different topic word
selecting methods on 20Newsgroups using Unsup-
SimCSE(RoBERTabase)+UMAP with K = 30.
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Figure 3: Topic coherence and diversity over differ-
ent embedding dimensions on BBC News using Unsup-
SimCSE(RoBERTabase)+UMAP with K = 30.

Topic numbers K. We investigate the impact 251

of the different number of topics K on the perfor- 252

mance of the models. Figure 2 plots the trends of 253

TU and CV on three datasets. We observe that the 254

TU of clustering-based topic models, especially the 255

models using TFIDF× IDFi, decrease slowly 256

compared to others when K increases. The similar 257

trend can be observed for topic coherence, while 258

the CV of LDA and NTMs either fluctuates signifi- 259

cantly or stays at a low level. 260

5 Conclusion 261

We conduct a thorough empirical study to show that 262

a clustering-based method can generate commend- 263

able topics as long as high-quality contextualized 264

sentence embeddings are used, together with an ap- 265

propriate topic word selecting strategy. Compared 266

to neural topic models, clustering-based models 267

are more simple, efficient and robust to various 268

document lengths and topic numbers. 269
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A Configuration Details405

We implement LDA and NTMs based on OCTIS406

(Terragni et al., 2021) 2 and use their default set-407

tings. Specifically, ProdLDA, CombinedTM, and408

ZeroShotTM share the same configurations, i.e.409

one hidden layer with 100 neurons, ADAM op-410

timizer and Momentum as 0.99; we randomly411

dropout 20% hidden units; we run 100 epochs412

of each model, and the batch size is 64. For413

BERT+KM, we follow Sia et al. (2020) by reduc-414

ing embedding dimension to 50 using Principal415

Component Analysis (PCA) and adopting TF to416

select words. For our methods, we reduce embed-417

ding dimension to 5 using UMAP. We use BERT,418

RoBERTa, and SBERT embeddings provided by419

HuggingFace 3, and SimCSE embeddings provided420

from its official Github 4.421

B Complete Results422

We present the complete comparison between dif-423

ferent contextualized embeddings in Table 4.424

C Comparison of Topic Words425

We run Sup-SimCSE(RoBERTabase)+UMAP on426

20Newsgroup and show the differences of topic di-427

versities produced by distinct word selecting meth-428

ods in Table 5. It is clear that TFIDFi and TFi429

tend to choose common words across multiple top-430

ics.431

D Runtime432

We compare the model runtime between the contex-433

tualized NTM CombinedTM and clustering-based434

models. We reduce the dimensionality of the sen-435

tence embeddings to 50 using UMAP. All models436

run on NVIDIA T4 GPU. Results are in Table 6.437

Model Runtime
CombinedTM 149s

SBERT(BERTbase) 113s
SBERT(BERTbase)+UMAP to dim=50 101s

Table 6: Runtime comparison on 20Newsgroups with
K = 30. Results are averaged across 5 runs.

2https://github.com/MIND-Lab/OCTIS
3https://huggingface.co/models
4https://github.com/princeton-nlp/

SimCSE
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20Newsgroups M10 BBC News
Model TU NPMI CV TU NPMI CV TU NPMI CV

