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ABSTRACT

Recent years have seen large numbers of learning-enabled autonomous systems
deployed in the real world. Unfortunately, increased deployment has seen a corre-
sponding increase in accidents involving these systems. We must be able to predict
the ways in which these systems might fail and take steps to prevent those failures
before deployment. Existing tools for failure prediction struggle to search over
high-dimensional environmental parameters and provide little guidance on how to
mitigate failures once they are discovered. In this paper, we develop a novel frame-
work to efficiently predict failures and propose policy parameter updates to mitigate
those failures. By re-framing adversarial optimization as a sequential inference
problem, our approach is able to generate a more diverse set of challenging failures,
which in turn lead to more robust repaired policies. We propose both gradient-free
and gradient-based approaches to solving this inference problem, achieving state-
of-the-art performance for policy repair, and we include a theoretical and empirical
evaluation of the trade-offs between the two.

1 INTRODUCTION

Assuring the reliability of learning-enabled systems is a challenging open problem, particularly
in domains like robotics where learned components are deployed in an uncertain environment.
Nevertheless, it is critical to understand how a system will behave when faced with uncertainty; for
instance, are there environmental factors that might cause the system to fail, and are there ways to
repair the system to avoid such failures in the first place?

Adversarial testing methods propose to solve this problem by searching for counterexamples where
the learned system performs poorly, then retraining on those counterexamples (Madry et al., 2018;
Salman et al., 2021; Hanselmann et al., 2022; Ding et al., 2020; Corso et al., 2019; Wang et al., 2021).
Adversarial methods are typically greedy, using gradient-based or gradient-free optimization to seek
out the most severe or most likely failures, but this leads to a critical issue: a loss of diversity in the
counterexamples. If the counterexamples over-represent certain cases, then the retraining process
will over-fit to those cases, reducing robustness.

The challenge of finding diverse counterexamples has motivated recent work in rare-event prediction
using methods like Markov Chain Monte Carlo (MCMC) and importance sampling (Sinha et al.,
2020; Delecki et al., 2023; Zhou et al., 2021; O’ Kelly et al., 2018; Corso et al., 2019). Unfortunately,
existing rare-event prediction methods, particularly importance sampling, suffer from the curse of
dimensionality as rare events become sparse in high-dimensional search spaces (Betancourt, 2017).
Moreover, existing failure prediction methods provide little guidance on how to update the policy
once failures have been discovered.

In this paper, we aim to close the gap between adversarial training and rare-event prediction with
RADIUM: a framework that simultaneously predicts diverse, challenging failures and updates
the control policy to repair those failures, as shown in Fig. 1. To efficiently explore the failure
space, we start with highly likely failures and gradually expand our search to more severe rare
counterexamples, continuously repairing the policy as the failure distribution shifts. We make the
following contributions:

1. We reframe adversarial optimization as a sequential inference problem, leading to a novel
framework for predicting and repairing a diverse set of failures.
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Figure 1: An overview of our approach for closed-loop rare-event prediction, which efficiently
predicts and repairs failures in autonomous systems. Our framework alternates between failure
prediction and repair sub-solvers, which use a simulated environment to efficiently sample from the
distributions (2) and (3). We use differentiable rendering and simulation to accelerate our method
with end-to-end gradients, but we also propose a gradient-free implementation.

2. We develop both gradient-free and gradient-based variants of our framework, relying on
differentiable simulation and rendering for the latter, and evaluate the performance trade-offs
when scaling to high-dimensional problems.

3. We provide a theoretical analysis of our sequential inference framework, proving correctness
and asymptotic convergence for both variants. For the gradient-based variant, we also
provide finite-sample convergence rates in a restricted setting.

In contrast with existing methods, many of which are specialized to autonomous driving (Ding
et al., 2020; Riedmaier et al., 2020; Zhong et al., 2022), our method is general purpose and requires
minimal reward shaping. Unlike previous gradient-based methods for rare-event prediction (Sinha
et al., 2020; Dawson and Fan, 2023), which do not support systems with vision in the loop, our
use of differentiable rendering allows us to test and repair more complex autonomous systems.
Empirically, experiments on a range of robotics tasks show that our method outperforms existing
methods (gradient-based adversarial training and adversarial RL) for failure prediction and policy
repair, generating repaired policies with 2-3x lower failure rates. We include code for our method in
the supplementary materials and plan to open-source our framework.

