
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MEMORIZING LONG-TAIL DATA CAN HELP GENERAL-
IZATION THROUGH COMPOSITION

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning has led researchers to rethink the relationship between memorization
and generalization. In many settings, memorization does not hurt generalization
due to implicit regularization and may help by memorizing long-tailed examples.
In this paper, we consider the synergy between memorization and simple compo-
sition — the ability to make correct prediction on a combination of long-tailed
features. Theoretically, we show that for a linear setting, memorization together
with composition can help the model make correct predictions on rare test examples
that require a combination of long-tailed features, even if such combinations were
never observed in the training data. Experiments on neural network architecture
on simple data show that the theoretical insight extends beyond the linear setting,
and we further observe that the composition capability of the model depends on its
architecture.

1 INTRODUCTION

The relationship between memorization and generalization has always been an intriguing topic in deep
learning. It has long been known that neural networks used for supervised learning can memorize
noisy or even random labels (Zhang et al., 2017), and recent large language models can still memorize
long text despite not being overparametrized (Carlini et al., 2019; 2022). Conventional wisdom
from statistical learning theory suggests that memorization might be detrimental to generalization
performance, yet neural networks often generalize well with memorization, sometimes even better
compared to networks that do not memorize.

Trying to understand this relationship from a theoretical perspective has led to the idea of implicit
regularization and benign overfitting (Belkin et al., 2019; Bartlett et al., 2020; Belkin et al., 2020;
Hastie et al., 2022; Gunasekar et al., 2017), where the training process and architecture choices of
neural networks prefer certain solutions that have good generalization despite memorizing the training
data. Another interesting line of work (Feldman, 2020; Feldman & Zhang, 2020) demonstrated that
memorization can actively help generalization by capturing long-tail behaviors in the training data. If
the test data contain examples that are similar to training examples, it is more likely for the neural
network to make correct predictions.

However, the similarity between the test and training data alone cannot explain all the benefits of
memorization. Recent large models exhibit several surprising properties including composition
– the ability to produce correct results by combining two or more pieces of information learned
during training. Composition has received a lot of attention (Hupkes et al., 2020; Baroni, 2020).
Composition allows models to perform tasks that may not appear in the training data, resulting
in stronger notions of out-of-distribution (OOD) generalization. Intuitively, memorizing long-tail
examples and composition are synergistic: a model that is capable of composition may leverage
two or more memorized long-tail examples to create/predict something that is highly unlikely in the
original training data. In this paper, we try to demonstrate this behavior on simplistic models.

Our theoretical approach focuses on a linear setting where features appear in different frequencies,
and each sample consists of a sparse combination of features. As the model is linear, it automatically
achieves simple composition — if individual features are learned correctly, their combinations can
also be predicted correctly. We give guarantees for out-of-distribution generalization where the test
data contain examples that may be combinations of multiple infrequent features and have very low
probability of appearing in the training set.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To complement our theoretical results, we construct simple examples that require simple composition
— prediction of the sum of digits for 3-digit numbers. Our experiment shows that in such cases
one can indeed train simple networks that are capable of composition and memorization helps with
both in-distribution and out-of-distribution (OOD) generalization. We also observe that the model
architecture plays an important role in determining whether the model has composition capabilities.

1.1 OUR RESULTS

Informally, our theoretical model considers a data distribution D over vectors x, where each feature
xi appears independently with probability pi. These probabilities decay as p1 ≥ p2 ≥ . . . ≥ pd (for
example, pi ∼ i−α follows a power-law decay), and each data is a linear combination of s features.
As a result, features with larger pi tend to appear frequently in the data, while those with smaller pi
may appear only a few times or not at all. We refer to the former as common features and the latter as
long-tail features.

Our goal is to learn a target model of the form f∗(x) = ⟨β∗,x⟩ using n training samples of the form
y = f∗(x) + ξ, where the label noise ξ ∼ N (0, σ2) and the noise level σ ≥ 0. We focus on the
minimum ℓ2-norm solution, which memorizes the training set in our overparametrized setting.

We show that under this setup, the model can not only reliably learn common features that appear at
least Ω̃(1) times1, but also recover certain long-tail features that appear only once. This enables the
model to perform well when tested on combinations of such features that were never seen together
during training:

Theorem 1 (Informal). Let D̃ be a test distribution that differs from the training distribution D only
in that each sample from D̃ contains a composition of t long-tail features, each of which appeared
exactly once in the training data. Then, the test loss (expected loss on D) remains small, and the
out-of-distribution loss (expected loss on D̃) is at most σ2t.

The main challenge is that the frequency pi of common features can be as low as Θ̃
(
1
n

)
, resulting in

a high variance. This issue is even worse for long-tail features, which appear even less frequently. As
a result, standard concentration bounds are insufficient in this setting. To address this, we leverage the
combinatorial structure of the data matrix X and show that, under a suitable decay of pi, most data
points contain at most one long-tail feature. This structural insight enables us to establish meaningful
learning guarantees, even when some features are extremely rare and variances are large.

Empirically, we first verify the theoretical analysis in the linear setting. We then show that similar
phenomena happen for simple neural networks. More concretely, we consider a “heavy-tailed”
version of MNIST dataset where digits appear in decreasing frequencies, with 9 being the rarest. To
introduce compositionality, each input consists of 3 randomly sampled MNIST images, and the task
is to predict the sum of the 3 digits.

We evaluate the composition capability of model through its OOD performance on test examples
that contains at least one 9, with the other two numbers sampled uniformly. Most of the test cases
involve 3-digit combinations that never appear during training. We observe that ResNet models
exhibit compositionality when they process each digit individually to extract features, and then
aggregated these features by a simple network — even if the network has not seen a particular 3-digit
combination, the prediction is still accurate if it has seen each digit enough number of times. In
contrast, a ResNet that processes the 3 images together as a single input performs significantly worse.

To further investigate memorization effect on generalization, we insert images from Omniglot in the
training data, where each Omniglot class only appear exactly once. Experiments show that models
with compositional ability can correctly predict on test data that involves two Omniglot images,
provided that the model memorizes training data. However, models that either do not memorize due
to a large weight decay or lack compositional ability perform significantly worse.

1.2 RELATED WORKS

Memorization and long-tail data Real-world data often follow heavy-tailed distributions, where
rare examples capture unique sub-concepts (Zhu et al., 2014). The works most related to ours are

1We use Õ, Ω̃, Θ̃ to hide polylog factors.
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Feldman (2020) and Feldman & Zhang (2020). These papers demonstrated that memorization is
necessary to achieve near-optimal generalization on long-tail data. Our work builds on this insight
and takes it further, suggesting that memorization can also support the composition of long-tail data
and features.

Memorization in learning Researchers have discovered that deep neural networks can fit (i.e.,
“memorize”) arbitrary labels and still generalize, challenging the classical bias–variance intuition
(Zhang et al., 2017). Since then, there has been growing interest in understanding memorization from
various perspectives (see the survey by Wei et al. (2024) for a comprehensive overview).

Various forms of memorization have been explored in different contexts, including label memorization
in supervised learning (Feldman, 2020; Feldman & Zhang, 2020), counterfactual memorization
(Zhang et al., 2023), and exact memorization in language models (Tirumala et al., 2022). These
findings have raised privacy concerns about the unintended memorization of sensitive data (Carlini
et al., 2019). In response, forgetting mechanisms and unlearning algorithms have been developed to
remove such content without full retraining (e.g., Cao & Yang (2015); Garg et al. (2020)). In contrast,
our work focuses on the positive side of memorization, similar to Feldman (2020), showing how it
can support compositional learning over long-tail data distributions.

Compositional Generalization Generalizing to unseen compositions of known data or features
has a long history (Fodor & Pylyshyn, 1988) and remains a significant challenge. In recent years,
benchmarks such as SCAN (Lake & Baroni, 2018) and CoGS (Kim & Linzen, 2020) have been
introduced to evaluate models’ compositional abilities. Extensive analyses using these benchmarks
have revealed that some language and vision-language models struggle with aspects like word order
sensitivity, relationship recognition, or counting (Hessel & Schofield, 2021; Parcalabescu et al., 2021;
Yuksekgonul et al., 2022). Nonetheless, recent work suggests that current language models do exhibit
some capacity for compositional skill (Bubeck et al., 2023; Zhao et al., 2025).

To improve compositional generalization, researchers have proposed various methods, including data
augmentation (Andreas, 2019), architectural designs (Andreas et al., 2016; Hudson & Manning, 2018),
and meta-learning approaches (Conklin et al., 2021). Efforts to better understand compositional
generalization continue in recent years (Wiedemer et al., 2023; Tang et al., 2025; Arora & Goyal,
2023; Lippl & Stachenfeld, 2024). Our work builds on this line of inquiry, but we focus more on the
connection between memorization and compositionality.

2 PRELIMINARIES

In this section, we set up the details of our theoretical model.

Notation Let [n] = 1, 2, . . . , n. Vectors and matrices are denoted in bold. For a vector β ∈ Rd and
a subset A ⊆ [d], define βA :=

∑
i∈A βiei, keeping entries in A and setting others to 0, where ei is

the standard basis. We use standard notation O, Ω, Θ, ≲, ≳ to hide constants, and Õ, Ω̃, Θ̃ to also
hide logarithmic factors like log(d) and log(n).

Target Model We aim to learn the following linear model:

f∗(x) = ⟨β∗,x⟩.

Here we assume largest coefficient is bounded maxi |βi| = Θ(1).

Data Our data model is designed to capture the common long-tail distribution of features in real-
world data (Zhu et al., 2014). We assume each data point has only a few active features, with
feature frequencies varying according to a long-tail pattern. For instance, in image classification each
image may contain only a few objects, while the overall feature set is large and follows a long-tail
distribution.

Formally, the data vectors x = (x1, . . . , xd)
⊤ are drawn from the distribution D({pi}) defined as

follows: given probability 1 ≥ p1 ≥ . . . ≥ pd > 0, each feature xi ∈ {0, 1,−1} is independently
sampled from a Bernoulli distribution with parameter pi, followed by a random sign flip:

P(xi = 0) = 1− pi, P(xi = 1) = P(xi = −1) =
pi
2
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Let Σ = E[xx⊤] = diag(p1, . . . , pd) be the covariance matrix, and we write D({pi}) as D(Σ).

