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ABSTRACT

Knowledge distillation (KD) aims to transfer useful information from a large-
scale model (teacher) to a lightweight model (student). Classical KD focuses on
leveraging the teacher’s predictions as soft labels to regularize student training.
However, the exact match of predictions in Kullback-Leibler (KL) divergence could
be somewhat in conflict with the classification objective, given that the distribution
discrepancies between teacher-generated predictions and ground-truth annotations
tend to be fairly severe. In this paper, we rethink the role of teacher predictions from
a Mixture-of-Experts (MoE) perspective and transfer knowledge by introducing
teacher predictions as latent variables to reformulate the classification objective.
This MoE strategy results in breaking down the vanilla classification task into
a mixture of easier subtasks with the teacher classifier as a gating function to
weigh the importance of subtasks. Each subtask is efficiently conquered by distinct
experts that are effectively implemented by resorting to multi-level teacher outputs.
We further develop a theoretical framework to formulate our method, termed MoE-
KD, as an Expectation-Maximization (EM) algorithm and provide proof of the
convergence. Extensive experiments manifest that MoE-KD outperforms advanced
knowledge distillers on mainstream benchmarks.

1 INTRODUCTION

Deep learning has shown its significance by boosting the performance of various real-world tasks such
as computer vision (Krizhevsky et al., 2012), natural language processing (Devlin et al., 2018), and
reinforcement learning (Silver et al., 2016). However, it is worth mentioning that the effectiveness of
deep learning generally comes at the expense of huge computational complexity and massive storage
requirements. This greatly restricts the deployment of large-scale models (teachers) in real-time
applications where lightweight models (students) are preferable due to limited resources. Under this
context, with the primary goal of improving the student’s performance for the task at hand, knowledge
distillation (KD) (Gou et al., 2021; Wang & Yoon, 2021) is introduced as a de facto standard to
transfer knowledge from a teacher model to a student model.

The rationale behind KD can be explained from an optimization perspective: there is evidence that
high-capacity models can find good local minima due to over-parameterisation (Du & Lee, 2018;
Soltanolkotabi et al., 2018). This motivates KD to use such models to facilitate the optimization
of lower-capacity models (i.e., the student) during training. Classically, KD is approached by
minimizing the Kullback-Leibler (KL) divergence between predictive distributions of the teacher
and student (Hao et al., 2024; Hinton et al., 2015), the motivation behind which is to leverage the
teacher’s predictions as soft labels to regularize the student training (Müller et al., 2019; Yuan et al.,
2020). However, the efficacy of classical KD is challenged by counter-intuitive observations (Cho &
Hariharan, 2019; Stanton et al., 2021). Specifically, a larger teacher does not necessarily increase a
student’s accuracy compared to a relatively smaller teacher. This can be attributed to the capacity
gap between the two models which makes the discrepancy between their predictions significantly
large (Huang et al., 2022a). On the one hand, some methods (Dong et al., 2023; Mirzadeh et al.,
2020; Park et al., 2021; Son et al., 2021) develop student-friendly teachers to tackle the poor learning
issue of the student model. Unfortunately, such methods suffer from complex distillation procedures
and heavy computational costs for re-training the teacher model, therefore not being applicable in
practice. On the other hand, ATS (Li et al., 2022b) separately applies a higher/lower temperature
to the correct/wrong class by finding that more complex teachers are more likely to assign a larger
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score for the correct class or less varied scores for the wrong classes while KD-Zero (Li et al., 2024)
develops automated searches for distillers without manual architecture modification and KD design.

Despite remarkable progress, people tend to overlook the fact that there could be a significantly
large discrepancy between ground-truth labels and teacher-generated labels. In particular, whether
the temperature is high or low, the teacher would produce imbalanced predictive distributions even
though it is trained on a balanced dataset (Niu et al., 2022). Given the fact that classical KD typically
calculates the cross-entropy loss between the ground-truth label and the student’s prediction in
addition to the KL divergence between the teacher’s and student’s predictions, this kind of transfer
gap makes it ill-prosed to simultaneously align the student’s predictive distribution with those mutually
exclusive targets, which greatly undermines the power of classical KD.

To get out of this dilemma, this paper rethinks knowledge distillation from a mixture-of-experts (MoE)
perspective. The heart of our method, termed MoE-KD, lies in leveraging the teacher’s predictions
as latent variables to rewrite the classification objective. In this way, we arrive at decomposing the
student classifier as a convex combination of conditional models. Namely, each of the conditional
models, referred to as an expert, learns to classify a subset of samples, where an input-dependent
gating function partitions the dataset into subsets by allocating weights among experts.

To address the nontrivial learning problems, we formulate MoE-KD as an Expectation-Maximization
(EM) algorithm (Dempster et al., 1977), where we iteratively estimate the Bayes-optimal poste-
rior distribution of the latent variables given the observed data (in the E-step) and maximize the
evidence lower bound (ELBO) of the reformulated classification objective (in the M-step). We
theoretically prove that the ELBO is upper-bounded and our proposed EM algorithm contributes to
the convergence of the ELBO (see Section 4.3). Empirically, our proposed MoE-KD achieves state-
of-the-art performance in various distillation settings regarding teacher-student pairs (homogeneous
and heterogeneous) and training datasets (coarse-grained and fine-grained).

2 RELATED WORK

2.1 KNOWLEDGE DISTILLATION

Knowledge distillation is the process of using a teacher model to improve the performance of a student
model. In its classical form, one trains the student to fit the teacher’s predictive distribution. (Hinton
et al., 2015) popularizes this solution by formulating it as logit matching. MLD (Jin et al., 2023)
extends logit matching not only at the instance level but also at the batch and class levels, DKD (Zhao
et al., 2022) decouples classical KD into distilling target and non-target class knowledge, and
WSLD (Zhou et al., 2021) provides a bias-variance trade-off perspective for the KL term. Besides,
the teacher’s knowledge can also be distilled in the form of features. One line of feature-based
distillation is to mimic the intermediate representations of the teacher network in terms of Euclidean
distance (Romero et al., 2014), mutual information (Fu et al., 2023; Tian et al., 2019), Wassertein
distance (Chen et al., 2021a), and maximum mean discrepancy of the network activations (Huang &
Wang, 2017) respectively. Another line of feature-based distillation occurs to explore transferring the
relationship between features rather than the actual features themselves, where the feature correlation
can be captured by the Gram matrix (Yim et al., 2017), Taylor series expansion (Peng et al., 2019),
graph (Liu et al., 2019), or quantized visual word space (Jain et al., 2020).

