VC-VAE: ENHANCING VIDEO VAE WITH VIDEO CODEC STANDARD FOR LATENT VIDEO DIFFUSION MODEL

Anonymous authorsPaper under double-blind review

ABSTRACT

Video Variational Auto-Encoders (Video VAEs) compress video data from the highly redundant pixel space into a compact latent representation, playing an important role in state-of-the-art video generation models. However, existing methods typically learn inter-frame correlations implicitly, overlooking the potential of breaking down video compression into two separate parts: keyframe encoding and inter-frame dynamic encoding, which is a fundamental design of traditional video codecs. To address this, we incorporate traditional video codec standard design into the Video VAE and introduce VC-VAE, a model that explicitly separates keyframe and inter-frame dynamic compression. We start by establishing a highfidelity static keyframe anchor through initialization from a powerful pre-trained image VAE. Then, to explicitly model dynamic relative to this anchor, we introduce the Temporal Dynamic Difference Convolution (TDC), an operator designed to learn sparse motion residuals from inter-frame differences while maintaining a separate pathway for static content. Qualitative and quantitative experiments show that our proposed VC-VAE significantly outperforms baseline models in reconstruction quality, dynamic modelling, and training efficiency.

1 Introduction

Recent advances in video generation field enable the creation of high-quality videos (Wan et al., 2025; Kong et al., 2024; Polyak et al., 2024; Seawead et al., 2025; Ma et al., 2025). The progress is mainly built upon the Latent Diffusion Model (LDM) architecture (Rombach et al., 2022), which relies heavily on the Video VAE as its core component. The task of the Video VAE is to compress video data from the highly redundant pixel space into a compact latent representation, directly influencing the efficiency of the following diffusion process and the quality of the final generated videos.

Extensive researches have been conducted on enhancing Video VAEs. From the signal processing viewpoint, WF-VAE (Li et al., 2025) and Cosmos Tokenizer (Agarwal et al., 2025) aim to handle the spatio-temporal redunctant in the frequency domain. By employing Haar Wavelet Transform (Procházka et al., 2011), these methods efficiently preserve the structurally-vital but temporally-redundant low-frequency content, thereby freeing up model capacity to focus on the more complex, high-frequency motion. Another line of works focus on basic architectural design. For instance, MovieGen (Polyak et al., 2024) uses a non-causal architecture to improve inter-frame modeling, whereas IV-VAE (Wu et al., 2025b) leverages a grouping mechanism to create local bidirectional dependencies, which enhances reconstruction stability while maintaining causality. However, leveraging the design principles of video codecs (Wiegand et al., 2003) to improve Video VAEs remains a sparsely explored area.

Rethinking the evolution of convolutional operators in Video VAEs uncovers an implicit parallel with the video codecs standard. As shown in Fig. 1(a), Video codecs standard(Wiegand et al., 2003) employ a Group-of-Pictures structure based on three types of frames: I-frames, which are independently encoded as self-contained anchor points; P-frames, which efficiently encode motion residuals relative to a previous frame; and B-frames, which further enhance compression by referencing frames in both past and future context. Early Video VAEs (Yu et al., 2023; Yang et al.,

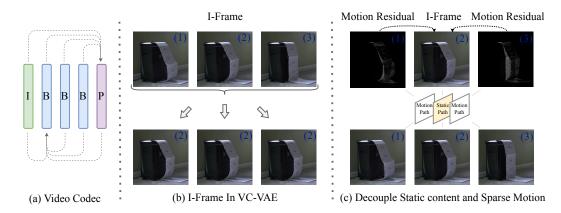


Figure 1: (a) Inter-frame dependency in Video Codec. (b) Our model first anchors the reconstruction on a single, representative I-frame. (c) Our proposed TDC explicitly learning from the decoupled sparse motion residual from the I-frame.

2024) used causal convolution, establishing an inter-frame dependency similar to P-frame prediction where the current frame is reconstructed using only past and current context. Subsequent work, such as IV-VAE (Wu et al., 2025b), introduced group causal convolution, which creates a B-frame-like dependency by utilizing both past and future context for more stable reconstruction. These architectures implicitly reflect the dependency structure of P and B frames; However, they treat static content and dynamic motion as an entangled learning target, overlooking the essential operational principle behind them. Video codecs leverage temporal redundancy through the I-frame prediction and motion residual mechanism, enabling the explicit decoupling of static content and dynamic motion. By isolating complex, sparse motion from the redundant static background, this separation offers a fundamentally more efficient approach to video modeling.

Inspired by the above insights, our objective is to enhance both reconstruction quality and training efficiency by incorporating the above design principles of video codec into Video VAE. We start by establishing an I-frame prior within the Video VAE, initializing our model from a pre-trained image VAE (Labs, 2024) to endow our Video VAE with a strong static content prior. As shown in Fig. 1(b), the model can generate high-fidelity, single-frame reconstructions at the initial state, providing a stable foundation for learning dynamic motion. We then introduce the Temporal Dynamic Difference Convolution (TDC) to enable decoupling at the operator level. As shown in Fig. 1(c), it creates a specific pathway to preserve the static content from the I-frame prior, while establishing a parallel pathway to learn sparse motion residuals from explicit feature differences between frames. Extensive experiments validate the efficiency of our video codec-inspired learning paradigm. By explicitly separating the learning of dynamic sparse motion from static content, our model achieves superior reconstruction performance while significantly reducing training overhead.