1.1 RELATED WORK

Multiple prior works deal with the problem of failure mode prediction for autonomous systems, often
in the context of autonomous vehicles, or AVs (Xu et al., 2022; Riedmaier et al., 2020; O’ Kelly
et al., 2018; Corso et al., 2019; Wang et al., 2021; Sun et al., 2021; Zhong et al., 2022; Corso and
Kochenderfer, 2020; Zhang et al., 2022; Hanselmann et al., 2022; Zhong et al., 2022)). However, the
large majority of these methods rely on black-box methods that struggle to scale to high-dimensional
search spaces. Since our goal is to not only predict but also repair failures (thus searching over
high-dimensional policy space), we are interested instead in gradient-based methods with improved
scalability. Unfortunately, existing gradient-based failure prediction methods cannot handle systems
with vision in the loop. Zhong et al. (2022) uses gradients through temporal logic driving rules to
generate test cases, but does not consider agents with vision-based policies. Hanselmann et al. (2022)
find that skipping the rendering step during backpropagation is sufficient for gradient-based failure-
case generation, but this method is not able to repair visual-feedback policies. Sinha et al. (2020)
learn a proxy model for the end-to-end dynamics, including a vision-based policy, but end-to-end
proxy modeling is generally not applicable to rare-event generation, since it is difficult to include
enough failure examples in the training data for the proxy model.

2 PROBLEM

We begin by considering a general autonomous system that receives observations o ∈ O and makes
control decisions using a learned control policy πθ : O 7→ A, where θ are the parameters of that
policy. This agent operates in closed loop with an environment with dynamics fϕ : X 7→ X and
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rendering function Rϕ : X 7→ O, where uncertainty in the environment manifests as uncertain
parameters ϕ with probability density pϕ,0. Without loss of generality, we assume that randomness in
the environment has been “factored out” into ϕ (so that f and R are deterministic given ϕ). We assign
a cost J(θ, ϕ) to a pair of policy and environmental parameters by rolling out for a fixed T -step
horizon:

ot = Rϕ(xt); xt+1 = fϕ(xt, πθ(ot)); J(θ, ϕ) = J(x0, . . . , xT ) (1)

In this context, failure prediction involves finding environmental parameters ϕ that induce high cost
for given policy parameters θ, i.e. finding multiple solutions ϕ∗(θ) = findϕJ(θ, ϕ) ≥ J∗ for failure
threshold J∗, while failure repair involves modifying the initial policy parameters θ0 to achieve low
costs despite possible variation in ϕ, i.e. finding a nearby θ∗ = minθ ||θ0−θ||2 s.t. Eϕ[J(θ, ϕ)] ≤ J∗.

2.1 FAILURE PREDICTION

Simply optimizing for the highest-severity or most-likely failure will give an incomplete picture of
the system’s performance and lead to more conservative behavior. Instead, we balance the prior
likelihood of a disturbance with the severity of the induced failure by sampling failures from the
pseudo-posterior

pfailure(ϕ; θ) ∝ pϕ,0(ϕ)e−[J∗−J(θ,ϕ)]+ (2)
where J∗ is the cost threshold for a failure event and [·]+ is the exponential linear unit. Intuitively,
we can interpret this likelihood as a posterior over environmental parameters ϕ conditioned on a
failure occurring (Sinha et al., 2020; Zhou et al., 2021; Ma et al., 2019; Dawson and Fan, 2023).
By framing the search for failures prediction as a sampling problem, rather than the traditional
adversarial optimization, we gain a number of advantages. First, we are able to generate a more
diverse set of failure modes than would be discovered by an extremum-seeking approach, as shown
by our experiments in Section 5. Second, we are able to draw on a rich literature of theoretically
well-motivated sampling algorithms to develop our approach, as we discuss in Sections 3 and 4.

2.2 FAILURE REPAIR

This is not the first paper to take a sampling-based approach to failure prediction; for example,
O’ Kelly et al. (2018), Sinha et al. (2020), and Zhou et al. (2021) also approach failure prediction
using this lens. Our insight is that this sampling framework can be extended to not only predict
failures but also repair the underlying policy, thus mitigating the impact of the failure. Given initial
policy parameters θ0 and a population of anticipated failure modes ϕ1, . . . , ϕn, we can increase the
robustness of our policy by sampling from a corresponding repair pseudo-posterior, similar to Eq. (2),

prepair(θ; θ0, ϕ1, . . . , ϕn) ∝ pθ,0(θ; θ0)e−
∑

ϕi
[J(θ,ϕi)−J∗]+/n (3)

where the prior likelihood pθ,0 regularizes the search for repaired policies that are close to the original
policy. Intuitively, this distribution of repaired policies can be seen as a posterior over policies
conditioned on the event that a failure does not occur in the given scenarios. Sampling from this
posterior can be seen as a form of regularized re-training on the set of predicted failures, since
maximizing the log of (3) is equivalent to minimizing the empirical risk