We generate n data points {(xi, yi)}ni=1 i.i.d. according to this process with label noise ξ:

yi = f∗(xi) + ξi, where xi ∼ D(Σ), ξi ∼ N (0, σ2I). (1)

In many cases, we assume that the feature probabilities pi follow a power-law decay:

pi := min{1, s · i−α/Zα} (2)

for some constant α > 0 with normalization constant Zα =
∑

i≤d i
−α. The truncation at 1 is only

to make sure pi ∈ [0, 1] as a valid probability. Note that E[∥x∥22] ≈ s (ignoring the truncation) so
each data x will be roughly s-sparse. In the rest of the paper, for a data x we will often call the
top-k entries x≤k as common features and remain entries x>k as (long-)tail features for a threshold
k chosen later. Also denote p>k :=

∑
i>k pi as the tail probability and p≤k :=

∑
i≤k pi as the head

probability. The tail probability can be bounded by the claim below.
Claim 1. For pi follows power law decay (2) with α = 1 + cα for any constant cα > 0 and pk < 1
(i.e., k ≥ Θ(s1/α)), we have p>k = Θ(sk1−α) and pk = Θ(sk−α).

Our data model is intended to reflect the long-tail structure, and the power-law decay assumption is
common in prior theoretical analyses (e.g., (Bartlett et al., 2020; Hastie et al., 2022; Lin et al., 2024)).

Choice of parameters Let clog = polylog(d) be a large enough polylog factor. We assume
s < clog < k < n/clog < d/c2log and nc > s+ ln d for any constant c > 0. A concrete example is
s = Θ(1), n = dc for constant c ∈ (0, 0.99) and clog < k < n/clog. Casual readers may assume
s ≪ polylog(d) ≪ k ≪ n ≪ d. The threshold k between common and long-tail features will be
chosen later. Intuitively we require pk = Θ̃(1) so common features appear at least polylog times.

Algorithm and loss We use a linear model and run gradient descent on square loss. That is

L(β) =
1

n

n∑
i=1

(⟨β,xi⟩ − yi)
2 =

1

n
∥Xβ − y∥22 .

We run gradient descent from 0 initialization, so the final estimator is

β̂ = (X⊤X)†X⊤y.

This estimator is also known as the min-ℓ2-norm interpolator/solution. Similar overparametrized
linear models and kernel-models are standard in previous theoretical works (e.g., Bartlett et al. (2020);
Belkin et al. (2019); Jacot et al. (2018)).

We focus on the overparametrized regime where d ≫ n. In noisy case σ > 0, the minimum training
loss may be above 0 even in such overparametrized setting (because there may be many samples that
only use a smaller number of features), so the solution may not interpolate the data. Still, it represents
a global minimum with the smallest ℓ2 norm among all such minima.

Since both our data generation process and predictor are linear, composition happens automatically —
if a model learns the β values for a subset of features accurately, it will perform well for any data that
uses a combination of features from this subset.

Performance Measurements: In- and Out-of-Distribution Test Loss For in-distribution perfor-
mance, we use the standard test loss:

Ex∼D[(β̂
⊤x− β∗⊤x)2].

To evaluate the model’s composition capability (its ability to perform well on rare test examples that
are combinations of training features never appear in training data), we measure its OOD performance
using the test loss defined below.

Let F = {j ∈ [d] : ∃i ∈ [n] s.t. (xi)j ̸= 0} be the set of features that appear in the training data.
Let F̃ ⊆ F be a subset of these features. We define DF̃ as a modified distribution of D, where each
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feature xi in F̃ is guaranteed to be non-zero in every sample, while the rest of the data is generated
according to the original distribution D: each feature xi not in F̃ appears with its original frequency
pi, and non-zero values are sampled uniformly from ±1.

For example, D{2k,4k} denotes a distribution where x2k, x4k ̸= 0. While the model might encounter
training examples where only x2k or x4k is non-zero, it is very likely that it does not see examples
where both are non-zero simultaneously. The OOD test loss is defined as:

Ex∼DF̃
[(β̂⊤x− β∗⊤x)2].

3 MEMORIZATION HELPS OUT-OF-DISTRIBUTION GENERALIZATION

In this section, we present our main results, which show that memorization can help with generaliza-
tion by composition of long-tail features, as measured by test loss and OOD loss. We present results
for both the noiseless case (σ = 0) and the noisy case (σ > 0), respectively.

3.1 NOISELESS CASE

We start with noiseless case. We show below the test performance of the estimator β̂ that goes to 0
when n goes large. The intuition behind the proof is that we can recover all feature that shows up at
least Θ(ln2 d) times, so their estimation error goes to 0.
Theorem 2 (Test loss). Suppose data generated from (1) with noise σ = 0, then with probability at
least 0.99 over the data generation process, the following hold with k satisfying npk = Θ(ln2 d) and
p>k ≤ 1− cp with any constant cp:

Ex∼D[(β̂
⊤x− β∗⊤x)2] ≲ p>k +

k ln4 d

n2p>k
+

ln4 d

n
+

kp2>k ln
4 d

n
+ p3>k ln

4 d.

When data follows power law decay (2) with α = 1 + cα with any constant cα > 0

Ex∼D[(β̂
⊤x− β∗⊤x)2] ≲ s

(
ln2 d

ns

)1− 1
α

Moreover, we establish the following OOD generalization guarantee, which reflects the model’s
compositional ability and shows that it can still perform well despite memorizing all training data. As
shown in the proof, this is made possible by the composition of features that the model memorizes.
Theorem 3 (OOD performance). Under same condition as Theorem 2, then with probability at
least 0.99 over the data generation process, there is a feature set F̂ ⊆ F with size |F̂ | ≥ (1 −
Θ(max{pk/p>k, p

2
>k ln

2 d}))|F| that contains almost all features show up in data such that for any
feature set F̃ ⊆ F̂ we have

Ex∼DF̃
[(β̂⊤x− β∗⊤x)2] ≲ p>k +

k ln4 d

n2p>k
+

ln4 d

n
+

kp2>k ln
4 d

n
+ p3>k ln

4 d.

When data follows power law decay (2) with α = 1 + cα with any constant cα > 0 we have

|F̂ | ≥ (1−Θ

(
max

{(
ln2 d
ns

) 1
α

, s
2
α (ln d)6−

4
α

n2− 2
α

})
)|F| and

Ex∼DF̃
[(β̂⊤x− β∗⊤x)2] ≲s

(
ln2 d

ns

)1− 1
α

.

The proof ideas for both results are similar. We show that all features that appear at least Θ(ln2 d)
times can be recovered, as well as a significant fraction of long-tail features that appear less frequently
in the training data. Intuitively, this is the best we can hope for, since common features may appear
only ω(1) times, and long-tail features may appear just once. We provide more details in Section 4.

These results suggest that memorization can be useful for learning compositions involving long-tail
features. This may offer insight into why memorization is necessary in certain learning problems that
require compositional ability. We further validate our findings in the experimental results (Section 5).

5
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3.2 NOISY CASE

We now extend the above noiseless case (σ = 0) to the noisy case (σ > 0). Similarly, we show the
test loss is small (roughly Θ(σ2k/n)).

Theorem 4 (Test loss). Suppose data generated from (1) with noise σ ≤ 1, with probability at
least 0.99 over the data generation process, the following hold with k satisfying npk = Θ(ln2 d),
p>k ≤ 1− cp with any constant cp and np2>k < c for a small enough constant c:

EX≤k
[Ex∼D[(β̂

⊤x− β∗⊤x)2]] ≲p>k + σ2

(
k ln d

n
+

(
k2 ln2 d

n
+ ln d

)
p>k ln d

)
where the first expectation is over data generating process of common part of training data X≤k.

When data follows power law decay (2) with α = 2 + cα with any constant cα > 0

EX≤k
[Ex∼D[(β̂

⊤x− β∗⊤x)2]] ≲ s

(
ln2 d

ns

)1− 1
α

+ σ2

(
ln2 d

ns

)1− 1
α

s ln5 d

Similar to the noiseless case, we have the following OOD guarantee that measure model’s composi-
tional ability: the error is roughly σ2t, where t is the number of long-tailed features present in the
OOD distribution.

Theorem 5 (OOD performance). Under same condition as Theorem 4, then with probability at least
0.99 over the data generation process, consider any feature set F̃ ⊆ F \ F0 contains any long tail
features show up in data, we have

EX≤k
[Ex∼DF̃

[(β̂⊤x− β∗⊤x)2]] ≲p>k + σ2|F̃ |
(
k2 ln2 d

n
+ ln d

)
,

where the first expectation is over data generating process of common part of training data X≤k.

When data follows power law decay (2) with α = 2 + cα with any constant cα > 0

EX≤k
[Ex∼D[(β̂

⊤x− β∗⊤x)2]] ≲ s

(
ln2 d

ns

)1− 1
α

+ σ2|F̃ | ln d.

These results suggest that the benefits of memorization for compositional learning persist even in the
presence of label noise, although they require a stronger assumption on the frequency decay.

4 PROOF IDEA FOR NOISELESS CASE

In this section, we present the proof ideas for the noiseless case. The proof for the noisy case follows
a similar idea, but is slightly more complex.

A common strategy in analyzing the least squares estimator is to apply matrix concentration techniques
to estimate X⊤X and its inverse. However, in our setting, such a matrix is not going to concentrate
for long-tail features that are expected to appear less than a constant number of times. Whether a
feature appears or not has huge impact on the pseudoinverse (X⊤X)†. Instead of concentration, we
rely on the combinatorial structure of the data matrix X , as described in the lemma below. Roughly
speaking, the lemma shows that most data points contain either zero or one long-tail feature.