In summary, the core contributions of this paper are as follows: (1) We introduce VC-VAE, a novel architecture inspired by the video codec standard. It explicitly models the video sequence by separating it into the static I-frame and dynamic motion residuals. To the best of our knowledge, VC-VAE is the first work to successfully incorporate this explicit content-motion decoupling paradigm from video codecs into the Video VAE framework. (2) To incorporate this explicit modeling of interframe motion residuals into the convolutional Video VAE architecture, we introduce the Temporal Dynamic Difference Convolution (TDC), a novel operator designed for this purpose. (3) Extensive experiments demonstrate the SOTA video reconstruction capabilities of the proposed VC-VAE.

2 Related Work

2.1 Variational Autoencoder

The Variational Autoencoder (VAE) (Kingma & Welling, 2013) is a foundational paradigm in generative modeling, designed to capture complex probability distributions within high-dimensional data. VAEs' development of both continuous (Rombach et al., 2022; Chen et al., 2024a) and discrete latent representations (Esser et al., 2021) has established them as a versatile component in modern

generative pipelines, functioning as visual compressors for latent diffusion models and as visual tokenizers for autoregressive systems. Contemporary research on continuous VAEs is largely geared towards enhancing their efficiency as the first stage of latent diffusion systems, pursuing higher compression rates (Chen et al., 2024a), faster throughput (Zou et al., 2025), and ensuring better compatibility with latent diffusion systems (Yao et al., 2025; Kouzelis et al., 2025; Skorokhodov et al., 2025).

2.2 VIDEO VAE

Early video generation systems employ SVD-VAE (Blattmann et al., 2023), which does not perform temporal compression, necessitating temporal interaction layers to ensure temporal consistency. CV-VAE (Zhao et al., 2024) introduced temporal compression into the Video VAE framework, while OD-VAE (Chen et al., 2024b) and CogVideoX-VAE (Yang et al., 2024) incorporated the temporal causal structure (Yu et al., 2023) for temporal tiling. WF-VAE (Li et al., 2025) explored wavelet transforms to efficiently reduce the expensive representation dimensionality of high resolutions. IV-VAE (Wu et al., 2025b) proposed the dual-stream architecture and Group Causal Convolutions for robust inter-frame information interaction. To reduce the computational cost in Diffusion Transformers (Peebles & Xie, 2023), H3AE (Wu et al., 2025c) and Reducio VAE (Tian et al., 2024) aim for extremely high compression rates while maintaining the reconstruction capability. However, existing Video VAEs merely exploit redundancy through temporal compression, without explicitly considering the inherent redundant nature of video data. Inspired by video codecs standard, we incorporate the principle of separating static content from dynamic motion into our Video VAE design.

3 METHOD

This section details our approach to integrating video codec principles into our VC-VAE. The overall model architecture is illustrated in Fig. 2. First, we introduce the existing convolution operators in Sec. 3.1. Then, we build a reliable keyframe prior by initializing the model with a pre-trained image VAE in Sec. 3.2. Subsequently, to explicitly model temporal dynamics, we introduce the Temporal Dynamic Difference Convolution in Sec. 3.3. Finally, we describe additional refinements for consistent reconstruction in Sec. 3.4.

3.1 Preliminary

The core task of Video VAE is to learn a compressed yet informative latent representation for video data. Traditional video codec standards, designed explicitly for reducing the spatio-temporal redundacy in videos, offer invaluable insights. Motivated by this, our preliminary section revisit the fundamental operators of Video VAEs, such as Causal and Group Causal Convolutions, from the perspective of video codec principles.

3.1.1 Causal Convolution

To achieve unified encoding of images and videos in a VideoVAE, Causal 3D Conv (Yu et al., 2023; Yang et al., 2024) is widely adopted, which is achieved by applying asymmetric padding only at the beginning of the temporal dimension, so the receptive field at time step t only covers current and past frames. Formally, for input sequence $\{X_0, ..., X_{T-1}\}$, the output Y_t at time step t is:

$$Y_t = CausalConv(X_t, X_{t-1}, \dots, X_{t-k+1})$$
 (1)

where *CausalConv* represents a 3D convolution with temporal kernel size *k*. However, from a video codec perspective, the unidirectional dependency resembles P-frame prediction, leading to an asymmetric temporal receptive field. By only looking backwards in the temporal dimension, the model lacks future context, resulting in an information imbalance that limits its ability to model inter-frame dynamics effectively.

3.1.2 GROUP CAUSAL CONVOLUTION

Group Causal Convolution (GCConv) (Wu et al., 2025b) mitigates this issue by introducing local bi-directional interactions, fostering stronger local dependencies by segmenting the video sequence

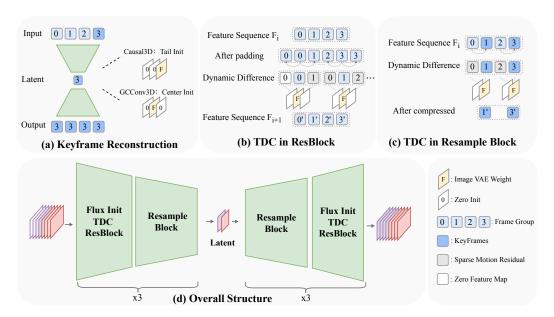


Figure 2: (a). Initialization with the Flux VAE enables the Video VAE to reconstruct keyframes. (b)-(c). Implementation of the Temporal Dynamic Difference Convolution operator within different blocks of the Video VAE. (d). Overall structure of the proposed Video VAE.

into local uncausal frame groups. Formally, for an input frame group $G_i = \{X_0, ..., X_{T-1}\}$, the output group Y_i is computed as:

$$Y_i = Conv(\operatorname{Concat}[G_{i-1}[-1], G_i]) \tag{2}$$

where $G_{i-1}[-1]$ is the last frame from the past group to maintain global causality. GCConv's advantage manifests in the superiority of bi-directional frames over predictive frames in video codec, as it allows the frame group to be encoded with richer, bi-directional context. The success of GCConv highlights the benefits of borrowing principles from video codecs. Motivated by this, the following section further instantiates the principle of video codec within the Video VAE architecture.