∑
ϕi
[J(θ, ϕi) − J∗]+/n

with regularization ||θ − θ0||22 (assuming a Gaussian prior). This connection helps motivate our use
of (3), but we find empirically in Section 5 that the increased diversity from sampling rather than
policy gradient optimization yields better policies in practice.

3 APPROACH

Previous works have shown that sampling from a failure distribution like Eq. (2) can generate novel
failures (Zhou et al., 2021; Sinha et al., 2020; Delecki et al., 2023), but several challenges have
prevented these works from considering end-to-end policy repair as well. Our main contribution is a
framework for resolving these challenges and enabling simultaneous failure prediction and repair,
which we call RADIUM (Robustness via Adversarial Diversity using MCMC, illustrated in Fig. 1).
We have designed this framework to take advantage of problem structure (e.g. differentiability) when
possible, but we provide the ability to swap gradient-based subsolvers for gradient-free ones when
needed, and we include a discussion of the associated trade-offs.
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Challenge 1: Distribution shift during retraining Previous methods have proposed generating
failure examples for use in retraining, but there is an inherent risk of distribution shift when doing
so. Once we repair the policy, previously-predicted failures become stale and are no longer useful
for verification (i.e. the distribution of likely failures has shifted). In the worst case, this can lead
to overconfidence if the system claims to have repaired all previously-discovered failures while
remaining vulnerable to other failures. To address this issue, we interleave failure and repair steps
to continuously update the set of predicted failures as we repair the policy, creating an adversarial
sampling process that generates a robust repaired policy along with a set of salient failure cases.

Challenge 2: Exploring diverse failure modes Traditional methods like Markov chain Monte
Carlo (MCMC) are able to sample from non-normalized likelihoods like (2) and (3), but they struggle
to fully explore the search space when the likelihood is highly multi-modal. To mitigate this issue,
we take inspiration from the recent success of diffusion processes (Song et al., 2023; Zhong et al.,
2022) and sequential Monte Carlo algorithms (Rubino and Tuffin, 2009) that interpolate between an
easy-to-sample prior distribution and a multi-modal target distribution. Instead of sampling directly
from the posterior, we begin by sampling from the unimodal, easy-to-sample prior and then smoothly
interpolate to the posterior distributions (2)-(3). This process yields the tempered likelihood functions:

p̃failure ∝ pϕ,0(ϕ)e−τ [J∗−J(θ,ϕ)]+ (4) p̃repair ∝ pθ,0(θ, θ0)e−
τ
n

∑
ϕi

[J(θ,ϕi)−J∗]+ (5)

where the tempering parameter τ is smoothly varied from 0 to 1. When τ = 0, this is equivalent to
sampling from the prior distributions, and when τ → 1 we recover the full posteriors (2)-(3). This
tempering process reduces the risk of overfitting to one particular mode of the failure distribution and
encourages even exploration of the failure space.

Challenge 3: Efficiently sampling in high dimension Previous works have proposed a wide
variety of sampling algorithms that might be used as sub-solvers in our framework, including MCMC
methods like random-walk Metropolis-Hastings (RMH; Hastings (1970)), Hamiltonian Monte Carlo
(HMC; Neal (2011)), and the Metropolis-adjusted Langevin algorithm (MALA; Bresag (1994)),
variational inference methods like Stein Variational Gradient Descent (SVGD; Liu and Wang (2016)),
and other black-box methods like adaptive importance sampling (O’ Kelly et al., 2018). RADIUM is
able to use any of these sampling methods as sub-solvers for either the prediction or repair. Generally,
these sampling methods can be classified as either gradient-free or gradient-based. Theoretical
and empirical evidence suggests that gradient-based methods can enjoy faster mixing time in high
dimensions on certain classes of sufficiently smooth (but non-convex) problems (Ma et al., 2019),
but autonomous systems with visual feedback have historically been treated as black-boxes due to
an inability to backpropagate through the rendering step (Zhou et al., 2021; O’ Kelly et al., 2018;
Sinha et al., 2020). To enable the use of gradient-based samplers in RADIUM, we draw upon
recent advances in differentiable simulation and rendering (Hu et al., 2019; Le Lidec et al., 2021)
provide end-to-end gradients. In Sections 4 and 5, we provide theoretical and empirical evidence of
a performance advantage for gradient-based samplers, but in order to make RADIUM compatible
with existing non-differentiable simulators we also conduct experiments where RADIUM uses
gradient-free sampling subroutines.