The transfer gap between the teacher and the student is an emerging topic in KD. To mitigate the
feature-level transfer gap, MasKD (Huang et al., 2022b) distils the valuable information from receptive
regions that contribute to the task precision; NORM (Liu et al., 2023) conducts feature matching in a
many-to-one manner, and DiffKD (Huang et al., 2023) explicitly denoises and matches features using
diffusion models. When it comes to the logit-level transfer gap, DIST (Huang et al., 2022a) relaxes
the KL divergence in logit-based distillation with a correlation-based loss; TAKD (Mirzadeh et al.,
2020) introduces multiple middle-sized teaching assistant models to guide the student; DGKD (Son
et al., 2021) improves TAKD by densely gathering all the assistant models, and SFTN (Park et al.,
2021) provides the teacher with a snapshot of the student during training. Different from these
prior works, our method is motivated by the observations that teacher predictions and ground-truth
labels indeed behave differently (Niu et al., 2022), arguing that this largely overlooked transfer gap
makes it problematic for classical KD to encourage student predictions to simultaneously mimic
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the ground-truth labels and teacher predictions. Facing this dilemma, this paper proceeds from a
mixture-of-experts perspective by rethinking the role of teacher predictions as latent variables.

2.2 MIXTURE OF EXPERTS

The MoE model was initially proposed by (Jacobs et al., 1991) as a technique to combine a series of
sub-models and perform conditional computation (Bengio et al., 2015; 2013; Cho & Bengio, 2014)
that aims at activating different subsets of a network for different inputs. To increase the model
capacity in dealing with complex data, (Ahmed et al., 2016; Gross et al., 2017) extend the MoE
structure to the deep neural networks by proposing a deep MoE model composed of multiple layers of
routers and experts. Recently, (Shazeer et al., 2017) simplifies the MoE layer by making the output of
the gating function sparse for each example, which greatly improves the training stability and reduces
the computational cost. Since then, the MoE layer with different base neural network structures has
achieved tremendous success in scene parsing (Fu et al., 2018), multi-task learning (Gupta et al.,
2022), deep clustering (Chazan et al., 2019; Kopf et al., 2021; Tsai et al., 2021; Zhang et al., 2017),
domain generalization (Dai et al., 2021; Li et al., 2022a), data generation (Xia et al., 2022) and
question answering (Dai et al., 2022b; Zhou et al., 2022).

KD and MoE tend to evolve mostly independently in the literature. To the best of our knowledge,
the only exceptions are (Dai et al., 2022a; Xue et al., 2022). In essence, (Dai et al., 2022a; Xue
et al., 2022) exploit the benefits of KD to overcome over-fitting problems (Fedus et al., 2022; Wu
et al., 2022) of MoE models on downstream tasks with limited data. On the contrary, this paper
formulates the student’s classifier as a lightweight MoE layer with the teacher’s knowledge to enhance
the efficiency of knowledge transfer from the teacher to the student.

3 PRELIMINARY

Notations. We write vectors and matrices as bold-faced lowercase and uppercase characters respec-
tively. All trainable parameters will be subscripted by θ. Let e[i] be the i-th element of the vector
e ∈ RK and [K] = {1, . . . ,K}, we then define softmaxk(e) = exp (e[k])/

∑
i∈[K] exp (e[i]).

Multi-class Classification. This paper considers K-way classification as a case study, where X and
Y = [K] denote the input space and label space respectively. Let PXY be the joint distribution defined
over X × Y , we are provided with a labelled dataset D = {(x1, y1), . . . , (xN , yN )} ∼ PN

XY , i.i.d.,
to train a discriminative model by maximizing the following objective over the dataset D:

Rcls(xi, yi;θ) ≜ logPθ(Y = yi|xi). (1)

Knowledge Distillation involves transferring dark knowledge from a teacher model to a student
model. Classical KD (Hao et al., 2024; Hinton et al., 2015) calculates the cross-entropy between
the ground-truth label and student predictions as well as the KL divergence between the predictive
distributions of the student and the teacher. Since the teacher is pre-trained and fixed in the context of
KD, the overall learning objective of classical KD can be simplified into the following form1:

RKD(xi, yi;θ) ≜ logPS
θ (Y S = yi|xi) + α ·

K∑
k=1

P T (Y T = k|xi) logP
S
θ (Y S = k|xi), (2)

where α > 0 is a weighting hyper-parameter that balances the importance of the two losses. Note
that, in Eq. (2), we have used T and S as superscripts to indicate the teacher and student model
respectively, which, unless explicitly stated, is considered as a default setting in the rest of this paper.

4 METHODOLOGY

4.1 RETHINKING KNOWLEDGE DISTILLATION: A MIXTURE OF EXPERTS PERSPECTIVE

Motivated by the mixture of experts (MoE) framework (Jacobs et al., 1991), we introduce the
teacher’s class prediction Y T ∈ {1, 2, · · · ,K} as a latent variable and naturally extend the vanilla

1For brevity, we have omitted the constant term
∑K

k=1 P
T (Y T = k|xi) logP

T (Y T = k|xi).
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classification objective in Eq. (1) to the following formulation:

logPS
θ (Y S = yi|xi) = log

K∑
k=1

PS
θ

(
Y S = yi, Y

T = k|xi

)
(3)

= log

K∑
k=1

PS
θ (Y S = yi|Y T = k,xi)P

S
θ

(
Y T = k|xi

)
︸ ︷︷ ︸

RMoE−KD(xi,yi;θ)

, (4)

where PS
θ (Y S = yi|Y T = k,xi) is one of the experts that classify a subset of samples and

PS
θ

(
Y T = k|xi

)
is a gating function that partitions the dataset into subsets according to the latent

semantics by routing each sample to one or a few experts. With this partition-and-classify principle,
the experts tend to be highly specialized in data points that share similar semantics, which improves
training efficiency. While, same as the original MoE, the experts work in the supervised setting, both
gating functions and experts are based on neural networks to fit the high-dimensional data. In the
following, we will elaborate on how we parameterize each term in Eq. (4) to fit the KD task.

Gating function. The gating function organizes the classification task into K simpler subtasks by
weighting the experts based on the semantics of the input sample. Inspired by Du et al. (2017), we
formulate the gating function by reusing the pre-trained teacher classifier, namely,

PS
θ

(
Y T = k|xi

)
= softmaxk

[
gT (hS

i )
]
, hS

i = G(zSi ), (5)

where zSi ∈ Rd denotes the student feature of xi and a projector G(·) transforms from the student
feature space ZS to the teacher feature space ZT for dimension alignment at a relatively small cost.

Experts. Each expert learns to solve a distinct subtask of the classification task arranged by the gating
function. Formally, inspired by Chen et al. (2023), let ek ∈ Rd be an expert prototype, we formulate
the probability of the sample xi being recognized as the yi-th class by the k-th expert as follows:

PS
θ

(
Y S = yi|Y T = k, xi

)
= softmaxyi

[
W⊤(zSi + ek)

]
= softmaxyi

(
W⊤zSi + bk

)
, (6)

where W ∈ Rd×K represents a learnable weight matrix and the expert-specific bias vector bk ∈ RK

has been re-parameterized by W⊤ek. To make Eq. (6) benefit from the teacher’s logit-level and
feature-level knowledge, we implement ek based on deep set representations (Zaheer et al., 2017):

ek = Ψ(µk), µk =

N∑
i=1

P T (
Y T = k|xi

)∑N
j=1 P

T (Y T = k|xj)
· zTi . (7)

where Ψ(·) : ZT → Rd is another projector that is introduced to match feature dimensions given
that Eq. (7) involves a soft aggregation along samples in the teacher embedding space. Although
the design of Eq. (7) is similar to pooling by multi-head attention (PMA) in the set transformer (Lee
et al., 2019), we do not rely on a softmax operation to normalize aggregation weights along samples
as we never expect any single sample to play a dominant role in representing µk. Besides, for a fair
comparison, we define P T (

Y T = k|xi

)
in accordance with prior works (Hao et al., 2024; Hinton

et al., 2015; Niu et al., 2022; Zhao et al., 2022; Zhou et al., 2021), i.e.,
P T (

Y T = k|xi

)
= softmaxk

[
gT (zTi )/τ

]
, (8)

where τ > 0 denotes a temperature hyper-parameter (Hinton et al., 2015).