Lemma 6 (Structure of X , informal of Lemma A.1). Suppose data generated from (1), with
probability at least 0.99, the following hold with k satisfying npk = Θ(ln2 d) and p>k ≤ 1− cp with
any constant cp:

1. There exist at least Θ(n(1− p>k)) samples whose non-zero entries are only within first k
entries. That is

|S0| := |{i ∈ [n] : (xi)j = 0,∀j > k}| = Θ(n(1− p>k)).

Moreover, the dimension spanned by these samples in S0 is k.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

2. There exist at least Θ(np>k(1− p>k)) samples that only have exactly one non-zero entry in
long-tail entries (not in the first k entries). That is

|S1| := |{i ∈ [n] : ∃ℓ > k such that (xi)ℓ ̸= 0 and (xi)j = 0,∀j > k, j ̸= ℓ}| = Θ(np>k(1−p>k)).

3. Denote the set of features show up in S0 and S1 as

F0 = {j ∈ [d] : ∃i ∈ S0 s.t. (xi)j ̸= 0}, F1 = {j ∈ [d] : ∃i ∈ S1 s.t. (xi)j ̸= 0}.

We have the total number of features shown up in data is |F| = k + Θ(np>k) and the
number of features shown up in S0 and S1 is at least

|F0 ∪ F1| ≥
(
1−Θ

(
max{pk/p>k, p

2
>k ln

2 d}
))

|F|

Note that in the noiseless case, we can achieve 0 training loss. Thus we know every sample must have
0 training loss. From the lemma above, we can see that there are Θ(n(1− p>k)) samples involving
only the k common features. Therefore, the common component β̂≤k is uniquely determined by
these data points when k < n.

Moreover, once the common features β̂≤k are identified, many long-tail features β̂i, those that appear
only alongside common features and not with other long-tail features, can also be exactly recovered.
This is formalized in the following lemma:
Lemma 7 (Recovery of β∗). Suppose data generated from (1) with noise σ = 0, for k that satisfies
the condition of Lemma 6, we have

1. Common features (Top-k entries) are recovered: β̂≤k = β∗
≤k

2. Most of long tail features shown up in data X(last-d− k entries) are recovered:∣∣∣{i ∈ [d] : β̂i = β∗
i

}∣∣∣ / |F| ≥ 1−Θ(max{pk/p>k, p
2
>k ln

2 d}).

3.
∥∥∥β̂F\(F0∪F1)

∥∥∥
2
≤
∥∥∥β∗

F\(F0∪F1)

∥∥∥
2

and β̂i = 0 for i ̸∈ F .

Using the parameter recovery result above, we can derive the performance guarantees stated in
Theorem 2 and Theorem 3, by applying Claim 1.

In the noisy case, we require stronger tail probability decay assumption of data X to show that (with
high probability) every data point contains at most one long-tail feature. Even with this assumption,
the key challenge for the noisy case is that the minimum ℓ2 norm solution may not have 0 training
loss, hence we can no longer say that the training loss is 0 on every individual training samples as in
the noiseless case. However, we show that even in this setting, if a long-tail feature only appear in
one sample, then the training loss for that particular sample must be 0 and the long-tail feature will be
estimated correctly (up to noise level σ) with high probability. Similar argument can be generalized
when long-tail feature appear in few training samples. We leave the details to Appendix B.

5 EXPERIMENT RESULTS

In this section, we first validate our theoretical results empirically, and then we show that similar
ideas can be extended to simple neural network models.

5.1 EXPERIMENTS ON LINEAR MODEL

We follow the setup in Section 2 where the parameters are chosen as: n = 1000, d = 10000, s = 5,
npk = 10 and β∗ = (β∗

1 , . . . , β
∗
d)

⊤ with β∗
i = i−0.1, and report results averaging over 50 runs. In

this setting the most frequent “long-tail” features would appear 10 times in expectation. As we can
see in Figure 1b, for most values of α the error on the long-tail features is roughly proportional to
the noise level σ. This is the same as the theoretical prediction as many of these long-tail examples
appear only once and their error is slightly larger than the noise, while long-tail examples that appear
more often can have a smaller error. Figure 1a shows that common features are learned well when
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Figure 1: (a)(b) Average Error on Common and Long-tail Features on Linear Model; (c)(d) In- and
Out-of-Distribution Test Loss on Linear Model

α is not too small. Figure 1c1d shows that the in-distribution and out-of-distribution test losses are
small as in Theorem 2, 3, 4 and 5. Since the test losses for σ = 0 and σ = 0.05 are very small, their
curves overlap in the plot.

We also observe that when α is small (α = 1), both the in-distribution and out-of-distribution test
losses become higher, and the feature errors also increase. This is expected because in such cases the
long-tail features appear more often in the training data, not often enough for concentration bounds
but often enough to weaken the combinatorial structure our analysis relies on.

5.2 TASK THAT REQUIRE SIMPLE COMPOSITION

Next, we consider a simple task that would benefit from composition. We constructed a new dataset
based on MNIST. Each sample in this dataset consists of three randomly selected MNIST digit images
in MNIST training set, stacked along the channel dimension. The task is to predict the sum of 3
digits. Specifically, given that original MNIST images are of size 28× 28, our new samples take the
form of 3× 28× 28, where each "channel" corresponds to a different digit. The digit selection also
follows Zipf’s law distribution, meaning that lower digits (e.g., ‘0’) appear more frequently, while
higher digits (e.g., ‘9’) appear less frequently.

To investigate the composition behavior and OOD generalization, every test sample is required to
contain at least one digit ‘9’, introducing a distribution shift between the training and test sets. All
test samples are drawn from the MNIST test set. Importantly, this ensures that the digit ‘9’s used at
test time have never been seen by the model during training.

Model Architecture We consider several models using ResNet-18 as our backbone. The first few
models process each channel separately through a ResNet-18 network. That is, given a sample with
three stacked digit images, we compute the feature representation gi (second to last layer) and label
(fi) for each channel independently using the standard ResNet-18 forward propagation. The final
model output is obtained by some aggregation over the individual channel outputs. For Sum, the
final output is simply the sum of fi’s; for Linear, the final output is a trained linear layer on top of
the second-to-last layer gi’s (where the 3 features are concatenated); for 2-layer, the final output is a
trained 2-layer network on top of the second-to-last layer features gi’s. Both the ResNet-18 part and
the aggregation layers are trained simultaneously.

We also consider Cross-channel, which is a ResNet-18 model that is directly applied to the stacked
images as if the channels are color channels (therefore the information between different images are
mixed up starting from layer 1).

The training set has 32,000 samples, with number 0 appear 77,435 times and number 8 appear 955
times. We change the number of times 9 appears to study the relationship between that and the test
performance. For the test set, we enforce that each sample has at least one position equal to number 9,
where the two other positions are sampled uniformly from 0-4. Note that with the number of samples
we have in the training data, with high probability most number combinations in the test set will not
appear in the training set.

Our results Figure 2a show that Sum, Linear, 2-layer models all perform well on the test distribution.
Since the digit ‘9’ is rare in the training data and therefore not learned well by the models, this good
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Figure 2: Test Performance Comparison Across Sum, Linear, 2-layer and Cross-channel Models

performance suggests that these models exhibit some form of compositional behavior by leveraging
memorized instances of ‘9’. On the other hand, Figure 2b shows that Cross-channel model performs
significantly worse on the test distribution, indicating that compositional capability still depends on
the model architecture.

5.3 EFFECT OF MEMORIZATION

To understand the effect of memorization, we further introduce even rarer examples. We consider a
similar setting as the previous subsection. Except that in the training data, we choose 10 classes from
Omniglot (Lake et al., 2015) and select 1 image from each class. That image is assigned a label of
0-9. Each Omniglot image only appears exactly once in the training data (as one of the 3 images in
one of the training data). The task is still to predict the sum of labels for the 3 images.

For the test data, we consider images which contain two of the images from Omniglot (for the images
that have appeared in the training data). Such test examples never appear in the training data and
would not be close to any of them in Euclidean or embedding distance.

As in Table 1, despite only having seen the data once and the test data being significantly different, for
Sum, Linear, 2-layer models the performance on the test set is still reasonable when we don’t use any
regularization and make sure the model memorizes the training data. On the other hand, with weight
decay, even though the training loss only increased slightly, the test performance become significantly
worse. This suggests that memorization enables the model to develop a form of compositional ability
that leverages the memorized Omniglot data, resulting in better generalization for memorizing models
compared to those that do not memorize. Cross-channel model does not perform well in this setting,
further supporting our findings that the composition ability depends on architecture.

Table 1: Memorization behavior of ResNet variants under different weight decay (WD) settings

Model WD = 0 (Memorization) WD = 0.5 (No Memorization)

Sum Test/Train Loss: 0.1760/0.0004 Test/Train Loss: 2.8744/0.0245

Linear Test/Train Loss: 0.1662/0.0004 Test/Train Loss: 1.5539/0.0505

2-layer Test/Train Loss: 0.1351/0.0010 Test/Train Loss: 0.6447/0.0264

Cross-channel Test/Train Loss: 22.9671/0.0023 Test/Train Loss: 23.6506/0.0375

6 CONCLUSIONS

In this paper, we showed that memorization can contribute more to generalization and out-of-
distribution generalization when the model has composition capability. Our theory builds on a simple
linear setting and introduces new techniques for handling long-tail features. Empirically, we show that
similar intuition extends to nonlinear settings, and whether models have composition capability partly
depend on their architecture. The main limitation of our work is that the theoretical result is restricted
to linear setting, while the experiments are on small networks for supervised learning problems. We
hope this work serves as a starting point for understanding memorization and composition in more
complicated models that go beyond supervised learning.

9
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A OMITTED PROOF FOR NOISELESS RESULTS

In this section we give the detailed proof for the noiseless results Theorem 2 and Theorem 3.
Theorem 2 (Test loss). Suppose data generated from (1) with noise σ = 0, then with probability at
least 0.99 over the data generation process, the following hold with k satisfying npk = Θ(ln2 d) and
p>k ≤ 1− cp with any constant cp:

Ex∼D[(β̂
⊤x− β∗⊤x)2] ≲ p>k +

k ln4 d

n2p>k
+

ln4 d

n
+

kp2>k ln
4 d

n
+ p3>k ln

4 d.

