Long-Tailed Recognition via Information-Preservable Two-Stage Learning

Fudong Lin & Xu Yuan*

Department of Computer & Information Sciences University of Delaware Newark, DE 19711

Abstract

The imbalance (or long-tail) is the nature of many real-world data distributions, which often induces the undesirable bias of deep classification models toward frequent classes, resulting in poor performance for tail classes. In this paper, we propose a novel two-stage learning approach to mitigate such a majority-biased tendency while preserving valuable information within datasets. Specifically, the first stage proposes a new representation learning technique from the information theory perspective. This approach is theoretically equivalent to minimizing intraclass distance, yielding an effective and well-separated feature space. The second stage develops a novel sampling strategy that selects mathematically informative instances, able to rectify majority-biased decision boundaries without compromising a model's overall performance. As a result, our approach achieves state-of-the-art performance across various long-tailed benchmark datasets. Our code is available at https://github.com/fudong03/BNS_IPDPP.

1 Introduction

Class imbalance naturally arises in real-world scenarios, spanning across such wide applications as online transactions, medical diagnoses, social networks spam detection, among many others. Such data in real scenarios usually follows a long-tailed distribution, *i.e.*, a few head classes dominate the entire dataset while some tail classes account for only a small portion. When encountered with such long-tailed data, deep neural networks (DNNs) suffer from majority-biased decision boundaries [31, 53, 24, 57, 13, 41, 16, 42], undesirably favoring frequent classes and leading to poor performance in tail classes. Misclassifying tail classes may yield catastrophic consequences, *e.g.*, failing to identify lung cancer from millions of biomedical images may result in fatalities. To this end, building functional classifiers with unbiased decision boundaries when tackling the long-tailed data is critical but remains open.

So far, the mainstream strategies addressing long-tailed recognition primarily fall into two categories: one-stage learning and two-stage learning methods. One-stage learning approaches include: i) re-weighting strategies [38, 10, 3, 9, 47], which prevent dominant head classes from overwhelming the training process by reducing the weight of loss functions for majority samples; and ii) sampling techniques [4, 21, 58, 25, 15], which create balanced training subsets either by downsampling majority samples or by synthesizing minority samples. However, such strategies struggle to achieve effective performance across both head and tail classes due to their limited representation learning capabilities. On the other hand, two-stage learning methods [28, 51, 11, 62, 30, 39, 34, 35, 27] decouple the training process into "representation learning" and "classification" stages. The former stage focuses on learning effective and generalizable feature spaces, while the latter stage aims to rectify majority-biased decision boundaries caused by highly skewed data distributions.

^{*}Corresponding author: Dr. Xu Yuan (xyuan@udel.edu)

However, previous two-stage learning approaches fail to deliver satisfactory performance in long-tailed recognition, primarily due to the following two limitations. First, in the first stage, conventional representation learning methods [5, 23, 1, 22, 36] face significant challenges in handling long-tailed data, resulting in poor feature representations for both head and tail classes. Recent advancements targeting long-tailed recognition [39, 34, 35, 27] have mitigated these limitations to some extent, able to produce higher-quality feature spaces. Unfortunately, they struggle to learn effective feature spaces for securing clear separation between head and tail classes, ultimately limiting their overall performance. Besides, the second stage is hindered by the absence of effective sampling techniques. Oversampling methods [4, 49, 58, 25, 15] often suffer from mode collapse, producing synthetic minority samples with limited diversity. Conversely, undersampling approaches [21, 40, 61] frequently lead to significant information loss due to the removal of a substantial portion of majority samples, severely compromising the model's overall performance.

In this work, we advance two-stage learning through two key contributions: i) a novel representation learning strategy, namely **Balanced Negative Sampling (BNS)**, able to learn effective and well-separated feature spaces; and ii) a new sampling technique called **Information-Preservable Determinantal Point Process (IP-DPP)**, able to balance the training subsets with informative instances, for mitigating the majority-biased tendency. Our key idea involves first training an effective feature extractor using our BNS method. This feature extractor is then fine-tuned on balanced subsets sampled through our IP-DPP approach to handle imbalanced classification. Specifically, our BNS approach constructs an effective and well-separated representation space by maximizing mutual information between two augmented views of the original data. Formal proof is provided showing our solution is theoretically equivalent to minimizing intra-class distance. This allows the model to capture instance-level semantics, ensuring high-quality feature representations, while also learning class-level semantics to achieve well-separated feature spaces. Besides, our IP-DPP method, inspired by Shannon information theory, is designed to sample balanced subsets that prioritize mathematically informative instances. As a result, it excels in rectifying majority-biased decision boundaries while maintaining the model's overall performance.

2 Related Work

This work adopts a two-stage learning paradigm, in which Balanced Negative Sampling (BNS) is designed to learn an effective representation space, while the Information-Preservable Determinantal Point Process (IP-DPP) is introduced to select mathematically informative samples. We next discuss how our approaches relate to, and differ from, prior solutions.

Representation learning methods are typically employed in the first stage to construct high-quality feature spaces. Previous studies include KCL [34], which devises k-positive contrastive learning for learning balanced feature spaces, TSC [35], which improves the uniformity of feature spaces via targeted supervised contrastive learning, SBCL [27], which proposes subclass-balancing contrastive learning for instance- and subclass-balanced feature spaces, among many others [5, 6, 23, 7, 1, 22, 36, 37]. However, conventional representation learning methods result in suboptimal representations for both head and tail classes, while those specifically designed for long-tailed recognition struggle to achieve well-separated feature spaces. Differently, our BNS method frames representation learning from the information theory perspective. This solution is mathematically equivalent to minimizing intra-class distance, thereby resulting in effective and well-separated feature spaces.

Sampling methods are commonly used in the second stage to rectify biased decision boundaries. Existing techniques can be roughly categorized into oversampling and undersampling approaches. Oversampling methods balance class priors by generating minority samples. Traditional methods [4, 19, 20, 54] apply linear combinations of existing instances to synthesize the minority data, but they fail to respect the non-linear structure of synthetic data. Recent solutions [49, 17, 58, 50, 25, 15] leverage deep generative models to capture the non-linear structures in data synthesis. However, these methods suffer from mode collapse, resulting in synthesized minority samples with limited diversity. Undersampling approaches [21, 40, 61], by contrast, create balanced subsets by removing a substantial portion of majority samples. However, this process causes significant information loss, severely impacting the model's overall performance. Our IP-DPP method falls into this category. It addresses information loss by sampling mathematically informative instances, thereby effectively rectifying biased decision boundaries while maintaining the model's overall performance.

3 Preliminary

Mutual Information (MI) refers to a measure of the mutual dependence between two random variables. It quantifies the amount of information that knowing one random variable reduces the uncertainty of the other variable. Given two jointly discrete random variables X and Y, for their mutual information, we have:

$$MI(X, Y) = \sum_{\boldsymbol{x} \in X} \sum_{\boldsymbol{y} \in Y} p_{XY}(\boldsymbol{x}, \boldsymbol{y}) \log \frac{p_{XY}(\boldsymbol{x}, \boldsymbol{y})}{p_{X}(\boldsymbol{x})p_{Y}(\boldsymbol{y})}.$$
 (1)

Here, $p_{XY}(x, y)$ represents the joint probability of X and Y, while $p_{X}(x)$ and $p_{Y}(y)$ are the marginal probabilities of X and Y, respectively.

Information Content (IC), also known as Shannon information or self-information, measures the degree of "surprise" associated with a particular outcome. Given a ground set X, for any event $x \in X$ with probability p(x), the information content $I(\cdot)$ is defined as follows:

$$I(\boldsymbol{x}) = -\log[p(\boldsymbol{x})]. \tag{2}$$

By definition, information content has three key properties: i) an event with 100% probability yields no information; ii) less probable events are more surprising and contain more information; and iii) given a set of independent events, its total self-information equals the sum of each event's individual self-information, i.e., $I(X) = \sum_{x \in X} I(x)$.

4 Our Approaches

4.1 Problem Statement

Consider a set of N samples for training, i.e., $\mathbb{X} = \{(\boldsymbol{x}_i, \ y_i)\}_{i=1}^N$, where data point \boldsymbol{x}_i is labeled with y_i . Suppose the training set has C classes, i.e., $y \in \{1, 2, \ldots, C\}$, and let N_c $(c = 1, 2, \cdots, C)$ be the number of training data for the c-th class. Without loss of generality, we consider all classes to be sorted in the decreasing order, i.e., $N_c \geq N_{c+1}$. Naturally, $\forall N_c$, we have $N_c \geq N_C$. Here, we consider a long-tailed setting, i.e., $N_1 \gg N_C$, indicating that head and tail classes are highly skewed.

Deep neural networks (DNNs) struggle with such long-tailed data, where they perform poorly on tail classes. This can be attributed to two primary factors. First, when using conventional representation learning methods, the inherent "label bias" in long-tailed data leads to poor feature spaces. Second, majority class samples tend to dominate the training process, resulting in biased decision boundaries that unfairly favor the head classes. These two factors call for the development of innovative solutions in both representation learning and classification stages.

4.2 Stage 1: Representation Learning via Balanced Negative Sampling

Our first stage aims to learn an effective and well-separated feature space for long-tailed recognition. We resort to maximizing mutual information between instances sharing the same label—a process mathematically equivalent to minimizing intra-class distances.

Our Objective. Given any image of the ground set $x \in \mathbb{X}$, we employ data augmentation modules to transform it into two different views of the same sample, denoted as $x_i \in \mathbb{X}_Q$ and $x_j \in \mathbb{X}_V$. Let $f_{\theta}(\cdot)$ be a DNN parameterized by θ , used for encoding feature representations. Here, we regard $Q(\mathbb{X}_Q; \theta)$ and $V(\mathbb{X}_V; \theta)$ as feature spaces corresponding to \mathbb{X}_Q and \mathbb{X}_V , respectively. In this work, our goal is to learn high-quality feature representations for imbalanced classification by maximizing the mutual information between two feature spaces:

$$\underset{\boldsymbol{\theta}}{\operatorname{arg max}} \ MI(\boldsymbol{Q}(\mathbb{X}_{Q};\boldsymbol{\theta}), \boldsymbol{V}(\mathbb{X}_{V};\boldsymbol{\theta})). \tag{3}$$

In the rest of the paper, we abbreviate $Q(X_Q; \theta)$ and $V(X_V; \theta)$ as Q and V, respectively. Then, given any images of $x_i \in X_Q$ and $x_j \in X_V$, their representations can be expressed respectively as $q_i \in Q$ and $v_j \in V$, where $q_i = f_{\theta}(x_i)$ and $v_j = f_{\theta}(x_j)$.

CL-based Representation Learning. However, directly maximizing the mutual information between two representation spaces Q and V is computationally intractable. Worse still, prior studies [60, 39]

have demonstrated that long-tailed data inherently causes "label bias", resulting in poor representations for tail classes. In this work, we reformulate Eq. (3) within the framework of contrastive learning (CL), enabling the efficient optimization of our objective. Meanwhile, employing CL-based techniques [5, 23, 29, 37, 27] can also effectively mitigate the "label bias" issue, as highlighted in prior studies [60, 39].