4.2 DERIVING THE EVIDENCE LOWER BOUND

In practice, the conditional log-likelihood function in Eq. (4) is hard to be directly optimized (Bishop,
2006; Wang et al., 2021). To address this non-trivial learning problem, let us start from the following
evidence lower bound (ELBO) of the vanilla classification objective logPS

θ (Y S = yi|xi):

logPS
θ (Y S = yi|xi)

=ELBO(P̂ ,xi, yi;θ) +DKL

[
P̂ (Y T = k|xi)||PS

θ (Y T = k|Y S = yi,xi)
]

≥ELBO(P̂ ,xi, yi;θ)

≜
K∑

k=1

[
P̂ (Y T = k|xi) logP

S
θ (Y S = yi|Y T = k,xi)

]
−DKL

[
P̂ (Y T = k|xi)||PS

θ (Y T = k|xi)
]
,

(9)
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where DKL(·) represents the Kullback–Leibler (KL) divergence and P̂ (Y T = k|xi) denotes any
arbitrary distribution conditioned on xi such that

∑K
k=1 P̂ (Y T = k|xi) = 1. We derive this ELBO

in Appendix D to keep the main content concise. To make the inequality hold with equality so that
the ELBO reaches its maximum value logPS

θ (Y = yi|xi), we need to require:

DKL

[
P̂ (Y T = k|xi)||PS

θ (Y T = k|Y S = yi,xi)
]
= 0. (10)

By approximating the variational distribution P̂ (Y T = k|xi) with PS
θ (Y T = k|Y S = yi,xi) and

connecting Eq. (9) with Eq. (4), we are now ready to convert the optimization of Eq. (4) into :

argmax
θ

RMoE−KD(xi, yi;θ) = argmax
θ

ELBO(P̂ ,xi, yi;θ). (11)

4.3 FORMULATING MOE-KD AS EXPECTATION-MAXIMIZATION

E-step. This step aims to estimate P̂t+1(Y
T = k|xi) with the fixed θt at the iteration t to make

P̂t+1(Y
T = k|xi) = PS

θt
(Y T = k|Y S = yi,xi), which is implied by Eq. (10). To this end, by

applying the Bayes’ theorem to PS
θt
(Y T = k|Y S = yi,xi), we approximate P̂t+1(Y

T = k|xi) as:

P̂t+1(Y
T = k|xi) =

PS
θt
(Y T = k|xi)P

S
θt
(Y S = yi|Y T = k,xi)∑K

j=1 P
S
θt
(Y T = j|xi)PS

θt
(Y S = yi|Y T = j,xi)

(12)

M-step. With the sub-optimal P̂t+1(Y
T = k|xi) = PS

θt
(Y T = k|Y S = yi,xi) after E-step, we turn

to maximize the ELBO in Eq. (9):

θt+1 = argmax
θt

E(xi,yi)∼PXY

[
ELBO(P̂t+1,xi, yi;θt)

]
. (13)

When integrating Eq. (13) into the batch-based training routine where we sample a mini-batch B
from the dataset D at the beginning of each iteration, it is natural to build an efficient stochastic
estimator of the ELBO over D to learn the parameters θt, which is given by:

θt+1 = argmax
θt

1

|B|
∑

(xi,yi)∈B

ELBO(P̂t+1,xi, yi;θt). (14)

Convergence Analysis. At the E-step of the iteration t+ 1, we estimate P̂t+1(Y
T = k|xi) to ensure

ELBO(P̂t+1,xi, yi;θt) = RMoE(xi, yi;θt). At the M-step after the E-step, we have obtained θt+1

with a fixed variational distribution P̂t+1(Y
T = k|xi), which results in ELBO(P̂t+1,xi, yi;θt+1) ≥

ELBO(P̂t+1,xi, yi;θt). Therefore, we obtain the following sequence:

RMoE−KD(xi, yi;θt+1) ≥ ELBO(P̂t+1,xi, yi;θt+1)

≥ ELBO(P̂t+1,xi, yi;θt) = RMoE−KD(xi, yi;θt).
(15)

Since RMoE−KD(xi, yi;θt+1) ≥ RMoE−KD(xi, yi;θt), ELBO(P̂ ,xi, yi;θ) is upper-bounded and
converge to a certain value with the EM algorithm proposed above. Finally, the inference with the
optimized parameters θ̂ for a test-time sample x requires to compute argmaxk RMoE−KD(x, k; θ̂).

4.4 RELATION TO EXISTING WORKS

We recently find that SRRL (Yang et al., 2021) also comes with the reused teacher classifier to train
the student model and can be regarded as a natural baseline of our method. We forge a mathematical
connection between SRRL and the ELBO in Eq. (9) by showing that the latter intrinsically subsumes
the former as a special exemplar of itself, which implies the theoretical superiority of our method.

Assumption 1 (Collapsed Projection) The projector Ψ(·) in Eq. (7) is completely collapsed such
that, for all inputs µ ∈ ZT , we have Ψ(µ) = b.

Lemma 1 If Assumption 1 holds, the expert PS
θ

(
Y S = yi|Y T = k, xi

)
in Eq. (6) will degenerate

into a universal parametric softmax classifier, which is given by:

PS
θ

(
Y S = yi|Y T = k, xi

)
= softmaxyi

[
W⊤zSi + b

]
, ∀k ∈ [K]. (16)
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Table 1: Top-1 ACC (%) on CIFAR-100, Homogenous Architecture. The best results are in boldface.

