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ABSTRACT

Knowledge distillation (KD) aims to transfer useful information from a large-
scale model (teacher) to a lightweight model (student). Classical KD focuses on
leveraging the teacher’s predictions as soft labels to regularize student training.
However, the exact match of predictions in Kullback-Leibler (KL) divergence could
be somewhat in conflict with the classification objective, given that the distribution
discrepancies between teacher-generated predictions and ground-truth annotations
tend to be fairly severe. In this paper, we rethink the role of teacher predictions from
a Mixture-of-Experts (MoE) perspective and transfer knowledge by introducing
teacher predictions as latent variables to reformulate the classification objective.
This MoE strategy results in breaking down the vanilla classification task into
a mixture of easier subtasks with the teacher classifier as a gating function to
weigh the importance of subtasks. Each subtask is efficiently conquered by distinct
experts that are effectively implemented by resorting to multi-level teacher outputs.
We further develop a theoretical framework to formulate our method, termed MoE-
KD, as an Expectation-Maximization (EM) algorithm and provide proof of the
convergence. Extensive experiments manifest that MoE-KD outperforms advanced
knowledge distillers on mainstream benchmarks.

1 INTRODUCTION

Deep learning has shown its significance by boosting the performance of various real-world tasks such
as computer vision (Krizhevsky et al., 2012), natural language processing (Devlin et al., 2018), and
reinforcement learning (Silver et al., 2016). However, it is worth mentioning that the effectiveness of
deep learning generally comes at the expense of huge computational complexity and massive storage
requirements. This greatly restricts the deployment of large-scale models (teachers) in real-time
applications where lightweight models (students) are preferable due to limited resources. Under this
context, with the primary goal of improving the student’s performance for the task at hand, knowledge
distillation (KD) (Gou et al., 2021; Wang & Yoon, 2021) is introduced as a de facto standard to
transfer knowledge from a teacher model to a student model.

The rationale behind KD can be explained from an optimization perspective: there is evidence that
high-capacity models can find good local minima due to over-parameterisation (Du & Lee, 2018;
Soltanolkotabi et al., 2018). This motivates KD to use such models to facilitate the optimization
of lower-capacity models (i.e., the student) during training. Classically, KD is approached by
minimizing the Kullback-Leibler (KL) divergence between predictive distributions of the teacher
and student (Hao et al., 2024; Hinton et al., 2015), the motivation behind which is to leverage the
teacher’s predictions as soft labels to regularize the student training (Miiller et al., 2019; Yuan et al.,
2020). However, the efficacy of classical KD is challenged by counter-intuitive observations (Cho &
Hariharan, 2019; Stanton et al., 2021). Specifically, a larger teacher does not necessarily increase a
student’s accuracy compared to a relatively smaller teacher. This can be attributed to the capacity
gap between the two models which makes the discrepancy between their predictions significantly
large (Huang et al., 2022a). On the one hand, some methods (Dong et al., 2023; Mirzadeh et al.,
2020; Park et al., 2021; Son et al., 2021) develop student-friendly teachers to tackle the poor learning
issue of the student model. Unfortunately, such methods suffer from complex distillation procedures
and heavy computational costs for re-training the teacher model, therefore not being applicable in
practice. On the other hand, ATS (Li et al., 2022b) separately applies a higher/lower temperature
to the correct/wrong class by finding that more complex teachers are more likely to assign a larger
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score for the correct class or less varied scores for the wrong classes while KD-Zero (Li et al., 2024)
develops automated searches for distillers without manual architecture modification and KD design.

Despite remarkable progress, people tend to overlook the fact that there could be a significantly
large discrepancy between ground-truth labels and teacher-generated labels. In particular, whether
the temperature is high or low, the teacher would produce imbalanced predictive distributions even
though it is trained on a balanced dataset (Niu et al., 2022). Given the fact that classical KD typically
calculates the cross-entropy loss between the ground-truth label and the student’s prediction in
addition to the KL divergence between the teacher’s and student’s predictions, this kind of transfer
gap makes it ill-prosed to simultaneously align the student’s predictive distribution with those mutually
exclusive targets, which greatly undermines the power of classical KD.

To get out of this dilemma, this paper rethinks knowledge distillation from a mixture-of-experts (MoE)
perspective. The heart of our method, termed MoE-KD, lies in leveraging the teacher’s predictions
as latent variables to rewrite the classification objective. In this way, we arrive at decomposing the
student classifier as a convex combination of conditional models. Namely, each of the conditional
models, referred to as an expert, learns to classify a subset of samples, where an input-dependent
gating function partitions the dataset into subsets by allocating weights among experts.