3.1 RADIUM

Pseudocode for RADIUM is provided in Algorithm 1. The algorithm maintains separate populations
of candidate repaired policies [θ1, . . . , θn] and failures [ϕ1, . . . , ϕn] that are updated overN sampling
rounds. In each round, we sample a set of new candidate policies from the repair generating
process (5), then sample a new set of failures that attack the current population of policies. In practice,
we average the tempered failure log probability (4) over the population of candidate designs, which
results in a smoother distribution.

RADIUM supports a wide range of subroutines for sampling candidate failures and repaired policies.
In our experiments and the provided implementation, we include RMH and MALA (gradient-free
and gradient-based MCMC algorithms, respectively); we choose these particular methods to provide
a direct comparison between similar algorithms with and without gradients (MALA reduces to RMH
when the gradient is zero).
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Algorithm 1: RADIUM: Robustness via Adversarial Diversity using MCMC
Input: N rounds, m steps per round, stepsize λ, population size n, tempering rate α, sampling

algorithm (e.g. MALA, RMH, HMC, ...)
1 Sample initial failures and policies using priors: [ϕ1, . . . , ϕn]0

iid∼ pϕ,0, [θ1, . . . , θn]0
iid∼ pθ,0;

2 for i = 1, . . . , N do
3 τ ← 1− e−αi/N ; // Tempering schedule

4 Sample [θ1, . . . , θn]i
iid∼ (5); // Sample repaired policies

5 Sample [ϕ1, . . . , ϕn]i
iid∼ (4); // Generate failures attacking θ∗i

6 end
Return: Repaired policy θ∗N = argmaxi (5) and failures [ϕ1, . . . , ϕn]N attacking that policy.

4 THEORETICAL ANALYSIS

The iterative adversarial sampling process defined in Alg. 1 raises a few theoretical questions. First,
when can we expect the individual sampling steps on lines 4 and 5 to converge, and under what
conditions might we expect a gradient-based sampling sub-routine to converge faster than a gradient-
free one? Second, assuming that these individual samplers converge, what sort of policies will result
from the adversarial sampling loop in Alg. 1?

Convergence and gradient acceleration RADIUM inherits the asymptotic convergence guarantees
of the particular subsolvers used for each sampling step. For example, when using an MCMC sampler,
so long as that sampler can propose arbitrarily large steps with non-zero probability and satisfies
detailed balance (e.g. through the use of a Metropolis adjustment), then the sampler will produce
samples asymptotically close to the target sampling distribution. Since the conditions for asymptotic
convergence of MCMC samplers are relatively weak Hastings (1970), it is more interesting to ask
about finite-sample convergence rates; in particular, under what conditions can we expect gradient-
based samplers like MALA to accelerate convergence to the target distribution?

In many robotics problems, even when analytical gradients are available, it is unclear whether these
gradients are useful for optimization (i.e. low empirical bias and variance; Suh et al. (2022)). Here,
we build on recent theoretical results by Ma et al. (2019) to provide sufficient conditions for fast,
polynomial-time convergence of gradient-based samplers in our setting.

Theorem 4.1. Let J be a L-Lipschitz smooth cost function (i.e. ∇J is L-Lipschitz continuous), let the
log prior distributions log pϕ,0 and log pθ,0 be Lipschitz smooth everywhere and m-strongly convex
outside a ball of finite radius R, and let d = max (dim θ,dimϕ) be the dimension of the search
space. If m > L, then MALA with appropriate step size will yield samples within ϵ total variation
distance of the target distributions (4) and (5) with total number of sampling steps ≤ Õ

(
d2 ln 1

ϵ

)
.

A proof is given in the appendix, which also provides the required step size for the MALA sampler.
The key idea of the proof is to rely on the log-concavity of the prior distributions to dominate the
non-convexity of the cost function sufficiently far from the central modes. Theorem 4.1 requires
smoothness assumptions on the cost; we recognize that this assumption is difficult to verify in practice
and does not hold in certain domains (notably when rigid body contact is involved). However, in
the problems we consider it is possible to smooth both the renderer and scene representation (by
blurring the scene and using smooth signed distance functions), thus smoothing the gradients of
J . The smoothness and convexity conditions hold for many common prior distributions, such as
Gaussian and smoothed uniform distributions.