When data follows power law decay (2) with α = 1 + cα with any constant cα > 0

Ex∼D[(β̂
⊤x− β∗⊤x)2] ≲ s

(
ln2 d

ns

)1− 1
α

Theorem 3 (OOD performance). Under same condition as Theorem 2, then with probability at
least 0.99 over the data generation process, there is a feature set F̂ ⊆ F with size |F̂ | ≥ (1 −
Θ(max{pk/p>k, p

2
>k ln

2 d}))|F| that contains almost all features show up in data such that for any
feature set F̃ ⊆ F̂ we have

Ex∼DF̃
[(β̂⊤x− β∗⊤x)2] ≲ p>k +

k ln4 d

n2p>k
+

ln4 d

n
+

kp2>k ln
4 d

n
+ p3>k ln

4 d.

When data follows power law decay (2) with α = 1 + cα with any constant cα > 0 we have

|F̂ | ≥ (1−Θ

(
max

{(
ln2 d
ns

) 1
α

, s
2
α (ln d)6−

4
α

n2− 2
α

})
)|F| and

Ex∼DF̃
[(β̂⊤x− β∗⊤x)2] ≲s

(
ln2 d

ns

)1− 1
α

.

A.1 PROOF OVERVIEW

We first show the structure of data X as below: most of data has only common features; for the
data that contains long-tail features, most of them has only one long-tail feature. The proof is
based on column/row-wise concentration to exploit the combinatorial structure of X instead of the
concentration of whole matrix, which is difficult to handle due to high variance.
Lemma A.1 (Structure of X). Suppose data generated from (1), with probability at least 0.99, the
following hold with k satisfying npk = Θ(ln2 d) and p>k ≤ 1− cp with any constant cp:

1. There exist at least Θ(n(1− p>k)) samples whose non-zero entries are only within first k
entries. That is

|S0| := |{i ∈ [n] : (xi)j = 0,∀j > k}| ≥ n(1− p>k)−O(
√
n(1− p>k)).

Moreover, the dimension spans by these samples in S0 is k.

2. There exist at least Θ(np>k(1− p>k)) samples that only have exactly one non-zero entry in
long-tail entries (not in the first k entries). That is

|S1| := |{i ∈ [n] : ∃ℓ > k such that (xi)ℓ ̸= 0 and (xi)j = 0,∀j > k, j ̸= ℓ}|

≥np>k(1− p>k)−O(
√
np>k(1− p>k))

and |S1| ≲ np>k.

3. Denote the set of features show up in data as

F = {j ∈ [d] : ∃i ∈ [n]s.t.(xi)j ̸= 0}.
Similarly define F0 and F1 for S0 and S1 as the set of features show up in S0 and S1.

We have total number of features shown up in data is |F| = k +Θ(np>k) and number of
long tail features is |F1 \F0| ≥ Θ(p>k/(pk ln

2 d)). Moreover, the number of features show
up in S0 and S1 is at least

|F0 ∪ F1| ≥
(
1−Θ

(
max{pk/p>k, p

2
>k ln

2 d}
))

|F|
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Given the structure of the data X , we obtain the following parameter recovery guarantee. Intuitively,
since most of the data contains only the common feature, the common part is uniquely determined.
Then, for the data points that contain only one long-tail feature, the long-tail part can also be uniquely
recovered once common part is recovered. Together, these observations lead to the parameter recovery
result presented below.
Lemma A.2 (Recovery of β∗). Suppose data generated from (1) with noise σ = 0, for k that satisfies
the condition of Lemma A.1, we have

1. Common features (Top-k entries) are recovered: β̂≤k = β∗
≤k

2. Most of long tail features shown up in data X(last-d− k entries) are recovered:∣∣∣{i ∈ [d] : β̂i = β∗
i

}∣∣∣
|F|

≥ 1−Θ(max{pk/p>k, p
2
>k ln

2 d}).

3.
∥∥∥β̂∥∥∥

2
≤ ∥β∗∥2 and β̂i = 0 for i ̸∈ F .

As a corollary, we choose the threshold k under our data generation process (2) to get the following
result.
Corollary A.3. Suppose data generated from (1) with noise σ = 0 and follows power law decay
(2) with α = 1 + cα for any constant cα > 0 , then we have for k = Θ((ns/ ln2 d)1/α) (i.e.
npk = Θ(ln2 d))

1. Common features (Top-k entries) are recovered: β̂≤k = β∗
≤k

2. Most of long tail features shown up in data X (last-d− k entries) are recovered:∣∣∣{i ∈ [d] : β̂i = β∗
i

}∣∣∣
|F|

≥ 1−Θ

max


(
ln2 d

ns

) 1
α

,
s

2
α (ln d)6−

4
α

n2− 2
α


 .

3.
∥∥∥β̂∥∥∥

2
≤ ∥β∗∥2 and β̂i = 0 for i ̸∈ F .

Proof. The proof follows from Lemma A.2 and Claim 1 by choosing k = Θ((ns/ ln2 d)1/α) (i.e.,
npk = Θ(ln2 d)).

Now, given all parameter recovery results above, we can get the test loss and OOD loss guarantee.
We give the details in the next section.

A.2 PROOF OF MAIN RESULTS

Building on the results from the previous section, we are now ready to present the proofs of the main
results. Both proofs mostly follow from the parameter recovery guarantee in Lemma A.2 and its
specialization to power-law data in Corollary A.3.
Theorem 2 (Test loss). Suppose data generated from (1) with noise σ = 0, then with probability at
least 0.99 over the data generation process, the following hold with k satisfying npk = Θ(ln2 d) and
p>k ≤ 1− cp with any constant cp:

Ex∼D[(β̂
⊤x− β∗⊤x)2] ≲ p>k +

k ln4 d

n2p>k
+

ln4 d

n
+

kp2>k ln
4 d

n
+ p3>k ln

4 d.

When data follows power law decay (2) with α = 1 + cα with any constant cα > 0

Ex∼D[(β̂
⊤x− β∗⊤x)2] ≲ s

(
ln2 d

ns

)1− 1
α
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Proof. From Lemma A.2 we know

Ex∼D[(β̂
⊤x− β∗⊤x)2] =

∑
i

pi(β̂i − β∗
i )

2 ≲
∑
i>k

pi(β
∗
i )

2 + pk|F \ (F0 ∪ F1)|

≲p>k +
k ln4 d

n2p>k
+

ln4 d

n
+

kp2>k ln
4 d

n
+ p3>k ln

4 d.

When data follows power law decay (2), we know k = Θ((ns/ ln d)1/α) from npk = Θ(ln d)). Then

from Claim 1 that p>k ≲ s
(
ln d
ns

)1− 1
α and get the result.

Theorem 3 (OOD performance). Under same condition as Theorem 2, then with probability at
least 0.99 over the data generation process, there is a feature set F̂ ⊆ F with size |F̂ | ≥ (1 −
Θ(max{pk/p>k, p

2
>k ln

2 d}))|F| that contains almost all features show up in data such that for any
feature set F̃ ⊆ F̂ we have

Ex∼DF̃
[(β̂⊤x− β∗⊤x)2] ≲ p>k +

k ln4 d

n2p>k
+

ln4 d

n
+

kp2>k ln
4 d

n
+ p3>k ln

4 d.

When data follows power law decay (2) with α = 1 + cα with any constant cα > 0 we have

|F̂ | ≥ (1−Θ

(
max

{(
ln2 d
ns

) 1
α

, s
2
α (ln d)6−

4
α

n2− 2
α

})
)|F| and

Ex∼DF̃
[(β̂⊤x− β∗⊤x)2] ≲s

(
ln2 d

ns

)1− 1
α

.

Proof. It suffices to let F̂ = F0 ∪ F1. From Lemma A.2 we know the bound on size |F̂ | and

Ex∼DF̃
[(β̂⊤x− β∗⊤x)2] =

∑
i̸∈F̃

pi(β̂i − β∗
i )

2 +
∑
i∈F̃

(β̂i − β∗
i )

2 ≤
∑

i>k,i ̸∈F0∪F1

pi(β
∗
i )

2

≲p>k +
k ln4 d

n2p>k
+

ln4 d

n
+

kp2>k ln
4 d

n
+ p3>k ln

4 d.

where the calculation is same as in Theorem 2.

When data follows power law decay (2), similar as in the proof of Theorem 2 we know the bound.
Size of |F̂ | follows from Lemma A.3.

A.3 DETAILED PROOFS

Here we give the omitted proofs in Appendix A.1.

Lemma A.1 (Structure of X). Suppose data generated from (1), with probability at least 0.99, the
following hold with k satisfying npk = Θ(ln2 d) and p>k ≤ 1− cp with any constant cp:

1. There exist at least Θ(n(1− p>k)) samples whose non-zero entries are only within first k
entries. That is

|S0| := |{i ∈ [n] : (xi)j = 0,∀j > k}| ≥ n(1− p>k)−O(
√
n(1− p>k)).

Moreover, the dimension spans by these samples in S0 is k.

2. There exist at least Θ(np>k(1− p>k)) samples that only have exactly one non-zero entry in
long-tail entries (not in the first k entries). That is

|S1| := |{i ∈ [n] : ∃ℓ > k such that (xi)ℓ ̸= 0 and (xi)j = 0,∀j > k, j ̸= ℓ}|

≥np>k(1− p>k)−O(
√
np>k(1− p>k))

and |S1| ≲ np>k.
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3. Denote the set of features show up in data as
F = {j ∈ [d] : ∃i ∈ [n]s.t.(xi)j ̸= 0}.

Similarly define F0 and F1 for S0 and S1 as the set of features show up in S0 and S1.

We have total number of features shown up in data is |F| = k +Θ(np>k) and number of
long tail features is |F1 \F0| ≥ Θ(p>k/(pk ln

2 d)). Moreover, the number of features show
up in S0 and S1 is at least

|F0 ∪ F1| ≥
(
1−Θ

(
max{pk/p>k, p

2
>k ln

2 d}
))

|F|

Proof. We show one by one.

item 1 For any data x ∈ Rd generated by (2), we first have the probability

P (xi = 0,∀i > k) =
∏
i>k

(1− pi) ≥ 1− p>k,

where we use Lemma C.1.

