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ABSTRACT

Video Variational Auto-Encoders (Video VAEs) compress video data from the
highly redundant pixel space into a compact latent representation, playing an im-
portant role in state-of-the-art video generation models. However, existing meth-
ods typically learn inter-frame correlations implicitly, overlooking the potential
of breaking down video compression into two separate parts: keyframe encoding
and inter-frame dynamic encoding, which is a fundamental design of traditional
video codecs. To address this, we incorporate traditional video codec standard de-
sign into the Video VAE and introduce VC-VAE, a model that explicitly separates
keyframe and inter-frame dynamic compression. We start by establishing a high-
fidelity static keyframe anchor through initialization from a powerful pre-trained
image VAE. Then, to explicitly model dynamic relative to this anchor, we intro-
duce the Temporal Dynamic Difference Convolution (TDC), an operator designed
to learn sparse motion residuals from inter-frame differences while maintaining
a separate pathway for static content. Qualitative and quantitative experiments
show that our proposed VC-VAE significantly outperforms baseline models in re-
construction quality, dynamic modelling, and training efficiency.

1 INTRODUCTION

Recent advances in video generation field enable the creation of high-quality videos (Wan et al.,
2025; Kong et al., 2024; Polyak et al., 2024; Seawead et al., 2025; Ma et al., 2025). The progress
is mainly built upon the Latent Diffusion Model (LDM) architecture (Rombach et al., 2022), which
relies heavily on the Video VAE as its core component. The task of the Video VAE is to com-
press video data from the highly redundant pixel space into a compact latent representation, directly
influencing the efficiency of the following diffusion process and the quality of the final generated
videos.

Extensive researches have been conducted on enhancing Video VAEs. From the signal process-
ing viewpoint, WF-VAE (Li et al., 2025) and Cosmos Tokenizer (Agarwal et al., 2025) aim
to handle the spatio-temporal redunctant in the frequency domain. By employing Haar Wavelet
Transform (Procházka et al., 2011), these methods efficiently preserve the structurally-vital but
temporally-redundant low-frequency content, thereby freeing up model capacity to focus on the
more complex, high-frequency motion. Another line of works focus on basic architectural design.
For instance, MovieGen (Polyak et al., 2024) uses a non-causal architecture to improve inter-frame
modeling, whereas IV-VAE (Wu et al., 2025b) leverages a grouping mechanism to create local bidi-
rectional dependencies, which enhances reconstruction stability while maintaining causality. How-
ever, leveraging the design principles of video codecs (Wiegand et al., 2003) to improve Video VAEs
remains a sparsely explored area.

Rethinking the evolution of convolutional operators in Video VAEs uncovers an implicit parallel
with the video codecs standard. As shown in Fig. 1(a), Video codecs standard(Wiegand et al.,
2003) employ a Group-of-Pictures structure based on three types of frames: I-frames, which are
independently encoded as self-contained anchor points; P-frames, which efficiently encode mo-
tion residuals relative to a previous frame; and B-frames, which further enhance compression by
referencing frames in both past and future context. Early Video VAEs (Yu et al., 2023; Yang et al.,
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Figure 1: (a) Inter-frame dependency in Video Codec. (b) Our model first anchors the reconstruction
on a single, representative I-frame. (c) Our proposed TDC explicitly learning from the decoupled
sparse motion residual from the I-frame.

2024) used causal convolution, establishing an inter-frame dependency similar to P-frame prediction
where the current frame is reconstructed using only past and current context. Subsequent work, such
as IV-VAE (Wu et al., 2025b), introduced group causal convolution, which creates a B-frame-like
dependency by utilizing both past and future context for more stable reconstruction. These archi-
tectures implicitly reflect the dependency structure of P and B frames; However, they treat static
content and dynamic motion as an entangled learning target, overlooking the essential operational
principle behind them. Video codecs leverage temporal redundancy through the I-frame prediction
and motion residual mechanism, enabling the explicit decoupling of static content and dynamic mo-
tion. By isolating complex, sparse motion from the redundant static background, this separation
offers a fundamentally more efficient approach to video modeling.