Teacher WRN-40-2 WRN-40-2 ResNet56 ResNet110 ResNet32x4 VGG13

75.61 75.61 72.34 74.31 79.42 74.64

Student WRN-16-2 WRN-40-1 ResNet20 ResNet32 ResNet8x4 VGG8

73.26 71.98 69.06 71.14 72.50 70.36

KD 74.92 73.54 70.66 73.08 73.33 72.98
FitNet 73.58 72.24 69.21 71.06 73.50 71.02
CRD 75.48 74.14 71.16 73.48 75.51 73.94

WCoRD 75.88 74.73 71.56 73.81 75.95 74.55
IPWD — 74.64 71.32 73.91 76.03 —
WSLD — 74.48 72.15 74.12 76.05 —
SRRL 75.96 74.75 71.44 73.80 75.92 74.40
DKD 76.24 74.81 71.97 74.11 76.32 74.68

NORM 75.65 74.82 71.35 73.67 76.49 73.95
DIST — 74.73 71.75 — 76.31 —

DiffKD — 74.09 71.92 — 76.72 —
WTTM 76.37 74.58 71.92 74.13 76.06 74.44

Ours 76.98 75.21 72.49 74.58 77.10 75.03

In addition to Assumption 1, let P̂ (Y T = k|xi) = P T (Y T = k|xi), the ELBO in Eq. (9), i.e.,

ELBO(P̂ ,xi, yi;θ) = log
[
softmaxyi

(
W⊤zSi + b

)]
−DKL

[
P T (Y T = k|xi)||PS

θ (Y T = k|xi)
]

︸ ︷︷ ︸
RSRRL(xi,yi;θ)

,

is mathematically equivalent to the optimization objective in SRRL regardless the hyper-parameter β
that scales the second term of RSRRL(xi, yi;θ). Nevertheless, it is worthwhile to point out that, as
disclosed by the authors of SRRL, β = 1 contributes to the best knowledge transfer performance,
which empirically epochs our analysis above.

Interestingly, if we treat ground-truth annotations as a noisy version of teacher predictions and
the gating function in Eq. (4) as the clean class posterior, the experts in Eq. (4) share a similar
working mechanism with the so-called noise transition matrix T ∈ [0, 1]K×K (Patrini et al., 2017)
in label-noise learning (Song et al., 2022) such that Tij(x) = PS

θ (Y S = i|Y T = j,x). However,
directly estimating the transition matrix is generally infeasible (Xia et al., 2019) without the rigorous
anchor-point assumption (Liu & Tao, 2015). As a result, existing label-noise learners (Cheng et al.,
2022a; Xia et al., 2020; Yang et al., 2022) have been developed with a two-stage training routine:
1) pre-training the gating function to estimate experts (or the noise transition matrix T) and 2)
fine-tuning the gating function with the fixed estimated experts. By contrast, our method enables to
simultaneously learn both the gating function and experts. While the mostly recent works (Cheng
et al., 2022b; Li et al., 2021) approach label-noise learning in an end-to-end way, they can be criticized
for removing the dependency between PS

θ (Y S = i|Y T = j,x) and x to have

PS
θ (Y S = i|Y T = j,x) = PS

θ (Y S = i|Y T = j), ∀i, j ∈ [K]. (17)

5 EXPERIMENTS

Datasets. We perform experiments on CIFAR-100 (Krizhevsky et al., 2009), ImageNet-1K (Rus-
sakovsky et al., 2015), Tiny-ImageNet (Tavanaei, 2020), STL-10 (Coates et al., 2011), CUB (Wah
et al., 2011) and Stanford Dogs (Khosla et al., 2011), following prior works (Huang et al., 2023; Li
et al., 2022b; Zhao et al., 2022).

Baselines. We compare our method with advanced methods including KD (Hinton et al., 2015), DKD
(Zhao et al., 2022), IPWD (Niu et al., 2022), WSLD (Zhou et al., 2021), ESKD (Cho & Hariharan,
2019), TAKD (Mirzadeh et al., 2020), SCKD (Zhu & Wang, 2021), NKD (Yang et al., 2023), DIST
(Huang et al., 2022a), FitNets (Romero et al., 2014), CRD (Tian et al., 2019), WCoRD (Chen et al.,
2021a), ReviewKD (Chen et al., 2021b), NORM (Liu et al., 2023), DiffKD (Huang et al., 2023),
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Table 2: Top-1 ACC (%) on CIFAR-100, Heterogeneous Architecture. The best result is in boldface.

Teacher VGG13 ResNet50 ResNet32x4 ResNet32x4 WRN-40-2

74.64 79.34 79.42 79.42 75.61

Student MobileNetV2 MobileNetV2 ShuffleNetV1 ShuffleNetV2 ShuffleNetV1

64.60 64.60 70.50 71.82 70.50

KD 67.37 67.35 74.07 74.45 74.83
FitNet 64.14 63.16 73.59 73.54 73.73
CRD 69.73 69.11 75.11 75.65 76.05

WCoRD 69.47 70.45 75.40 75.96 76.32
IPWD — 70.25 76.03 — 76.44
WSLD — — 75.46 75.93 76.21
SRRL 69.14 69.45 75.66 76.40 76.61
DKD 69.71 70.35 76.45 77.07 76.70

NORM 68.94 70.56 77.42 78.07 77.06
DIST — 68.66 76.34 77.35 —

DiffKD — 69.21 76.57 77.52 —
WTTM 69.16 69.59 74.37 76.55 75.42

SKD 68.79 69.55 — 76.67 76.65
Ours 70.54 71.38 78.23 78.69 77.52

ITRD (Miles et al., 2021), SRRL (Yang et al., 2021), WTTM (Zheng & YANG, 2024), LSKD (Sun
et al., 2024), and SKD (Wei et al., 2024).

Settings. We employ the last feature map and a three-layer bottleneck transformation for implement-
ing the projector G(·), which only incurs a less than 3% cost to the pruning ratio in teacher-to-student
compression (Chen et al., 2022). We design Ψ(·) as a two-layer MLP module (Chen et al., 2020). As
for the temperature τ , the only hyper-parameter in our method, we empirically find that the common
setting, i.e., τ = 4 for CIFAR-100 and τ = 1 for ImageNet-1K, is sufficient to achieve satisfactory
performance. The reported results of our method are averaged over 5 runs.

5.1 MAIN RESULTS

CIFAR-100. To evaluate the effectiveness of our method, we experiment on CIFAR100 with 11
student-teacher combinations. We consider a standard data augmentation scheme including padding
4 pixels before random cropping and horizontal flipping. We set the batch size as 64 and the initial
learning rate as 0.01 (for ShuffleNet and MobileNet-V2) or 0.05 (for the other series). We train
the model for 240 epochs, in which the learning rate is decayed by 10 every 30 epochs after 150
epochs. We use SGD as the optimizer with weight decay 5e − 4 and momentum 0.9, Table 1 and
Table 2 compare the Top-1 accuracy under two different scenarios respectively: 1) the student and
the teacher share the same network architecture and 2) the student and the teacher are of a different
architectural style. The results show that ours surpasses previous methods in all cases. Taking the
ResNet32x4/ResNet8x4 and WRN-40-2/ShuffleNetV1 pairs as an example, our method outperforms
the most recent WTTM by 1.04% and 2.10% for each.

ImageNet-1K. To validate the scalability of our method, we employ the PyTorch-version student-
teacher combinations to perform experiments on ImageNet. The standard PyTorch ImageNet practice
is adopted except for 100 training epochs. We set the batch size as 256 and the initial learning rate as
0.1. The learning rate is divided by 10 for every 30 epochs. We use SGD as the optimizer with weight
decay 1e− 4 and momentum 0.9. The Top-1 and Top-5 accuracy of different distillation methods are
reported in Table 3. While our method slightly performs worse than the state-of-the-art DiffKD by
0.21% for the ResNet50/MobileNetV1 pair, we achieve significantly better performance than DiffKD
by 0.82% and 0.64% for the ResNet34/ResNet18 pair regarding Top-1 and Top-5 accuracy.