3.2 KEYFRAME RECONSTRUCTION

While basic operators effectively mirror the inter-frame interaction of a video codec, an efficient encoding scheme also depends on high-quality Intra-encoded keyframes, which are self-contained, independently compressed frames serving as robust anchors for subsequent predictions. To integrate this essential feature into our Video VAE, we initialize its weights with a powerful, pre-trained image VAE, giving our model a strong spatial prior before it begins to learn temporal dynamics. We start by inflating the 2D kernels of the image VAE into 3D kernels to enable the model to act as a high-fidelity frame-wise encoder or decoder, employing Tail Initialization (Chen et al., 2024b) for Causal Convolution and Center Initialization (Carreira & Zisserman, 2017) for Group Causal Convolution, as shown in Fig. 2(a). To leverage the temporal redundancy inherent in video data, we configure Temporal Layers for Keyframe Selection and Broadcast. Following IVVAE (Wu et al., 2025b), we utilize a convolutional layer with a temporal kernel size $k_t=2$ and stride $s_t=2$, denoted as $W_{down}=[C,C,k_t]$, where C represents the number of input and output channels. We then initialize it as follows:

$$W_{\text{down}}[:,:,k_t-1] = \mathbf{I}. \tag{3}$$

where $\mathbf{I} \in \mathbb{R}^{C \times C}$ denotes an identity matrix. For temporal upsampling, the operator is implemented by a convolution that doubles the channel from C to 2 * C, followed by a PixelShuffle operation to expand the temporal dimension, denoted as $W_{up} = [2 * C, C]$. Then we initial it as:

$$W_{\rm up}[2*C,C] = {\rm concat}(\mathbf{I},\mathbf{I}). \tag{4}$$

As shown in Fig. 2 (a), when processing an input sequence consisting of frames {0, 1, 2, 3}, the output of the encoder corresponds to the latent representation of frame {3}, which is selected

as the keyframe. Meanwhile, the decoder broadcasts the latent representation of {3} across the entire sequence, resulting in {3, 3, 3, 3}. At the start of training, the model's behavior is to select a keyframe from a video clip, encoding and decoding it using the powerful inherited image VAE and subsequently broadcasting this static frame to reconstruct the entire clip. Consequently, the learning objective is simplified: instead of learning complex visual features from scratch, the model only needs to learn the temporal dynamics required to animate the static keyframe into a dynamic sequence. This drastically reduces training costs and provides a more efficient learning task.

3.3 TEMPORAL DYNAMIC DIFFERENCE CONVOLUTION

With a strong spatial prior established by our keyframe-centered initialization, the model's primary learning objective shifts from reconstructing entire frames to capturing sparse temporal dynamics. To explicitly enforce this learning paradigm, we introduce the Temporal Dynamic Difference Convolution (TDC), an operator designed to follow the efficient prediction-residual design principle of video codecs. Unlike standard convolutions that process entangled features, TDC operates on the explicit feature differences between frames. It creates two distinct pathways: one that preserves the static content from the keyframe prior, and a parallel one dedicated to learning a sparse motion residual. As illustrated in Fig. 2, we incorporate specialized variants of TDC into the different blocks of our Video VAE to implement this decoupled strategy.

TDC decomposes the features within its receptive field into a static anchor frame and a set of dynamic difference features, forcing the network to learn from motion explicitly. When TDC is integrated into a Group Causal Convolution Resblock, the central frame X_t of the group naturally serves as the static anchor. The TDC operator is formulated to be equivalent to a standard convolution while the kernel is explicitly re-parameterized for separate modeling, with no additional parameters or computational overhead:

$$Y_t = W_a * X_t + Wp * (X_{t-1} - X_t) + W_f * (X_{t+1} - X_t)$$
(5)

Here, W_a , W_p , W_f are the temporal slices of the 3D kernel. The $W_a * X_t$ term, backed by our image VAE initialization, preserves the anchor frame's spatial information, while the other terms are forced to learn from the motion residuals between the anchor and its neighbors, as shown in Fig. 2(b).

We further apply TDC to model inter-frame interactions. Our temporal interaction module operates on two distinct streams: the anchor X_a itself and the motion residuals $(X_p - X_a)$. The final output is a learned combination of these two streams:

$$Y_{output} = W_a * X_a + W_p * (X_p - X_a)$$

$$\tag{6}$$

In this way, the model is explicitly guided to distinguish between static scene structure and temporal dynamics, as shown in Fig. 2(c). For Causal Convolutions, the anchor is always the current frame X_t . The operation thus learns from the differences between past frames and the current frame:

$$Y_t = W_t * X_t + W_{t-1} * (X_{t-1} - X_t) + W_{t-2} * (X_{t-2} - X_t)$$

$$(7)$$

This enforces the model encodes the current frame's content while explicitly learning from the historical residuals within its receptive field. This design ensures that at the start of training, its output is mathematically equivalent to that of the model initialized with the Image VAE, and it preserves the static reconstruction capability inherited from the image VAE throughout training, leading to enhanced stability and superior results.