Since each data is generated i.i.d. following (2), by standard Chernoff’s bound, we know with
probability at least 0.999

|S0| = |{i ∈ [n] : (xi)j = 0,∀j > k}| ≥ n(1− p>k)−O(
√
n(1− p>k)).

As for the dimension, since npk ≳ ln d, we can show X⊤
S0,≤kXS0,≤k has full rank as in Lemma C.2,

where XS0,≤k is the data matrix X ∈ Rn×d constrained with only rows in S0 and first k columns.

item 2 Similar as item 1, for any data x ∈ Rd generated by (2), we first have the probability
P (∃ℓ > k such that xℓ ̸= 0 and xj = 0,∀j > k, j ̸= ℓ)

=
∑
ℓ>k

pℓ
∏

j>k,j ̸=ℓ

(1− pi) ≥
∑
ℓ>k

pℓ(1− p>k + pℓ) ≥ p>k(1− p>k),

where we use Lemma C.1. We can also see the above probability is at most p>k.

Since each data is generated i.i.d. following (2), by standard Chernoff’s bound, we know with
probability at least 0.999

|S1| = |{i ∈ [n] : ∃ℓ > k such that (xi)ℓ ̸= 0 and (xi)j = 0,∀j > k, j ̸= ℓ}|

≥np>k(1− p>k)−O(
√
np>k(1− p>k))

and |S1| ≲ np>k.

item 3 The total number of features show up in data is upper bounded by k + ∥X>k∥2F (top-k
entries and all non-zero entries in the remaining entries). Thus, we know |F| = k + Θ(np>k) by
Chernoff’s bound.

For every feature not in top-k, it at most shows up in Θ(npi +
√
npi) = O(ln2 d) data by Chernoff’s

bound and npi ≤ npk = Θ(ln2 d). Therefore, the total number of features show up in S0 and S1 is
at least |F0 ∪F1| ≥ k + |S1|/O(ln2 d) ≥ k +Θ(np>k/ ln

2 d). So number of long tail features is at
least |F1 \ F0| ≥ Θ(np>k/ ln

2 d).

On the other hand, from item 1 and 2 we can see the probability of data not in S0 ∪S1 is at most p2>k,
so the total number of such data is at most Θ(max{1, np2>k}) by Chernoff’s bound. Thus, the total
nonzero entries (not include top-k entries) in these data is at most Θ(max{1,max{1, np2>k}·p>k}) =
Θ(max{1, np3>k}). This implies the number of features show up not in S0 and S1 is at most
|F \ F0 ∪ F1| ≤ Θ(max{1, np3>k}). Hence, the number of features show up in S0 and S1 is at least

|F0 ∪ F1| =|F| 1

1 + |F \ F0 ∪ F1|/|F0 ∪ F1|
≥ |F| 1

1 + Θ(max{pk/p>k, p2>k ln
2 d})

=|F|(1−Θ(max{pk/p>k, p
2
>k ln

2 d})).
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Lemma A.2 (Recovery of β∗). Suppose data generated from (1) with noise σ = 0, for k that satisfies
the condition of Lemma A.1, we have

1. Common features (Top-k entries) are recovered: β̂≤k = β∗
≤k

2. Most of long tail features shown up in data X(last-d− k entries) are recovered:∣∣∣{i ∈ [d] : β̂i = β∗
i

}∣∣∣
|F|

≥ 1−Θ(max{pk/p>k, p
2
>k ln

2 d}).

3.
∥∥∥β̂∥∥∥

2
≤ ∥β∗∥2 and β̂i = 0 for i ̸∈ F .

Proof. We prove one-by-one. The results are mostly a combination of Lemma A.1 and Claim 1.

item 1 For common features (top-k entries), it suffices to only look at data in S0, that is data only
have non-zero entries in top-k entries. From Lemma A.1, we know the only solution is β̂≤k = β∗

≤k.

item 2 For long tail features, we only focus on those show up in S1 (data only have 1 non-zero
entries in tail entries). From item 1, we know top-k entries are recovered. Thus, the only solution to
data in S1 is β̂i = β∗

i for i ∈ F1. From Lemma A.1, we know F1 ∪ F1 covers most of the features
show up in data: |F0 ∪F1| ≥ (1−Θ(max{pk/p>k, p

2
>k ln

2 d})|F|. Thus, from above we know the
β∗
i for i ∈ F0 ∪ F1 are recovered.

item 3 This is directly implied by the meaning of min-ℓ2-norm interpolator.

B PROOFS FOR NOISY CASE

In this section, we give the proofs for the noisy case results as below:

Theorem 4 (Test loss). Suppose data generated from (1) with noise σ ≤ 1, with probability at
least 0.99 over the data generation process, the following hold with k satisfying npk = Θ(ln2 d),
p>k ≤ 1− cp with any constant cp and np2>k < c for a small enough constant c:

EX≤k
[Ex∼D[(β̂

⊤x− β∗⊤x)2]] ≲p>k + σ2

(
k ln d

n
+

(
k2 ln2 d

n
+ ln d

)
p>k ln d

)
where the first expectation is over data generating process of common part of training data X≤k.

When data follows power law decay (2) with α = 2 + cα with any constant cα > 0

EX≤k
[Ex∼D[(β̂

⊤x− β∗⊤x)2]] ≲ s

(
ln2 d

ns

)1− 1
α

+ σ2

(
ln2 d

ns

)1− 1
α

s ln5 d

Theorem 5 (OOD performance). Under same condition as Theorem 4, then with probability at least
0.99 over the data generation process, consider any feature set F̃ ⊆ F \ F0 contains any long tail
features show up in data, we have

EX≤k
[Ex∼DF̃

[(β̂⊤x− β∗⊤x)2]] ≲p>k + σ2|F̃ |
(
k2 ln2 d

n
+ ln d

)
,

where the first expectation is over data generating process of common part of training data X≤k.

When data follows power law decay (2) with α = 2 + cα with any constant cα > 0

EX≤k
[Ex∼D[(β̂

⊤x− β∗⊤x)2]] ≲ s

(
ln2 d

ns

)1− 1
α

+ σ2|F̃ | ln d.
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B.1 PROOF OVERVIEW

Here we give the proof overview of noisy case results.

Besides the structure of data X as described in Lemma A.1, we have the additional following
structure under a stronger tail decay assumption. Now we can show all data has either 0 or 1 long tail
feature.
Lemma B.1. Under Lemma A.1 with additional requirement np2>k < c for a small enough constant
c, then besides the conclusion of Lemma A.1 we additionally have there is no combination of long
tail features:

|S≥2| = |{i ∈ [n] : ∃ℓ1 ̸= ℓ2 > k such that xℓ1 , xℓ2 ̸= 0}| = 0.

Given the structure of the data X , we can establish the following parameter recovery guarantee.
Intuitively, the common features can be recovered accurately, since most of the data contains only
common features (similar to the noiseless case). For the long-tail features, consider the simplest
scenario where a feature appears only once in the entire dataset. In that case, the corresponding
sample must have zero training loss, so the feature can be recovered up to the noise level σ. The
general case follows a similar argument: we can control the training loss for samples that contain a
given long-tail feature.
Lemma B.2 (Recovery of β∗). Under Lemma A.1 and Lemma B.1, with probability 0.99 we have (in
below expectation is over data generating process of common part of training data X≤k)

1. Common features (Top-k entries) are recovered:

EX≤k

[∥∥∥β̂≤k − β∗
≤k

∥∥∥2
Σ≤k

]
≲ σ2

(
k

n
+ p>k

)
.

2. All long tail features shown up in data X(last-d− k entries) are recovered upto noise level:

EX≤k
[|β̂i − β∗

i |2] ≲ σ2

(
k2 ln2 d

n
+ kp>k + ln d

)
.

3. β̂i = 0 for all i ̸∈ (F0 ∪ F1).

As a corollary, we choose the threshold k under our data generation process (2) to get the following
result.
Corollary B.3. For data generating process (2) of power law decay, with α = 2 + cα with any
constant cα > 0, we have for k = Θ((ns/ ln2 d)1/α) (i.e. npk = Θ(ln2 d))

1. Common features (Top-k entries) are recovered:

EX≤k

[∥∥∥β̂≤k − β∗
≤k

∥∥∥2
Σ≤k

]
≲ σ2 s

1
α (ln d)2−

1
α

n1− 1
α

.

2. All long tail features shown up in data X(last-d− k entries) are recovered upto noise level:

EX≤k
[|β̂i − β∗

i |2] ≲ σ2 ln d,

where expectation is over data generating process of training data.

3. β̂i = 0 for all i ̸∈ (F0 ∪ F1).

Proof. The proof follows from Lemma B.2 and Claim 1 by choosing k = Θ((ns/ ln2 d)1/α) (i.e.,
npk = Θ(ln2 d)).

B.2 PROOF OF MAIN RESULTS

Building on the results from the previous section, we are now ready to present the proofs of the main
results. Both proofs mostly follow from the parameter recovery guarantee in Lemma B.2 and its
specialization to power-law data in Corollary B.3.
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Theorem 4 (Test loss). Suppose data generated from (1) with noise σ ≤ 1, with probability at
least 0.99 over the data generation process, the following hold with k satisfying npk = Θ(ln2 d),
p>k ≤ 1− cp with any constant cp and np2>k < c for a small enough constant c:

EX≤k
[Ex∼D[(β̂

⊤x− β∗⊤x)2]] ≲p>k + σ2

(
k ln d

n
+

(
k2 ln2 d

n
+ ln d

)
p>k ln d

)
where the first expectation is over data generating process of common part of training data X≤k.