5.2 ABLATION STUDY

We conduct an ablation study to validate our motivation and design, with the following baselines.
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Table 3: Top-1 and Top-5 ACC (%) on ImageNet-1K. The best result is in boldface.

Teacher: ResNet34 → Student: ResNet18

Method Top-1 ACC Top-5 ACC

Teacher 73.31 91.42
Student 69.75 89.07

KD 70.66 89.88
WSLD 72.04 90.70
NKD 71.96 90.48
DKD 71.70 90.41
DIST 72.07 90.42
CRD 71.17 90.13

ReviewKD 71.61 90.51
DiffKD 72.22 90.64
SRRL 71.73 90.60

WTTM 72.19 —
LSKD 71.42 90.29
Ours 73.15 92.28

Teacher: ResNet50 → Student: MobileNetV1

Method Top-1 ACC Top-5 ACC

Teacher 76.16 92.87
Student 68.87 88.76

KD 70.68 90.30
WSLD 71.52 90.34
NKD 72.58 90.96
DKD 72.05 91.05
DIST 73.24 91.12
CRD 71.31 90.41

ReviewKD 72.56 91.00
DiffKD 73.62 91.34
SRRL 72.49 90.92

WTTM 73.09 —
LSKD 72.18 90.80
Ours 73.41 91.35

Table 4: Ablation study results on CIFAR-100. Each row shows the Top-1 ACC (%).

Teacher → Student Baseline (i) Baseline (ii) Baseline (iii) Baseline (iv) Baseline (v) Full model
WRN-40-2 → WRN-40-1 73.87 74.43 74.66 74.95 74.79 75.21
ResNet50 → MobileNetV2 69.28 70.62 70.65 71.16 70.94 71.38

(i) We validate the necessity of the gating function in our method by simplifying the gating function
as a uniform one such that PS

θ

(
Y T = k|xi

)
= 1/K.

(ii) We justify the use of the teacher’s classifier for the gating function by learning the gating
function from scratch with the student.

(iii) In analogy to (ii), we learn the subtask-specific embedding vector from scratch with the student.

(iv) We replace the soft aggregation strategy in Eq. (7) with the hard aggregation strategy based on
the hard assignments produced by the teacher.

(v) As described in Section 4.3, we formulate our method as an EM algorithm where we keep
estimating the Bayes-optimal variational distribution. In this baseline, we replace the Bayes-
optimal estimation with the direct assignment of the teacher’s predictive distribution.

Baseline Comparison. Experimental results of the ablation study on CIFAR-100 are shown in Table
4. We note several interesting observations: 1) The performance drop in Baselines (ii) and (iii)
show that introducing the teacher’s knowledge from either outputs or architecture is beneficial to the
student; 2) Baseline (iv) performs worse than the full model. An explanation is that, compared with
the hard aggregation in Baseline (iv), the soft aggregation in the full model injects class relationship
knowledge so that smoothness between classes is preserved in subtask-specific embedding for each
expert; 3) Baseline (i) performs worst among the baselines, which could be attributed to that, with
a uniform prior, the experts would take extra efforts to become specialized in a set of images with
shared semantics; 4) Baseline (v) also performs worse than the full model, which implies that it is
non-trivial to properly estimate the variational distribution.

5.3 EXTENTIONS

Feature Transferability. To study the generalization of our method, we evaluate our distilled model
on downstream tasks. In particular, we employ linear probing on STL-10 and Tiny-ImageNet. We
freeze the student model and train a linear classifier on the top of the student backbone to perform
10-way and 200-way classification for STL-10 and Tiny-ImageNet (all images down-sampled to
32× 32). More implementation details are attached in Appendix B. Our results in Table 5 indicate
the superior transferability of features learned by our method.
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Table 5: Linear probing on STL-10 and Tiny-ImageNet: We use the combination of teacher WRN-
40-2 and student WRN-16-2. We report Top-1 ACC (%). The best result is in boldface.

Source → Target Student KD DKD FitNet ReviewKD CRD ITRD Ours
CIFAR-100 → STL-10 69.7 70.9 72.9 70.3 72.4 71.6 72.7 73.4
CIFAR-100 → Tiny-ImageNet 33.7 33.9 37.1 33.5 36.6 35.6 36.0 37.5

Table 6: Top-1 ACC (%) on CUB and Stanford Dogs compared to advanced knowledge distillers. We
use the ResNeXt101-32-8d as the teacher for both datasets. The best result is shown in boldface.

Datasets CUB Stanford Dogs

Student AlexNet ShuffleNetV2 MobileNetV2 AlexNet ShuffleNetV2 MobileNetV2

Random Init. 55.66 71.24 74.49 50.20 68.72 68.67

KD 55.10 71.89 76.45 50.22 68.48 71.25
ESKD 55.64 72.15 76.87 50.39 69.02 71.56
TAKD 54.82 71.53 76.25 50.36 68.94 70.61
SCKD 56.78 71.99 75.13 51.78 68.80 70.13

KD+ATS 58.32 73.15 77.83 52.96 70.92 73.16
Ours 59.46 74.09 78.68 53.85 72.15 74.23

Table 7: Top-1 ACC (%) on ImageNet-1K with ResNet50 trained by Wightman et al. (2021) as a
stronger teacher. Students are trained under a stronger strategy (Huang et al., 2022a; 2023).

Teacher → Student Random Init. KD RKD SRRL DIST DiffKD Ours
ResNet50 → ResNet34 76.8 77.2 76.6 76.7 77.8 78.1 78.3
ResNet50 → EfficientNet-B0 78.0 77.4 77.5 77.3 78.6 78.8 79.0

Fine-grained Classification. In practice, available training samples may be visually similar. We
validate our method in the scenario of fine-grained classification. Table 6 reports the Top-1 accuracy
of state-of-the-art methods on CUB and Stanford Dogs. It can be found that KD can help to improve
the performance of a student network. The improvement can be further enhanced by the early-stopped
teacher in ESKD (Bengio et al., 2013), the teacher assistant in TAKD (Cho & Bengio, 2014), the
student-customized teacher in SCKD (Shazeer et al., 2017) and the asymmetric temperature scaling
in ATS (Li et al., 2022b). Nevertheless, our method consistently contributes to the most significant
improvement for various student networks.

Distillation with Stronger Teachers. To fully investigate the sensitivity of MoE-KD to the capacity
gap between the teacher and the student, we further conduct experiments on teachers with stronger
training strategies following DIST. It can be observed from Table 7 that our method keeps achieving
the best performance for both ResNet50/ResNet34 and ResNet50/EfficientNet-B0 pairs. In particular,
while the state-of-the-art DiffKD improves Top-1 accuracy by 1.3% and 0.8% for ResNet34 and
EfficientNet-B0 respectively, our proposed method enhances the two by 1.5% and 1.0%.