Inspired by the above insights, our objective is to enhance both reconstruction quality and training
efficiency by incorporating the above design principles of video codec into Video VAE. We start
by establishing an I-frame prior within the Video VAE, initializing our model from a pre-trained
image VAE (Labs, 2024) to endow our Video VAE with a strong static content prior. As shown in
Fig. 1(b), the model can generate high-fidelity, single-frame reconstructions at the initial state, pro-
viding a stable foundation for learning dynamic motion. We then introduce the Temporal Dynamic
Difference Convolution (TDC) to enable decoupling at the operator level. As shown in Fig. 1(c), it
creates a specific pathway to preserve the static content from the I-frame prior, while establishing a
parallel pathway to learn sparse motion residuals from explicit feature differences between frames.
Extensive experiments validate the efficiency of our video codec-inspired learning paradigm. By
explicitly separating the learning of dynamic sparse motion from static content, our model achieves
superior reconstruction performance while significantly reducing training overhead.

In summary, the core contributions of this paper are as follows: (1) We introduce VC-VAE, a novel
architecture inspired by the video codec standard. It explicitly models the video sequence by separat-
ing it into the static I-frame and dynamic motion residuals. To the best of our knowledge, VC-VAE
is the first work to successfully incorporate this explicit content-motion decoupling paradigm from
video codecs into the Video VAE framework. (2) To incorporate this explicit modeling of inter-
frame motion residuals into the convolutional Video VAE architecture, we introduce the Temporal
Dynamic Difference Convolution (TDC), a novel operator designed for this purpose. (3) Extensive
experiments demonstrate the SOTA video reconstruction capabilities of the proposed VC-VAE.

2 RELATED WORK

2.1 VARIATIONAL AUTOENCODER

The Variational Autoencoder (VAE) (Kingma & Welling, 2013) is a foundational paradigm in gener-
ative modeling, designed to capture complex probability distributions within high-dimensional data.
VAEs’ development of both continuous (Rombach et al., 2022; Chen et al., 2024a) and discrete
latent representations (Esser et al., 2021) has established them as a versatile component in modern
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generative pipelines, functioning as visual compressors for latent diffusion models and as visual to-
kenizers for autoregressive systems. Contemporary research on continuous VAEs is largely geared
towards enhancing their efficiency as the first stage of latent diffusion systems, pursuing higher
compression rates (Chen et al., 2024a), faster throughput (Zou et al., 2025), and ensuring better
compatibility with latent diffusion systems (Yao et al., 2025; Kouzelis et al., 2025; Skorokhodov
et al., 2025).

2.2 VIDEO VAE

Early video generation systems employ SVD-VAE (Blattmann et al., 2023), which does not perform
temporal compression, necessitating temporal interaction layers to ensure temporal consistency. CV-
VAE (Zhao et al., 2024) introduced temporal compression into the Video VAE framework, while
OD-VAE (Chen et al., 2024b) and CogVideoX-VAE (Yang et al., 2024) incorporated the temporal
causal structure (Yu et al., 2023) for temporal tiling. WF-VAE (Li et al., 2025) explored wavelet
transforms to efficiently reduce the expensive representation dimensionality of high resolutions. IV-
VAE (Wu et al., 2025b) proposed the dual-stream architecture and Group Causal Convolutions for
robust inter-frame information interaction. To reduce the computational cost in Diffusion Trans-
formers (Peebles & Xie, 2023), H3AE (Wu et al., 2025c) and Reducio VAE (Tian et al., 2024) aim
for extremely high compression rates while maintaining the reconstruction capability. However,
existing Video VAEs merely exploit redundancy through temporal compression, without explicitly
considering the inherent redundant nature of video data. Inspired by video codecs standard, we
incorporate the principle of separating static content from dynamic motion into our Video VAE
design.

3 METHOD

This section details our approach to integrating video codec principles into our VC-VAE. The overall
model architecture is illustrated in Fig. 2. First, we introduce the existing convolution operators in
Sec. 3.1. Then, we build a reliable keyframe prior by initializing the model with a pre-trained
image VAE in Sec. 3.2. Subsequently, to explicitly model temporal dynamics, we introduce the
Temporal Dynamic Difference Convolution in Sec. 3.3. Finally, we describe additional refinements
for consistent reconstruction in Sec. 3.4.

3.1 PRELIMINARY

The core task of Video VAE is to learn a compressed yet informative latent representation for video
data. Traditional video codec standards, designed explicitly for reducing the spatio-temporal re-
dundacy in videos, offer invaluable insights. Motivated by this,our preliminary section revisit the
fundamental operators of Video VAEs, such as Causal and Group Causal Convolutions, from the
perspective of video codec principles.