When data follows power law decay (2) with α = 2 + cα with any constant cα > 0

EX≤k
[Ex∼D[(β̂

⊤x− β∗⊤x)2]] ≲ s

(
ln2 d

ns

)1− 1
α

+ σ2

(
ln2 d

ns

)1− 1
α

s ln5 d

Proof. From Lemma B.2 we know

EX≤k
[Ex∼D[(β̂

⊤x− β∗⊤x)2]] =
∑
i

piEX≤k
[(β̂i − β∗

i )
2]

≲σ2

(
k

n
+ p>k

)
+
∑
i>k

pi(β
∗
i )

2 + σ2

(
k2 ln2 d

n
+ kp>k + ln d

)
pk|F1 \ F0|

≲p>k + σ2

(
k ln d

n
+

(
k2 ln2 d

n
+ ln d

)
p>k ln

2 d

)
,

where we use the condition on p>k to simplify the expression.

When data follows power law decay (2), we know k = Θ((ns/ ln2 d)1/α) from npk = Θ(ln2 d)).

Then from Claim 1 that p>k ≲ s
(

ln2 d
ns

)1− 1
α

and k ln d
n +

(
k2 ln2 d

n + ln d
)
p>k ln

2 d ≲ s
1
α (ln d)7−

2
α

n1− 1
α

.

Theorem 5 (OOD performance). Under same condition as Theorem 4, then with probability at least
0.99 over the data generation process, consider any feature set F̃ ⊆ F \ F0 contains any long tail
features show up in data, we have

EX≤k
[Ex∼DF̃

[(β̂⊤x− β∗⊤x)2]] ≲p>k + σ2|F̃ |
(
k2 ln2 d

n
+ ln d

)
,

where the first expectation is over data generating process of common part of training data X≤k.

When data follows power law decay (2) with α = 2 + cα with any constant cα > 0

EX≤k
[Ex∼D[(β̂

⊤x− β∗⊤x)2]] ≲ s

(
ln2 d

ns

)1− 1
α

+ σ2|F̃ | ln d.

Proof. From Lemma B.2 we know

E[Ex∼DF̃
[(β̂⊤x− β∗⊤x)2]] =

∑
i ̸∈F̃

piE[(β̂i − β∗
i )

2] +
∑
i∈F̃

E[(β̂i − β∗
i )

2]

≲σ2

(
k

n
+ p>k

)
+
∑
i>k

pi(β
∗
i )

2 +
(
pk|F1 \ (F̃ ∪ F0)|+ |F̃ |

)
σ2

(
k2 ln2 d

n
+ kp>k + ln d

)

≲p>k + σ2|F̃ |
(
k2 ln2 d

n
+ ln d

)
.

When data follows power law decay (2), we know k = Θ((ns/ ln2 d)1/α) from npk = Θ(ln2 d)).
Then from Claim 1 we get the result.
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B.3 DETAILED PROOFS

Here we present the detailed proofs in Appendix B.1
Lemma B.1. Under Lemma A.1 with additional requirement np2>k < c for a small enough constant
c, then besides the conclusion of Lemma A.1 we additionally have there is no combination of long
tail features:

|S≥2| = |{i ∈ [n] : ∃ℓ1 ̸= ℓ2 > k such that xℓ1 , xℓ2 ̸= 0}| = 0.

Proof. From the proof of Lemma A.1 we know the probability of one data has at least 2 long tail
features is

P (∃ℓ1 ̸= ℓ2 > k such that xℓ1 , xℓ2 ̸= 0)

=1− P (xi = 0,∀i > k)− P (∃ℓ > k such that xℓ ̸= 0 and xj = 0,∀j > k, j ̸= ℓ)

≤1− p>k − p>k(1− p>k) = p2>k,

Since each data is generated i.i.d. following (2), by standard Chernoff’s bound, we know with
probability at least 0.999

|S≥2| = |{i ∈ [n] : ∃ℓ1 ̸= ℓ2 > k such that xℓ1 , xℓ2 ̸= 0}| ≲ np2>k +
√
np2>k < 1,

which implies |S≥2| = 0.

Lemma B.2 (Recovery of β∗). Under Lemma A.1 and Lemma B.1, with probability 0.99 we have (in
below expectation is over data generating process of common part of training data X≤k)

1. Common features (Top-k entries) are recovered:

EX≤k

[∥∥∥β̂≤k − β∗
≤k

∥∥∥2
Σ≤k

]
≲ σ2

(
k

n
+ p>k

)
.

2. All long tail features shown up in data X(last-d− k entries) are recovered upto noise level:

EX≤k
[|β̂i − β∗

i |2] ≲ σ2

(
k2 ln2 d

n
+ kp>k + ln d

)
.

3. β̂i = 0 for all i ̸∈ (F0 ∪ F1).

Proof. We prove one-by-one.

item 1 First note that since β̂ is the minima of training loss, we know training loss is bounded∥∥∥Xβ̂ − y
∥∥∥2
2
≤ ∥Xβ∗ − y∥22 = ∥ξ∥22.

For common features (top-k entries), it suffices to only look at data in S0, that is data only have
non-zero entries in top-k entries. We know from above that∥∥∥XS0,≤kβ̂≤k − yS0

∥∥∥2
2
≤ ∥ξ∥22

Denote the normalized matrix X̃S0,≤k = XS0,≤kΣ
−1/2
≤k . To simplify the notation within in the

following equation, we omit the subscript S0 and ≤ k. We have∥∥∥X̃Σ1/2β̂ − y
∥∥∥2
2
=(β̂ − β∗)Σ1/2X̃⊤X̃Σ1/2(β̂ − β∗)− 2ξ⊤X̃Σ1/2(β̂ − β∗) + ∥ξ∥22

≥|S0|
(
1− 1

|S0|

∥∥∥X̃⊤X̃ − |S0|I
∥∥∥
2

)∥∥∥β̂ − β∗
∥∥∥2
Σ
− 2

∥∥∥ξ⊤X̃∥∥∥
2

∥∥∥β̂ − β∗
∥∥∥
Σ
+ ∥ξ∥22

Rearranging the terms we have

|S0|
(
1− 1

|S0|

∥∥∥X̃⊤
S0,≤kX̃S0,≤k − |S0|I

∥∥∥
2

)∥∥∥β̂≤k − β∗
≤k

∥∥∥2
Σ≤k

− 2
∥∥∥ξ⊤S0

X̃S0,≤k

∥∥∥
2

∥∥∥β̂≤k − β∗
≤k

∥∥∥
Σ≤k

≤∥ξ∥22 − ∥ξS0
∥22 ,
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which leads to∥∥∥β̂≤k − β∗
≤k

∥∥∥2
Σ≤k

≲

1
|S0|2

∥∥∥ξ⊤S0
X̃S0,≤k

∥∥∥2
2(

1− 1
|S0|

∥∥∥X̃⊤
S0,≤kX̃S0,≤k − |S0|I

∥∥∥
2

)2 +

1
|S0|

(
∥ξ∥22 − ∥ξS0∥

2
2

)
1− 1

|S0|

∥∥∥X̃⊤
S0,≤kX̃S0,≤k − |S0|I

∥∥∥
2

Denote the event A = {1− 1
|S0|

∥∥∥X̃⊤
S0,≤kX̃S0,≤k − |S0|I

∥∥∥
2
≥ Θ(1)}. We know from Lemma C.2

that P(A) ≥ 1− 1/poly(d).

Taking expectation over XS0,≤k on both side conditional on A, using Lemma C.4, 0 ≤ n− |S0| =
|S1| ≲ np>k from Lemma A.1 and standard Gaussian concentration on ξ we have

EXS0,≤k

[∥∥∥β̂≤k − β∗
≤k

∥∥∥2
Σ≤k

∣∣∣A] ≲σ2

(
k

n
+ p>k

)
.

On the event that A does not happen, it is easy to see there is a (very loose) bound on
∥∥∥β̂≤k

∥∥∥
2
≤ d

since the total training loss is at most σ2n. Therefore,

EXS0,≤k

[∥∥∥β̂≤k − β∗
≤k

∥∥∥2
Σ≤k

]
≤EXS0,≤k

[∥∥∥β̂≤k − β∗
≤k

∥∥∥2
Σ≤k

∣∣∣A]P(A) + EXS0,≤k

[∥∥∥β̂≤k − β∗
≤k

∥∥∥2
Σ≤k

∣∣∣Ac

]
(1− P(A)) ≲ σ2

(
k

n
+ p>k

)
.

This also implies EX≤k

[∥∥∥β̂≤k − β∗
≤k

∥∥∥2
Σ≤k

]
≲ σ2( kn + p>k).

item 2 First from Lemma B.1 we know all data have either 0 or 1 long tail feature [n] = S0 ∪ S1.
We can further decompose S1 into S1 = ∪i∈F1\F0

S1,i, where S1,i represents the set of data that
contains only common features and i-th long tail feature (that is (xj)i ̸= 0 for j ∈ S1,i).

For i-th long tail features, we only focus on those show up in S1,i. These data are the only data
that depends on i-th feature. Thus, since β̂ is the minimizer of training loss, we must choose β̂i to
minimize these data in S1,i (assuming other β̂j are fixed). Thus, choosing β̂i = β∗

i gives a simple
training loss bound on these data:∥∥∥XS1,i,{≤k,i}β̂{≤k,i} − yS1,i

∥∥∥2
2
≤
∥∥∥XS1,i,≤k(β̂≤k − β∗

≤k)− ξS1,i

∥∥∥2
2

To simplify the notation, we will drop the subscript S1,i in the below 2 equations.

Note that ∥∥∥X{≤k,i}β̂{≤k,i} − y
∥∥∥
2
=
∥∥∥X≤k(β̂≤k − β∗

≤k) +Xi(βi − β∗
i )− ξ

∥∥∥
2

≥
∥∥∥Xi(β̂i − β∗

i )
∥∥∥
2
−
∥∥∥X≤k(β̂≤k − β∗

≤k)
∥∥∥
2
− ∥ξ∥2

=
√
|S1,i||β̂i − β∗

i | −
∥∥∥X≤k(β̂≤k − β∗

≤k)
∥∥∥
2
− ∥ξ∥2 .