To address the nontrivial learning problems, we formulate MoE-KD as an Expectation-Maximization
(EM) algorithm (Dempster et al., 1977), where we iteratively estimate the Bayes-optimal poste-
rior distribution of the latent variables given the observed data (in the E-step) and maximize the
evidence lower bound (ELBO) of the reformulated classification objective (in the M-step). We
theoretically prove that the ELBO is upper-bounded and our proposed EM algorithm contributes to
the convergence of the ELBO (see Section 4.3). Empirically, our proposed MoE-KD achieves state-
of-the-art performance in various distillation settings regarding teacher-student pairs (homogeneous
and heterogeneous) and training datasets (coarse-grained and fine-grained).

2 RELATED WORK

2.1 KNOWLEDGE DISTILLATION

Knowledge distillation is the process of using a teacher model to improve the performance of a student
model. In its classical form, one trains the student to fit the teacher’s predictive distribution. (Hinton
et al., 2015) popularizes this solution by formulating it as logit matching. MLD (Jin et al., 2023)
extends logit matching not only at the instance level but also at the batch and class levels, DKD (Zhao
et al., 2022) decouples classical KD into distilling target and non-target class knowledge, and
WSLD (Zhou et al., 2021) provides a bias-variance trade-off perspective for the KL term. Besides,
the teacher’s knowledge can also be distilled in the form of features. One line of feature-based
distillation is to mimic the intermediate representations of the teacher network in terms of Euclidean
distance (Romero et al., 2014), mutual information (Fu et al., 2023; Tian et al., 2019), Wassertein
distance (Chen et al., 2021a), and maximum mean discrepancy of the network activations (Huang &
Wang, 2017) respectively. Another line of feature-based distillation occurs to explore transferring the
relationship between features rather than the actual features themselves, where the feature correlation
can be captured by the Gram matrix (Yim et al., 2017), Taylor series expansion (Peng et al., 2019),
graph (Liu et al., 2019), or quantized visual word space (Jain et al., 2020).

The transfer gap between the teacher and the student is an emerging topic in KD. To mitigate the
feature-level transfer gap, MasKD (Huang et al., 2022b) distils the valuable information from receptive
regions that contribute to the task precision; NORM (Liu et al., 2023) conducts feature matching in a
many-to-one manner, and DiffKD (Huang et al., 2023) explicitly denoises and matches features using
diffusion models. When it comes to the logit-level transfer gap, DIST (Huang et al., 2022a) relaxes
the KL divergence in logit-based distillation with a correlation-based loss; TAKD (Mirzadeh et al.,
2020) introduces multiple middle-sized teaching assistant models to guide the student; DGKD (Son
et al., 2021) improves TAKD by densely gathering all the assistant models, and SFTN (Park et al.,
2021) provides the teacher with a snapshot of the student during training. Different from these
prior works, our method is motivated by the observations that teacher predictions and ground-truth
labels indeed behave differently (Niu et al., 2022), arguing that this largely overlooked transfer gap
makes it problematic for classical KD to encourage student predictions to simultaneously mimic
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the ground-truth labels and teacher predictions. Facing this dilemma, this paper proceeds from a
mixture-of-experts perspective by rethinking the role of teacher predictions as latent variables.

2.2  MIXTURE OF EXPERTS

The MoE model was initially proposed by (Jacobs et al., 1991) as a technique to combine a series of
sub-models and perform conditional computation (Bengio et al., 2015; 2013; Cho & Bengio, 2014)
that aims at activating different subsets of a network for different inputs. To increase the model
capacity in dealing with complex data, (Ahmed et al., 2016; Gross et al., 2017) extend the MoE
structure to the deep neural networks by proposing a deep MoE model composed of multiple layers of
routers and experts. Recently, (Shazeer et al., 2017) simplifies the MoE layer by making the output of
the gating function sparse for each example, which greatly improves the training stability and reduces
the computational cost. Since then, the MoE layer with different base neural network structures has
achieved tremendous success in scene parsing (Fu et al., 2018), multi-task learning (Gupta et al.,
2022), deep clustering (Chazan et al., 2019; Kopf et al., 2021; Tsai et al., 2021; Zhang et al., 2017),
domain generalization (Dai et al., 2021; Li et al., 2022a), data generation (Xia et al., 2022) and
question answering (Dai et al., 2022b; Zhou et al., 2022).

KD and MoE tend to evolve mostly independently in the literature. To the best of our knowledge,
the only exceptions are (Dai et al., 2022a; Xue et al., 2022). In essence, (Dai et al., 2022a; Xue
et al., 2022) exploit the benefits of KD to overcome over-fitting problems (Fedus et al., 2022; Wu
et al., 2022) of MoE models on downstream tasks with limited data. On the contrary, this paper
formulates the student’s classifier as a lightweight MoE layer with the teacher’s knowledge to enhance
the efficiency of knowledge transfer from the teacher to the student.

3 PRELIMINARY

Notations. We write vectors and matrices as bold-faced lowercase and uppercase characters respec-
tively. All trainable parameters will be subscripted by 6. Let e[i] be the i-th element of the vector
e € R¥ and [K] = {1,..., K}, we then define softmaxy(e) = exp (e[k])/ > ie(r) exp (e[i]).