3.1.1 CAUSAL CONVOLUTION

To achieve unified encoding of images and videos in a VideoVAE, Causal 3D Conv (Yu et al., 2023;
Yang et al., 2024) is widely adopted, which is achieved by applying asymmetric padding only at the
beginning of the temporal dimension, so the receptive field at time step t only covers current and
past frames. Formally, for input sequence {X0, ..., XT−1}, the output Yt at time step t is:

Yt = CausalConv(Xt, Xt−1, . . . , Xt−k+1) (1)
where CausalConv represents a 3D convolution with temporal kernel size k. However, from a video
codec perspective, the unidirectional dependency resembles P-frame prediction, leading to an asym-
metric temporal receptive field. By only looking backwards in the temporal dimension, the model
lacks future context, resulting in an information imbalance that limits its ability to model inter-frame
dynamics effectively.

3.1.2 GROUP CAUSAL CONVOLUTION

Group Causal Convolution (GCConv) (Wu et al., 2025b) mitigates this issue by introducing local
bi-directional interactions, fostering stronger local dependencies by segmenting the video sequence

3
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Figure 2: (a). Initialization with the Flux VAE enables the Video VAE to reconstruct keyframes.
(b)-(c). Implementation of the Temporal Dynamic Difference Convolution operator within different
blocks of the Video VAE. (d). Overall structure of the proposed Video VAE.

into local uncausal frame groups. Formally, for an input frame group Gi = {X0, ..., XT−1}, the
output group Yi is computed as:

Yi = Conv(Concat[Gi−1[−1], Gi]) (2)

where Gi−1[−1] is the last frame from the past group to maintain global causality. GCConv’s advan-
tage manifests in the superiority of bi-directional frames over predictive frames in video codec, as
it allows the frame group to be encoded with richer, bi-directional context. The success of GCConv
highlights the benefits of borrowing principles from video codecs. Motivated by this, the following
section further instantiates the principle of video codec within the Video VAE architecture.

3.2 KEYFRAME RECONSTRUCTION

While basic operators effectively mirror the inter-frame interaction of a video codec, an efficient
encoding scheme also depends on high-quality Intra-encoded keyframes, which are self-contained,
independently compressed frames serving as robust anchors for subsequent predictions. To integrate
this essential feature into our Video VAE, we initialize its weights with a powerful, pre-trained image
VAE, giving our model a strong spatial prior before it begins to learn temporal dynamics. We start
by inflating the 2D kernels of the image VAE into 3D kernels to enable the model to act as a high-
fidelity frame-wise encoder or decoder, employing Tail Initialization (Chen et al., 2024b) for Causal
Convolution and Center Initialization (Carreira & Zisserman, 2017) for Group Causal Convolution,
as shown in Fig. 2(a). To leverage the temporal redundancy inherent in video data, we configure
Temporal Layers for Keyframe Selection and Broadcast. Following IVVAE (Wu et al., 2025b),
we utilize a convolutional layer with a temporal kernel size kt = 2 and stride st = 2, denoted as
Wdown = [C,C, kt], where C represents the number of input and output channels. We then initialize
it as follows:

Wdown[:, :, kt − 1] = I. (3)
where I ∈ RC×C denotes an identity matrix. For temporal upsampling, the operator is implemented
by a convolution that doubles the channel from C to 2 ∗ C, followed by a PixelShuffle operation to
expand the temporal dimension, denoted as Wup = [2 ∗ C,C]. Then we initial it as:

Wup[2 ∗ C,C] = concat(I, I). (4)

As shown in Fig. 2 (a), when processing an input sequence consisting of frames {0, 1, 2, 3},
the output of the encoder corresponds to the latent representation of frame {3}, which is selected
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as the keyframe. Meanwhile, the decoder broadcasts the latent representation of {3} across the
entire sequence, resulting in {3, 3, 3, 3}. At the start of training, the model’s behavior is to select
a keyframe from a video clip, encoding and decoding it using the powerful inherited image VAE
and subsequently broadcasting this static frame to reconstruct the entire clip. Consequently, the
learning objective is simplified: instead of learning complex visual features from scratch, the model
only needs to learn the temporal dynamics required to animate the static keyframe into a dynamic
sequence. This drastically reduces training costs and provides a more efficient learning task.

3.3 TEMPORAL DYNAMIC DIFFERENCE CONVOLUTION

With a strong spatial prior established by our keyframe-centered initialization, the model’s primary
learning objective shifts from reconstructing entire frames to capturing sparse temporal dynamics.
To explicitly enforce this learning paradigm, we introduce the Temporal Dynamic Difference Con-
volution (TDC), an operator designed to follow the efficient prediction-residual design principle of
video codecs. Unlike standard convolutions that process entangled features, TDC operates on the
explicit feature differences between frames. It creates two distinct pathways: one that preserves the
static content from the keyframe prior, and a parallel one dedicated to learning a sparse motion resid-
ual. As illustrated in Fig. 2, we incorporate specialized variants of TDC into the different blocks of
our Video VAE to implement this decoupled strategy.