3.4 OTHER IMPLEMENTATION REFINEMENT

We identified a common issue in current causal Video VAEs(Wan et al., 2025; Wu et al., 2025b): the first frame of a video sequence often has poorer reconstruction quality than later frames. This problem likely stems from the widely used Separate First-Frame Processing approach, which creates an architectural asymmetry since the first frame is processed differently due to the lack of prior temporal context. As illustrated in Fig. 4, this can cause a noticeable performance gap between first frame and the following sequence. To prevent our model from suffering from this flaw, we implement an In-Sequence First-Frame Processing pipeline that removes the special treatment of the first frame. This approach also unifies the processing of single images and video sequences by treating all inputs equally: a single image is turned into a minimal pseudo-video by repeating the frame. Consequently, all frames are processing with the same encoding-decoding process, eliminating the reconstruction inconsistencies caused by the Separate First-Frame Processing.

Figure 3: Reconstruction results of different methods for a video sequence.

Table 1: Video reconstruction results on WebVid-test and UCF-101 val. ↓ indicates lower is better, ↑ indicates higher is better.

Method	FCR	Chn	WebVid-10M				UCF-101			
1,100110ta	1 011		FVD↓	PSNR ↑	LPIPS↓	SSIM↑	FVD↓	PSNR ↑	LPIPS↓	SSIM↑
CogvideoX	4*8*8	16	41.70	35.23	0.04125	0.9394	50.47	37.61	0.03292	0.9605
Wanx2.1	4*8*8	16	42.40	35.40	0.03724	0.9385	43.26	38.19	0.02971	0.9644
IVVAE	4*8*8	16	42.80	35.21	0.04301	0.9343	40.68	38.48	0.02853	0.9660
WFVAE	4*8*8	16	36.86	35.60	0.03778	0.9394	42.73	38.31	0.03036	0.9645
Hunyuan	4*8*8	16	36.23	35.84	0.03452	0.9425	37.07	38.80	0.02757	0.9671
VC-VAE	4*8*8	16	36.80	36.04	0.03315	0.9459	36.30	38.97	0.02747	0.9684
WFVAE	8*8*8	32	44.13	35.86	0.03735	0.9396	53.11	37.95	0.03307	0.9627
VC-VAE	8*8*8	32	36.63	36.40	0.03298	0.9485	38.47	38.85	0.02854	0.9672

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training details. We train our Video VAE on the Kinetics-600 dataset (Carreira et al., 2018) using a two-stage approach. We first pretrain the model for 500k steps, focusing on learning fundamental spatio-temporal dynamics from a large volume of short-duration, low-resolution videos, optimised with a combination of reconstruction losses (L1, LPIPS (Zhang et al., 2018)) and KL regularization (Kingma & Welling, 2013). This is followed by a 50k steps fine-

Table 2: Comparison of total training computation.

Method	Training steps
WFVAE	1200k
IVVAE	1000k
VC-VAE	550k

tuning stage on a diverse mix of videos with varying resolutions, frame rates, and durations. In this stage, we incorporate an adversarial loss from a 3D discriminator to improve high-frequency details and strengthen temporal extrapolation capabilities. As shown in Table 2, we compare with the total training steps required by state-of-the-art models. Notably, our total training compute is considerably lower than that of state-of-the-art models, highlighting the training efficiency of our proposed approach.

For the $4\times8\times8$ compression version, which downsamples the video by a factor of 4 in the temporal dimension and 8 in each spatial dimension, we use 16 channels identical to most of the SOTA Video VAEs, and utilize Flux VAE (Labs, 2024) for initialization. For the $8\times8\times8$ compression version, we employ a 32-channel implementation, where the first half is initialized from Flux VAE and the remaining half is zero-initialized. This strategy ensures that, after increasing the number of channels, our model begins with an initial image reconstruction capability identical to Flux VAE.

Table 3: Results on TokBench Video. T-ACC, T-NED measure the accuracy of text reconstruction, while F-Sim measure the similarity of face reconstruction. ↑ indicates higher is better.

Method	FCR	T-ACC ↑				T-NED ↑			F-Sim ↑				
Wiemou	1011	small	medium	large	mean	small	medium	large	mean	small	medium	large	mean
					Re	solution	: 256x						
CogvideoX	4*8*8	24.80	72.47	86.34	61.21	43.06	82.29	92.41	72.59	0.58	0.78	0.91	0.76
Wanx2.1	4*8*8	17.88	69.52	87.56	58.32	37.27	81.04	93.18	70.50	0.59	0.79	0.92	0.77
IVVAE	4*8*8	18.43	72.08	89.52	60.01	38.29	82.49	94.36	71.72	0.57	0.79	0.93	0.76
Hunyuan	4*8*8	26.85	69.12	87.47	61.15	45.55	80.54	93.12	73.07	0.60	0.80	0.92	0.77
VC-VAE	4*8*8	31.81	77.21	89.70	66.24	51.21	85.24	94.39	76.95	0.64	0.82	0.93	0.80
					Re	solution	: 480x						
CogvideoX	4*8*8	28.02	65.41	91.71	61.71	43.47	78.24	95.60	72.43	0.67	0.80	0.91	0.79
Wanx2.1	4*8*8	18.88	63.42	92.36	58.22	35.95	77.43	96.02	69.80	0.68	0.82	0.92	0.81
IVVAE	4*8*8	20.58	63.89	92.98	59.15	37.85	78.07	96.37	70.76	0.68	0.82	0.92	0.80
Hunyuan	4*8*8	28.65	64.49	91.83	61.66	44.43	77.83	95.83	72.70	0.69	0.82	0.92	0.81
VC-VAE	4*8*8	31.24	72.27	92.72	65.41	48.11	82.90	96.24	75.75	0.72	0.83	0.92	0.83

Table 4: Effectiveness of the TDC Operator.