Multi-class Classification. This paper considers K -way classification as a case study, where X" and
Y = [K] denote the input space and label space respectively. Let Pxy be the joint distribution defined

over X x ), we are provided with a labelled dataset D = {(x1,41), - .., (Xn,yn)} ~ Py, i.i.d.,
to train a discriminative model by maximizing the following objective over the dataset D:
Reis(xi, yi; 0) = log Pa(V = yi[x;). M

Knowledge Distillation involves transferring dark knowledge from a teacher model to a student
model. Classical KD (Hao et al., 2024; Hinton et al., 2015) calculates the cross-entropy between
the ground-truth label and student predictions as well as the KL divergence between the predictive
distributions of the student and the teacher. Since the teacher is pre-trained and fixed in the context of
KD, the overall learning objective of classical KD can be simplified into the following form':

K
Rip (%i, 43 0) £ log Pg (VS = yilx;) +a- Y PT (YT = klx;)log Pg (Y = klx;), (2)

k=1

where o > 0 is a weighting hyper-parameter that balances the importance of the two losses. Note
that, in Eq. (2), we have used 7 and S as superscripts to indicate the teacher and student model
respectively, which, unless explicitly stated, is considered as a default setting in the rest of this paper.

4 METHODOLOGY

4.1 RETHINKING KNOWLEDGE DISTILLATION: A MIXTURE OF EXPERTS PERSPECTIVE

Motivated by the mixture of experts (MoE) framework (Jacobs et al., 1991), we introduce the
teacher’s class prediction Y7 € {1,2,---, K} as alatent variable and naturally extend the vanilla

"For brevity, we have omitted the constant term 25:1 PT(YT = k|x)log PT (Y7 = k|x;).
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classification objective in Eq. (1) to the following formulation:

K
log P5 (V¥ = yilxi) =log ¥ P§ (Y =4, YT = klx;) A3)
k=1
K
=log» Py(YS =y,|YT =k, x;))P§ (Y7 =klx;), 4)
k=1

RMoE—KD (Xi,Y4;0)

where Pg,s (YS = y|YT = Ek,x;) is one of the experts that classify a subset of samples and
Py (YT = k|xz) is a gating function that partitions the dataset into subsets according to the latent
semantics by routing each sample to one or a few experts. With this partition-and-classify principle,
the experts tend to be highly specialized in data points that share similar semantics, which improves
training efficiency. While, same as the original MoE, the experts work in the supervised setting, both
gating functions and experts are based on neural networks to fit the high-dimensional data. In the
following, we will elaborate on how we parameterize each term in Eq. (4) to fit the KD task.

Gating function. The gating function organizes the classification task into K simpler subtasks by
weighting the experts based on the semantics of the input sample. Inspired by Du et al. (2017), we
formulate the gating function by reusing the pre-trained teacher classifier, namely,

Py (YT = kla;) = softmaxy, [¢7 (h)], hf = G(29), )

(3

where z$ € R? denotes the student feature of x; and a projector G(-) transforms from the student
feature space Z to the teacher feature space Z7 for dimension alignment at a relatively small cost.

Experts. Each expert learns to solve a distinct subtask of the classification task arranged by the gating
function. Formally, inspired by Chen et al. (2023), let e, € R? be an expert prototype, we formulate
the probability of the sample x; being recognized as the y;-th class by the k-th expert as follows:

Py (YS =ylYT =k, ;) = softmax,, [W—'—(z;s + ey,)] = softmax,, (WTzf +by), (6

where W € R4*K represents a learnable weight matrix and the expert-specific bias vector by, € RX
has been re-parameterized by W "e;,. To make Eq. (6) benefit from the teacher’s logit-level and
feature-level knowledge, we implement ey, based on deep set representations (Zaheer et al., 2017):

N
PT (YT = klx;)
er = V(ue), pr= -z

2 S PT (YT = klx;)

i=1
where ¥(-) : Z7 — R? is another projector that is introduced to match feature dimensions given
that Eq. (7) involves a soft aggregation along samples in the teacher embedding space. Although
the design of Eq. (7) is similar to pooling by multi-head attention (PMA) in the set transformer (Lee
et al., 2019), we do not rely on a softmax operation to normalize aggregation weights along samples
as we never expect any single sample to play a dominant role in representing ;. Besides, for a fair
comparison, we define rPT (YT = k|xz) in accordance with prior works (Hao et al., 2024; Hinton
etal., 2015; Niu et al., 2022; Zhao et al., 2022; Zhou et al., 2021), i.e.,

PT (YT = k|xi) = softmaxy, [gT(ZZ—)/T] 5 ®)

where 7 > 0 denotes a temperature hyper-parameter (Hinton et al., 2015).