TDC decomposes the features within its receptive field into a static anchor frame and a set of dy-
namic difference features, forcing the network to learn from motion explicitly. When TDC is in-
tegrated into a Group Causal Convolution Resblock, the central frame Xt of the group naturally
serves as the static anchor. The TDC operator is formulated to be equivalent to a standard con-
volution while the kernel is explicitly re-parameterized for separate modeling, with no additional
parameters or computational overhead:

Yt = Wa ∗Xt +Wp ∗ (Xt−1 −Xt) +Wf ∗ (Xt+1 −Xt) (5)
Here, Wa, Wp, Wf are the temporal slices of the 3D kernel. The Wa ∗ Xt term, backed by our
image VAE initialization, preserves the anchor frame’s spatial information, while the other terms
are forced to learn from the motion residuals between the anchor and its neighbors, as shown in Fig.
2(b).

We further apply TDC to model inter-frame interactions. Our temporal interaction module operates
on two distinct streams: the anchor Xa itself and the motion residuals (Xp −Xa). The final output
is a learned combination of these two streams:

Youtput = Wa ∗Xa +Wp ∗ (Xp −Xa) (6)
In this way, the model is explicitly guided to distinguish between static scene structure and temporal
dynamics, as shown in Fig. 2(c). For Causal Convolutions, the anchor is always the current frame
Xt. The operation thus learns from the differences between past frames and the current frame:

Yt = Wt ∗Xt +Wt−1 ∗ (Xt−1 −Xt) +Wt−2 ∗ (Xt−2 −Xt) (7)
This enforces the model encodes the current frame’s content while explicitly learning from the his-
torical residuals within its receptive field. This design ensures that at the start of training, its output
is mathematically equivalent to that of the model initialized with the Image VAE, and it preserves
the static reconstruction capability inherited from the image VAE throughout training, leading to
enhanced stability and superior results.

3.4 OTHER IMPLEMENTATION REFINEMENT

We identified a common issue in current causal Video VAEs(Wan et al., 2025; Wu et al., 2025b):
the first frame of a video sequence often has poorer reconstruction quality than later frames. This
problem likely stems from the widely used Separate First-Frame Processing approach, which cre-
ates an architectural asymmetry since the first frame is processed differently due to the lack of prior
temporal context. As illustrated in Fig. 4, this can cause a noticeable performance gap between first
frame and the following sequence. To prevent our model from suffering from this flaw, we imple-
ment an In-Sequence First-Frame Processing pipeline that removes the special treatment of the first
frame. This approach also unifies the processing of single images and video sequences by treating
all inputs equally: a single image is turned into a minimal pseudo-video by repeating the frame.
Consequently, all frames are processing with the same encoding-decoding process, eliminating the
reconstruction inconsistencies caused by the Separate First-Frame Processing.
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Figure 3: Reconstruction results of different methods for a video sequence.

Table 1: Video reconstruction results on WebVid-test and UCF-101 val. ↓ indicates lower is better,
↑ indicates higher is better.

Method FCR Chn WebVid-10M UCF-101
FVD↓ PSNR↑ LPIPS↓ SSIM↑ FVD↓ PSNR↑ LPIPS↓ SSIM↑

CogvideoX 4*8*8 16 41.70 35.23 0.04125 0.9394 50.47 37.61 0.03292 0.9605
Wanx2.1 4*8*8 16 42.40 35.40 0.03724 0.9385 43.26 38.19 0.02971 0.9644
IVVAE 4*8*8 16 42.80 35.21 0.04301 0.9343 40.68 38.48 0.02853 0.9660
WFVAE 4*8*8 16 36.86 35.60 0.03778 0.9394 42.73 38.31 0.03036 0.9645
Hunyuan 4*8*8 16 36.23 35.84 0.03452 0.9425 37.07 38.80 0.02757 0.9671
VC-VAE 4*8*8 16 36.80 36.04 0.03315 0.9459 36.30 38.97 0.02747 0.9684
WFVAE 8*8*8 32 44.13 35.86 0.03735 0.9396 53.11 37.95 0.03307 0.9627
VC-VAE 8*8*8 32 36.63 36.40 0.03298 0.9485 38.47 38.85 0.02854 0.9672

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Table 2: Comparison of total
training computation.