Specifically, our approach leverages a binary classifier to distinguish the target image from noise samples, drawing inspiration from Noise Contrastive Estimation (NCE) [18]. Given an anchor image $\boldsymbol{x}_i \in \mathbb{X}_Q$, we have its corresponding target image $\boldsymbol{x}_{j,i}^+ \in \mathbb{X}_V$. Here, \boldsymbol{x}_i and $\boldsymbol{x}_{j,i}^+$ are two augmented versions of the same image. Meanwhile, we sample n noise images (having different labels with \boldsymbol{x}_i) from the dataset \mathbb{X}_V , denoted as $\{\boldsymbol{x}_j^-\}_{j=1}^n$. Regarding their representations, we have one positive pair $(\boldsymbol{q}_i, \boldsymbol{v}_{j,i}^+)$ and n negative pairs $\{(\boldsymbol{q}_i, \boldsymbol{v}_j^-)\}_{j=1}^n$. Therefore, there is a $\frac{1}{n+1}$ chance to pick the positive pair and a $\frac{n}{n+1}$ chance to pick the negative pair. Let $p(\cdot)$ be the joint probability of \boldsymbol{Q} and \boldsymbol{V} , and $g(\cdot)$ represent a binary classifier, where its output d=1 and d=0 denote the positive and negative pair, respectively. Then, we have:

$$g(\mathbf{q}_{i}, \mathbf{v}_{j} \mid d) = \begin{cases} \frac{1}{n+1} p(\mathbf{q}_{i}, \mathbf{v}_{j,i}^{+}), & d = 1\\ \frac{n}{n+1} p(\mathbf{q}_{i}, \mathbf{v}_{j}^{-}), & d = 0 \end{cases}$$
(4)

Considering the positive pair only, we arrive at:

$$g(\boldsymbol{q}_i, \boldsymbol{v}_j \mid d = 1) = \frac{p(\boldsymbol{q}_i, \boldsymbol{v}_{j,i}^+)}{p(\boldsymbol{q}_i, \boldsymbol{v}_{j,i}^+) + n \times p(\boldsymbol{q}_i, \boldsymbol{v}_j^-)}.$$
 (5)

We assume that the distributions between different classes are independent. Then, for any negative pair (q_i, v_i^-) , we have $p(q_i, v_i^-) = p(q_i)p(v_i^-)$. As such, we can rewrite Eq. (5) as follows:

$$g(\boldsymbol{q}_i, \boldsymbol{v}_j \mid d = 1) = \frac{p(\boldsymbol{q}_i, \boldsymbol{v}_{j,i}^+)}{p(\boldsymbol{q}_i, \boldsymbol{v}_{j,i}^+) + n \times p(\boldsymbol{q}_i)p(\boldsymbol{v}_j^-)}.$$
 (6)

Taking the logarithm of Eq. (6) and rearranging the terms (see Appendix A.1 for detailed derivation), we obtain:

$$\log g(\boldsymbol{q}_{i}, \boldsymbol{v}_{j} \mid d = 1) \leq \log \frac{p(\boldsymbol{q}_{i}, \boldsymbol{v}_{j,i}^{+})}{p(\boldsymbol{q}_{i})p(\boldsymbol{v}_{i}^{-})} - \log n.$$
 (7)

Taking the expectation of $p(q_i, v_{i,i}^+)$ on both sides, we have:

$$\mathbb{E}_{p(\boldsymbol{q}_{i},\boldsymbol{v}_{j,i}^{+})}\log\frac{p(\boldsymbol{q}_{i},\boldsymbol{v}_{j,i}^{+})}{p(\boldsymbol{q}_{i})p(\boldsymbol{v}_{j}^{-})} \geq \mathbb{E}_{p(\boldsymbol{q}_{i},\boldsymbol{v}_{j,i}^{+})}\log g(\boldsymbol{q}_{i},\boldsymbol{v}_{j}\mid d=1) + \log n. \tag{8}$$

Combining Eq. (1), Eq. (3), and Eq. (8), we have:

$$\underbrace{MI(Q, V)}_{\text{maximize MI}} \ge \underbrace{\mathbb{E}_{p(q_i, v_{j,i}^+)} \log g(q_i, v_j \mid d = 1)}_{\text{maximize lower bound}} + \log n. \tag{9}$$

Here, $\log n$ is a constant, indicating that maximizing the lower bound in Eq. (9) is equivalent to maximizing the mutual information between the two feature spaces.

Balanced Negative Sampling (BNS). Inspired by prior studies [18, 48, 52], we train a logistic regression classifier to maximize the lower bound in Eq. (9). However, $\log g(\mathbf{q}_i, \mathbf{v}_j \mid d = 1)$ is computationally intractable. To address this issue, we approximate the classifier's output with sigmoid function $\sigma(\cdot)$, expressed as below:

$$g(\mathbf{q}_i, \mathbf{v}_j \mid d) = \begin{cases} \sigma(\frac{\mathbf{q}_i^{\top} \mathbf{v}_j}{\tau}), & d = 1\\ \sigma(-\frac{\mathbf{q}_i^{\top} \mathbf{v}_j}{\tau}), & d = 0 \end{cases}$$
(10)

Here, τ is the temperature parameter that controls the sharpness of the similarity scores. As such, our NS-based contrastive learning, designed for learning high-quality representations, is formulated as follows:

$$\mathcal{L}_{NS} = -\left[\log \sigma(\frac{\boldsymbol{q}_{i}^{\top} \boldsymbol{v}_{j,i}^{+}}{\tau}) + \sum_{j=1}^{n} \log \sigma(-\frac{\boldsymbol{q}_{i}^{\top} \boldsymbol{v}_{j}^{-}}{\tau})\right]. \tag{11}$$

Our NS-based contrastive learning, *i.e.*, Eq. (11), can mitigate "label bias" inherent to long-tailed data, yielding a higher quality of representations. However, it is ineffective in learning a well-separated

representation space. This is because positive pairs of head classes dominate the representation space. We then propose a novel Balanced Negative Sampling (BNS) to learn an effective and well-separated representation space. That is, for a given anchor image $x_i \in \mathbb{X}_Q$, we sample an additional set of m images from \mathbb{X}_Q that share the same label as x_i , denoted as $\{x_k\}_{k=1}^m$. Let $q_k \in Q_{i,m}^+$ denote representations for the addition set of images. Then, we have m+1 positive pairs $\{(q_*, v_{j,i}^+) \mid q_* \in \{q_i\} \cup Q_{i,m}^+\}$ and n(m+1) negative pairs $\{(q_*, v_j^-) \mid q_* \in \{q_i\} \cup Q_{i,m}^+\}$ and $j=1,2,\ldots,n\}$. Mathematically, our BNS technique can be expressed as:

$$\mathcal{L}_{BNS} = -\frac{1}{m+1} \left[\sum_{q_* \in \{q_i\} \cup \mathbf{Q}_{i,m}^+} \log \sigma(\frac{\mathbf{q}_*^\top \mathbf{v}_{j,i}^+}{\tau}) + \sum_{q_* \in \{q_i\} \cup \mathbf{Q}_{i,m}^+} \sum_{j=1}^n \log \sigma(-\frac{\mathbf{q}_*^\top \mathbf{v}_j^-}{\tau}) \right].$$
 (12)

In practice, m is set to a small value due to the limited number of samples in minority classes. Eq. (12) effectively enhances the quality of feature representations by maximizing the mutual information shown in Eq. (3). This maximization of mutual information directly corresponds to minimizing intra-class distances, as stated next.

Theorem 4.1. (Intra-Class Distance Mutual Information Theorem) Let \mathbb{X}_Q^c and \mathbb{X}_V^c be two sets of images with the same label c, obtained by different data augmentation techniques. Given a feature extractor $f_{\theta}(\cdot)$, we define \mathbf{Q}^c and \mathbf{V}^c as the representation spaces for \mathbb{X}_Q^c and \mathbb{X}_V^c , respectively. Then, any pair of $\mathbf{q}_i^c \in \mathbf{Q}^c$ and $\mathbf{v}_j^c \in \mathbf{V}^c$ is a positive pair. Let $MI(\cdot)$ and $D(\cdot)$ respectively denote the mutual information and a distance metric, we have:

$$\max MI(\mathbf{Q}^c, \mathbf{V}^c) \propto \min D(\mathbf{Q}^c, \mathbf{V}^c), \tag{13}$$

where $D(Q^c, V^c)$ can be considered as the intra-class distance because they have the same label.

The proof of Theorem 4.1 is deferred to Appendix A.2.

Instance-Level and Class-Level Semantics. An effective representation space must capture two key aspects: instance-level semantics to ensure high-quality feature representations and class-level semantics to achieve well-separated feature spaces. To understand how our BNS technique achieves this, we decompose Eq. (12) as follows:

$$\mathcal{L}_{\text{BNS}} = -\frac{1}{m+1} \left\{ \underbrace{\log \sigma(\frac{\boldsymbol{q}_{i}^{\top} \boldsymbol{v}_{j,i}^{+}}{\tau}) + \sum_{j=1}^{n} \log \sigma(-\frac{\boldsymbol{q}_{i}^{\top} \boldsymbol{v}_{j}^{-}}{\tau})}_{\text{instance-level}} + \underbrace{\sum_{\boldsymbol{q}_{k} \in \boldsymbol{Q}_{i,m}^{+}} \left[\log \sigma(\frac{\boldsymbol{q}_{k}^{\top} \boldsymbol{v}_{j,i}^{+}}{\tau}) + \sum_{j=1}^{n} \log \sigma(-\frac{\boldsymbol{q}_{k}^{\top} \boldsymbol{v}_{j}^{-}}{\tau}) \right]}_{\text{class-level}} \right\}. \quad (14)$$

According to Theorem 4.1, our BNS approach naturally minimizes distances at both the instance and class levels. Specifically, the pair $(q_i, v_{j,i}^+)$ originates from the same instance, while the pairs $(q_k, v_{j,i}^+)$ are from the same class. This dual-level minimization naturally encourages the emergence of both instance-level and class-level semantics within the representation space, leading to improved representation quality and better separation of feature spaces.

4.3 Stage 2: Information-Preservable Determinantal Point Process

Next, we propose a new sampling solution, namely *Information-Preservable Determinantal Point Process (IP-DPP)*, aiming to rectify majority-biased classification decision boundaries while maintaining the model's overall performance. Specifically, our approach builds on the Determinantal Point Process (DPP) [33], a stochastic process that captures global negative correlations, as outlined below.

Definition 4.2 (Determinantal Point Process). Given a ground set \mathbb{X} with N items, a point process \mathcal{P} in this ground set is a distribution over discrete and finite subsets of \mathbb{X} . Let $K \in \mathbb{R}^{N \times N}$ be a real, symmetric marginal kernel matrix indexed by the elements of \mathbb{X} . A point process \mathcal{P} is called a DPP only if, for every random subset $\mathbb{Y} \subseteq \mathbb{X}$ drawn according to \mathcal{P} , we have:

$$\mathcal{P}(\mathbb{Y}) = \det(\mathbf{K}_{\mathbb{Y}}),\tag{15}$$

where $K_{\mathbb{Y}} = [K_{ij}]_{i,j \in \mathbb{Y}}$ is the principle submatrix of K, indexed by elements of \mathbb{Y} .

Since \mathcal{P} is a probability measurement, *i.e.*, $0 \le \mathcal{P} \le 1$, the marginal kernel matrix K must satisfy specific structural properties, as stated next.

Remark 4.3 (Properties of Marginal Kernel Matrix). The marginal kernel matrix K for a DPP must satisfy: i) K is a positive semidefinite matrix; and ii) All eigenvalues of K are bounded in the interval [0,1], *i.e.*, $0 \le K \le I$.