LDA 0.717 0.040 0.511 0.681 -0.177 0.336 0.312 -0.014 0.357
ProdLDA 0.736 0.045 0.574 0.650 -0.260 0.432 0.702 -0.044 0.540
CombinedTM 0.700 0.065 0.601 0.581 0.001 0.443 0.606 0.042 0.639
ZeroShotTM 0.729 0.069 0.614 0.633 -0.056 0.433 0.699 -0.050 0.531
BERTbase 0.562 0.118 0.649 0.763 0.146 0.725 0.689 0.129 0.700
BERTlarge 0.550 0.116 0.646 0.743 0.138 0.715 0.684 0.132 0.705
RoBERTabase 0.385 0.028 0.464 0.634 -0.008 0.480 0.671 0.098 0.646
RoBERTalarge 0.404 0.014 0.440 0.669 0.001 0.506 0.673 0.046 0.555
BERTbase+KM† 0.346 0.065 0.521 0.484 0.116 0.588 0.529 0.111 0.637
BERTbase+UMAP 0.589 0.128 0.671 0.794 0.159 0.706 0.716 0.135 0.716
BERTlarge+UMAP 0.563 0.126 0.662 0.751 0.176 0.681 0.721 0.139 0.720
RoBERTabase+UMAP 0.434 0.063 0.522 0.640 0.091 0.547 0.710 0.106 0.664
RoBERTalarge+UMAP 0.463 0.054 0.499 0.636 0.046 0.513 0.706 0.077 0.632
SBERTbase 0.668 0.126 0.658 0.832 0.164 0.742 0.727 0.137 0.719
SBERTlarge 0.674 0.135 0.673 0.844 0.168 0.752 0.718 0.134 0.714
SRoBERTabase 0.670 0.128 0.654 0.815 0.149 0.713 0.719 0.131 0.699
SRoBERTalarge 0.649 0.115 0.640 0.823 0.155 0.735 0.696 0.122 0.694
SBERTbase+UMAP 0.679 0.139 0.690 0.841 0.192 0.715 0.749 0.142 0.730
SBERTlarge+UMAP 0.681 0.139 0.691 0.836 0.203 0.723 0.744 0.136 0.725
SRoBERTabase+UMAP 0.680 0.138 0.684 0.830 0.192 0.722 0.747 0.135 0.716
SRoBERTalarge+UMAP 0.680 0.131 0.670 0.799 0.196 0.700 0.728 0.121 0.705
Unsup-SimCSE(BERTbase) 0.677 0.147 0.694 0.831 0.180 0.750 0.730 0.142 0.722
Unsup-SimCSE(BERTlarge) 0.700 0.145 0.693 0.832 0.182 0.750 0.728 0.135 0.714
Unsup-SimCSE(RoBERTabase) 0.696 0.142 0.682 0.823 0.164 0.726 0.731 0.137 0.700
Unsup-SimCSE(RoBERTalarge) 0.722 0.147 0.694 0.812 0.171 0.734 0.736 0.142 0.711
Unsup-SimCSE(BERTbase)+UMAP 0.692 0.139 0.685 0.851 0.206 0.744 0.733 0.146 0.729
Unsup-SimCSE(BERTlarge)+UMAP 0.694 0.145 0.698 0.843 0.200 0.721 0.736 0.128 0.709
Unsup-SimCSE(RoBERTabase)+UMAP 0.689 0.145 0.703 0.843 0.192 0.726 0.747 0.130 0.701
Unsup-SimCSE(RoBERTalarge)+UMAP 0.717 0.146 0.701 0.813 0.190 0.710 0.752 0.138 0.713
Sup-SimCSE(BERTbase) 0.721 0.151 0.702 0.829 0.180 0.746 0.736 0.143 0.720
Sup-SimCSE(BERTlarge) 0.706 0.155 0.709 0.833 0.189 0.762 0.744 0.146 0.730
Sup-SimCSE(RoBERTabase) 0.718 0.145 0.693 0.829 0.170 0.734 0.738 0.140 0.715
Sup-SimCSE(RoBERTalarge) 0.716 0.148 0.696 0.826 0.179 0.742 0.751 0.147 0.726
Sup-SimCSE(BERTbase)+UMAP 0.714 0.146 0.698 0.815 0.202 0.730 0.739 0.143 0.724
Sup-SimCSE(BERTlarge)+UMAP 0.721 0.150 0.704 0.834 0.206 0.728 0.750 0.145 0.729
Sup-SimCSE(RoBERTabase)+UMAP 0.709 0.144 0.700 0.822 0.195 0.711 0.752 0.142 0.723
Sup-SimCSE(RoBERTalarge)+UMAP 0.708 0.147 0.701 0.818 0.189 0.704 0.754 0.145 0.725

Table 4: Topic coherence (NPMI and CV ) and topic diversity (TU) of the top 10 words. All results are averaged
across the 5 number of topics (K = {ground truth, 25, 50, 75, 100}). Each model is averaged over 5 runs. Best
results are in bold. †: we use the method from (Sia et al., 2020), which uses PCA to reduce embedding dimensionality
and TF to select words. For other clustering-based models, we use KM to cluster embeddings and TFIDF× IDFi

(Eq. 4) to select topic words. Dimensionality: base: 768, large: 1024.
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Topic Weighting Method Topic Words

Topic 1
TFIDF× IDFi car bike ride engine brake tire drive mile road front

TFIDFi car bike good brake drive make ride time engine tire
TFi car bike good drive make time engine ride back year

Topic 2
TFIDF× IDFi armenian turkish people kill israeli genocide village jewish war government

TFIDFi armenian people turkish genocide government make israeli kill time village
TFi people armenian turkish make kill government time year state child

Table 5: Comparison of topic words generated using different weighting methods when K = 30. Repeated words
across topics are marked with an underline. Incoherent words are in bold.
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