Table 5: Impact of the Image VAE's Performance.

Setting	PSNR↑	SSIM↑	LPIPS↓
Causal Conv Baseline	33.29	0.9298	0.04946
+ TDC	33.64	0.9336	0.04599
GCConv Baseline	33.49	0.9323	0.04720
+ TDC (Full model)	33.79	0.9357	0.04455

Setting	PSNR↑	SSIM↑	LPIPS↓
SD3.5-VAE Init w/o TDC	33.13	0.9264	0.05519
Flux-VAE Init w/o TDC	33.49	0.9323	0.04720
SD3.5-VAE Init w TDC	33.74	0.9337	0.04691
Flux-VAE Init w TDC	33.79	0.9357	0.04455

Detailed hyperparameters, including learning rates and loss weights for each stage, are provided in the supplementary material.

Evaluation details. We employ WebVid-10M (Bain et al., 2021) and UCF-101 (Soomro et al., 2012) to assess overall video reconstruction performance. To ensure an fair comparison, all metrics are calculated without the first frame for baseline models. We utilize FVD (Unterthiner et al., 2019), PSNR (Hore & Ziou, 2010), SSIM (Wang et al., 2004), and LPIPS (Zhang et al., 2018) to measure reconstruction quality. Furthermore, we assess the VAE's ability to reconstruct text and faces within videos using the TokBench-Video (Wu et al., 2025a) dataset, with performance evaluated by reconstruction text accuracy and face similarity (Deng et al., 2019).

4.2 Performance

Our baseline models include several $4\times8\times8$ SOTA methods: CogVideoX-VAE (Yang et al., 2024), Wan2.1-VAE (Wan et al., 2025), WFVAE (Li et al., 2025), IVVAE (Wu et al., 2025b), and Hunyuan-VAE (Kong et al., 2024). Additionally, WFVAE provides an $8\times8\times8$ version, which serves as the baseline for our experiments on high-ratio temporal compression.

Quantitative evaluation of reconstruction results. We present a comprehensive quantitative evaluation of our VC-VAE against several SOTA methods in Tab. 1, with results reported on both WebVid-10M and UCF-101. Under the standard $4\times8\times8$ compression setting, our VC-VAE achieves SOTA performance across all datasets. We also evaluate a more challenging configuration with a higher temporal compression rate, where our model continues to outperform the WFVAE baseline. These results validate the effectiveness and robustness of our proposed architecture. Furthermore, to provide a more comprehensive analysis, we test our Video VAE on the challenging TokBench-Video benchmark. This benchmark is particularly demanding as it comprises long-duration videos with complex motion and intricate text. On this benchmark, our model shows significant performance gains, especially in the reconstruction of small to medium sized text and faces, as shown in Tab. 3. This highlights our method's enhanced capability in modelling both high-frequency details and temporal dynamics.

Qualitative evaluation of reconstruction results. Fig. 3 demonstrates the reconstruction results for a video sequence with rapid motion. In the challenging sports scene, our method effectively captures movement while maintaining the reconstruction stability of fine details, such as text. In contrast, other methods show varying degrees of reconstruction artifacts. This offers qualitative

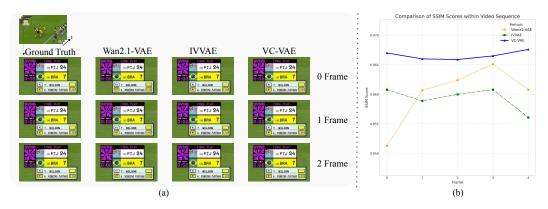


Figure 4: (a). Visualization of the video sequence's reconstruction performance. (b). SSIM score across the first five frames. Although IVVAE's SSIM score for the first frame appears normal, its visual quality degrades significantly.

evidence for the effectiveness of our proposed TDC operator in decoupling static information from dynamic motion. Additional reconstruction results are included in the supplementary material.

4.3 ABLATION STUDY

In this section, we conduct a series of ablation experiments. For the ablation study, we first initialize Video VAE with Flux VAE, then train it for 100K steps on 16-frame videos with 256×256 resolution using the Kinetics-600 dataset. The test dataset comprises 2000 videos from the Kinetics-600 validation set, each with 16-frames at 256×256 resolution.

Ablation of main components. We conducted ablation studies to verify the effectiveness of our TDC operator. For standard Causal Convolution and Group Causal Convolution baseline, we replaced their core temporal operators with our TDC operator. As shown in the Tab. 4, the TDC operator delivers significant improvements in both PSNR and LPIPS metrics. This demonstrates that our design, inspired by video codec compression, substantially enhances the model's ability to both preserve the static details inherited from the ImageVAE and model temporal dynamics. The consistent performance gains observed across different architectures confirm the superiority and generality of our TDC operator.

Ablation on First Frame Processing Strategy. To validate the effectiveness of our In-Sequence First-Frame Processing strategy, we compare our implementation with the widely used Separate First-Frame Processing variant. As shown in Tab. 6, by adopting the In-Sequence First-Frame Processing, our model achieves a 1.2dB improve-

Table 6: Ablation on First-Frame Processing Strategy.

Method	PSNR ↑	SSIM↑	LPIPS↓
Separate	32.15	0.9242	0.04059
In-Sequence	33.34	0.9346	0.03601

ment in PSNR for the first frame, effectively resolving the inconsistency. More evaluation of our model's performance on single-image reconstruction is provided in the supplementary material.