However, it is very difficult to construct a DPP through the marginal kernel matrix K in real long-tailed settings. In this work, we follow the prior study [33] by constructing a DPP based on the L-ensemble framework [2]. Specifically, consider an image $x_i \in \mathbb{X}$ with ground truth label y_i , let $p(i) = p_{\phi}(y_i|x_i)$ denote the probability of correctly predicting y_i given x_i , where the classifier is parameterized by ϕ . For any two distinct elements $i, j \in \mathbb{X}$, let p(i, j) denote the joint probability of correctly classifying both elements. Assuming independence between classifications, we have p(i, j) = p(i)p(j). Let S be a $N \times N$ matrix, where each element $S_{i,j}$ is defined as follows:

$$S_{i,j} = \begin{cases} \frac{p(i)p(j)}{N}, & i \neq j \\ 1 - \sum_{k \neq j} \frac{p(k)p(j)}{N}, & i = j \end{cases}$$
 (16)

As such, S is a symmetric stochastic matrix where each row (or column) sums to 1. The symmetric stochastic matrix S is positive semi-definite, and all its eigenvalues are bounded in [0,1], as stated in Lemmas 4.4 and 4.5, respectively.

Lemma 4.4. (Positive Semi-definiteness) Let $p(i) = p(y_i|\mathbf{x}_i)$ represent the probability of y_i given \mathbf{x}_i . $\mathbf{S} \in \mathbb{R}^{N \times N}$ is a symmetric stochastic matrix, where each row (or column) sums to 1. Then, we have:

$$\boldsymbol{v}^{\top} \boldsymbol{S} \boldsymbol{v} > 0, \quad \forall \boldsymbol{v} \in \mathbb{R}^{N}.$$
 (17)

In other words, S is positive semi-definite.

Lemma 4.5. (Bounds on Eigenvalues) Let $\{\lambda_i\}_{i=1}^N$ be the eigenvalues of the symmetric stochastic matrix $S \in \mathbb{R}^{N \times N}$, we have:

$$0 \le \lambda_i \le 1, \quad \forall \lambda_i. \tag{18}$$

The proofs of Lemmata 4.4 and 4.5 are deferred to Appendix A.3 and Appendix A.4, respectively.

As such, the symmetric stochastic matrix S satisfies the two properties stated in Remark 4.3. Hence, it can be used to construct a DPP through L-ensemble, expressed as below:

$$\mathcal{P}_{S}(\mathbb{Y}) = \frac{\det(S_{\mathbb{Y}})}{\det(S + I)},\tag{19}$$

where I is an $N \times N$ identity matrix. Since $\mathcal{P}_{S}(\mathbb{Y})$ is a probability measurement, it needs to be bounded in [0,1]. The DPP defined in Eq. (19) is valid, i.e., $0 \leq \mathcal{P}_{S}(\mathbb{Y}) \leq 1$, as outlined below.

Theorem 4.6. (Bounded Determinant Probability Measurement) Let X be a ground set with N items and $S \in \mathbb{R}^{N \times N}$ denote a symmetric stochastic matrix, indexed by elements in X. Here, S is positive semi-definite and satisfies $0 \leq S \leq I$, where I is the $N \times N$ identity matrix. Let S_{Y} denote the principal submatrix of S corresponding to Y, for any subset $Y \subseteq X$, the following holds:

$$0 \le \frac{\det(\mathbf{S}_{\mathbb{Y}})}{\det(\mathbf{S} + \mathbf{I})} \le 1. \tag{20}$$

In other words, $\mathcal{P}_{\mathbf{S}}(\mathbb{Y}) = \frac{\det(\mathbf{S}_{\mathbb{Y}})}{\det(\mathbf{S} + \mathbf{I})}$ defines a valid probability measurement.

The proof of Theorem 4.6 is deferred to Appendix A.5.

Information-Preservable Property. In the long-tailed settings, our DPP method defined in Eq. (19) can effectively preserve valuable information, as discussed next.

Remark 4.7 (Information-Preserving Sampling Principle). Let $I(x) = -\log[p(y|x)]$ denote the information content of item x relevant to its correct classification. $\mathcal{P}_{\mathbf{S}}(\mathbb{Y} \cup \{x\})$ denotes the probability that item x is sampled by our DPP approach, which prioritizes sampling elements with higher information content, as expressed by:

$$\mathcal{P}_{\mathbf{S}}\left(\mathbb{Y}\cup\{\boldsymbol{x}\}\right)\propto I(\boldsymbol{x}). \tag{21}$$

Here, we use a simple example to illustrate how Remark 4.7 holds. Let $A = \{i, j\}$ be a subset of X sampled by our DPP approach. For the given ground set, $\det(S + I)$ is a constant. Then, we arrive at (see Appendix A.6 for details):

$$\mathcal{P}_{\mathbf{S}}(\mathbf{A}) = \frac{\det(\mathbf{S}_{\mathbf{A}})}{\det(\mathbf{S} + \mathbf{I})} \propto \det(\mathbf{S}_{\mathbf{A}}) = 1 - p(i) \cdot p(j). \tag{22}$$

Algorithm 1 IP-DPP

```
1: Input: a ground set \mathbb{X} = \{x_i\}_{i=1}^N, its symmetric stochastic matrix S, and sample size k 2: Initialize: standard basis vectors \{e_i\}_{i=1}^N and pairs of orthonormal eigenvalues and eigenvectors
\{(\lambda_i, m{v}_i)\}_{i=1}^N 	ext{ for } m{S} 3: m{V} \leftarrow \emptyset
4: for i=1,2,\cdots,N do

5: if u \sim U(0,1) < \frac{\lambda_i}{\lambda_i+1} then

6: \boldsymbol{V} \leftarrow \boldsymbol{V} \cup \{v_i\}

7: k \leftarrow k-1
 8:
              end if
 9:
              if k = 0 then
10:
                    break
11:
               end if
12: end for
13: \mathbb{Y} \leftarrow \emptyset
14: while |V| > 0 do
             \begin{array}{c} \text{for } i=1,2,\cdots,N \text{ do} \\ p(i) \leftarrow \frac{1}{|\boldsymbol{V}|} \sum_{\boldsymbol{v} \in \boldsymbol{V}} (\boldsymbol{v}^{\top} \boldsymbol{e}_i)^2 \\ \text{end for} \end{array}
15:
16:
17:
18:
              i^* \leftarrow \arg\max\ p(i)
             \mathbb{Y} \leftarrow \mathbb{Y} \cup \{m{x}_{i^*}\} m{V} \leftarrow m{V}_{\perp} // Update m{V} to an orthonormal basis for the subspace orthogonal to m{e}_{i^*}
21: end while
22: Return: a subset Y
```

Therefore, we obtain $\mathcal{P}_{\mathbf{S}}(\{i,j\}) \propto -p(i) \cdot p(j)$. In this work, we have $p(i) = p(y_i|\mathbf{x}_i)$, implying that images less likely to be correctly classified are more likely to be sampled by our DPP approach. According to information content (see Eq. (2) for details), we have $I(\mathbf{x}_i) = -\log[p(y_i|\mathbf{x}_i)]$. Thus, $\mathcal{P}_{\mathbf{S}}(\{\mathbf{x}_i\}) \propto I(\mathbf{x}_i)$.

Balanced Sample Size. To effectively rectify biased decision boundaries, the cardinality of sampled subsets must be carefully balanced. A subset with a large sample size risks preserving the original imbalance, whereas an overly small subset may lead to significant information loss. Given a ground set with N items, we theoretically demonstrate that that the expected sample size of a DPP defined in Eq. (19) is $N(1 - \ln 2)$. Due to the page limit, the details of this theorem are deferred to Appendix A.7.

This reduction to roughly one-third of the original size is inadequate for balancing the class priors in a highly imbalanced setting. To address this issue, we propose $Information-Preservable\ Determinantal\ Point\ Process\ (IP-DPP)$ to sample balanced subsets by selecting a fixed cardinality k instances from each majority class, as defined below:

$$\mathcal{P}_{\mathbf{S}}^{k}(\mathbb{Y}) = \frac{\det(\mathbf{S}_{\mathbb{Y}})}{\sum_{|\mathbb{Y}'|} \det(\mathbf{S}_{\mathbb{Y}'})}.$$
(23)

As such, our IP-DPP approach can effectively sample balanced subsets to rectify decision boundaries while preserving valuable information.

Effective Sampling Strategy. However, directly applying Eq. (23) for sampling entails significant computational costs. Drawing inspiration from prior studies [32, 33], we devise a novel and computationally efficient sampling strategy for our IP-DPP method. Specifically, given the symmetric stochastic matrix S, its spectral decomposition yields orthonormal eigenvectors $\{v_i\}_{i=1}^N$ with corresponding eigenvalues $\{\lambda_i\}_{i=1}^N$, such that:

$$S = \sum_{i=1}^{N} \lambda_i \mathbf{v}_i \mathbf{v}_i^{\mathsf{T}}.$$
 (24)

Let $e_i \in \mathbb{R}^N$ denote the *i*-th standard basis vector, which contains a single 1 in its *i*-th entry and 0's elsewhere. U(0,1) is the standard uniform distribution. Then, Algorithm 1 outlines an efficient sampling strategy for our IP-DPP approach.

Table 1: Experimental results on CIFAR-10-LT and CIFAR-100-LT datasets, with the best results shown in bold

Methods		CIFAR-10	-LT			CIFAR-100-	·LT	
	Many-shot	Medium-shot	Few-shot	Overall	Many-shot	Medium-shot	Few-shot	Overall
Focal Loss	86.3	60.6	46.3	69.2	71.1	43.9	10.5	43.5
LDAM Loss	85.8	64.8	51.9	71.5	71.4	44.5	11.7	44.1
au-norm	85.2	64.4	51.7	70.9	60.7	54.4	14.8	44.7
RIDE	86.2	63.6	56.1	73.4	73.1	47.6	16.4	47.2
KCL	83.7	63.8	53.6	71.7	72.3	46.1	14.8	45.8
TSC	81.5	71.9	56.3	71.9	71.3	43.9	10.5	43.5
SBCL	81.6	72.4	57.6	72.6	72.7	48.5	20.0	48.5
OTmix	87.9	67.8	47.3	73.8	73.1	48.0	19.1	48.1
DisA	86.1	68.3	50.3	73.6	72.4	49.3	21.9	49.2
Ours	82.0	76.3	67.2	76.4	62.4	59.7	31.9	52.4

5 Experimental Results

5.1 Experimental Setup

Datasets. We conduct experiments on four artificially induced or real-world long-tailed datasets: i) **CIFAR-10-LT** and ii) **CIFAR-100-LT**: we follow the setting in [3] by sampling long-tailed datasets respectively from the original CIFAR-10 and CIFAR-100 datasets; iii) **ImageNet-LT** [43]: a truncated version of ImageNet [12] with a total of 1,000 classes; and iv) **iNaturalist 2018** [26]: a naturally long-tailed dataset containing 8,142 species around the world. The imbalanced factor (IF) for CIFAR-10-LT and CIFAR-100-LT, if not specified, is set to 100 (i.e., $\frac{N_{\text{max}}}{N} = 100$).

Compared Approaches. We compare our approach to nine state-of-the-arts for long-tailed recognition: Focal Loss [38], LDAM Loss [3], τ -norm [30], RIDE [59], KCL [34], TSC [35], SBCL [27], OTmix [15], and DisA [14].

Metrics. We evaluate long-tailed recognition performance using four metrics: **many-shot**, **medium-shot**, **few-shot**, and **overall** accuracies. Many-shot, medium-shot, and few-shot assess model performance in head, medium, and tail classes, respectively. All results are averaged over 5 trials.

Additional experimental settings, including thresholds for defining the above metrics and hyperparameters, are provided in Appendix B.1 to conserve space.