(N

4.2 DERIVING THE EVIDENCE LOWER BOUND

In practice, the conditional log-likelihood function in Eq. (4) is hard to be directly optimized (Bishop,
2006; Wang et al., 2021). To address this non-trivial learning problem, let us start from the following
evidence lower bound (ELBO) of the vanilla classification objective log Py (Y = y;|x;):
log P5 (Y = yilx:)
:ELBO(P,Xi,yZ‘; 0) + DKL [p(YT = k‘XZ)HPéS(YT = k|YS = yi7xi):|

>ELBO(P, xi, y:; 0) ®
K
S [P(YT = klx:)log P (YS = y;|Y7 = k,xi)] ~ Dxy [P(YT = klx)||PS (YT = k|xi)} :
k=1
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where Dxr,(-) represents the Kullback—Leibler (KL) divergence and P(Y7 = k|x;) denotes any

arbitrary distribution conditioned on x; such that Zle P(YT = k|x;) = 1. We derive this ELBO
in Appendix D to keep the main content concise. To make the inequality hold with equality so that
the ELBO reaches its maximum value log PJ (Y = y;|x;), we need to require:

Dxr, [P(YT = kx)[|PS(YT = k[YS = y;,x;)| = 0. (10)
By approximating the variational distribution P(Y7 = k|x;) with P$ (Y7 = k|Y'S = y;,x;) and
connecting Eq. (9) with Eq. (4), we are now ready to convert the optimization of Eq. (4) into :

arg max Rumok—KD (X4, Y3 0) = arg max ELBO(P, Xi, Yi; 0). (11)

4.3 FORMULATING MOE-KD AS EXPECTATION-MAXIMIZATION

E-step. This step aims to estimate ]5t+1(YT = k|x;) with the fixed 6, at the iteration ¢ to make

Py (YT = klx;) = PS(YT = K|YS = y;,x;), which is implied by Eq. (10). To this end, by

applying the Bayes’ theorem to Pést (YT = k|YS = y;,%;), we approximate P, (Y7 = k|x;) as:
PGSf (YT = k|Xl)PéSt (YS = yZ|YT = k,Xi)

P (YT = klx;) = : : (12)
2‘5(:1 P (YT = jlxi)Pg (YS = 4| YT = j,x;)

M-step. With the sub-optimal P, (Y7 = k|x;) = P(‘,St (YT = k|YS = y;,x;) after E-step, we turn
to maximize the ELBO in Eq. (9):

0:11 = argmeaXE(Xi«,yi%ny [ELBO(Pt+1,xi,yi; 9,5)} . (13)

When integrating Eq. (13) into the batch-based training routine where we sample a mini-batch B
from the dataset D at the beginning of each iteration, it is natural to build an efficient stochastic
estimator of the ELBO over D to learn the parameters 8, which is given by:

1 .
0,41 = arg max oo ( E;GBELBO(PtH,Xi,yi; 6,). (14)
XiyYi

Convergence Analysis. At the E-step of the iteration ¢ + 1, we estimate P; 1 (Y7 = k|x;) to ensure
ELBO(I:’tH, X, Yi; 0) = Rumor (X4, ¥i; 01). At the M-step after the E-step, we have obtained 6,1
with a fixed variational distribution ]St+1 (YT = k|x;), which results in ELBO(Pt+1, Xi, Yi; Orr1) >
ELBO(PtH, X;, yi; 0¢). Therefore, we obtain the following sequence:

Rtor— kb (Xi, Yi; 8r41) > ELBO(Pry 1, X, i3 0111)

) (15)
> ELBO( P41, X, ¥i; 0:) = Ramor—KD (X4, Yi; 0%).

Since RMoEfKD (Xi, Yis 0t+1) > RMoEfKD (Xi, Yis Ot), ELBO(P, Xi, Yis 0) is upper—bounded and
converge to a certain value with the EM algorithm proposed above. Finally, the inference with the
optimized parameters 6 for a test-time sample x requires to compute arg maxg Ryor—kD (X, k; 6).

4.4 RELATION TO EXISTING WORKS

We recently find that SRRL (Yang et al., 2021) also comes with the reused teacher classifier to train
the student model and can be regarded as a natural baseline of our method. We forge a mathematical
connection between SRRL and the ELBO in Eq. (9) by showing that the latter intrinsically subsumes
the former as a special exemplar of itself, which implies the theoretical superiority of our method.

Assumption 1 (Collapsed Projection) The projector U(-) in Eq. (7) is completely collapsed such
that, for all inputs p € Z7, we have ¥(p) = b.

Lemma 1 If Assumption I holds, the expert ng (YS =y|YT =k, xz) in Eq. (6) will degenerate
into a universal parametric softmax classifier, which is given by:

Py (Y® =y|YT =k, ;) = softmax,, [W 'z +b], Vke K] (16)
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Table 1: Top-1 ACC (%) on CIFAR-100, Homogenous Architecture. The best results are in boldface.