6 CONCLUSION

In this paper, we study knowledge distillation from a novel mixture-of-experts perspective, where we
leverage the teacher’s knowledge from outputs and learned parameters to tackle the classification
within a partition-and-classify principle. Our method comprises an input-dependent gating function
that distributes subtasks to one or a few specialized experts, and multiple experts that classify the
subset of samples based on sample-level student representations and class-level teacher representa-
tions. Moreover, by deriving the ELBO, our model can be formulated as an expectation-maximization
algorithm and trained without requiring any other loss or regularization terms. Extensive experiments
show that our method is empirically effective in not only consistently boosting the student model
classification performance in various distillation settings but also improving the feature transferability.
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ETHIC IMPACTS

Investigating the efficacy of the proposed method would consume considerable computing resources.
These efforts can contribute to increased carbon emissions, which could raise environmental concerns.
This paper does not raise any more ethical concerns due to the un-involvement of any human subjects’
practices to data set releases, potentially harmful insights, methodologies and applications, potential
conflicts of interest and sponsorship, discrimination/bias/fairness concerns, privacy and security
issues, legal compliance, and research integrity issues.

REFERENCES

Karim Ahmed, Mohammad Haris Baig, and Lorenzo Torresani. Network of experts for large-scale
image categorization. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam,
The Netherlands, October 11–14, 2016, Proceedings, Part VII 14, pp. 516–532. Springer, 2016.

Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Conditional computation in
neural networks for faster models. arXiv preprint arXiv:1511.06297, 2015.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Christopher Bishop. Pattern recognition and machine learning. Springer google schola, 2:5–43, 2006.

Shlomo E Chazan, Sharon Gannot, and Jacob Goldberger. Deep clustering based on a mixture
of autoencoders. In 2019 IEEE 29th International Workshop on Machine Learning for Signal
Processing (MLSP), pp. 1–6. IEEE, 2019.

Defang Chen, Jian-Ping Mei, Hailin Zhang, Can Wang, Yan Feng, and Chun Chen. Knowledge
distillation with the reused teacher classifier. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 11933–11942, 2022.

Liqun Chen, Dong Wang, Zhe Gan, Jingjing Liu, Ricardo Henao, and Lawrence Carin. Wasserstein
contrastive representation distillation. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16296–16305, 2021a.

Pengguang Chen, Shu Liu, Hengshuang Zhao, and Jiaya Jia. Distilling knowledge via knowledge
review. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 5008–5017, 2021b.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020.

Zitian Chen, Yikang Shen, Mingyu Ding, Zhenfang Chen, Hengshuang Zhao, Erik G Learned-Miller,
and Chuang Gan. Mod-squad: Designing mixtures of experts as modular multi-task learners.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
11828–11837, 2023.

De Cheng, Tongliang Liu, Yixiong Ning, Nannan Wang, Bo Han, Gang Niu, Xinbo Gao, and
Masashi Sugiyama. Instance-dependent label-noise learning with manifold-regularized transition
matrix estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 16630–16639, 2022a.

De Cheng, Yixiong Ning, Nannan Wang, Xinbo Gao, Heng Yang, Yuxuan Du, Bo Han, and Tongliang
Liu. Class-dependent label-noise learning with cycle-consistency regularization. Advances in
Neural Information Processing Systems, 35:11104–11116, 2022b.

Jang Hyun Cho and Bharath Hariharan. On the efficacy of knowledge distillation. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4794–4802, 2019.

Kyunghyun Cho and Yoshua Bengio. Exponentially increasing the capacity-to-computation ratio for
conditional computation in deep learning. arXiv preprint arXiv:1406.7362, 2014.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelligence
and statistics, pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.

Damai Dai, Li Dong, Shuming Ma, Bo Zheng, Zhifang Sui, Baobao Chang, and Furu Wei. Stablemoe:
Stable routing strategy for mixture of experts. arXiv preprint arXiv:2204.08396, 2022a.

Damai Dai, Wenbin Jiang, Jiyuan Zhang, Weihua Peng, Yajuan Lyu, Zhifang Sui, Baobao Chang, and
Yong Zhu. Mixture of experts for biomedical question answering. arXiv preprint arXiv:2204.07469,
2022b.

Yongxing Dai, Xiaotong Li, Jun Liu, Zekun Tong, and Ling-Yu Duan. Generalizable person re-
identification with relevance-aware mixture of experts. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 16145–16154, 2021.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the royal statistical society: series B (methodological), 39(1):
1–22, 1977.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Chengyu Dong, Liyuan Liu, and Jingbo Shang. Toward student-oriented teacher network training
for knowledge distillation. In The Twelfth International Conference on Learning Representations,
2023.

Simon Du and Jason Lee. On the power of over-parametrization in neural networks with quadratic
activation. In International conference on machine learning, pp. 1329–1338. PMLR, 2018.

Simon S Du, Jayanth Koushik, Aarti Singh, and Barnabás Póczos. Hypothesis transfer learning via
transformation functions. Advances in neural information processing systems, 30, 2017.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. The Journal of Machine Learning Research, 23(1):
5232–5270, 2022.

Huan Fu, Mingming Gong, Chaohui Wang, and Dacheng Tao. Moe-spnet: A mixture-of-experts
scene parsing network. Pattern Recognition, 84:226–236, 2018.

Shipeng Fu, Haoran Yang, and Xiaomin Yang. Contrastive consistent representation distillation. In
The British Machine Vision Conference, 2023.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 129:1789–1819, 2021.

Sam Gross, Marc’Aurelio Ranzato, and Arthur Szlam. Hard mixtures of experts for large scale
weakly supervised vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 6865–6873, 2017.

Shashank Gupta, Subhabrata Mukherjee, Krishan Subudhi, Eduardo Gonzalez, Damien Jose,
Ahmed H Awadallah, and Jianfeng Gao. Sparsely activated mixture-of-experts are robust multi-task
learners. arXiv preprint arXiv:2204.07689, 2022.

Zhiwei Hao, Jianyuan Guo, Kai Han, Han Hu, Chang Xu, and Yunhe Wang. Revisit the power of
vanilla knowledge distillation: from small scale to large scale. Advances in Neural Information
Processing Systems, 36, 2024.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Tao Huang, Shan You, Fei Wang, Chen Qian, and Chang Xu. Knowledge distillation from a stronger
teacher. Advances in Neural Information Processing Systems, 35:33716–33727, 2022a.

Tao Huang, Yuan Zhang, Shan You, Fei Wang, Chen Qian, Jian Cao, and Chang Xu. Masked
distillation with receptive tokens. arXiv preprint arXiv:2205.14589, 2022b.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tao Huang, Yuan Zhang, Mingkai Zheng, Shan You, Fei Wang, Chen Qian, and Chang Xu. Knowl-
edge diffusion for distillation. arXiv preprint arXiv:2305.15712, 2023.