Thus, we have√
|S1,i||β̂i − β∗

i | ≤2
∥∥∥X≤k(β̂≤k − β∗

≤k)
∥∥∥
2
+ 2 ∥ξ∥2 ≤ 2

∥∥∥X≤kΣ
−1/2
≤k

∥∥∥
2

∥∥∥β̂≤k − β∗
≤k

∥∥∥
Σ≤k

+ 2 ∥ξ∥2 .

Rearranging terms and taking expectation over both side (over data generating process on common
part X≤k) we have

EX≤k

[
|β̂i − β∗

i |2
]
≲EX≤k

[
1

|S1,i|

∥∥∥XS1,i,≤kΣ
−1/2
≤k

∥∥∥2
2
EXS0,≤k

[∥∥∥β̂≤k − β∗
≤k

∥∥∥2
Σ≤k

]]
+

1

|S1,i|
∥∥ξS1,i

∥∥2
2

≲kσ2

(
k ln2 d

n
+ p>k

)
+ σ2 ln d,

where we use E
[

1
|S1,i|

∥∥∥X≤kΣ
−1/2
≤k

∥∥∥2
2

∣∣∣|S1,i|
]
≤ E

[
1

|S1,i|

∥∥∥X≤kΣ
−1/2
≤k

∥∥∥2
F

∣∣∣|S1,i|
]
= k, item 1 and

standard Gaussian concentration on ξ.
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item 3 From the discussion at the beginning of the proof, we know |S≥2| = 0, that is these feature
does not show up in the data. Thus, we know the result is directly implied by the meaning of
min-ℓ2-norm solution.

C TECHNICAL LEMMA

We collect few technical lemma that are used in the proof.
Lemma C.1. If pi ≤ 1 for i > k, then∏

i>k

(1− pi) ≥ 1− p>k.

Proof. We have ∏
i>k

(1− pi) = 1− p>k +

d∑
j=2

∑
k<i1<i2<···<ij≤d

(−1)jpi1 · · · pij︸ ︷︷ ︸
Rj

.

When j is even, first note that Rj > 0. Also,

Rj +Rj+1 =
∑

k<i1<i2<···<ij≤d

(−1)jpi1 · · · pij +
∑

k<i1<i2<···<ij+1≤d

(−1)j+1pi1 · · · pij+1

=
∑

k<i1<i2<···<ij≤d

(−1)jpi1 · · · pij (1−
∑

ij<ij+1≤d

pij+1)

≥0,

as long as p>k ≤ 1.

Therefore, we know
∑d

j=2 Rj ≥ 0 when p>k ≤ 1. This implies∏
i>k

(1− pi) ≥ 1− p>k.

When p>k > 1, since pi < 1 for i > k, so∏
i>k

(1− pi) ≥ 0 ≥ 1− p>k.

The lemma below shows the data matrix X⊤
≤kX≤k after normalization is close to identity.

Lemma C.2. Given X ∈ RN×d following the data generating process (1) with N data, for k that
satisfies kpk ≲ 1, we have with probability at least 1− 1/poly(d)∥∥∥Σ−1/2

≤k X⊤
≤kX≤kΣ

−1/2
≤k −NI

∥∥∥
2
≤ Θ

(
N

(√
ln d

Npk
+

ln2 d

Npk

))
When Npk ≳ ln2 d, we have X⊤

≤kX≤k is rank k. Same bound also hold for expectation.

Proof. We are going to use matrix Bernstein inequality (Lemma C.5). Denote normalized matrix
X̃≤k =

√
pkX≤kΣ

−1/2
≤k .

For X̃⊤
≤kX̃≤k, to use matrix Bernstein inequality (Lemma C.5), note that

X̃⊤
≤kX̃≤k = pk

N∑
i=1

x̃i,≤kx̃
⊤
i,≤k
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where x̃≤k = Σ
−1/2
≤k x≤k and for all i ∈ [N ]

E[x̃i,≤kx̃
⊤
i,≤k] =Ik,∥∥x̃i,≤kx̃

⊤
i,≤k − E[x̃i,≤kx̃

⊤
i,≤k]

∥∥
2
=
∥∥x̃i,≤kx̃

⊤
i,≤k − Ik

∥∥
2
≤ k +Θ

(
ln d

pk

)
=: L,

where we use Lemma C.3. We also have∥∥∥∥∥∑
i

E
[
(x̃i,≤kx̃

⊤
i,≤k − E[x̃i,≤kx̃

⊤
i,≤k])(x̃i,≤kx̃

⊤
i,≤k − E[x̃i,≤kx̃

⊤
i,≤k])

⊤]∥∥∥∥∥
2

=N
∥∥∥E[∥x̃≤k∥22 x̃≤kx̃

⊤
≤k

]
− (E[x̃≤kx̃

⊤
≤k])

2
∥∥∥
2

=N
∥∥diag(p−1

1 + k − 1, . . . , p−1
k + k − 1)

∥∥
2

=N(p−1
k + k − 1)

Thus, by matrix Bernstein inequality (Lemma C.5), we have

P(
∥∥∥X̃⊤

≤kX̃≤k − E[X̃⊤
≤kX̃≤k]

∥∥∥
2
≥ t) ≤ 2k exp

(
−t2/2

Npk(1 + (k − 1)pk) + tLpk/3)

)
Taking t = Θ(

√
Npk ln d+ ln2 d) ≥ Θ(

√
Npk(1 + (k − 1)pk) ln d+ Lpk ln d), we get

P
(∥∥∥X̃⊤

≤kX̃≤k − E[X̃⊤
≤kX̃≤k]

∥∥∥
2
≥ Θ

(√
Npk ln d+ ln2 d

))
≤ 1/poly(d).

Since E[X̃⊤
≤kX̃≤k] = npkIk and X̃≤k =

√
pkX≤kΣ

−1/2
≤k , we know with probability 1−1/poly(d)∥∥∥Σ−1/2

≤k X⊤
≤kX≤kΣ

−1/2
≤k −NI

∥∥∥
2
≤ Θ

(√
N ln d

pk
+

ln2 d

pk

)
and X⊤

≤kX≤k is rank k when Npk ≳ ln2 d.

Similar bounds can also be shown for normalized x̃≤k and x̃>k.
Lemma C.3. There exists an universal large enough constant c such that with probability at least
1− 1/poly(d), we have

∥x̃≤k∥22 ≤ k + c

√∑
i≤k

p−1
i (1− pi) ln d+ p−1

k ln d

 .

As a corollary, with probability at least 1− 1/poly(d) we have for all i ∈ [n]

∥x̃i,≤k∥22 ≤ k + c

√∑
i≤k

p−1
i (1− pi) ln d+ p−1

k ln d

 .

If kpk ≲ 1, the above bound can be simplify to k + 2c ln d
pk

.

Proof. According to our data generation process (2), we know for data x each coordinate x2
ℓ follows

Bernoulli with pℓ. Thus, each coordinate x̃2
ℓ ∼ p−1

ℓ Bern(pℓ) for ℓ ≤ k.

Therefore, by Bernstein’s inequality (Lemma C.5), we know

P(∥x̃≤k∥22 > E[∥x̃≤k∥22] + t) ≤ exp

(
− t2/2∑

i≤k p
−1
i (1− pi) + tp−1

k /6

)
Taking t = Θ

(√∑
i≤k p

−1
i (1− pi) ln d+ p−1

k ln d
)

with large enough hidden constant c, we have

P

∥x̃≤k∥22 ≥ k +Θ

√∑
i≤k

p−1
i (1− pi) ln d+ p−1

k ln d

 ≤ 1/poly(d)

By union bound, we know for all i ∈ [n], the same bound hold for all ∥x̃i,≤k∥2.
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Lemma C.4. We have

EX≤k

[∥∥∥Σ−1/2
≤k X⊤

≤kξ
∥∥∥
2

]
≤

√
k ∥ξ∥2

Proof. We have(
EX≤k

[∥∥∥Σ−1/2
≤k X⊤

≤kξ
∥∥∥
2

])2
≤ EX≤k

[∥∥∥Σ−1/2
≤k X⊤

≤kξ
∥∥∥2
2

]
= k ∥ξ∥22 .

C.1 MATRIX CONCENTRATION INEQUALITY

We collect few standard Matrix concentration inequalities here. The first one is the standard matrix
Bernstein inequality.

Lemma C.5 (Matrix Bernstein Inequality (Corollary 6.1.2 in Tropp et al. (2015))). Consider a finite
sequence {Sk} of independent random matrices with common dimension d1 × d2. Assume that each
matrix has uniformly bounded deviation from its mean:

∥Sk − E[Sk]∥2 ≤ L for each index k.

Introduce the sum
Z =

∑
k

Sk,

and let ν(Z) denote the matrix variance statistic for Z:

ν(Z) =max
{∥∥E[(Z − E[Z])(Z − E[Z])⊤]

∥∥
2
,
∥∥E[(Z − E[Z])⊤(Z − E[Z])

]∥∥
2

}
=max

{∥∥∥∥∥∑
k

E
[
(Sk − E[Sk])(Sk − E[Sk])

⊤]∥∥∥∥∥
2

,

∥∥∥∥∥∑
k

E
[
(Sk − E[Sk])

⊤(Sk − E[Sk])
]∥∥∥∥∥

2

}
.

Then
E ∥Z − E[Z]∥2 ≤

√
2ν(Z) ln

(
d1 + d2

)
+

1

3
L ln

(
d1 + d2

)
.

In particular, for all t ≥ 0,

P
{
∥Z − E[Z]∥2 ≥ t

}
≤ (d1 + d2) exp

( −t2/2

ν(Z) + Lt/3

)
.

Below is the standard Chernoff’s bound for Bernoulli random variables.

Lemma C.6 (Chernoff Bounds). Let X =
∑n

i=1 Xi, where Xi = 1 with probability pi, and Xi = 0
with probability 1− pi, and all Xi are independent. Let µ = E(X) =

∑n
i=1 pi. Then

P(|X − µ| ≥ δµ) ≤ e−µδ2/3 for all 0 < δ < 1.

D EXPERIMENT DETAILS

In this section, we provide details of the experiments discussed in Section 5, along with a few
additional experiments.