‘ WRN-40-2 WRN-40-2 ResNet56 ResNetll0 ResNet32x4 VGGI13

Teacher
\ 75.61 75.61 72.34 74.31 79.42 74.64
Student \ WRN-16-2 WRN-40-1 ResNet20  ResNet32 ResNet8x4 VGGS8
\ 73.26 71.98 69.06 71.14 72.50 70.36
KD 74.92 73.54 70.66 73.08 73.33 72.98
FitNet 73.58 72.24 69.21 71.06 73.50 71.02
CRD 75.48 74.14 71.16 73.48 75.51 73.94
WCoRD 75.88 74.73 71.56 73.81 75.95 74.55
IPWD — 74.64 71.32 73.91 76.03 —
WSLD — 74.48 72.15 74.12 76.05 —
SRRL 75.96 74.75 71.44 73.80 75.92 74.40
DKD 76.24 74.81 71.97 74.11 76.32 74.68
NORM 75.65 74.82 71.35 73.67 76.49 73.95
DIST — 74.73 71.75 — 76.31 —
DiffKD — 74.09 71.92 — 76.72 —
WTTM 76.37 74.58 71.92 74.13 76.06 74.44
Ours 76.98 75.21 72.49 74.58 77.10 75.03

In addition to Assumption 1, let P(Y7 = k|x;) = PT (Y7 = k|x;), the ELBO in Eq. (9), i.e.,

ELBO(P, x;,:;0) = log [softmaxyi (WTzf n b)] ~ Dxw [PT(YT = klx)||PE (YT = k|xi)],

RsRRL(X:,Y:3;0)

is mathematically equivalent to the optimization objective in SRRL regardless the hyper-parameter 3
that scales the second term of Rsrry(X;, y:; @). Nevertheless, it is worthwhile to point out that, as
disclosed by the authors of SRRL, 8 = 1 contributes to the best knowledge transfer performance,
which empirically epochs our analysis above.

Interestingly, if we treat ground-truth annotations as a noisy version of teacher predictions and
the gating function in Eq. (4) as the clean class posterior, the experts in Eq. (4) share a similar
working mechanism with the so-called noise transition matrix T € [0, 1]5*% (Patrini et al., 2017)
in label-noise learning (Song et al., 2022) such that T;;(x) = Py (YS = i|Y7 = j,x). However,
directly estimating the transition matrix is generally infeasible (Xia et al., 2019) without the rigorous
anchor-point assumption (Liu & Tao, 2015). As a result, existing label-noise learners (Cheng et al.,
2022a; Xia et al., 2020; Yang et al., 2022) have been developed with a two-stage training routine:
1) pre-training the gating function to estimate experts (or the noise transition matrix T') and 2)
fine-tuning the gating function with the fixed estimated experts. By contrast, our method enables to
simultaneously learn both the gating function and experts. While the mostly recent works (Cheng
etal., 2022b; Li et al., 2021) approach label-noise learning in an end-to-end way, they can be criticized
for removing the dependency between Py (Y = i|Y7 = j,x) and x to have

PS(YS=ilYT =j,x)=P5(YS =4|YT =j), Vi,je[K] (17)

5 EXPERIMENTS

Datasets. We perform experiments on CIFAR-100 (Krizhevsky et al., 2009), ImageNet-1K (Rus-
sakovsky et al., 2015), Tiny-ImageNet (Tavanaei, 2020), STL-10 (Coates et al., 2011), CUB (Wah
et al., 2011) and Stanford Dogs (Khosla et al., 2011), following prior works (Huang et al., 2023; Li
et al., 2022b; Zhao et al., 2022).

Baselines. We compare our method with advanced methods including KD (Hinton et al., 2015), DKD
(Zhao et al., 2022), IPWD (Niu et al., 2022), WSLD (Zhou et al., 2021), ESKD (Cho & Hariharan,
2019), TAKD (Mirzadeh et al., 2020), SCKD (Zhu & Wang, 2021), NKD (Yang et al., 2023), DIST
(Huang et al., 2022a), FitNets (Romero et al., 2014), CRD (Tian et al., 2019), WCoRD (Chen et al.,
2021a), ReviewKD (Chen et al., 2021b), NORM (Liu et al., 2023), DiffKD (Huang et al., 2023),
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Table 2: Top-1 ACC (%) on CIFAR-100, Heterogeneous Architecture. The best result is in boldface.

T ‘ VGG13 ResNet50 ResNet32x4 ResNet32x4 WRN-40-2
eacher
\ 74.64 79.34 79.42 79.42 75.61
Student \ MobileNetV2  MobileNetV2  ShuffleNetV1  ShuffleNetV2  ShuffleNetV1
\ 64.60 64.60 70.50 71.82 70.50
KD 67.37 67.35 74.07 74.45 74.83
FitNet 64.14 63.16 73.59 73.54 73.73
CRD 69.73 69.11 75.11 75.65 76.05
WCoRD 69.47 70.45 75.40 75.96 76.32
IPWD — 70.25 76.03 — 76.44
WSLD — — 75.46 75.93 76.21
SRRL 69.14 69.45 75.66 76.40 76.61
DKD 69.71 70.35 76.45 77.07 76.70
NORM 68.94 70.56 77.42 78.07 77.06
DIST — 68.66 76.34 77.35 —
DiffKD — 69.21 76.57 77.52 —
WTTM 69.16 69.59 74.37 76.55 75.42
SKD 68.79 69.55 — 76.67 76.65
Ours 70.54 71.38 78.23 78.69 77.52

ITRD (Miles et al., 2021), SRRL (Yang et al., 2021), WTTM (Zheng & YANG, 2024), LSKD (Sun
et al., 2024), and SKD (Wei et al., 2024).