Method Training steps
WFVAE 1200k
IVVAE 1000k
VC-VAE 550k

Training details. We train our Video VAE on the Kinetics-600
dataset (Carreira et al., 2018) using a two-stage approach. We first
pretrain the model for 500k steps, focusing on learning fundamen-
tal spatio-temporal dynamics from a large volume of short-duration,
low-resolution videos, optimised with a combination of reconstruc-
tion losses (L1, LPIPS (Zhang et al., 2018)) and KL regularization
(Kingma & Welling, 2013). This is followed by a 50k steps fine-
tuning stage on a diverse mix of videos with varying resolutions, frame rates, and durations. In this
stage, we incorporate an adversarial loss from a 3D discriminator to improve high-frequency details
and strengthen temporal extrapolation capabilities. As shown in Table 2, we compare with the total
training steps required by state-of-the-art models. Notably, our total training compute is consider-
ably lower than that of state-of-the-art models, highlighting the training efficiency of our proposed
approach.

For the 4×8×8 compression version, which downsamples the video by a factor of 4 in the temporal
dimension and 8 in each spatial dimension, we use 16 channels identical to most of the SOTA
Video VAEs, and utilize Flux VAE (Labs, 2024) for initialization. For the 8×8×8 compression
version, we employ a 32-channel implementation, where the first half is initialized from Flux VAE
and the remaining half is zero-initialized. This strategy ensures that, after increasing the number of
channels, our model begins with an initial image reconstruction capability identical to Flux VAE.
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Table 3: Results on TokBench Video. T-ACC, T-NED measure the accuracy of text reconstruction,
while F-Sim measure the similarity of face reconstruction. ↑ indicates higher is better.

Method FCR T-ACC ↑ T-NED ↑ F-Sim ↑
small medium large mean small medium large mean small medium large mean

Resolution: 256x

CogvideoX 4*8*8 24.80 72.47 86.34 61.21 43.06 82.29 92.41 72.59 0.58 0.78 0.91 0.76
Wanx2.1 4*8*8 17.88 69.52 87.56 58.32 37.27 81.04 93.18 70.50 0.59 0.79 0.92 0.77
IVVAE 4*8*8 18.43 72.08 89.52 60.01 38.29 82.49 94.36 71.72 0.57 0.79 0.93 0.76
Hunyuan 4*8*8 26.85 69.12 87.47 61.15 45.55 80.54 93.12 73.07 0.60 0.80 0.92 0.77
VC-VAE 4*8*8 31.81 77.21 89.70 66.24 51.21 85.24 94.39 76.95 0.64 0.82 0.93 0.80

Resolution: 480x

CogvideoX 4*8*8 28.02 65.41 91.71 61.71 43.47 78.24 95.60 72.43 0.67 0.80 0.91 0.79
Wanx2.1 4*8*8 18.88 63.42 92.36 58.22 35.95 77.43 96.02 69.80 0.68 0.82 0.92 0.81
IVVAE 4*8*8 20.58 63.89 92.98 59.15 37.85 78.07 96.37 70.76 0.68 0.82 0.92 0.80
Hunyuan 4*8*8 28.65 64.49 91.83 61.66 44.43 77.83 95.83 72.70 0.69 0.82 0.92 0.81
VC-VAE 4*8*8 31.24 72.27 92.72 65.41 48.11 82.90 96.24 75.75 0.72 0.83 0.92 0.83

Table 4: Effectiveness of the TDC Operator.

Setting PSNR↑ SSIM↑ LPIPS↓
Causal Conv Baseline 33.29 0.9298 0.04946

+ TDC 33.64 0.9336 0.04599

GCConv Baseline 33.49 0.9323 0.04720
+ TDC (Full model) 33.79 0.9357 0.04455

Table 5: Impact of the Image VAE’s Performance.

Setting PSNR↑ SSIM↑ LPIPS↓
SD3.5-VAE Init w/o TDC 33.13 0.9264 0.05519
Flux-VAE Init w/o TDC 33.49 0.9323 0.04720
SD3.5-VAE Init w TDC 33.74 0.9337 0.04691
Flux-VAE Init w TDC 33.79 0.9357 0.04455

Detailed hyperparameters, including learning rates and loss weights for each stage, are provided in
the supplementary material.