Adversarial Joint Distribution Even if the samplers for both policy and environmental parameters
converge within each round of Alg. 1, it is not clear what will be the effect of running these samplers
repeatedly in an adversarial manner. Our next theoretical result defines the joint distribution of θ and
ϕ as a result of this adversarial sampling loop. To simplify the theoretical analysis, we consider the
case when population size n = 1, and we replace the smooth ELU with a ReLU in (2) and (3).

5



Under review as a conference paper at ICLR 2024

Figure 2: Environments for drone navigation, AV control, and household object manipulation. Our
method is applicable in a wide range of settings and is agnostic to the type of learned policy used.
Inset: a robot’s-eye-view of each scene rendered using our differentiable renderer.

Theorem 4.2. The iterative adversarial sampling procedure in Alg. 1 yields policies drawn from a
marginal distribution with density function

fθ(θ
∗) = pθ,0(θ

∗)

(
Eϕ∼pϕ,0

[
eJ(θ

∗,ϕ)−J∗ |J(θ∗, ϕ) ≤ J∗]
Eϕ∼pϕ,0

[
eJ(θ∗,ϕ)−J∗] +

P[J(θ∗, ϕ) > J∗]

Eϕ∼pϕ,0

[
eJ(θ∗,ϕ)−J∗]

)
(6)

where P(J(θ∗, ϕ) > J∗ = Eϕ∼pϕ,0
[1(J(θ∗, ϕ) ≥ J∗)] is the probability of failure when ϕ is sampled

from the prior distribution.

The proof is included in the appendix and follows from the Hammersley-Clifford theorem for Gibbs
samplers (Robert and Casella, 2004). The first term in the parenthesis in (6) is bounded above by
1 and maximized when the policy does not experience failure (in which case the conditional and
unconditional expectations will be equal). The numerator of the second term bounded [0, 1], while the
denominator grows exponentially large when a failure occurs. As a result, the marginal distribution
of θ∗ assigns higher probability (relative to the prior) for policies that avoid failure.

5 EXPERIMENTS

Next, we evaluate our proposed method using experiments in a range of robotics environments:
autonomous vehicle control, visual navigation of an aerial robot in a cluttered environment, and grasp
identification for robotic manipulation. We compare the the performance and scalability of both
variants of RADIUM (with gradient-free and gradient-based MCMC sampling subroutines) with
state-of-the-art adversarial training methods.

5.1 EXPERIMENTAL DESIGN

Environments We consider three distinct environments with two tasks in each, as shown in Fig. 2.
AV (highway): An autonomous vehicle must overtake two other vehicles. AV (intersection): the
autonomous vehicle must navigate an uncontrolled intersection with crossing traffic. In both tasks,
the actions of the non-ego vehicles are uncertain, and the AV observes RGBd images from a front-
facing camera as well as its speed. Drone (static): A drone must safely navigate through a cluttered
environment in windy conditions. There is uncertainty in the wind speed and location of all obstacles.
Drone (dynamic): the same but the obstacles move with uncertain velocities. Initial policies θ0 for
drone and intersection environments were pretrained using behavior cloning, and policies for the
highway environment were pretrained using PPO Schulman et al. (2017). Grasp (box/mug): a robot
must locate and grasp an object using a depth image of the scene. There is uncertainty in the location
of the objects and in the location of a nearby distractor object. The grasp detector is trained with
labels of ground-truth grasp affordances.

The dimension of the failure space is 20 for the highway task, 30 for the intersection task, 12 for the
static drone task, 22 for the dynamic drone task, and 4 for the grasping tasks. The dimension of the
policy space is 64k for the highway and intersection tasks, 84k for the drone tasks, and 266k for the
grasping tasks. More details on each task are in the supplementary material, including cost functions
and failure thresholds.
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Table 1: Failure rate of policies optimized using different adversarial methods on a test set of 1,000 ϕ
sampled i.i.d. from the prior. θ0 indicates the performance of the original policy prior to retraining.
Mean and standard deviation (subscript) across 4 seeds are shown; lower is better.