Zehao Huang and Naiyan Wang. Like what you like: Knowledge distill via neuron selectivity transfer.
arXiv preprint arXiv:1707.01219, 2017.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Himalaya Jain, Spyros Gidaris, Nikos Komodakis, Patrick Pérez, and Matthieu Cord. Quest: Quan-
tized embedding space for transferring knowledge. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXI 16, pp. 173–189.
Springer, 2020.

Ying Jin, Jiaqi Wang, and Dahua Lin. Multi-level logit distillation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 24276–24285, 2023.

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-Fei Li. Novel dataset for
fine-grained image categorization: Stanford dogs. In Proc. CVPR workshop on fine-grained visual
categorization (FGVC), volume 2. Citeseer, 2011.

Andreas Kopf, Vincent Fortuin, Vignesh Ram Somnath, and Manfred Claassen. Mixture-of-experts
variational autoencoder for clustering and generating from similarity-based representations on
single cell data. PLoS computational biology, 17(6):e1009086, 2021.

A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural
networks. Advances in neural information processing systems, 25(2), 2012.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set trans-
former: A framework for attention-based permutation-invariant neural networks. In International
conference on machine learning, pp. 3744–3753. PMLR, 2019.

Bo Li, Yifei Shen, Jingkang Yang, Yezhen Wang, Jiawei Ren, Tong Che, Jun Zhang, and Ziwei Liu.
Sparse mixture-of-experts are domain generalizable learners. arXiv preprint arXiv:2206.04046,
2022a.

Lujun Li, Peijie Dong, Anggeng Li, Zimian Wei, and Ya Yang. Kd-zero: Evolving knowledge distiller
for any teacher-student pairs. Advances in Neural Information Processing Systems, 36, 2024.

Xin-Chun Li, Wen-Shu Fan, Shaoming Song, Yinchuan Li, Shao Yunfeng, De-Chuan Zhan, et al.
Asymmetric temperature scaling makes larger networks teach well again. Advances in Neural
Information Processing Systems, 35:3830–3842, 2022b.

Xuefeng Li, Tongliang Liu, Bo Han, Gang Niu, and Masashi Sugiyama. Provably end-to-end
label-noise learning without anchor points. In International conference on machine learning, pp.
6403–6413. PMLR, 2021.

Tongliang Liu and Dacheng Tao. Classification with noisy labels by importance reweighting. IEEE
Transactions on pattern analysis and machine intelligence, 38(3):447–461, 2015.

Xiaolong Liu, Lujun Li, Chao Li, and Anbang Yao. Norm: Knowledge distillation via n-to-one
representation matching. arXiv preprint arXiv:2305.13803, 2023.

Yufan Liu, Jiajiong Cao, Bing Li, Chunfeng Yuan, Weiming Hu, Yangxi Li, and Yunqiang Duan.
Knowledge distillation via instance relationship graph. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 7096–7104, 2019.

Roy Miles, Adrián López Rodríguez, and Krystian Mikolajczyk. Information theoretic representation
distillation. arXiv preprint arXiv:2112.00459, 2021.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Matsukawa, and Hassan
Ghasemzadeh. Improved knowledge distillation via teacher assistant. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pp. 5191–5198, 2020.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help? Advances
in neural information processing systems, 32, 2019.

Yulei Niu, Long Chen, Chang Zhou, and Hanwang Zhang. Respecting transfer gap in knowledge
distillation. Advances in Neural Information Processing Systems, 35:21933–21947, 2022.

Dae Young Park, Moon-Hyun Cha, Daesin Kim, Bohyung Han, et al. Learning student-friendly
teacher networks for knowledge distillation. Advances in neural information processing systems,
34:13292–13303, 2021.

Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu. Making
deep neural networks robust to label noise: A loss correction approach. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 1944–1952, 2017.

Baoyun Peng, Xiao Jin, Jiaheng Liu, Dongsheng Li, Yichao Wu, Yu Liu, Shunfeng Zhou, and
Zhaoning Zhang. Correlation congruence for knowledge distillation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 5007–5016, 2019.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:211–252, 2015.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Mahdi Soltanolkotabi, Adel Javanmard, and Jason D Lee. Theoretical insights into the optimization
landscape of over-parameterized shallow neural networks. IEEE Transactions on Information
Theory, 65(2):742–769, 2018.

Wonchul Son, Jaemin Na, Junyong Choi, and Wonjun Hwang. Densely guided knowledge distillation
using multiple teacher assistants. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 9395–9404, 2021.

Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from noisy
labels with deep neural networks: A survey. IEEE Transactions on Neural Networks and Learning
Systems, 2022.

Samuel Stanton, Pavel Izmailov, Polina Kirichenko, Alexander A Alemi, and Andrew Gordon Wilson.
Does knowledge distillation really work? arXiv preprint arXiv:2106.05945, 2021.

Shangquan Sun, Wenqi Ren, Jingzhi Li, Rui Wang, and Xiaochun Cao. Logit standardization in
knowledge distillation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 15731–15740, 2024.

Amirhossein Tavanaei. Embedded encoder-decoder in convolutional networks towards explainable ai.
arXiv preprint arXiv:2007.06712, 2020.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. arXiv
preprint arXiv:1910.10699, 2019.

Tsung Wei Tsai, Chongxuan Li, and Jun Zhu. Mice: Mixture of contrastive experts for unsupervised
image clustering. In International conference on learning representations, 2021.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Lin Wang and Kuk-Jin Yoon. Knowledge distillation and student-teacher learning for visual in-
telligence: A review and new outlooks. IEEE transactions on pattern analysis and machine
intelligence, 44(6):3048–3068, 2021.

Qizhou Wang, Bo Han, Tongliang Liu, Gang Niu, Jian Yang, and Chen Gong. Tackling instance-
dependent label noise via a universal probabilistic model. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pp. 10183–10191, 2021.

Shicai Wei, Chunbo Luo, and Yang Luo. Scaled decoupled distillation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15975–15983, 2024.

Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved training
procedure in timm. arXiv preprint arXiv:2110.00476, 2021.

Lemeng Wu, Mengchen Liu, Yinpeng Chen, Dongdong Chen, Xiyang Dai, and Lu Yuan. Residual
mixture of experts. arXiv preprint arXiv:2204.09636, 2022.

Xiaobo Xia, Tongliang Liu, Nannan Wang, Bo Han, Chen Gong, Gang Niu, and Masashi Sugiyama.
Are anchor points really indispensable in label-noise learning? Advances in neural information
processing systems, 32, 2019.

Xiaobo Xia, Tongliang Liu, Bo Han, Nannan Wang, Mingming Gong, Haifeng Liu, Gang Niu,
Dacheng Tao, and Masashi Sugiyama. Part-dependent label noise: Towards instance-dependent
label noise. Advances in Neural Information Processing Systems, 33:7597–7610, 2020.

Xiaobo Xia, Wenhao Yang, Jie Ren, Yewen Li, Yibing Zhan, Bo Han, and Tongliang Liu. Pluralistic
image completion with probabilistic mixture-of-experts. arXiv preprint arXiv:2205.09086, 2022.