5.2 Comparisons to State-of-the-Arts

Small-Scale Datasets. We first conduct experiments on two small-scale long-tailed datasets, *i.e.*, CIFAR-10-LT and CIFAR-100-LT, to compare our approach with nine counterparts mentioned in Section 5.1. Table 1 presents comparative results. On CIFAR-10-LT, our approach achieves the best overall accuracy of 76.4%, outperforming all counterparts by 2.6% at least. This performance improvement can be attributed to two key aspects. First, our BNS approach effectively captures both instance-level and class-level semantics, facilitating the learning of high-quality representations and the creation of well-separated feature spaces, respectively. Second, our IP-DPP method addresses biased decision boundaries by sampling relatively balanced subsets while preserving valuable information. This can mitigate the majority-biased tendency while maintaining the model's overall performance. On the other hand, although our approach lags behind prior studies in many-shot accuracy, these methods consistently struggle with biased decision boundaries. They prioritize performance on head classes, resulting in significantly diminished accuracy for medium and tail classes. For instance, while our method falls short of OTmix by 5.9% in many-shot accuracy, it surpasses OTmix with significantly higher medium-shot and few-shot accuracies, improving by 8.5% and 19.9%, respectively. These results demonstrate that our approach effectively mitigates biased decision boundaries while maintaining the model's overall performance.

We observe similar trends on CIFAR-100-LT. First, our approach achieves the highest overall accuracy of 52.4%, surpassing prior state-of-the-art, *i.e.*, DisA, by a notable margin of 3.2%. Second, while our approach lags behind OTmix by 10.7% in many-shot accuracy, it achieves improvements of 11.7% in medium-shot accuracy and 12.8% in few-shot accuracy, as well as an improvement of 4.3% in overall accuracy. These results further confirm that our approach effectively mitigates majority-biased tendencies while preserving the model's overall performance.

Table 2: Experimental results on ImageNet-LT and iNaturalist 2018 datasets, with the best results
highlighted in bold

Methods		ImageNet-LT				iNaturalist 2018 ot Medium-shot Few-shot Overal 62.7 64.4 63.2 66.8 61.7 64.6 65.8 69.1 67.7 68.6 69.3 68.8 62.7 64.4 63.2 65.7 64.0 65.1			iNaturalist 2018				
	Many-shot	Medium-shot	Few-shot	Overall	Many-shot	Medium-shot	Few-shot	Overall					
Focal Loss	51.4	41.2	16.0	41.7	61.2	62.7	64.4	63.2					
LDAM Loss	55.0	46.4	16.7	45.7	65.1	66.8	61.7	64.6					
au-norm	56.6	44.2	27.4	46.7	71.3	65.8	69.1	67.7					
RIDE	56.7	46.4	25.7	47.6	67.5	68.6	69.3	68.8					
KCL	55.0	42.6	25.4	45.0	61.2	62.7	64.4	63.2					
TSC	57.1	45.2	29.3	47.6	66.4	65.7	64.0	65.1					
SBCL	55.8	45.7	27.1	47.1	73.4	70.2	69.8	70.4					
OTmix	50.9	46.0	25.7	45.1	70.1	70.9	68.6	69.9					
DisA	61.0	47.0	25.3	49.4	70.7	70.8	68.4	69.8					
Ours	59.7	50.8	32.4	51.7	72.7	72.9	75.7	74.0					

Large-Scale Datasets. Next, we conduct experiments on ImageNet-LT and iNaturalist 2018 to assess the effectiveness of our approach on large-scale, long-tailed datasets. Table 2 provides the comprehensive results. We make two key observations. First, our approach achieves the highest accuracies on both ImageNet-LT (*i.e.*, 51.7%) and iNaturalist 2018 (*i.e.*, 74.0%), outperforming all competing methods. For instance, on ImageNet-LT, our approach surpasses DisA, the best baseline method, by 2.3%. Similarly, on iNaturalist 2018, it outperforms SBCL, the best counterpart, by 3.6%. These results highlight the strong generalizability of our method to large-scale, long-tailed datasets. Moreover, while our approach lags behind some baseline methods in many-shot accuracy, it achieves the highest medium-shot and few-shot accuracies across both datasets. This is because prior methods result in majority-biased decision boundaries, which disproportionately favor head classes.

5.3 Evaluation on Representation Learning

Quantitative Evaluation. Next, we quantitatively evaluate the performance of our BNS method for representation learning. Specifically, we compare it against three state-of-the-art contrastive learning methods for long-tailed recognition: KCL, TSC, and SBCL. To assess the quality of the learned feature representations, we use linear probing accuracy, which involves fine-tuning a linear classifier on a pre-trained feature extractor with frozen weights.

Figures 1a and 1b illustrate linear probing accuracies on CIFAR-10-LT and CIFAR-100-LT, respectively. On CIFAR-10-LT, our approach achieves the best overall accuracy of 68.2% (see the pink bar), outperforming KCL, TSC, and SBCL by 7.2%, 4.4%, and 3.5%, respectively.

This is because maximizing the mutual information expressed in Eq. (3) is equivalent to minimizing the intra-class distance, which, in turn, enhances the quality of feature representations. Existing methods for long-tailed data often exhibit an undesirable bias toward head classes, leading to poor performance on tail classes, as evidenced by significant disparities between many-shot and few-shot accuracies: 52.7% for KCL, 45.1% for TSC, and 43.5% for SBCL. In contrast, our BNS method enjoys unbiased representation space, exhibiting similar perfor-

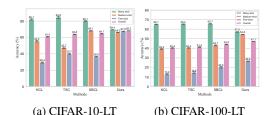


Figure 1: Linear probing accuracies on (a) CIFAR-10-LT and (b) CIFAR-100-LT datasets.

mance on many-shot and few-shot accuracies (*i.e.*, 69.4% vs. 67.6%). Similarly, our approach achieves the highest linear probing accuracy of 47.1% on CIFAR-100-LT, surpassing KCL, TSC, and SBCL by 6.7%, 5.7%, and 2.9%, respectively. Furthermore, our approach effectively mitigates the majority-biased tendency. For instance, compared to SBCL, our method achieves substantial improvements of 11.5% in medium-shot accuracy and 6.1% in few-shot accuracy, with only a modest 8.5% reduction in many-shot accuracy.

Qualitative Evaluation. To gain a deeper understanding of our BNS method's role in representation learning, we utilize t-SNE [56] to visualize the feature spaces learned by SBCL and our BNS approach. Figure 2 illustrates the feature spaces for the CIFAR-10 training and test sets. The training representation space learned by SBCL exhibits poor separation for medium and tail classes (see Figure 2a), leading to overlapping boundaries among these classes in the test representation space

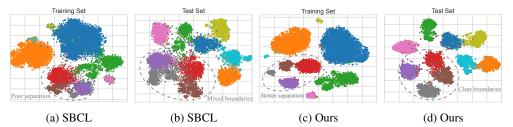


Figure 2: t-SNE visualization of CIFAR-10 feature space. (a) and (b): visual representation learned by SBCL, as well as (c) and (d): visual representation captured by our approach.

Table 3: Experimental results under various imbalanced factors (IF), with the best results shown in bold

Methods		CIFAR-10-LT						CIFAT-100-LT				
	IF=10	IF=20	IF=50	IF=100	IF=200	Ι.	IF=10	IF=20	IF=50	IF=100	IF=200	
TSC	80.6	76.4	72.9	71.9	63.7	1	57.3	51.1	48.3	43.5	40.3	
SBCL	80.5	78.6	74.1	72.6	64.3	Ì	58.3	51.8	50.9	48.5	41.4	
OTmix	81.3	80.3	74.4	73.8	65.8	İ	59.1	55.7	52.2	48.1	42.7	
DisA	82.4	81.0	75.7	73.6	67.2		60.4	53.3	52.3	49.2	42.9	
Ours	83.7	82.4	81.9	76.4	73.5		62.6	59.8	55.9	52.4	46.7	

(see Figure 2b). In contrast, our approach achieves improved separation for medium and tail classes in the training representation space (see Figure 2c), leading to clear and well-defined boundaries for these classes in the test representation space (see Figure 2d). This improvement stems from our method's ability to capture class-level semantics, which promotes the development of well-separated representation spaces. The differences in decision boundaries between SBCL and our approach elucidate why SBCL achieves poor linear probing accuracies on medium and tail classes, whereas our approach demonstrates superior performance on these classes (see Figures 1a and 1b for details).

5.4 Performance Results under Various Imbalanced Factors

This section presents performance results under various imbalance factors (IF). Here, we consider five IF values ranging from 10 to 200. Table 3 shows comparative results on CIFAR-10-LT and CIFAR-100-LT, where we compare our approach with TSC, SBCL, OTmix, and DisA. On both datasets, our approach achieves the highest overall accuracies across all IF values. For instance, when the IF is set to 200, our method achieves an accuracy of 73.5% on CIFAR-10-LT and 46.7% on CIFAR-100-LT. Moreover, our method demonstrates greater robustness to large imbalance factors. For example, when the IF value increases from 10 to 200, our approach experiences a performance drop of 10.2% (*i.e.*, 83.7% vs. 73.5%) on CIFAR-10-LT, whereas baseline methods suffer larger decreases, with at least a 15.2% drop (see DisA, 82.4% vs. 67.2%).

Additional experimental results are provided in Appendices B.2–B.6. These include adaptability of our approach, applicability across different model architectures, evaluation of computational overhead, ablation studies, and hyperparameter sensitivity.

6 Conclusion

This work has addressed the challenging long-tailed data classification problem, by proposing a novel information-preservable two-stage learning approach. Our key contributions include: i) Balanced Negative Sampling (BNS), a new representation learning strategy that effectively captures both instance-level and class-level semantics, facilitating the creation of high-quality feature representations and well-separated feature spaces; and ii) Information-Preservable Determinantal Point Process (IP-DPP), a novel sampling technique designed to select mathematically informative instances, effectively rectifying majority-biased decision boundaries while maintaining the model's overall performance. As such, our approach achieves state-of-the-art performance across various long-tailed datasets by preserving the valuable information within the entire dataset, allowing it to consistently and decisively outperform its counterparts.

Acknowledgments

This work was supported in part by NSF under Grants 2315613, 2438898, and 2348452. Any opinions and findings expressed in the paper are those of the authors and do not necessarily reflect the views of funding agencies.

References

- [1] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: BERT pre-training of image transformers. In *International Conference on Learning Representations (ICLR)*, 2022.
- [2] Alexei Borodin and Eric M Rains. Eynard–mehta theorem, schur process, and their pfaffian analogs. *Journal of statistical physics*, 121(3):291–317, 2005.
- [3] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Aréchiga, and Tengyu Ma. Learning imbalanced datasets with label-distribution-aware margin loss. In *NeurIPS*, 2019.
- [4] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. SMOTE: synthetic minority over-sampling technique. *J. Artif. Intell. Res.*, 2002.
- [5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework for contrastive learning of visual representations. In *International Conference on Machine Learning (ICML)*, 2020.
- [6] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E. Hinton. Big self-supervised models are strong semi-supervised learners. In *Neural Information Processing Systems (NeurIPS)*, 2020.
- [7] Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision transformers. In *International Conference on Computer Vision (ICCV)*, pages 9620–9629, 2021.
- [8] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. ELECTRA: pre-training text encoders as discriminators rather than generators. In *International Conference on Learning Representations (ICLR)*, 2020.
- [9] Jiequan Cui, Zhisheng Zhong, Shu Liu, Bei Yu, and Jiaya Jia. Parametric contrastive learning. In ICCV, 2021.
- [10] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge J. Belongie. Class-balanced loss based on effective number of samples. In *CVPR*, 2019.
- [11] Yin Cui, Yang Song, Chen Sun, Andrew Howard, and Serge J. Belongie. Large scale fine-grained categorization and domain-specific transfer learning. In *CVPR*, 2018.
- [12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In CVPR, 2009.
- [13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In *International Conference on Learning Representations (ICLR)*, 2021.
- [14] Jintong Gao, He Zhao, Dandan Guo, and Hongyuan Zha. Distribution alignment optimization through neural collapse for long-tailed classification. In *International Conference on Machine Learning (ICML)*, 2024.
- [15] Jintong Gao, He Zhao, Zhuo Li, and Dandan Guo. Enhancing minority classes by mixing: An adaptative optimal transport approach for long-tailed classification. In *Neural Information Processing Systems (NeurIPS)*, 2023.
- [16] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv preprint arXiv:2312.00752*, 2023.