• In Appendix D.1, we describe experiments on a synthetic toy dataset.

• In Appendix D.2, we present details for Section 5.2, which explores a modified version
of MNIST with structured label imbalance, along with new results using a different target
function.

• In Appendix D.3, we provide details for Section 5.3, where we augment an MNIST-based
dataset with rarer samples from Omniglot and include an additional experiment.
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For experiments in this section, all datasets contain original labels ranging from 0 to 9. We deliberately
control the number of samples per label in the training set to induce a long-tail distribution. More
precisely, the number of samples for labels i ∈ {0, 1, . . . , 9} follows Zipf’s law with exponent s = 2.
The unnormalized weight assigned to rank i is defined as wi = (i + 1)−s and the final sampling
probability for label i is pi = wi/

∑9
j=0 wj .

Without loss of generality, we primarily focus on the samples with label 9 as the representative
long-tail feature in the following experiments except for the experiment described in Appendix D.3.
We further analyze the performance of models that successfully memorize all long-tail features, with
a particular emphasis on their generalization behavior on the test dataset.

To analyze the compositional effect, we focus on a particular long-tail feature and vary its frequency
of appearance in the training set across 10 levels, ranging from 100 to 550 with increments of 50. For
each occurrence level, we train n independently initialized models and evaluate their performance
on the test set. Specifically, we report the average test loss µtest_loss and the variance of this average
Var(x̄) = σ2/n.

D.1 ADDITIONAL SYNTHETICS EXPERIMENT: GAUSSIAN MIXTURES

Dataset Construction We generate synthetic data based on multivariate normal distributions.
Specifically, we randomly initialize 10 mean vectors, each corresponding to a digit from 0 to 9. Each
mean vector is of dimension 100 and is sampled from a multivariate normal distribution with a mean
of a zero vector and an identity covariance matrix. For each class c ∈ {0, 1, ..., 9}, samples are drawn
from a multivariate normal distribution with the corresponding mean vector and a covariance matrix
of σI . The number of samples per class follows Zipf’s law decay distribution.

To construct the final dataset, we randomly sample triplets from the generated data, where each triplet
consists of three individual samples. The label of a triplet is defined as the sum of the labels of its
constituent samples. This results in a dataset of shape n× 300.

Model Architecture We employ a two-layer neural network with an additive structure. During
the forward pass, the model processes the input by dividing the 300-dimensional feature vector into
three segments: dimensions 0–100, 100–200, and 200–300. The network independently computes
the outputs for each segment, and the final prediction is obtained by summing the three outputs.

Training Setup We train the model using Mean Squared Error (MSE) loss and optimize it using
the Adam optimizer. We use a learning rate of 0.0001, train for 300 epochs, with a batch size of 256.

Evaluation Metric To assess the compositional effect of memorizing long-tailed features on
generalization, we visualize the results using a performance plot. The x-axis represents the total
number of distinct ‘9’s the model has encountered during training, while the y-axis shows the
corresponding test loss. For each x-axis value (ranging from 100 to 550), we train 20 independent
models. Each data point is accompanied by an error bar, indicating the variance of mean of loss
across test samples—smaller variance suggests higher confidence in the loss estimates.

Our test dataset is constructed as follows: we first generate 600 vectors for each class (0 through
9) by sampling from the same class-wise mean vectors used in the training dataset. To evaluate
out-of-distribution generalization on the long-tail feature, we focus on class 9. For each vector labeled
as 9, we randomly pair it with vectors from all other classes to create 2700 test samples. This results
in a total of 600 × 2700 = 1,620,000 test examples. The goal of this setup is to examine whether
memorization of the long-tail feature (class 9) generalizes to unseen vectors with the same label. If the
model exhibits improved performance on these test examples, it suggests that long-tail memorization
contributes positively to generalization.

As shown in Figure 3, the test loss on examples involving class 9 decreases as the number of class 9
samples in the training set increases. Notably, the class 9 vectors in the test set are not present in the
training set, indicating that the observed performance gain reflects genuine generalization rather than
rote memorization.
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Figure 3: Test loss as a function of the number of training occurrences of class 9.

D.2 EXPERIMENT DETAILS IN SECTION 5.2: LONG-TAIL MNIST DATA

We give more details of the experiments in Section 5.2.

Dataset Construction In the training set, the number of samples per label is as follows: {0: 77,435;
1: 19,358; 2: 8,603; 3: 4,839; 4: 3,097; 5: 2,150; 6: 1,580; 7: 1,209; 8: 955; 9: 774}, resulting in a
total of 120,000 samples.

It is worth noting that the original MNIST training set contains roughly 5,000–6,000 samples per
digit. Therefore, for labels 0–3, we apply oversampling to increase their frequency. All samples are
then randomly shuffled and grouped into triplets, yielding a final training set of 40,000 triplets.

For the test set, we uniformly sample 200 samples for each class label from 0 to 4. Additionally,
we sample 200 unseen digit-9 images (i.e., samples not included in the training set). Similar to the
construction in the toy setting, test samples are generated by pairing one digit-9 sample with each of
the (200× 5) combinations from labels 0–4. In total, this results in 200× 200× 5/2 = 100,000 test
samples.

We clarify that all training samples are drawn exclusively from the MNIST training set, and all test
samples are drawn from the MNIST test set.

Training Setup We train the model using Mean Squared Error (MSE) loss and optimize it using
the Adam optimizer. We use a learning rate of 0.0001, train for 300 epochs, with a batch size of 256,
and no weight decay.

Evaluation Metric To evaluate how memorization of long-tailed features influences compositional
generalization in a real-world setting, we adopt the same performance visualization approach as in
our toy experiments.

For each x-axis value (ranging from 100 to 550), similarly, we train 100 independent models. Each
model is trained on an 80% random subset of the original dataset, ensuring that every subset contains
the same number of ‘9’s. The reported test loss is the average over these 100 models.

Notably, since we control the number of ‘9’s in the training subsets, models trained with more ‘9’s are
exposed to fewer instances of other digits. However, this does not significantly impact the observed
downward trend in test loss. This further supports our hypothesis that memorizing long-tailed features
substantially aids generalization.

D.2.1 ADDITIONAL EXPERIMENT: ROBUSTNESS ACROSS TARGET FUNCTIONS

We further examine the robustness of the observed trends by modifying the target function used
during training. Specifically, instead of using a simple sum of three labels as in Section 5.2, we
redefine the target as a weighted combination:

label =

3∑
i=1

i× labeli
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This target is slightly more complex than the one in Section 5.2.

In Figure 4, we observe that the loss curves continue to exhibit a similar downward trend as the
number of training instances from class 9 increases. This indicates our results in Section 5.2 is robust
to different target.

Notably, the dataset and training setup are exactly the same as in the previous experiments. The only
difference lies in the way labels are computed in the dataset.
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Figure 4: (Left) ResNet+Linear layer with New Target Function: Test loss as a function of the
number of training occurrences of class 9; (Right) ResNet+2-layer network with New Target
Function: Test loss as a function of the number of training occurrences of class 9.

D.3 EXPERIMENT DETAILS IN SECTION 5.3: RARER SAMPLE CASE FROM OMNIGLOT
DATASET

Firstly, we give more details of the experiments in Section 5.3.

Dataset Construction The MNIST part of the mixed dataset is constructed in the same way as the
training set described in Appendix D.2. The only difference is that we additionally include samples
from the Omniglot dataset. Specifically, we randomly select one sample from each class labeled 0–9
in the Omniglot training set, resulting in 10 Omniglot samples. These samples are preprocessed to
match the format and size of the MNIST data and then mixed into the MNIST training set. To ensure
the total number of samples is divisible by 3 (since samples are grouped into triplets), we randomly
remove one MNIST sample after adding the Omniglot data. The final training set size is 40,003.

For the test set, we uniformly sample 100 MNIST samples from each class label 0–4, resulting in 500
MNIST test samples. We then consider all possible pairwise combinations among the 10 Omniglot
samples, generating 45 unique Omniglot pairs. Each of these pairs is combined with the MNIST
samples to form test triplets, resulting in a total of 45× 500 = 22,500 test samples.

Training Setup We also train the model using Mean Squared Error (MSE) loss and optimize it
using the Adam optimizer. We use a learning rate of 0.0001, train for 300 epochs, with a batch size
of 256.

D.3.1 ADDITIONAL EXPERIMENT: MORE OMNIGLOT DATA PER CLASS

Similar as Section 5.3, we also design experiments where Omniglot samples appear more frequently,
and the test sample contains only one instance from Omniglot. Specifically, we introduce a variant of
the 3-digit synthetic dataset by injecting distractor samples from the Omniglot dataset. To construct
the training set, we randomly select 10 samples for each digit label (0–9) from Omniglot (totaling
100 samples) and mix them into the original training data. For the test set, we sample the same 10
Omniglot samples in training dataset per digit label (0–9). Additionally, we sample 200 test digits
each from MNIST labels 0–4.

Each final test instance is formed by combining one digit from Omniglot and two digits from MNIST,
resulting in test samples that include both known and out-of-distribution (OOD) components. In total,
this produces 100× 5× 100 = 50, 000 test samples.
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Table 2 show that the model still performs well even on test data that are not limited to long-tail
feature combinations.

Table 2: Stronger Memorization Behavior of ResNet Variants Under Different Weight Decay Settings

Model Memorization (WD = 0) No Memorization (WD = 0.5)

Sum Test: 0.0697
Train: 0.0002

Test: 0.8266
Train: 0.0538

Linear Test: 0.1171
Train: 0.0006

Test: 0.9571
Train: 0.0715

2-Layer Test: 0.0650
Train: 0.0013

Test: 0.6579
Train: 0.0196

D.4 COMPUTE REQUIREMENTS

The computational resources used for all our experiments are as follows: 10 GTX 2080 Ti GPUs
with 60 GB of RAM. For the Experiments on Linear Model, completing all runs takes approximately
3 hours. For the Simple Task with Composition experiment, training a single model takes about 1
hour. For the Effect of Memorization experiment, training a single model also takes around 1 hour.
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