Fuzhao Xue, Xiaoxin He, Xiaozhe Ren, Yuxuan Lou, and Yang You. One student knows all experts
know: From sparse to dense. arXiv preprint arXiv:2201.10890, 2022.

Jing Yang, Brais Martinez, Adrian Bulat, Georgios Tzimiropoulos, et al. Knowledge distillation via
softmax regression representation learning. International Conference on Learning Representations
(ICLR), 2021.

Shuo Yang, Erkun Yang, Bo Han, Yang Liu, Min Xu, Gang Niu, and Tongliang Liu. Estimating
instance-dependent bayes-label transition matrix using a deep neural network. In International
Conference on Machine Learning, pp. 25302–25312. PMLR, 2022.

Zhendong Yang, Ailing Zeng, Chun Yuan, and Yu Li. From knowledge distillation to self-knowledge
distillation: A unified approach with normalized loss and customized soft labels. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 17185–17194, 2023.

Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim. A gift from knowledge distillation: Fast
optimization, network minimization and transfer learning. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 4133–4141, 2017.

Li Yuan, Francis EH Tay, Guilin Li, Tao Wang, and Jiashi Feng. Revisiting knowledge distillation via
label smoothing regularization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 3903–3911, 2020.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Dejiao Zhang, Yifan Sun, Brian Eriksson, and Laura Balzano. Deep unsupervised clustering using
mixture of autoencoders. arXiv preprint arXiv:1712.07788, 2017.

Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun Liang. Decoupled knowledge distillation.
In Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, pp.
11953–11962, 2022.

Kaixiang Zheng and EN-HUI YANG. Knowledge distillation based on transformed teacher matching.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=MJ3K7uDGGl.

14

https://openreview.net/forum?id=MJ3K7uDGGl
https://openreview.net/forum?id=MJ3K7uDGGl


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Helong Zhou, Liangchen Song, Jiajie Chen, Ye Zhou, Guoli Wang, Junsong Yuan, and Qian Zhang.
Rethinking soft labels for knowledge distillation: A bias-variance tradeoff perspective. arXiv
preprint arXiv:2102.00650, 2021.

Yu Qing Zhou, Xixuan Julie Liu, and Yuanzhe Dong. Build a robust qa system with transformer-based
mixture of experts. arXiv preprint arXiv:2204.09598, 2022.

Yichen Zhu and Yi Wang. Student customized knowledge distillation: Bridging the gap between
student and teacher. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 5057–5066, 2021.

A LIMITATIONS.

This paper only explores one of the parameterization schemes for the proposed mixture-of-experts
framework. It will be exciting to explore more possibilities for parameterization in the future when
promoting KD from the mixture-of-experts perspective.

B IMPLEMENTATION DETAILS FOR LINEAR PROBING

We utilize an SGD optimizer with a momentum of 0.9, a batch size of 64 and a weight decay of 0.
The initial learning rate starts at 0.1 and is decayed by 10 at the 30-th, 60-th and 90-th epochs within
a total of 100 epochs.

C STANDARD DEVIATION FOR THE REPORTED RESULTS ON CIFAR-100

Below, we report the standard deviation (Std.) for the experiment results of our method on CIFAR-100
in Table 8 and Table 9. Results are averaged over 5 independent runs.

Table 8: Top-1 ACC (%) on CIFAR-100, Homogenous Architecture. The best results are in boldface.

Teacher WRN-40-2 WRN-40-2 ResNet56 ResNet110 ResNet32x4 VGG13

Student WRN-16-2 WRN-40-1 ResNet20 ResNet32 ResNet8x4 VGG8

Mean 76.98 75.21 72.49 74.58 77.10 75.03
Std. 0.37 0.32 0.26 0.27 0.41 0.25

Table 9: Top-1 ACC (%) on CIFAR-100, Heterogeneous Architecture. The best result is in boldface.

Teacher VGG13 ResNet50 ResNet32x4 ResNet32x4 WRN-40-2

Student MobileNetV2 MobileNetV2 ShuffleNetV1 ShuffleNetV2 ShuffleNetV1

Mean 70.54 71.38 78.23 78.69 77.52
Std. 0.46 0.29 0.24 0.43 0.35

D THE ELBO DERIVATION

To begin with, we formally state the facts that will be used in our derivation:

Fact 1. Since Y T ∈ {1, 2, · · · ,K}, for any arbitrary distribution P̂ (Y T = k|xi), we have∑K
k=1 P̂ (Y T = k|xi) ≡ 1

Fact 2. For the events A, B, C, Bayes’ theorem implies that P (A,C|B) = P (A|B,C)P (C|B)

Fact 3. Based on Fact 2, for the events A, B, C, we have P (C|B) = P (A,C|B)
P (A|B,C)
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Fact 4. Since Y T ∈ {1, 2, · · · ,K}, for any arbitrary distributions P̂ (Y T = k|xi) and P (Y T =

k|xi), we have DKL

[
P̂ (Y T = k|xi)||P (Y T = k|xi)

]
≥ 0.

logPS
θ (Y S = yi|xi)

=1 · logPS
θ (Y S = yi|xi)

=

[
K∑

k=1

P̂ (Y T = k|xi)

]
· logPS

θ (Y S = yi|xi) (Fact 1)

=

K∑
k=1

[
P̂ (Y T = k|xi) logP

S
θ (Y S = yi|xi)

]
=

K∑
k=1

P̂ (Y T = k|xi) log
PS
θ (Y S = yi, Y

T = k|xi)

PS
θ (Y T = k|Y S = yi,xi)

, (Fact 3)

=

K∑
k=1

P̂ (Y T = k|xi) log
PS
θ (Y S = yi|xi, Y

T = k)PS
θ (Y T = k|xi)

PS
θ (Y T = k|Y S = yi,xi)

(Fact 2)

=

K∑
k=1

P̂ (Y T = k|xi) log

[
PS
θ (Y S = yi|xi, Y

T = k)PS
θ (Y T = k|xi)

PS
θ (Y T = k|Y S = yi,xi)

· P̂ (Y T = k|xi)

P̂ (Y T = k|xi)

]

=

K∑
k=1

[
P̂ (Y T = k|xi) log

PS
θ (Y S = yi|xi, Y

T = k)PS
θ (Y T = k|xi)

P̂ (Y T = k|xi)

]
+DKL

[
P̂ (Y T = k|xi)||PS

θ (Y T = k|Y S = yi,xi)
]

≥
K∑

k=1

P̂ (Y T = k|xi) log
PS
θ (Y S = yi|Y T = k,xi)P

S
θ

(
Y T = k|xi

)
P̂ (Y T = k|xi)

(Fact 4)

=

K∑
k=1

[
P̂ (Y T = k|xi) logP

S
θ (Y S = yi|Y T = k,xi)

]
−DKL

[
P̂ (Y T = k|xi)||PS

θ (Y T = k|xi)
]

=ELBO(P̂ ,xi, yi;θ).
(18)
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