Evaluation details. We employ WebVid-10M (Bain et al., 2021) and UCF-101 (Soomro et al.,
2012) to assess overall video reconstruction performance. To ensure an fair comparison, all metrics
are calculated without the first frame for baseline models. We utilize FVD (Unterthiner et al., 2019),
PSNR (Hore & Ziou, 2010), SSIM (Wang et al., 2004), and LPIPS (Zhang et al., 2018) to mea-
sure reconstruction quality. Furthermore, we assess the VAE’s ability to reconstruct text and faces
within videos using the TokBench-Video (Wu et al., 2025a) dataset, with performance evaluated by
reconstruction text accuracy and face similarity (Deng et al., 2019).

4.2 PERFORMANCE

Our baseline models include several 4×8×8 SOTA methods: CogVideoX-VAE (Yang et al., 2024),
Wan2.1-VAE (Wan et al., 2025), WFVAE (Li et al., 2025), IVVAE (Wu et al., 2025b), and Hunyuan-
VAE (Kong et al., 2024). Additionally, WFVAE provides an 8×8×8 version, which serves as the
baseline for our experiments on high-ratio temporal compression.

Quantitative evaluation of reconstruction results. We present a comprehensive quantitative eval-
uation of our VC-VAE against several SOTA methods in Tab. 1, with results reported on both
WebVid-10M and UCF-101. Under the standard 4×8×8 compression setting, our VC-VAE achieves
SOTA performance across all datasets. We also evaluate a more challenging configuration with a
higher temporal compression rate, where our model continues to outperform the WFVAE baseline.
These results validate the effectiveness and robustness of our proposed architecture. Furthermore,
to provide a more comprehensive analysis, we test our Video VAE on the challenging TokBench-
Video benchmark. This benchmark is particularly demanding as it comprises long-duration videos
with complex motion and intricate text. On this benchmark, our model shows significant perfor-
mance gains, especially in the reconstruction of small to medium sized text and faces, as shown in
Tab. 3. This highlights our method’s enhanced capability in modelling both high-frequency details
and temporal dynamics.

Qualitative evaluation of reconstruction results. Fig. 3 demonstrates the reconstruction results
for a video sequence with rapid motion. In the challenging sports scene, our method effectively
captures movement while maintaining the reconstruction stability of fine details, such as text. In
contrast, other methods show varying degrees of reconstruction artifacts. This offers qualitative
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Wan2.1-VAEGround Truth IVVAE VC-VAE

0 Frame

1 Frame

2 Frame

t

(a) (b)

Figure 4: (a). Visualization of the video sequence’s reconstruction performance. (b). SSIM score
across the first five frames. Although IVVAE’s SSIM score for the first frame appears normal, its
visual quality degrades significantly.

evidence for the effectiveness of our proposed TDC operator in decoupling static information from
dynamic motion. Additional reconstruction results are included in the supplementary material.

4.3 ABLATION STUDY

In this section, we conduct a series of ablation experiments. For the ablation study, we first initialize
Video VAE with Flux VAE, then train it for 100K steps on 16-frame videos with 256×256 resolu-
tion using the Kinetics-600 dataset. The test dataset comprises 2000 videos from the Kinetics-600
validation set, each with 16-frames at 256×256 resolution.

Ablation of main components. We conducted ablation studies to verify the effectiveness of our
TDC operator. For standard Causal Convolution and Group Causal Convolution baseline, we re-
placed their core temporal operators with our TDC operator. As shown in the Tab. 4, the TDC
operator delivers significant improvements in both PSNR and LPIPS metrics. This demonstrates
that our design, inspired by video codec compression, substantially enhances the model’s ability to
both preserve the static details inherited from the ImageVAE and model temporal dynamics. The
consistent performance gains observed across different architectures confirm the superiority and
generality of our TDC operator.

Table 6: Ablation on First-Frame Pro-
cessing Strategy.
Method PSNR↑ SSIM↑ LPIPS↓
Separate 32.15 0.9242 0.04059
In-Sequence 33.34 0.9346 0.03601

Ablation on First Frame Processing Strategy. To val-
idate the effectiveness of our In-Sequence First-Frame
Processing strategy, we compare our implementation with
the widely used Separate First-Frame Processing variant.
As shown in Tab. 6, by adopting the In-Sequence First-
Frame Processing, our model achieves a 1.2dB improve-
ment in PSNR for the first frame, effectively resolving the inconsistency. More evaluation of our
model’s performance on single-image reconstruction is provided in the supplementary material.