- [17] Ting Guo, Xingquan Zhu, Yang Wang, and Fang Chen. Discriminative sample generation for deep imbalanced learning. In *IJCAI*, 2019.
- [18] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle for unnormalized statistical models. In *International Conference on Artificial Intelligence and Statistics (AISTATS)*, 2010.
- [19] Hui Han, Wenyuan Wang, and Binghuan Mao. Borderline-smote: A new over-sampling method in imbalanced data sets learning. In *Advances in Intelligent Computing, International Conference on Intelligent Computing (ICIC)*, volume 3644, 2005.
- [20] Haibo He, Yang Bai, Edwardo A. Garcia, and Shutao Li. ADASYN: adaptive synthetic sampling approach for imbalanced learning. In *IJCNN*, 2008.
- [21] Haibo He and Edwardo A Garcia. Learning from imbalanced data. TKDE, 2009.
- [22] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross B. Girshick. Masked autoencoders are scalable vision learners. In *Computer Vision and Pattern Recognition (CVPR)*, pages 15979–15988, 2022.
- [23] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. Momentum contrast for unsupervised visual representation learning. In *Conference on Computer Vision and Pattern Recognition (CVPR)*, 2020.
- [24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Computer Vision and Pattern Recognition (CVPR)*, pages 770–778, 2016.
- [25] Yi He, Fudong Lin, Xu Yuan, and Nian-Feng Tzeng. Interpretable minority synthesis for imbalanced classification. In *IJCAI*, 2021.
- [26] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alexander Shepard, Hartwig Adam, Pietro Perona, and Serge J. Belongie. The inaturalist species classification and detection dataset. In CVPR, 2018.
- [27] Chengkai Hou, Jieyu Zhang, Haonan Wang, and Tianyi Zhou. Subclass-balancing contrastive learning for long-tailed recognition. In *International Conference on Computer Vision (ICCV)*, 2023.
- [28] Chen Huang, Yining Li, Chen Change Loy, and Xiaoou Tang. Learning deep representation for imbalanced classification. In CVPR, 2016.
- [29] Bingyi Kang, Yu Li, Sa Xie, Zehuan Yuan, and Jiashi Feng. Exploring balanced feature spaces for representation learning. In *International Conference on Learning Representations (ICLR)*, 2021.
- [30] Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and Yannis Kalantidis. Decoupling representation and classifier for long-tailed recognition. In *ICLR*, 2020.
- [31] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. In Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q. Weinberger, editors, *Neural Information Processing Systems* (*NeurIPS*), 2012.
- [32] Alex Kulesza and Ben Taskar. k-dpps: Fixed-size determinantal point processes. In *ICML*, 2011.
- [33] Alex Kulesza and Ben Taskar. Determinantal point processes for machine learning. *Found. Trends Mach. Learn.*, 2012.
- [34] Tianhong Li, Peng Cao, Yuan Yuan, Lijie Fan, Yuzhe Yang, Rogério Feris, Piotr Indyk, and Dina Katabi. Targeted supervised contrastive learning for long-tailed recognition. In *Computer Vision and Pattern Recognition (CVPR)*, 2022.

- [35] Tianhong Li, Peng Cao, Yuan Yuan, Lijie Fan, Yuzhe Yang, Rogério Feris, Piotr Indyk, and Dina Katabi. Targeted supervised contrastive learning for long-tailed recognition. In *Computer Vision and Pattern Recognition (CVPR)*, 2022.
- [36] Yanghao Li, Haoqi Fan, Ronghang Hu, Christoph Feichtenhofer, and Kaiming He. Scaling language-image pre-training via masking. In *Computer Vision and Pattern Recognition (CVPR)*, pages 23390–23400, 2023.
- [37] Fudong Lin, Summer Crawford, Kaleb Guillot, Yihe Zhang, Yan Chen, Xu Yuan, et al. Mmst-vit: Climate change-aware crop yield prediction via multi-modal spatial-temporal vision transformer. In *International Conference on Computer Vision (ICCV)*, pages 5751–5761, 2023.
- [38] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object detection. In *ICCV*, 2017.
- [39] Hong Liu, Jeff Z. HaoChen, Adrien Gaidon, and Tengyu Ma. Self-supervised learning is more robust to dataset imbalance. In *International Conference on Learning Representations (ICLR)*, 2022.
- [40] Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou. Exploratory undersampling for class-imbalance learning. *IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)*, 2009.
- [41] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *International Conference on Computer Vision (ICCV)*, pages 9992–10002, 2021.
- [42] Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić, Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks. *arXiv preprint arXiv:2404.19756*, 2024.
- [43] Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X. Yu. Large-scale long-tailed recognition in an open world. In *CVPR*, 2019.
- [44] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts. In *International Conference on Learning Representations (ICLR)*, 2017.
- [45] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Conference on Learning Representations (ICLR)*, 2019.
- [46] Marina Meila. Comparing clusterings by the variation of information. In *Computational Learning Theory and Kernel Machines*, 2003.
- [47] Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, and Sanjiv Kumar. Long-tail learning via logit adjustment. In *ICLR*, 2021.
- [48] Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Distributed representations of words and phrases and their compositionality. In *Neural Information Processing Systems (NeurIPS)*, 2013.
- [49] Sankha Subhra Mullick, Shounak Datta, and Swagatam Das. Generative adversarial minority oversampling. In ICCV, 2019.
- [50] Utkarsh Ojha, Krishna Kumar Singh, Cho-Jui Hsieh, and Yong Jae Lee. Elastic-infogan: Unsupervised disentangled representation learning in class-imbalanced data. In *NeurIPS*, 2020.
- [51] Wanli Ouyang, Xiaogang Wang, Cong Zhang, and Xiaokang Yang. Factors in finetuning deep model for object detection with long-tail distribution. In CVPR, 2016.
- [52] Yuzhang Shang, Zhihang Yuan, and Yan Yan. MIM4DD: mutual information maximization for dataset distillation. In *Neural Information Processing Systems (NeurIPS)*, 2023.
- [53] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. In Yoshua Bengio and Yann LeCun, editors, *International Conference on Learning Representations (ICLR)*, 2015.

- [54] Bishal Thapaliya, Anh Nguyen, Yao Lu, Tian Xie, Igor Grudetskyi, Fudong Lin, Antonios Valkanas, Jingyu Liu, Deepayan Chakraborty, and Bilel Fehri. Ecgn: A cluster-aware approach to graph neural networks for imbalanced classification. *arXiv preprint arXiv:2410.11765*, 2024.
- [55] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou. Training data-efficient image transformers & distillation through attention. In International Conference on Machine Learning (ICML), volume 139, pages 10347–10357, 2021.
- [56] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of Machine Learning Research*, 2008.
- [57] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Neural Information Processing Systems (NeurIPS)*, pages 5998–6008, 2017.
- [58] Xinyue Wang, Yilin Lyu, and Liping Jing. Deep generative model for robust imbalance classification. In *CVPR*, 2020.
- [59] Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu, and Stella X. Yu. Long-tailed recognition by routing diverse distribution-aware experts. In *International Conference on Learning Representations (ICLR)*, 2021.
- [60] Yuzhe Yang and Zhi Xu. Rethinking the value of labels for improving class-imbalanced learning. In NeurIPS, 2020.
- [61] Jian Yin, Chunjing Gan, Kaiqi Zhao, Xuan Lin, Zhe Quan, and Zhi-Jie Wang. A novel model for imbalanced data classification. In *AAAI*, 2020.
- [62] Boyan Zhou, Quan Cui, Xiu-Shen Wei, and Zhao-Min Chen. BBN: bilateral-branch network with cumulative learning for long-tailed visual recognition. In CVPR, 2020.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]
Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes] Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes] Guidelines:

• The answer NA means that the paper does not include theoretical results.

- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes] Guidelines:

• The answer NA means that paper does not include experiments requiring code.

- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes] Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes] Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes] Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]
Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]
Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes] Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]
Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA] Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLM is only used for polishing the writing.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

Outline

This document serves as supplementary material to the main paper, providing additional support in two key aspects. First, Appendix A presents detailed proofs for the theorems and lemmas presented in the main paper. Second, Appendix B includes additional experimental results that reinforce the findings. Third, Appendix C discusses both potential positive societal impacts and negative societal impacts of this work.

A Proofs of Theoretical Results

This section provides comprehensive proofs for the theoretical results discussed in the main paper. To enhance clarity and facilitate understanding of the mathematical details, we begin by restating the theoretical conclusions—such as the Theorems and Lemmas from the main paper—and then proceed with their detailed proofs.

A.1 Detailed Derivation of Eq. (7)

This subsection supports Section 4.2 of the main paper by providing the detailed derivation of Eq. (7), as outlined below:

$$\log g(\boldsymbol{q}_{i}, \boldsymbol{v}_{j} \mid d = 1) = \log \left[\frac{p(\boldsymbol{q}_{i}, \boldsymbol{v}_{j,i}^{+})}{p(\boldsymbol{q}_{i}, \boldsymbol{v}_{j,i}^{+}) + n \times p(\boldsymbol{q}_{i})p(\boldsymbol{v}_{j}^{-})} \right] = \log \left[\frac{1}{1 + \frac{n \times p(\boldsymbol{q}_{i})p(\boldsymbol{v}_{j}^{-})}{p(\boldsymbol{q}_{i}, \boldsymbol{v}_{j,i}^{+})}} \right]$$

$$\leq \log \left[\frac{1}{\frac{n \times p(\boldsymbol{q}_{i})p(\boldsymbol{v}_{j}^{-})}{p(\boldsymbol{q}_{i}, \boldsymbol{v}_{j,i}^{+})}} \right] = \log \left[\frac{p(\boldsymbol{q}_{i}, \boldsymbol{v}_{j,i}^{+})}{p(\boldsymbol{q}_{i})p(\boldsymbol{v}_{j}^{-})} \cdot \frac{1}{n} \right]$$

$$= \log \frac{p(\boldsymbol{q}_{i}, \boldsymbol{v}_{j,i}^{+})}{p(\boldsymbol{q}_{i})p(\boldsymbol{v}_{j}^{-})} - \log n.$$
(25)

A.2 Proof of Theorem 4.1

Theorem A.1. (Intra-Class Distance Mutual Information Theorem) Let \mathbb{X}_Q^c and \mathbb{X}_V^c be two sets of images with the same label c, obtained by different data augmentation techniques. Given a feature extractor $f_{\theta}(\cdot)$, we define \mathbf{Q}^c and \mathbf{V}^c as the representation spaces for \mathbb{X}_Q^c and \mathbb{X}_V^c , respectively. Then, any pair of $\mathbf{q}_i^c \in \mathbf{Q}^c$ and $\mathbf{v}_j^c \in \mathbf{V}^c$ is a positive pair. Let $MI(\cdot)$ and $D(\cdot)$ respectively denote the mutual information and a distance metric, we have:

$$\max MI(\mathbf{Q}^c, \mathbf{V}^c) \propto \min D(\mathbf{Q}^c, \mathbf{V}^c), \tag{26}$$

where $D(Q^c, V^c)$ can be considered as the intra-class distance because they have the same label.