Impact of the Initializing Image VAE. To evaluate our model's sensitivity to the quality of pretrained Image VAE weights, we perform an ablation study using two image VAEs with different performance levels: a stronger Flux-VAE and a comparatively weaker SD3.5-VAE (Esser et al., 2024). As shown in Tab. 5, when training a baseline model without TDC, performance strongly depends on the quality of initialization; the model initialized with the stronger Flux-VAE notably outperforms the one starting from SD3.5-VAE. However, when our TDC operator is added, the performance gap between the two setups decreases significantly. Remarkably, adding TDC results in a more notable improvement for the model initialized with the weaker SD3.5-VAE, with a PSNR increase of 0.61 dB. This indicates that TDC not only enhances overall performance but also makes training more robust and less sensitive to the quality of initial spatial priors.

4.4 VISUALIZATION

Visulization about TDC. To intuitively understand how our Temporal Dynamic Difference Convolution operator explicitly separates the sparse motion residual from the static content, we perform



Figure 5: Visulization of the proposed TDC operator.

visualization of its internal components. As shown in Fig. 5, we use three frames from a video sequence with significant motion to clearly illustrate the effect. The anchor component focuses solely on modelling the intra-frame spatial information of the current frame, successfully encoding the representation of static structures, including the car's appearance, the background, and the watermark, while the other components, derived from the temporal differences, isolate inter-frame temporal changes. Static regions such as the watermark and stationary background elements exhibit near-zero activation. Conversely, activations are concentrated around the moving object, effectively encoding its displacement between frames. These difference maps can be interpreted as learned, high-level motion representations, highlighting where and how the scene changes over time. The final output synthesises these components by combining the rich spatial details from the content component with the precise motion information from the difference components, demonstrating that our TDC operator does not merely mix temporal information but explicitly disentangles the representation of content from its dynamics, enabling a more efficient and interpretable modelling of video.

Visulization of First Frame Performance. As discussed in the method section, causal Video VAEs often suffer from inconsistent reconstruction quality, particularly for the first frame. Fig. 4 provides a clear qualitative demonstration of this phenomenon. In the 0 Frame column, it is evident that baseline models like Wan2.1-VAE and IVVAE exhibit significant degradation. This quality drop appears confined to the initial frame, as their performance on subsequent frames is visibly better, highlighting the performance discrepancy stemming from architectural asymmetry. In contrast, our VC-VAE maintains a consistently high level of reconstruction fidelity across all frames. This robustness is a direct result of our In-Sequence First-Frame Processing strategy, which eliminates the performance degradation of the initial frame. This visualization confirms that our approach effectively resolves this common phenomenon in causal video vaes and ensures stable, high-quality performance throughout the entire video sequence.

5 Conclusion

Inspired by video codecs, which use keyframes to encode static content and motion residuals for inter-frame dynamics, we propose VC-VAE, a novel architecture that integrates this principle of decomposition into the design of Video VAEs. First, by initializing with a high-quality ImageVAE, we endow the model with strong keyframe reconstruction capabilities, ensuring the quality of its static spatial priors. Second, we design the Temporal Dynamic Difference Convolution operator, which explicitly computes temporal differences within convolution, successfully decoupling static spatial content from dynamic temporal motion information. The TDC operator significantly boosts the model's performance without introducing any additional parameters or computational costs, particularly enhancing its ability to model high-frequency motion details. Extensive experiments show that the proposed VC-VAE achieves SOTA results in video reconstruction.

REFERENCES

- Niket Agarwal, Arslan Ali, Maciej Bala, Yogesh Balaji, Erik Barker, Tiffany Cai, Prithvijit Chattopadhyay, Yongxin Chen, Yin Cui, Yifan Ding, et al. Cosmos world foundation model platform for physical ai. *arXiv preprint arXiv:2501.03575*, 2025.
- Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisserman. Frozen in time: A joint video and image encoder for end-to-end retrieval. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 1728–1738, 2021.
- Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023.
- Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset. In *proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 6299–6308, 2017.
- Joao Carreira, Eric Noland, Andras Banki-Horvath, Chloe Hillier, and Andrew Zisserman. A short note about kinetics-600. *arXiv preprint arXiv:1808.01340*, 2018.
- Junyu Chen, Han Cai, Junsong Chen, Enze Xie, Shang Yang, Haotian Tang, Muyang Li, Yao Lu, and Song Han. Deep compression autoencoder for efficient high-resolution diffusion models. *arXiv* preprint arXiv:2410.10733, 2024a.
- Liuhan Chen, Zongjian Li, Bin Lin, Bin Zhu, Qian Wang, Shenghai Yuan, Xing Zhou, Xinhua Cheng, and Li Yuan. Od-vae: An omni-dimensional video compressor for improving latent video diffusion model. *arXiv preprint arXiv:2409.01199*, 2024b.
- Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular margin loss for deep face recognition. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 4690–4699, 2019.
- Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 12873–12883, 2021.
- Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In *Forty-first International Conference on Machine Learning*, 2024.
- Alain Hore and Djemel Ziou. Image quality metrics: Psnr vs. ssim. In 2010 20th international conference on pattern recognition, pp. 2366–2369. IEEE, 2010.
- Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint* arXiv:1312.6114, 2013.
- Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li, Bo Wu, Jianwei Zhang, et al. Hunyuanvideo: A systematic framework for large video generative models. *arXiv preprint arXiv:2412.03603*, 2024.
- Theodoros Kouzelis, Ioannis Kakogeorgiou, Spyros Gidaris, and Nikos Komodakis. Eq-vae: Equivariance regularized latent space for improved generative image modeling. *arXiv* preprint *arXiv*:2502.09509, 2025.
- Black Forest Labs. Flux. Online, 2024. URL https://github.com/black-forest-labs/flux.
 - Zongjian Li, Bin Lin, Yang Ye, Liuhan Chen, Xinhua Cheng, Shenghai Yuan, and Li Yuan. Wf-vae: Enhancing video vae by wavelet-driven energy flow for latent video diffusion model. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 17778–17788, 2025.