Settings. We employ the last feature map and a three-layer bottleneck transformation for implement-
ing the projector G(-), which only incurs a less than 3% cost to the pruning ratio in teacher-to-student
compression (Chen et al., 2022). We design W(-) as a two-layer MLP module (Chen et al., 2020). As
for the temperature 7, the only hyper-parameter in our method, we empirically find that the common
setting, i.e., 7 = 4 for CIFAR-100 and 7 = 1 for ImageNet-1K, is sufficient to achieve satisfactory
performance. The reported results of our method are averaged over 5 runs.

5.1 MAIN RESULTS

CIFAR-100. To evaluate the effectiveness of our method, we experiment on CIFAR100 with 11
student-teacher combinations. We consider a standard data augmentation scheme including padding
4 pixels before random cropping and horizontal flipping. We set the batch size as 64 and the initial
learning rate as 0.01 (for ShuffleNet and MobileNet-V2) or 0.05 (for the other series). We train
the model for 240 epochs, in which the learning rate is decayed by 10 every 30 epochs after 150
epochs. We use SGD as the optimizer with weight decay 5e — 4 and momentum 0.9, Table 1 and
Table 2 compare the Top-1 accuracy under two different scenarios respectively: 1) the student and
the teacher share the same network architecture and 2) the student and the teacher are of a different
architectural style. The results show that ours surpasses previous methods in all cases. Taking the
ResNet32x4/ResNet8x4 and WRN-40-2/ShuffleNetV1 pairs as an example, our method outperforms
the most recent WTTM by 1.04% and 2.10% for each.

ImageNet-1K. To validate the scalability of our method, we employ the PyTorch-version student-
teacher combinations to perform experiments on ImageNet. The standard PyTorch ImageNet practice
is adopted except for 100 training epochs. We set the batch size as 256 and the initial learning rate as
0.1. The learning rate is divided by 10 for every 30 epochs. We use SGD as the optimizer with weight
decay le — 4 and momentum 0.9. The Top-1 and Top-5 accuracy of different distillation methods are
reported in Table 3. While our method slightly performs worse than the state-of-the-art DiffKD by
0.21% for the ResNet50/MobileNetV1 pair, we achieve significantly better performance than DiffKD
by 0.82% and 0.64% for the ResNet34/ResNet18 pair regarding Top-1 and Top-5 accuracy.

5.2 ABLATION STUDY

We conduct an ablation study to validate our motivation and design, with the following baselines.
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Table 3: Top-1 and Top-5 ACC (%) on ImageNet-1K. The best result is in boldface.

Teacher: ResNet34 — Student: ResNet18 Teacher: ResNet50 — Student: MobileNetV1
Method Top-1 ACC  Top-5 ACC Method Top-1 ACC Top-5 ACC
Teacher 73.31 91.42 Teacher 76.16 92.87
Student 69.75 89.07 Student 68.87 88.76

KD 70.66 89.88 KD 70.68 90.30
WSLD 72.04 90.70 WSLD 71.52 90.34
NKD 71.96 90.48 NKD 72.58 90.96
DKD 71.70 90.41 DKD 72.05 91.05
DIST 72.07 90.42 DIST 73.24 91.12
CRD 71.17 90.13 CRD 71.31 90.41

ReviewKD 71.61 90.51 ReviewKD 72.56 91.00
DiffKD 72.22 90.64 DiffKD 73.62 91.34
SRRL 71.73 90.60 SRRL 72.49 90.92
WTTM 72.19 — WTTM 73.09 —
LSKD 71.42 90.29 LSKD 72.18 90.80

Ours 73.15 92.28 Ours 73.41 91.35

Table 4: Ablation study results on CIFAR-100. Each row shows the Top-1 ACC (%).

Teacher — Student Baseline (i) Baseline (ii) Baseline (iii) Baseline (iv) Baseline (v)  Full model
WRN-40-2 — WRN-40-1 73.87 74.43 74.66 74.95 74.79 75.21
ResNet50 — MobileNetV2 69.28 70.62 70.65 71.16 70.94 71.38

(i) We validate the necessity of the gating function in our method by simplifying the gating function
as a uniform one such that Py (Y7 = k|x;) = 1/K.

(i) We justify the use of the teacher’s classifier for the gating function by learning the gating
function from scratch with the student.