Impact of the Initializing Image VAE. To evaluate our model’s sensitivity to the quality of pre-
trained Image VAE weights, we perform an ablation study using two image VAEs with different
performance levels: a stronger Flux-VAE and a comparatively weaker SD3.5-VAE (Esser et al.,
2024). As shown in Tab. 5, when training a baseline model without TDC, performance strongly
depends on the quality of initialization; the model initialized with the stronger Flux-VAE notably
outperforms the one starting from SD3.5-VAE. However, when our TDC operator is added, the
performance gap between the two setups decreases significantly. Remarkably, adding TDC results
in a more notable improvement for the model initialized with the weaker SD3.5-VAE, with a PSNR
increase of 0.61 dB. This indicates that TDC not only enhances overall performance but also makes
training more robust and less sensitive to the quality of initial spatial priors.

4.4 VISUALIZATION

Visulization about TDC. To intuitively understand how our Temporal Dynamic Difference Convo-
lution operator explicitly separates the sparse motion residual from the static content, we perform

8
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Video Sequence
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Final Output of Frame2
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Figure 5: Visulization of the proposed TDC operator.

visualization of its internal components. As shown in Fig. 5, we use three frames from a video se-
quence with significant motion to clearly illustrate the effect. The anchor component focuses solely
on modelling the intra-frame spatial information of the current frame, successfully encoding the rep-
resentation of static structures, including the car’s appearance, the background, and the watermark,
while the other components, derived from the temporal differences, isolate inter-frame temporal
changes. Static regions such as the watermark and stationary background elements exhibit near-zero
activation. Conversely, activations are concentrated around the moving object, effectively encoding
its displacement between frames. These difference maps can be interpreted as learned, high-level
motion representations, highlighting where and how the scene changes over time. The final out-
put synthesises these components by combining the rich spatial details from the content component
with the precise motion information from the difference components, demonstrating that our TDC
operator does not merely mix temporal information but explicitly disentangles the representation of
content from its dynamics, enabling a more efficient and interpretable modelling of video.

Visulization of First Frame Performance. As discussed in the method section, causal Video VAEs
often suffer from inconsistent reconstruction quality, particularly for the first frame. Fig. 4 pro-
vides a clear qualitative demonstration of this phenomenon. In the 0 Frame column, it is evident
that baseline models like Wan2.1-VAE and IVVAE exhibit significant degradation. This quality
drop appears confined to the initial frame, as their performance on subsequent frames is visibly bet-
ter, highlighting the performance discrepancy stemming from architectural asymmetry. In contrast,
our VC-VAE maintains a consistently high level of reconstruction fidelity across all frames. This
robustness is a direct result of our In-Sequence First-Frame Processing strategy, which eliminates
the performance degradation of the initial frame. This visualization confirms that our approach ef-
fectively resolves this common phenomenon in causal video vaes and ensures stable, high-quality
performance throughout the entire video sequence.

5 CONCLUSION

Inspired by video codecs, which use keyframes to encode static content and motion residuals for
inter-frame dynamics, we propose VC-VAE, a novel architecture that integrates this principle of
decomposition into the design of Video VAEs. First, by initializing with a high-quality ImageVAE,
we endow the model with strong keyframe reconstruction capabilities, ensuring the quality of its
static spatial priors. Second, we design the Temporal Dynamic Difference Convolution operator,
which explicitly computes temporal differences within convolution, successfully decoupling static
spatial content from dynamic temporal motion information. The TDC operator significantly boosts
the model’s performance without introducing any additional parameters or computational costs, par-
ticularly enhancing its ability to model high-frequency motion details. Extensive experiments show
that the proposed VC-VAE achieves SOTA results in video reconstruction.

9
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A APPENDIX

LLM USAGE STATEMENT

In accordance with the ICLR 2026 policy on LLM usage, we disclose that large language models
were used as an assistive tool in the preparation of this paper. Specifically, we utilized LLMs for: (1)
refining grammar, sentence structure, and improving the readability of the text; and (2) generating
LaTeX source code for some of the tables. We emphasize that all content suggested or generated by
the LLM was critically reviewed, manually verified, and edited by the authors to ensure accuracy
and alignment with our research. The authors are fully responsible for all claims, results, and the
final text of this submission.

REPRODUCIBLILITY STATEMENT

To ensure the reproducibility of our work, we will release our complete source code and all pre-
trained model weights upon publication. Our implementation, based on PyTorch and building upon
publicly available codebases, is designed to be clear and self-contained. Our experiments rely on
standard public datasets (e.g., Kinetics-600, UCF-101, Web-Vid) for evaluation, and while some
training involved an internal dataset that cannot be released, all key results and ablation studies
presented in this paper are on public data, allowing for independent verification of our claims. Com-
prehensive details regarding the experimental setup are provided in the Appendix, including specific
hyperparameter settings, optimizer configurations, data processing pipelines, and training proce-
dures for each model. Furthermore, all models were trained on commercially available H20 GPUs,
which can lower the barrier for reproduction without requiring specialized, high-end computational
resources.