- Guoqing Ma, Haoyang Huang, Kun Yan, Liangyu Chen, Nan Duan, Shengming Yin, Changyi Wan, Ranchen Ming, Xiaoniu Song, Xing Chen, et al. Step-video-t2v technical report: The practice, challenges, and future of video foundation model. *arXiv preprint arXiv:2502.10248*, 2025.
 - Xin Ma, Yaohui Wang, Gengyun Jia, Xinyuan Chen, Ziwei Liu, Yuan-Fang Li, Cunjian Chen, and Yu Qiao. Latte: Latent diffusion transformer for video generation. *arXiv* preprint arXiv:2401.03048, 2024.
 - William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.
 - Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv Vyas, Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, et al. Movie gen: A cast of media foundation models. *arXiv preprint arXiv:2410.13720*, 2024.
 - Aleš Procházka, Lucie Gráfová, Oldrich Vyšata, and Neurocenter Caregroup. Three-dimensional wavelet transform in multi-dimensional biomedical volume processing. In *Proc. of the IASTED International Conference on Graphics and Virtual Reality, Cambridge*, volume 263, pp. 268, 2011.
 - Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10684–10695, 2022.
 - Team Seawead, Ceyuan Yang, Zhijie Lin, Yang Zhao, Shanchuan Lin, Zhibei Ma, Haoyuan Guo, Hao Chen, Lu Qi, Sen Wang, et al. Seaweed-7b: Cost-effective training of video generation foundation model. *arXiv preprint arXiv:2504.08685*, 2025.
 - Ivan Skorokhodov, Sharath Girish, Benran Hu, Willi Menapace, Yanyu Li, Rameen Abdal, Sergey Tulyakov, and Aliaksandr Siarohin. Improving the diffusability of autoencoders. *arXiv preprint arXiv:2502.14831*, 2025.
 - Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions classes from videos in the wild. *arXiv preprint arXiv:1212.0402*, 2012.
 - Rui Tian, Qi Dai, Jianmin Bao, Kai Qiu, Yifan Yang, Chong Luo, Zuxuan Wu, and Yu-Gang Jiang. Reducio! generating 1k video within 16 seconds using extremely compressed motion latents. *arXiv preprint arXiv:2411.13552*, 2024.
 - Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphaël Marinier, Marcin Michalski, and Sylvain Gelly. Fvd: A new metric for video generation. 2019.
 - Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative models. *arXiv preprint arXiv:2503.20314*, 2025.
 - Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–612, 2004.
 - Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and Ajay Luthra. Overview of the h. 264/avc video coding standard. *IEEE Transactions on circuits and systems for video technology*, 13(7): 560–576, 2003.
 - Junfeng Wu, Dongliang Luo, Weizhi Zhao, Zhihao Xie, Yuanhao Wang, Junyi Li, Xudong Xie, Yuliang Liu, and Xiang Bai. Tokbench: Evaluating your visual tokenizer before visual generation. *arXiv preprint arXiv:2505.18142*, 2025a.
 - Pingyu Wu, Kai Zhu, Yu Liu, Liming Zhao, Wei Zhai, Yang Cao, and Zheng-Jun Zha. Improved video vae for latent video diffusion model. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 18124–18133, 2025b.

- Yushu Wu, Yanyu Li, Ivan Skorokhodov, Anil Kag, Willi Menapace, Sharath Girish, Aliaksandr Siarohin, Yanzhi Wang, and Sergey Tulyakov. H3ae: High compression, high speed, and high quality autoencoder for video diffusion models. *arXiv* preprint arXiv:2504.10567, 2025c.
- Wei Xiong, Wenhan Luo, Lin Ma, Wei Liu, and Jiebo Luo. Learning to generate time-lapse videos using multi-stage dynamic generative adversarial networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 2364–2373, 2018.
- Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang, Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024.
- Jingfeng Yao, Bin Yang, and Xinggang Wang. Reconstruction vs. generation: Taming optimization dilemma in latent diffusion models. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 15703–15712, 2025.
- Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, et al. Language model beats diffusion—tokenizer is key to visual generation. *arXiv* preprint arXiv:2310.05737, 2023.
- Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 586–595, 2018.
- Sijie Zhao, Yong Zhang, Xiaodong Cun, Shaoshu Yang, Muyao Niu, Xiaoyu Li, Wenbo Hu, and Ying Shan. Cv-vae: A compatible video vae for latent generative video models. *Advances in Neural Information Processing Systems*, 37:12847–12871, 2024.
- Ya Zou, Jingfeng Yao, Siyuan Yu, Shuai Zhang, Wenyu Liu, and Xinggang Wang. Turbo-vaed: Fast and stable transfer of video-vaes to mobile devices. *arXiv preprint arXiv:2508.09136*, 2025.

A APPENDIX

LLM USAGE STATEMENT

In accordance with the ICLR 2026 policy on LLM usage, we disclose that large language models were used as an assistive tool in the preparation of this paper. Specifically, we utilized LLMs for: (1) refining grammar, sentence structure, and improving the readability of the text; and (2) generating LaTeX source code for some of the tables. We emphasize that all content suggested or generated by the LLM was critically reviewed, manually verified, and edited by the authors to ensure accuracy and alignment with our research. The authors are fully responsible for all claims, results, and the final text of this submission.