(ii1) In analogy to (ii), we learn the subtask-specific embedding vector from scratch with the student.

(iv) We replace the soft aggregation strategy in Eq. (7) with the hard aggregation strategy based on
the hard assignments produced by the teacher.

(v) As described in Section 4.3, we formulate our method as an EM algorithm where we keep
estimating the Bayes-optimal variational distribution. In this baseline, we replace the Bayes-
optimal estimation with the direct assignment of the teacher’s predictive distribution.

Baseline Comparison. Experimental results of the ablation study on CIFAR-100 are shown in Table
4. We note several interesting observations: 1) The performance drop in Baselines (ii) and (iii)
show that introducing the teacher’s knowledge from either outputs or architecture is beneficial to the
student; 2) Baseline (iv) performs worse than the full model. An explanation is that, compared with
the hard aggregation in Baseline (iv), the soft aggregation in the full model injects class relationship
knowledge so that smoothness between classes is preserved in subtask-specific embedding for each
expert; 3) Baseline (i) performs worst among the baselines, which could be attributed to that, with
a uniform prior, the experts would take extra efforts to become specialized in a set of images with
shared semantics; 4) Baseline (v) also performs worse than the full model, which implies that it is
non-trivial to properly estimate the variational distribution.

5.3 EXTENTIONS

Feature Transferability. To study the generalization of our method, we evaluate our distilled model
on downstream tasks. In particular, we employ linear probing on STL-10 and Tiny-ImageNet. We
freeze the student model and train a linear classifier on the top of the student backbone to perform
10-way and 200-way classification for STL-10 and Tiny-ImageNet (all images down-sampled to
32 x 32). More implementation details are attached in Appendix B. Our results in Table 5 indicate
the superior transferability of features learned by our method.
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Table 5: Linear probing on STL-10 and Tiny-ImageNet: We use the combination of teacher WRN-
40-2 and student WRN-16-2. We report Top-1 ACC (%). The best result is in boldface.

Source — Target Student KD DKD FitNet ReviewKD CRD ITRD Ours
CIFAR-100 — STL-10 69.7 709 729 70.3 724 71.6 727 734
CIFAR-100 — Tiny-ImageNet 33.7 339  37.1 335 36.6 356 360 375

Table 6: Top-1 ACC (%) on CUB and Stanford Dogs compared to advanced knowledge distillers. We
use the ResNeXt101-32-8d as the teacher for both datasets. The best result is shown in boldface.

Datasets | CUB | Stanford Dogs
Student \ AlexNet  ShuffleNetV2  MobileNetV?2 \ AlexNet  ShuffleNetV2  MobileNetV2
Random Init. \ 55.66 71.24 74.49 \ 50.20 68.72 68.67
KD 55.10 71.89 76.45 50.22 68.48 71.25
ESKD 55.64 72.15 76.87 50.39 69.02 71.56
TAKD 54.82 71.53 76.25 50.36 68.94 70.61
SCKD 56.78 71.99 75.13 51.78 68.80 70.13
KD+ATS 58.32 73.15 77.83 52.96 70.92 73.16
Ours 59.46 74.09 78.68 53.85 72.15 74.23

Table 7: Top-1 ACC (%) on ImageNet-1K with ResNet50 trained by Wightman et al. (2021) as a
stronger teacher. Students are trained under a stronger strategy (Huang et al., 2022a; 2023).

Teacher — Student Random Init. KD RKD SRRL DIST DiffKD Ours
ResNet50 — ResNet34 76.8 772  76.6 76.7 77.8 78.1 78.3
ResNet50 — EfficientNet-BO 78.0 774 715 773 78.6 78.8 79.0

Fine-grained Classification. In practice, available training samples may be visually similar. We
validate our method in the scenario of fine-grained classification. Table 6 reports the Top-1 accuracy
of state-of-the-art methods on CUB and Stanford Dogs. It can be found that KD can help to improve
the performance of a student network. The improvement can be further enhanced by the early-stopped
teacher in ESKD (Bengio et al., 2013), the teacher assistant in TAKD (Cho & Bengio, 2014), the
student-customized teacher in SCKD (Shazeer et al., 2017) and the asymmetric temperature scaling
in ATS (Li et al., 2022b). Nevertheless, our method consistently contributes to the most significant
improvement for various student networks.

Distillation with Stronger Teachers. To fully investigate the sensitivity of MoE-KD to the capacity
gap between the teacher and the student, we further conduct experiments on teachers with stronger
training strategies following DIST. It can be observed from Table 7 that our method keeps achieving
the best performance for both ResNet50/ResNet34 and ResNet50/EfficientNet-BO pairs. In particular,
while the state-of-the-art DiffKD improves Top-1 accuracy by 1.3% and 0.8% for ResNet34 and
EfficientNet-BO respectively, our proposed method enhances the two by 1.5% and 1.0%.