Proof. According to Variation of Information (VI) [46], we have:

$$D(\mathbf{Q}^c, \mathbf{V}^c) = H(\mathbf{Q}^c, \mathbf{V}^c) - MI(\mathbf{Q}^c, \mathbf{V}^c)$$

= $H(\mathbf{Q}^c) + H(\mathbf{V}^c) - 2MI(\mathbf{Q}^c, \mathbf{V}^c).$ (27)

Here, $H(\cdot)$ represents the entropy. For the given \mathbf{Q}^c and \mathbf{V}^c , $H(\mathbf{Q}^c)$ and $H(\mathbf{V}^c)$ are two constants. Therefore, we have $\max MI(\mathbf{Q}^c,\mathbf{V}^c) \propto \min D(\mathbf{Q}^c,\mathbf{V}^c)$. That is, maximizing the mutual information between \mathbf{Q}^c and \mathbf{V}^c is proportional to minimizing their intra-class distance.

A.3 Proof of Lemma 4.4

Lemma A.2. (Positive Semi-definiteness) Let $p(i) = p(y_i|x_i)$ represent the probability of y_i given x_i . $S \in \mathbb{R}^{N \times N}$ is a symmetric stochastic matrix, where each row (or column) sums to 1. Then, we have:

$$\mathbf{v}^{\top} \mathbf{S} \mathbf{v} > 0, \quad \forall \mathbf{v} \in \mathbb{R}^{N}.$$
 (28)

In other words, S is positive semi-definite.

Proof. According to the basic decomposition of symmetric matrices, we have $S = Q\Lambda Q^{\top}$, where Q is an orthogonal matrix $QQ^{\top} = I$, and Λ is a diagonal matrix, with diagonal entities containing all eigenvalues of S. Given any vector $v \in \mathbb{R}^N$, we let $c = Q^{\top}v$. In other words, v = Qc. Then, we arrive at:

$$\boldsymbol{v}^{\top} \boldsymbol{S} \boldsymbol{v} = \boldsymbol{c}^{\top} \boldsymbol{Q}^{\top} \boldsymbol{Q} \Lambda \boldsymbol{Q}^{\top} \boldsymbol{Q} \boldsymbol{c} = \Lambda \boldsymbol{c}^{\top} \boldsymbol{c} = \sum_{i=1}^{N} \lambda_{i} \boldsymbol{c}^{\top} \boldsymbol{c},$$
 (29)

where $\{\lambda\}_{i=1}^N$ represents the eigenvalues of S, and we have $c^\top c \ge 0$. Let $\mathrm{Tr}(\cdot)$ denote a matrix's trace. Then, regarding the trace of S, we have:

$$\operatorname{Tr}(\boldsymbol{S}) = \operatorname{Tr}(\boldsymbol{Q}\Lambda \boldsymbol{Q}^{\top}) = \operatorname{Tr}(\Lambda \boldsymbol{Q} \boldsymbol{Q}^{\top}) = \operatorname{Tr}(\Lambda) = \sum_{i=1}^{n} \lambda_{i} \ge 0.$$
 (30)

Combining Eq. (29) and Eq. (30), we obtain $v^{\top}Sv \geq 0$ for any vector $v \in \mathbb{R}^N$. Therefore, S is positive semi-definite.

A.4 Proof of Lemma 4.5

Lemma A.3. (Bounds on Eigenvalues) Let $\{\lambda_i\}_{i=1}^N$ be the eigenvalues of the symmetric stochastic matrix $S \in \mathbb{R}^{N \times N}$, we have:

$$0 \le \lambda_i \le 1, \quad \forall \lambda_i.$$
 (31)

Proof. Since $S \in \mathbb{R}^{N \times N}$ is a symmetric stochastic matrix, the following conditions always hold:

$$S_{i,j} \ge 0, \quad \forall \ 1 \le i, j \le N;$$
 (32a)

$$\sum_{i=1}^{N} \mathbf{S}_{i,j} = 1, \quad \forall \ 1 \le i \le N.$$
 (32b)

Let λ be an eigenvalue of S, with its corresponding eigenvector denoted as $v = [v_1, v_2, \cdots, v_N]^{\top}$. Then, we obtain:

$$Sv = \lambda v. (33)$$

Suppose $v_k \in v$ has the largest absolute value, i.e., $|v_k| \ge |v_i|$ for all $1 \le i \le N$. According to Eq. (33), for the k-th row of S, we have:

$$S_{k,1}v_1 + S_{k,2}v_2 + \dots + S_{k,N}v_N = \lambda v_k.$$
 (34)

Combining Eq. (32a), Eq. (32b), and Eq. (34), we arrive at:

$$|\lambda| \cdot |v_{k}| = |\lambda v_{k}| = |S_{k,1}v_{1} + S_{k,2}v_{2} + \dots + S_{k,N}v_{N}|$$

$$\leq |S_{k,1}v_{1}| + |S_{k,2}v_{2}| + \dots + |S_{k,N}v_{N}|$$

$$\leq |S_{k,1}v_{k}| + |S_{k,2}v_{k}| + \dots + |S_{k,N}v_{k}|$$

$$= |v_{k}| \sum_{j=1}^{N} S_{k,j}$$

$$= |v_{k}|.$$
(35)

According to Eq. (35), we obtain $|\lambda| \cdot |v_k| \le |v_k|$. Therefore, for all $1 \le i \le N$, we always have $|\lambda_i| \le 1$. Meanwhile, according to Lemma A.2, we obtain $\lambda_i \ge 0$ for all $1 \le i \le N$. Finally, combining both scenarios, we arrive at the following:

$$0 < \lambda_i < 1, \quad \forall \lambda_i.$$
 (36)

A.5 Proof of Theorem 4.6

Theorem A.4. (Bounded Determinant Probability Measure) Let \mathbb{X} be a ground set with N items, and let $S \in \mathbb{R}^{N \times N}$ denote its similarity matrix. Here, S is positive semidefinite and satisfies $0 \leq S \leq I$, where I is the $N \times N$ identity matrix. For any subset $\mathbb{Y} \subseteq \mathbb{X}$, let $S_{\mathbb{Y}}$ denote the principal submatrix of S corresponding to \mathbb{Y} . Then, the following holds:

$$0 \le \frac{\det(\mathbf{S}_{\mathbb{Y}})}{\det(\mathbf{S} + \mathbf{I})} \le 1. \tag{37}$$

In other words, the value $\mathcal{P}_{\mathbf{S}}(\mathbb{Y}) = \frac{\det(\mathbf{S}_{\mathbb{Y}})}{\det(\mathbf{S} + \mathbf{I})}$ defines a valid probability measure.

Proof. Since S is positive semidefinite, both the principal submatrix $S_{\mathbb{Y}}$ and the matrix S+I are also positive semidefinite. If a matrix is positive semidefinite, all its eigenvalues are non-negative. Then, we have $det(S_{\mathbb{Y}}) \geq 0$ and det(S+I) > 0. Therefore, $\frac{\det(S_{\mathbb{Y}})}{\det(S+I)} \geq 0$ always holds.

To establish that $\frac{\det(S_{\mathbb{Y}})}{\det(S+I)} \leq 1$, we aim to prove the key identity:

$$\sum_{\mathbb{Y}\subseteq\mathbb{X}}\det(\mathbf{S}_{\mathbb{Y}})=\det(\mathbf{S}+\mathbf{I}_{\mathbb{Y}}). \tag{38}$$

For any $A \subseteq X$, Eq. (38) is a special case of the following equation:

$$\sum_{\mathbf{A} \subset \mathbb{Y} \subset \mathbb{X}} \det(\mathbf{S}_{\mathbb{Y}}) = \det(\mathbf{S} + \mathbf{I}_{\bar{\mathbf{A}}}), \tag{39}$$

where $I_{\bar{A}}$ is a diagonal matrix with the following properties: entries are 1 for indices corresponding to elements in $\bar{A} = \mathbb{X} - A$, and entries are 0 for all other positions. Therefore, if Eq. (39) is satisfied, it follows that $\frac{\det(S_{\mathbb{Y}})}{\det(S+I)} \leq 1$. This result is motivated by Theorem 2.1 in the prior work [33].

Specifically, for the case $A = \mathbb{X}$, Eq. (39) always holds. For the case where $A \subset \mathbb{X}$, we assume Eq. (39) holds whenever \bar{A} has cardinality less than k (where k > 0), i.e., $|\bar{A}| = k$. Let i be an arbitrary element of \bar{A} , so $i \in \bar{A}$. By partitioning the ground set \mathbb{X} into $\{i\}$ and $\mathbb{X} - \{i\}$, we can decompose the problem as follows:

$$S + I_{\bar{A}} = \begin{pmatrix} S_{ii} + 1 & S_{i\bar{i}} \\ S_{\bar{i}i} & S_{X-\{i\}} + I_{X-\{i\}-A}. \end{pmatrix}$$

$$\tag{40}$$

Here, $S_{\bar{i}i}$ denote the subcolumn of the *i*-th column of S, restricted to rows corresponding to elements in \bar{i} . Similarly, $S_{i\bar{i}}$ represents the corresponding subcolumn but transposed. By leveraging the multilinearity property of determinants, we observe:

$$\det(\mathbf{S} + \mathbf{I}_{\bar{\mathbf{A}}}) = \begin{vmatrix} \mathbf{S}_{ii} & \mathbf{S}_{i\bar{i}} \\ \mathbf{S}_{ii} & \mathbf{S}_{\mathbb{X} - \{i\}} + \mathbf{I}_{\mathbb{X} - \{i\} - \mathbf{A}} \end{vmatrix} + \begin{vmatrix} 1 & 0 \\ \mathbf{S}_{\bar{i}i} & \mathbf{S}_{\mathbb{X} - \{i\}} + \mathbf{I}_{\mathbb{X} - \{i\} - \mathbf{A}} \end{vmatrix}$$

$$= \det\left(\mathbf{S} + \mathbf{I}_{\overline{\mathbf{A}} \cup \{i\}}\right) + \det\left(\mathbf{S}_{\mathbb{X} - \{i\}} + \mathbf{I}_{\mathbb{X} - \{i\} - \mathbf{A}}\right). \tag{41}$$

By applying the inductive hypothesis to each term separately, we obtain:

$$\det(\mathbf{S} + \mathbf{I}_{\bar{\mathbf{A}}}) = \sum_{\mathbf{A} \cup \{i\} \subseteq \mathbb{Y} \subseteq \mathbb{X}} \det(\mathbf{S}_{\mathbb{Y}}) + \sum_{\mathbf{A} \subseteq \mathbb{Y} \subseteq \mathbb{X} - \{i\}} \det(\mathbf{S}_{\mathbb{Y}})$$

$$= \sum_{\mathbf{A} \subset \mathbb{Y} \subset \mathbb{X}} \det(\mathbf{S}_{\mathbb{Y}}).$$
(42)

We observe that each subset $\mathbb Y$ falls into exactly one of two mutually exclusive categories: either $\mathbb Y$ contains the element i (contributing to the first sum) or $\mathbb Y$ does not contain i (contributing to the second sum). According to Eq. (38), Eq. (39), and Eq. (42), we have $\frac{\det(S_{\mathbb Y})}{\det(S+I)} \leq 1$.

Finally, combining both scenarios, we arrive at $0 \leq \frac{\det(S_{Y})}{\det(S+I)} \leq 1$.