REPRODUCIBLILITY STATEMENT

To ensure the reproducibility of our work, we will release our complete source code and all pretrained model weights upon publication. Our implementation, based on PyTorch and building upon publicly available codebases, is designed to be clear and self-contained. Our experiments rely on standard public datasets (e.g., Kinetics-600, UCF-101, Web-Vid) for evaluation, and while some training involved an internal dataset that cannot be released, all key results and ablation studies presented in this paper are on public data, allowing for independent verification of our claims. Comprehensive details regarding the experimental setup are provided in the Appendix, including specific hyperparameter settings, optimizer configurations, data processing pipelines, and training procedures for each model. Furthermore, all models were trained on commercially available H20 GPUs, which can lower the barrier for reproduction without requiring specialized, high-end computational resources.

A.1 TRAINING DETAILS

In the supplementary material, we provide further details on our training hyperparameters. Specifically, the data configurations and loss hyperparameters for each training stage are summarized in Tab. 7. During the stage I, the training is driven primarily by the L1 loss, with the GAN loss excluded. In the Stage II, we introduce GAN loss to specifically target and refine high-frequency details under more complex data.

Table 7: Training hyperparameters across two stages.

Parameter	Stage I (500k step)	Stage II (50k step)
Learning Rate	1e-5	1e-5
Total Batch Size	8	8
Perceptual(LPIPS) Weight	0.1	0.2
GAN Weight	0	0.02
KL Weight	1e-8	1e-8
Resolution	256	128, 256, 512
FPS	24	8, 12, 15, 24
Num Frames	16	8, 40, 120
EMA Decay	0.999	0.999

A.2 IMAGE RECONSTRUCTION CAPABILITY

We demonstrate the superiority of our In-Sequence First-Frame Processing over Separate First-Frame Processing designs through two key experiments on the ImageNet validation set (Tab. 9). First, we evaluated VC-VAE's image reconstruction capability. It achieves state-of-the-art performance compared to both Image and Video VAEs, confirming that our model excels at processing static images. Second, we designed an experiment to reveal the inherent weakness of the Separate First-Frame Processing. We tested the Wanx2.1 VAE with a "pseudo-video" created by repeating a single image, denoted as Wanx2.1*. The results show a significant drop in quality compared to its

Table 9: Image reconstruction results on ImageNet-val. ↓ indicates lower is better, ↑ indicates higher is better. *denotes utilizing video frames to represent an image.

Method		256×256	5	512×512			1024×1024		
Memou	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓
SD3.5 VAE	31.29	0.877	0.060	33.54	0.910	0.060	37.61	0.971	0.034
Flux VAE	32.87	0.911	0.044	35.40	0.939	0.042	39.84	0.982	0.023
Wanx2.1	31.34	0.879	0.058	34.25	0.913	0.056	40.96	0.973	0.032
Wanx2.1*	33.03	0.915	0.037	35.96	0.942	0.036	42.43	0.981	0.022
Hunyuan	33.33	0.910	0.054	36.03	0.935	0.053	43.15	0.982	0.026
VC-VAE	33.42	0.919	0.048	36.37	0.944	0.046	43.65	0.984	0.024

dedicated first-frame output. This performance discrepancy highlights a key limitation of separate First-Frame Processing, thus validating our design choice.

A.3 MORE ABLATION STUDY

To further validate the effectiveness of the TDC operator, we conduct an ablation study in the supplementary materials on models with higher temporal compression rates. As shown in Tab. 8, our method yields more significant per-

Table 8: Ablation on TDC operator.

Method	FCR	PSNR↑	SSIM↑	LPIPS↓
GCConv w/o TDC	8*8*8	31.11	0.9018	0.07641
GCConv w TDC	8*8*8	32.01	0.9122	0.07099

formance gains as the compression rate increases. This result demonstrates the effectiveness of our TDC operator in modeling temporal dynamics.

A.4 MORE RECONSTRUCTION VISULIZATION

As shown in Fig. 6, we qualitatively evaluate the reconstruction performance under two challenging scenarios: a scene with rapid motion (top rows) and another with intricate textures (bottom row). In the high-motion case, as the scoreboard scrolls down, most competing methods suffer from severe artifacts, resulting in blurred and illegible text. In contrast, our VC-VAE maintains the sharpness and clarity of the text details despite the fast movement. Furthermore, for the fine-grained texture scene, our model achieves a visually superior reconstruction of the boats, outperforming the competing methods.

A.5 GENERATION VISULIZATION

Following previous work Wu et al. (2025b); Chen et al. (2024b), we demonstrate the video generation capability of our Video VAE. We train an unconditional latent video diffusion model, using Latte-XL (Ma et al., 2024) as the generative backbone, on the SkyTimelapse (Xiong et al., 2018) dataset. The qualitative results are visualized in Fig. 7.

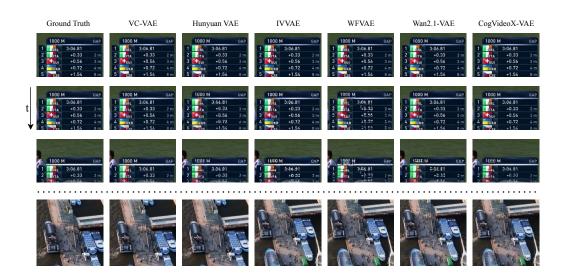


Figure 6: Reconstruction results of different methods.

Figure 7: Visualization of the Gererative result on SkyTimeLapse.