A.1 TRAINING DETAILS

In the supplementary material, we provide further details on our training hyperparameters. Specif-
ically, the data configurations and loss hyperparameters for each training stage are summarized in
Tab. 7. During the stage I, the training is driven primarily by the L1 loss, with the GAN loss
excluded. In the Stage II, we introduce GAN loss to specifically target and refine high-frequency
details under more complex data.

Table 7: Training hyperparameters across two stages.

Parameter Stage I (500k step) Stage II (50k step)

Learning Rate 1e-5 1e-5
Total Batch Size 8 8
Perceptual(LPIPS) Weight 0.1 0.2
GAN Weight 0 0.02
KL Weight 1e-8 1e-8
Resolution 256 128, 256, 512
FPS 24 8, 12, 15, 24
Num Frames 16 8, 40, 120
EMA Decay 0.999 0.999

A.2 IMAGE RECONSTRUCTION CAPABILITY

We demonstrate the superiority of our In-Sequence First-Frame Processing over Separate First-
Frame Processing designs through two key experiments on the ImageNet validation set (Tab. 9).
First, we evaluated VC-VAE’s image reconstruction capability. It achieves state-of-the-art perfor-
mance compared to both Image and Video VAEs, confirming that our model excels at processing
static images. Second, we designed an experiment to reveal the inherent weakness of the Separate
First-Frame Processing. We tested the Wanx2.1 VAE with a ”pseudo-video” created by repeating a
single image, denoted as Wanx2.1*. The results show a significant drop in quality compared to its
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Table 9: Image reconstruction results on ImageNet-val. ↓ indicates lower is better, ↑ indicates higher
is better. *denotes utilizing video frames to represent an image.

Method 256×256 512×512 1024×1024
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

SD3.5 VAE 31.29 0.877 0.060 33.54 0.910 0.060 37.61 0.971 0.034
Flux VAE 32.87 0.911 0.044 35.40 0.939 0.042 39.84 0.982 0.023

Wanx2.1 31.34 0.879 0.058 34.25 0.913 0.056 40.96 0.973 0.032
Wanx2.1* 33.03 0.915 0.037 35.96 0.942 0.036 42.43 0.981 0.022
Hunyuan 33.33 0.910 0.054 36.03 0.935 0.053 43.15 0.982 0.026
VC-VAE 33.42 0.919 0.048 36.37 0.944 0.046 43.65 0.984 0.024

dedicated first-frame output. This performance discrepancy highlights a key limitation of separate
First-Frame Processing, thus validating our design choice.

A.3 MORE ABLATION STUDY

Table 8: Ablation on TDC operator.
Method FCR PSNR↑ SSIM↑ LPIPS↓
GCConv w/o TDC 8*8*8 31.11 0.9018 0.07641
GCConv w TDC 8*8*8 32.01 0.9122 0.07099

To further validate the effectiveness of the TDC
operator, we conduct an ablation study in the
supplementary materials on models with higher
temporal compression rates. As shown in
Tab. 8, our method yields more significant per-
formance gains as the compression rate increases. This result demonstrates the effectiveness of our
TDC operator in modeling temporal dynamics.

A.4 MORE RECONSTRUCTION VISULIZATION

As shown in Fig. 6, we qualitatively evaluate the reconstruction performance under two challenging
scenarios: a scene with rapid motion (top rows) and another with intricate textures (bottom row). In
the high-motion case, as the scoreboard scrolls down, most competing methods suffer from severe
artifacts, resulting in blurred and illegible text. In contrast, our VC-VAE maintains the sharpness and
clarity of the text details despite the fast movement. Furthermore, for the fine-grained texture scene,
our model achieves a visually superior reconstruction of the boats, outperforming the competing
methods.

A.5 GENERATION VISULIZATION

Following previous work Wu et al. (2025b); Chen et al. (2024b), we demonstrate the video gener-
ation capability of our Video VAE. We train an unconditional latent video diffusion model, using
Latte-XL (Ma et al., 2024) as the generative backbone, on the SkyTimelapse (Xiong et al., 2018)
dataset. The qualitative results are visualized in Fig. 7.
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Figure 6: Reconstruction results of different methods.

Figure 7: Visualization of the Gererative result on SkyTimeLapse.
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