Algorithm 2 Efficient Sampling Algorithm for a Standard DPP

```
1: Input: a ground set \mathbb{X} = \{x_i\}_{i=1}^N and its symmetric stochastic matrix S
 2: Initialize: standard basis vectors \{e_i\}_{i=1}^N and pairs of orthonormal eigenvalues and eigenvectors
 \{(\lambda_i, \boldsymbol{v}_i)\}_{i=1}^N \text{ for } \boldsymbol{S} 3: \boldsymbol{V} \leftarrow \emptyset
\begin{array}{ll} \textbf{3.} & \textbf{for } i=1,2,\,\cdots,N\,\,\textbf{do}\\ \textbf{5.} & \textbf{if } u\sim U(0,1)<\frac{\lambda_i}{\lambda_i+1} \ \textbf{then}\\ \textbf{6.} & \boldsymbol{V}\leftarrow\boldsymbol{V}\cup\{v_i\} \end{array}
 7:
 8: end for
 9: \mathbb{Y} \leftarrow \emptyset
10: while |V| > 0 do
           for i = 1, 2, \dots, N do p(i) \leftarrow \frac{1}{|V|} \sum_{v \in V} (v^{\top} e_i)^2
11:
13:
             i^* \leftarrow \arg\max\ p(i)
14:
           \mathbb{Y} \leftarrow \mathbb{Y} \cup \{ oldsymbol{x}_{i^*} \}
oldsymbol{V} \leftarrow oldsymbol{V}_{\perp} // Update oldsymbol{V} to an orthonormal basis for the subspace orthogonal to oldsymbol{e}_{i^*}
17: end while
18: Return: a subset ¥
```

A.6 Detailed Derivation of Eq. (22)

This subsection supports Section 4.3 by providing the detailed derivation of Eq. (22). Given that $A = \{i, j\}$ is a subset with two elements, we have N = 2. Then, the derivation is as follows:

$$\mathcal{P}_{\mathbf{S}}(\mathbf{A}) = \frac{\det(\mathbf{S}_{\mathbf{A}})}{\det(\mathbf{S} + \mathbf{I})} \propto \det(\mathbf{S}_{\mathbf{A}}) = \begin{vmatrix} 1 - \frac{p(i) \cdot p(j)}{N} & \frac{p(i) \cdot p(j)}{N} & \frac{p(i) \cdot p(j)}{N} \\ \frac{p(i) \cdot p(j)}{N} & 1 - \frac{p(i) \cdot p(j)}{N} \end{vmatrix} = \begin{vmatrix} 1 - \frac{p(i) \cdot p(j)}{2} & \frac{p(i) \cdot p(j)}{2} \\ \frac{p(i) \cdot p(j)}{2} & 1 - \frac{p(i) \cdot p(j)}{2} \end{vmatrix}$$
$$= (1 - \frac{p(i) \cdot p(j)}{2})^{2} - (\frac{p(i) \cdot p(j)}{2})^{2}$$
$$= 1 - p(i) \cdot p(j). \tag{43}$$

A.7 Expected Sample Size of a Determinantal Point Process (DPP)

This subsection complements the main paper by presenting the theorem and its corresponding proof for the expected sample size of a DPP. To facilitate understanding of the theoretical results, Algorithm 2 presents an efficient sampling method for a standard DPP, i.e., DPP without fixed sample size k.

Theorem A.5. (Expected Sample Size of a DPP) Let X be a ground set containing N elements. For any subset $Y \subseteq X$ sampled by a Determinantal Point Process (DPP), the expected size of Y is given by:

$$\mathbb{E}[|\mathbb{Y}|] = N(1 - \ln 2). \tag{44}$$

Proof. The size of the sampled subset $|\mathbb{Y}|$ from Algorithm 2 is determined by the cardinality of the selected eigenvector set |V|. This cardinality follows a Poisson-binomial distribution (see Line 5 in Algorithm 2 for details), where each of the N independent Bernoulli trials succeeds with probability $p_i = \frac{\lambda_i}{\lambda_i + 1}$, corresponding to the i-th eigenvalue λ_i of the kernel matrix. Thus, $|\mathbb{Y}| \sim \sum_{i=1}^{N} \text{Bernoulli}(p_i)$.

According to Lemma A.4, we have $0 \le \lambda_i \le 1, \forall \lambda_i$. Now, we assume that λ_i is a random variable distributed over the interval [0, 1]. Denote this random variable as λ . The expected value is given by:

$$\mathbb{E}\left[\frac{\lambda}{\lambda+1}\right] = \int_0^1 \frac{\lambda}{\lambda+1} f(\lambda) d\lambda,\tag{45}$$

where $f(\lambda)$ is the probability density function (PDF) of λ . Without loss of generality, suppose λ is uniformly distributed over [0,1], the PDF is $f(\lambda)=1$ for $\lambda\in[0,1]$. The expected value becomes:

$$\mathbb{E}\left[\frac{\lambda}{\lambda+1}\right] = \int_0^1 \frac{\lambda}{\lambda+1} d\lambda. \tag{46}$$

Let $u = \lambda + 1$, so $du = d\lambda$ and when $\lambda = 0$, u = 1; when $\lambda = 1$, u = 2. The integral becomes:

$$\int_{0}^{1} \frac{\lambda}{\lambda + 1} d\lambda = \int_{1}^{2} \frac{u - 1}{u} du = \int_{1}^{2} \left(1 - \frac{1}{u} \right) du$$

$$= \int_{1}^{2} 1 du - \int_{1}^{2} \frac{1}{u} du = [u]_{1}^{2} - [\ln u]_{1}^{2}$$

$$= 1 - \ln 2.$$
(47)

Therefore, we have $\bar{p}_i = \mathbb{E}\left[\frac{\lambda_i}{\lambda_i + 1}\right] = 1 - \ln 2$. Finally, the expected size of the set \mathbb{Y} can be approximated as follows:

$$\mathbb{E}[|\mathbb{Y}|] = \sum_{i=1}^{N} \bar{p}_i = \sum_{i=1}^{N} (1 - \ln 2) = N(1 - \ln 2). \tag{48}$$

Notably, we assume a uniform distribution of eigenvalues to simplify the above proof. Although this assumption is idealized, the empirical results (see Appendix B.7) on the subset sample size after a DPP demonstrate that it does not substantially distort the practical behavior of the process.

B Supplementary Experimental Results

B.1 Additional Experimental Settings

Metric Threshold. We define thresholds for many-shot, medium-shot, and few-shot accuracies. Specifically, for CIFAR-10-LT, many-shot refers to classes with more than 500 images, medium-shot to classes with 200 to 500 images, and few-shot to classes with fewer than 200 images. For other datasets, many-shot refers to classes with more than 100 images, medium-shot to those with 20 to 100 images, and few-shot to those with fewer than 20 images.

Hyperparameters. ResNet-18, ResNet-34, and ResNet-50 [24] are used for CIFAR-10-LT, CIFAR-100-LT, and ImageNet-LT (or iNaturalist 2018), respectively. In the first stage, the feature extractor is trained using the AdamW [45] optimizer with $\beta_1=0.9,\,\beta_2=0.95,\,$ and a weight decay of 0.05. The training process consists of 1,000 epochs, including 20 warm-up epochs, with a batch size of 1,024. A cosine learning rate decay schedule [44] is applied, starting with a base learning rate of 10e-3 and incorporating a layer-wise learning rate decay [8] of 0.75. Data augmentation strategies, including random cropping, random color distortions, and random Gaussian blur, are used, followed by those reported in SimCLR [5]. The number of additional positive pairs m was set to 6 by default. In the second stage, the pre-trained feature extractor is fine-tuned for 100 epochs, including 5 warm-up epochs, with a batch size of 64. The sample size k is set to $10N_C$, where N_C represents the sample size of the smallest class. All experiments were conducted on a workstation equipped with an RTX 4090 GPU.

B.2 Adaptability of Our Two-Stage Learning Approach

This work introduces a novel two-stage learning approach, incorporating Balanced Negative Sampling (BNS) for representation learning in the first stage and Information-Preservable Determinantal Point Process (IP-DPP) for sampling the balanced training set in the second stage. In this subsection, we conduct experiments to demonstrate that our BNS and IP-DPP approaches can be easily adapted by existing studies. Specifically, BNS is combined with re-weighting methods, *i.e.*, Focal Loss and LDAM Loss, while IP-DPP is combined with prior representation learning approaches, *i.e.*, KCL, TSC, and SBCL. Table 4 presents the experimental results on CIFAR-10-LT and CIFAR-100-LT, where the performance outcomes of existing methods are also included for a better comparison.

Table 4: Experimental results on CIFAR-10-LT and CIFAR-100-LT, with the best results shown in

Methods		CIFAR-10	-LT			CIFAR-100	-LT	
	Many-shot	Medium-shot	Few-shot	Overall	Many-shot	Medium-shot	Few-shot	Overall
Focal Loss	86.3	60.6	46.3	69.2	71.1	43.9	10.5	43.5
LDAM Loss	85.8	64.8	51.9	71.5	71.4	44.5	11.7	44.1
KCL	83.7	63.8	53.6	71.7	72.3	46.1	14.8	45.8
TSC	81.5	71.9	56.3	71.9	71.3	43.9	10.5	43.3
SBCL	81.6	72.4	57.6	72.6	72.7	48.5	20.0	48.5
BNS + Focal Loss	82.2	73.6	57.1	72.9	63.6	57.7	27.8	50.8
BNS + LDAM Loss	82.6	71.8	61.9	74.2	63.3	58.7	27.8	51.0
KCL + IP-DPP	79.2	75.7	66.6	74.7	64.2	58.3	26.7	50.8
TSC + IP-DPP	78.9	76.8	63.4	73.8	63.2	58.3	30.1	51.5
SBCL + IP-DPP	80.0	73.5	66.8	74.8	62.7	57.8	29.7	51.2

Table 5: Experimental results on ImageNet-LT and iNaturalist 2018 using various model architectures. Best results are highlighted in bold

Models	ResNet-50	ViT-Base	DeiT-Base	Swin-Base
ImageNet-LT	51.7	50.1	50.8	51.2
iNaturalist 2018	74.0	72.6	74.3	74.6

Table 6: Comparative analysis of computational overhead. The sampling time, measured in seconds, is reported.

Datasets	CIFAR-10-LT	CIFAR-100-LT	ImageNet-LT
Random IP-DPP (w/o efficient sampling) IP-DPP	12.4	14.6	118.2
	19.0	36.8	399.8
	13.2	15.8	144.0

Our approach effectively enhances the performance of existing methods. For instance, combining SBCL with IP-DPP (i.e., "SBCL + IP-DPP") achieves the highest overall accuracy of 74.8% on CIFAR-10-LT. Similarly, integrating TSC with IP-DPP (i.e., "TSC + IP-DPP") yields the best overall accuracy of 51.5% on CIFAR-100-LT. Furthermore, integrating our approach with existing methods consistently improves their performance compared to the original methods. For instance, combining BNS with Focal Loss (i.e., "BNS + Focal Loss") outperforms "Focal Loss" by 3.7% (i.e., 72.9% vs. 69.2%) on CIFAR-10-LT and by 7.3% (i.e., 50.8% vs. 43.5%) on CIFAR-100-LT. These results demonstrate that our BNS and IP-DPP approaches can be effectively integrated into other methods to enhance performance in imbalanced classification tasks.

B.3 Applicability Across Various Model Architectures

In this subsection, we conduct experiments to evaluate whether our approach can be applied effectively across different model architectures. Table 5 presents the results on ImageNet-LT and iNaturalist 2018 using four architectures: ResNet-50 [24], ViT-Base [13], DeiT-Base [55], and Swin-Base [41]. Our approach demonstrates consistent performance across different model architectures. For instance, on ImageNet-LT, it achieves 51.7% accuracy using ResNet and 51.2% accuracy using Swin-Base. Similarly, on iNaturalist 2018, ResNet-50 achieves an overall accuracy of 74.0%, while Swin-Base achieves a slightly higher accuracy of 74.6%. These results highlight the generalizability of our approach to a variety of model architectures, confirming its robustness and flexibility.