6 CONCLUSION

In this paper, we study knowledge distillation from a novel mixture-of-experts perspective, where we
leverage the teacher’s knowledge from outputs and learned parameters to tackle the classification
within a partition-and-classify principle. Our method comprises an input-dependent gating function
that distributes subtasks to one or a few specialized experts, and multiple experts that classify the
subset of samples based on sample-level student representations and class-level teacher representa-
tions. Moreover, by deriving the ELBO, our model can be formulated as an expectation-maximization
algorithm and trained without requiring any other loss or regularization terms. Extensive experiments
show that our method is empirically effective in not only consistently boosting the student model
classification performance in various distillation settings but also improving the feature transferability.
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ETHIC IMPACTS

Investigating the efficacy of the proposed method would consume considerable computing resources.
These efforts can contribute to increased carbon emissions, which could raise environmental concerns.
This paper does not raise any more ethical concerns due to the un-involvement of any human subjects’
practices to data set releases, potentially harmful insights, methodologies and applications, potential
conflicts of interest and sponsorship, discrimination/bias/fairness concerns, privacy and security
issues, legal compliance, and research integrity issues.
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A LIMITATIONS.
This paper only explores one of the parameterization schemes for the proposed mixture-of-experts

framework. It will be exciting to explore more possibilities for parameterization in the future when
promoting KD from the mixture-of-experts perspective.

B IMPLEMENTATION DETAILS FOR LINEAR PROBING
We utilize an SGD optimizer with a momentum of 0.9, a batch size of 64 and a weight decay of 0.

The initial learning rate starts at 0.1 and is decayed by 10 at the 30-th, 60-th and 90-th epochs within
a total of 100 epochs.

C STANDARD DEVIATION FOR THE REPORTED RESULTS ON CIFAR-100

Below, we report the standard deviation (Std.) for the experiment results of our method on CIFAR-100
in Table 8 and Table 9. Results are averaged over 5 independent runs.

Table 8: Top-1 ACC (%) on CIFAR-100, Homogenous Architecture. The best results are in boldface.

Teacher \ WRN-40-2 WRN-40-2 ResNet56 ResNetl10 ResNet32x4 VGG13
Student \ WRN-16-2 WRN-40-1 ResNet20 ResNet32 ResNet8x4 VGGS8

Mean 76.98 75.21 72.49 74.58 77.10 75.03
Std. 0.37 0.32 0.26 0.27 0.41 0.25

Table 9: Top-1 ACC (%) on CIFAR-100, Heterogeneous Architecture. The best result is in boldface.

Teacher \ VGG13 ResNet50 ResNet32x4 ResNet32x4 WRN-40-2

Student \ MobileNetV2 MobileNetV2 ShuffleNetV1 ShuffleNetV2  ShuffleNetV1
Mean 70.54 71.38 78.23 78.69 77.52
Std. 0.46 0.29 0.24 0.43 0.35

D THE ELBO DERIVATION

To begin with, we formally state the facts that will be used in our derivation:

Fact 1. Since Y7 € {1,2,---,K]}, for any arbitrary distribution P(YT = k|x;), we have
S POYT =kx) =1

Fact 2. For the events A, B, C, Bayes’ theorem implies that P(A, C|B) = P(A|B,C)P(C|B)

P(A,C|B)

Fact 3. Based on Fact 2, for the events A, B, C, we have P(C|B) = BATE,0)
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Fact 4. Since Y7 € {1,2,---, K}, for any arbitrary distributions P(Y7 = k|x;) and P(Y7 =
k|x;), we have Dy, [P(YT = kx,)[|P(YT = k|x;)| > 0.

log Py (Y = yi[xi)
=1-log P5 (Y° = y;[x;)

K
=D _PYT =kx) 1 og Py (YS = y|x;) (Fact1)
k=1

tuﬁw

[POT = kjxi)log PS (VS = yifx.)

>
Il
—

PéS(YS =Y, YT = k|X2)
P,

PYT = k|x;)1 ,

M-

(Fact 3)

=
I
—

PS(YS =y|x;, YT = k)Py (YT = k|x;)

p"q:

PYT = k|x;)1 Fact 2
2 ( |x;) log Pég(YT —HYS = g x) (Fact 2)
K ~
=3 PO = kfxi)lo PE(YS = yilxi, YT = k)P§ (YT = klx;) P(YT =k|x;)
- - s PS(YT = K|YS = g1, %, B YT — e,
= o ( | Yis Xi) P(YT = klx;)

P( = k|x;) log

tnﬁx

Pg(ys = yi|XZ‘, YT = k)PéS(YT = k‘Xi>
P(YT = k|x;)

=
Il
_

+ Dyr [P(YT = kx)|PS (YT = k|YS = yi,xi)]

K
>3 s B

(Fact 4)

=~
Il
—

=3 [POT = kx)og S (S = iy T = k,x)| - D, [POYT = ko) [IPS (VT = ki)
k=1
=ELBO(P, x;,7;;6).
(18)
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