B.4 Evaluation of Computational Overhead

This subsection supports the main paper by presenting an evaluation of the computational overhead introduced by our IP-DPP method. We first examine the additional sampling time incurred by IP-DPP. Specifically, we evaluate three scenarios: the training set sampled using Random Undersampling [21], IP-DPP without the efficient sampling strategy, and IP-DPP with the proposed strategy. Table 6 provides a comparative analysis of these methods across three long-tailed datasets: CIFAR-10-LT, CIFAR-100-LT, and ImageNet-LT. The results reveal two key observations. First, while our IP-DPP approach introduces additional computational overhead compared to Random Undersampling, the

Table 7: Analysis of computational overhead. The total sampling time and training time are reported in seconds. The baseline method does not involve additional sampling, so its sampling time costs are not applicable.

Datasets	CIFAR	-10-LT	CIFAR-	100-LT
	Sampling Time	Training Time	Sampling Time	Training Time
Baseline	I –	537.2	_	781.6
IP-DPP	132.0	484.4	158.0	491.8

Table 8: Linear probing accuracy on CIFAR-10-LT and CIFAR-100-LT, with the best results highlighted in bold

Datasets		CIFAR-10-LT CIFAR-100-LT						
	Many-shot	Medium-shot	Few-shot	Overall	Many-shot	Medium-shot	Few-shot	Overall
Baseline	66.7	63.5	34.8	56.5	55.1	50.2	10.1	39.9
BNS (w/o additional positive pairs) BNS	68.3 69.4	64.7 66.0	43.3 67.6	60.1 68.2	56.7 57.2	53.1 54.6	20.9 26.6	44.7 47.1

difference is minimal, with IP-DPP being only 0.8 seconds slower on CIFAR-10-LT, 0.8 seconds slower on CIFAR-100-LT, and 25.8 seconds slower on ImageNet-LT. Second, the effective sampling strategy of IP-DPP significantly reduces computational overhead. Compared to its counterparts without the efficient sampling strategy, IP-DPP achieves speedups of 1.4x on CIFAR-10-LT, 2.3x on CIFAR-100-LT, and 2.8x on ImageNet-LT.

Next, we conduct experiments to evaluate the impact of our IP-DPP approach on total training time. Table 7 summarizes the total training time for CIFAR-10-LT and CIFAR-100-LT over 100 epochs, with the total training cost of Focal Loss serving as the baseline. In practice, the training set is re-sampled using our IP-DPP approach every 10 epochs, a strategy designed to mitigate overfitting. Therefore, Table 7 reports the cost of performing ten sampling iterations as the total sampling time. Although our IP-DPP approach incurs additional sampling time, it results in a lower total training time compared to the baseline method. This reduction is attributed to the significant decrease in the sample size of the training set after using IP-DPP.

B.5 Comprehensive Ablation Studies

Ablation Studies on Our BNS Approach. We conduct experiments on long-tailed datasets to evaluate the effectiveness of our BNS approach in representation learning. For this, we use SimCLR [5], a conventional representation learning method, as the baseline. We examine two variants of our approach: one without additional positive pairs and another with them. Table 8 presents the linear probing accuracies on CIFAR-10-LT and CIFAR-100-LT datasets. We make three key observations. First, the conventional method struggles to learn high-quality feature spaces for long-tailed datasets, leading to poor linear probing accuracy in tail classes, *e.g.*, 34.8% on CIFAR-10-LT and 10.1% on CIFAR-100-LT. Second, both variants of our BNS approach significantly outperform the baseline method. This improvement is attributed to their ability to effectively capture instance-level semantics, thereby enhancing the quality of feature representations. Third, compared to its variant without additional positive pairs, our BNS approach with additional positive pairs achieves superior linear probing accuracy, particularly in tail classes (*e.g.*, 67.6% vs. 43.3% on CIFAR-10-LT). This improvement is due to the inclusion of multiple positive pairs, which enables our BNS method to capture class-level semantics, thereby promoting a well-separated feature space.

Ablation Studies on Our IP-DPP Approach. We conduct experiments to evaluate the necessity and significance of the innovative designs within our IP-DPP approach. In these experiments, Random Undersampling [21] serves as the baseline method. For our IP-DPP approach, we examine its variants: IP-DPP without the symmetric stochastic matrix, IP-DPP without the fixed sample size, and the complete IP-DPP method. Table 9 presents the comparative results on CIFAR-10-LT and CIFAR-100-LT. We have three observations. First, compared to the baseline method, all IP-DPP variants achieve better overall accuracies on both datasets. This is because the baseline method incurs significant information loss due to its random undersampling strategy. Second, removing either the symmetric stochastic matrix or the fixed sample size results in significant performance degradation.

Table 9: Ablation studies on our IP-DPP technique, with the best results shown in bold

Methods		CIFAR-10	-LT			CIFAR-100	CIFAR-100-LT		
	Many-shot	Medium-shot	Few-shot	Overall	Many-shot	Medium-shot	Few-shot	Overall	
Baseline	75.5	72.8	61.9	70.8	56.7	56.4	24.1	47.8	
IP-DPP (w/o stochastic matrix) IP-DPP (w/o fixed sample size) IP-DPP		74.4 74.7 76.3	57.1 63.8 67.2	72.7 75.4 76.4	61.9 65.5 62.4	57.7 57.0 59.7	23.0 26.7 31.9	48.7 50.8 52.4	

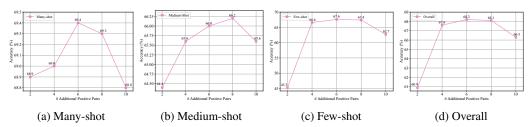


Figure 3: Linear probing accuracy on CIFAR-10-LT using different numbers of additional positive pairs (*i.e.*, m).

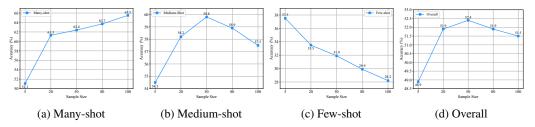


Figure 4: Impact of the fixed sample size (i.e., k) on imbalanced classification, where many-shot, medium-shot, few-shot, and overall accuracies on CIFAR-100 are reported.

This is because the symmetric stochastic matrix is essential for preserving mathematically informative samples, while the fixed sample size plays a crucial role in maintaining data balance after applying IP-DPP. These statistical results validate the importance of the novel designs within IP-DPP in rectifying majority-biased decision boundaries while preserving the model's overall performance.

B.6 Hyperparameter Sensitivity

Effects of Additional Positive Pairs. Here, we investigate the impact of the number of positive pairs in our BNS approach on representation learning. Notably, given any anchor image, we have at least one positive pair, *i.e.*, two augmented images from the anchor image. Here, we conduct experiments by gradually increasing the number of additional positive pairs, *i.e.*, m in Eq. (12). Figure 3 illustrate the linear probing accuracy on CIFAR-10-LT, where m is gradually increased from 2 to 10. As shown in Figure 3d, when the value of m is small ($m \le 6$), increasing m leads to higher overall accuracy. However, for larger values of m (m > 6), further increases in m negatively impact overall accuracy. A similar trend is observed in the many-shot, medium-shot, and few-shot accuracies (see Figures 3a, 3b, and 3c for details). This occurs because a small value of m enhances the model's ability to capture class-level semantics, whereas a large value introduces data imbalance within the feature spaces. Based on these experimental results, the value of m, by default, is set to 6 in the real long-tailed scenario.

Impact of Fixed Sample Size. We conduct experiments on CIFAR-100-LT to explore the impact of fixed sample size (i.e., k) on imbalanced classification. In the experiments, we gradually increase the value of k from 5 to 100. Note that the value of k can be set to larger than the sample size of the minority class. In this case, the actual sample size is set to $\min(k, N_c)$, where N_c is the sample size of the minority class. Figure 4 shows the experimental results. It is observed that a large value of k consistently benefits the many-shot accuracy (see Figure 4a) but hurts the few-shot accuracy (see Figure 4c). This is because increasing the value of k corresponds to adding additional majority samples, but it also enlarges the data imbalance between the majority and minority classes. Figure 4d

Table 10: Performance results on CIFAR-10 under various temperature parameters, with the best results shown in bold

Temperature Paramete	r Many-shot	Medium-shot	Few-shot	Overall
$\tau = 0.1$	65.1	66.2	73.0	67.7
$\tau = 0.3$	69.4	66.0	67.6	68.2
$\tau = 0.5$	72.3	64.7	57.4	66.3
τ = 0.7	73.1	62.6	56.8	66.1

Table 11: Average sample size after DPP sampling across different ground set sizes

Ground Set Size (N)	100	500	1000	2000	5000
Sample Size of Subset	31.4	147.0	308.5	606.9	1548.4
Percentage of N	31.4%	29.4%	30.9%	30.3%	31.0%

demonstrates that the best trade-off is achieved when the value of k is set to 50, resulting in the highest overall accuracy of 52.4%. We emphasize that when k is set to 50, the ratio $\frac{k}{N_C}=10$, where $N_C=5$ represents the sample size of the smallest class in CIFAR-100-LT. Thus, in practical scenarios, the value of k is typically set to $10N_C$ by default.

Influence of Temperature Parameter. This section investigates the influence of the BNS temperature parameter τ on representation learning. Specifically, we conduct experiments on CIFAR-10-LT with an imbalance factor of 100, varying temperature parameters from 0.1 to 0.7 in steps of 0.2. The results, summarized in Table 10, are reported as linear probing accuracy.

We observe that smaller values of τ (e.g., 0.1) improve performance on tail classes (Few-shot) but reduce accuracy on head classes (Many-shot). Conversely, larger values of τ increase Many-shot accuracy at the expense of Few-shot performance. This behavior occurs because larger τ values soften the contrastive loss, giving more weight to hard negative samples—typically dominated by head-class instances—thereby favoring head classes during representation learning. The best trade-off between head and tail performance is achieved when τ is set to 0.3, where the accuracy gap between Many-shot and Few-shot categories is minimized (i.e., 1.8%).

B.7 The Expected Subset Sample Size after a DPP

This section supports Appendix A.7 by presenting the empirical results on the expected subset sample size after a Determinantal Point Process (DPP). The Theorem A.5 states that for a ground set containing N samples, its expected number of elements selected by a DPP under a uniform eigenvalue distribution assumption is approximately $N(1-\ln 2)\approx 30.7\%$. To empirically validate this claim, we ran the DPP over the CIFAR-10-LT dataset with its ground set size ranging from N=100 to N=5000. Table 11 presents the empirical results (averaging over 10 trials). It is observed that the resulting subset sizes consistently align with the theoretical prediction, *i.e.*, $N(1-\ln 2)$, across all tested values of N. These results suggest that the uniform eigenvalue assumption—while idealized—does not significantly distort the practical behavior of a DPP.

C Broader Impact

Our proposed methods address the challenging problems regarding the long-tailed data distributions, envisioned to make significant contributions to machine learning (ML) research and advance its applications across various critical domains. *First*, real-world data often exhibit long-tailed or imbalanced distributions, posing significant challenges for conventional ML algorithms. These issues are prevalent in critical applications such as social network spam detection, online transaction fraud detection, medical diagnosis, and others. Misclassifications in these domains can lead to catastrophic consequences, such as undetected fraudulent activities or delayed medical treatments. By effectively addressing the challenge of long-tail data distributions, our method enables state-of-the-art ML techniques to perform reliably in critical domains, fostering improved decision-making and delivering meaningful societal benefits. *Second*, our proposed two-stage learning framework comprises Balanced Negative Sampling (BNS) for representation learning and Information-Preservable Determinantal Point Process (IP-DPP) for rectifying biased classifiers. These components are not only effective on their own but can also be seamlessly integrated with existing state-of-the-art methods. Our

experiments reveal that integrating BNS or IP-DPP into existing methods significantly improves their performance on long-tailed data. This broad adaptability enables a more inclusive application of ML techniques across diverse datasets and tasks, providing a practical tool for practitioners in various industries.