Task

AV (hw.) AV (int.) Drone (st.) Drone (dyn.) Grasp (box) Grasp (mug)

θ0 0.11 0.92 0.17 0.30 0.0088 0.011
GD 0.440.40 1.00.0 0.270.46 0.260.17 0.00880.0012 0.0110.0025

L2C 0.120.018 0.820.20 0.170.013 0.270.013 0.00880.0012 0.0110.0025
R0 0.0560.10 0.510.34 0.210.013 0.310.13 0.00400.0034 0.00450.0061
R1 0.0560.068 0.430.38 0.0780.029 0.160.070 0.00280.0038 0.00350.0044

Simulator Since we require a differentiable renderer and simulation engine for our work, we were
not able to use an off-the-shelf simulator like CARLA (Dosovitskiy et al., 2017). Instead, we wrote
our own simulator and basic differentiable renderer using JAX.

Baselines We compare with two representative baselines. Gradient descent (GD) predicts failure
modes that locally maximize the posterior likelihood; this is meant to represent any number of
gradient-based adversarial optimization schemes (Hanselmann et al., 2022). Learning to collide (L2C)
uses black-box optimization (REINFORCE) to search for failure cases (Ding et al., 2020). We denote
the gradient-free and gradient-based variants of RADIUM as R0 and R1, respectively. All methods
were run on the same GPU model with the same sample budget for each task. Hyperparameters for
all experiments are given in the appendix.

Metrics To measure the robustness of the optimized policies, we report the failure rate (FR) on a
test set of 1,000 i.i.d. samples of ϕ from the prior pϕ,0. To assess the quality of the counterexamples,
we compare the difference between the failure rate predicted on the test set with that predicted on
the counterexamples (a more accurate estimate is better). Finally, for each task, we report the time
required for simulating a rollout both with and without reverse-mode differentiation.

5.2 RESULTS

Table 1 shows the failure rate of policies optimized using each method, along with the failure rate
of the policy prior to any adversarial optimization and repair, and Fig. 3 shows examples of failure
cases and repaired policies generated using R1. We observe a wide range of prior failure rates across
tasks due to the difficulty of pre-training successful policies in all domains; this range of prior failure
rates allows us to compare tasks where failures are easy to find with those where failures are more
rare. Across tasks, we find that the gradient-based variant of RADIUM consistently yields the most
robust repaired policy. In some cases, we find that adversarial training using GD or R0 can lead to
catastrophic forgetting where overfitting to the counterexamples leads to a repaired policy with worse
performance than the original, but we observe that R1 avoids this issue.

Table 2 compares the failure rate on the counterexamples found by each method with the failure rate
seen on the test set, indicating how adversarial the counterexamples are. As expected, we find that all
methods find counterexamples that are at least as difficult as those sampled randomly from the prior.

Table 3 reports the time required to simulate a single rollout for each task, both with and without AD.
We observe that computing derivatives through the simulator and renderer results in a slowdown of
2-5x relative to a simulation without derivatives, and gradient-based methods GD and R1 typically
run 2x more slowly than gradient-free methods L2C and R0.

5.3 DISCUSSION

Comparing these adversarial optimization methods, we find that our proposed gradient-based method,
R1, consistently finds more robust repaired policies than both gradient-free and gradient-based
baselines. This pattern holds when failures are relatively easy to find (AV int.) and when failures are
relatively rare (AV hw. and grasping). We attribute the improved performance of our method to two
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Table 2: Mean relative difference between failure rate estimated using counterexamples and failure
rate on a test set of 1,000 ϕ sampled i.i.d. from the prior. Mean and standard deviation (subscript)
across 4 seeds are shown; positive indicates an overestimate.

Task

AV (hw.) AV (int.) Drone (st.) Drone (dyn.) Grasp (box) Grasp (mug)

GD −0.09%0.31 0.00%∗
0.00 −0.09%0.13 −0.05%0.71 −1.28%0.25 −0.80%0.10

L2C 0.24%1.51 0.06%0.18 0.78%0.96 −0.44%0.65 −1.28%0.25 −0.80%0.10

R0 −0.10%0.11 −0.02%0.01 2.10%0.64 0.95%0.79 −1.12%1.33 −0.89%0.65

R1 −0.10%0.80 −0.22%0.45 −0.36%1.14 1.21%0.56 −1.25%1.35 −0.79%0.93
∗ GD fails on 100% of test cases and counterexamples, with trivially zero error.

Table 3: Time required for simulating a rollout with and without autodiff (AD) for each task. Average
and standard deviation (subscript) reported across 100 trials on an NVIDIA RTX A4000.

Task

AV (hw.) AV (int.) Drone (sts) Drone (dyn.) Grasp (all)

Without AD 0.700.003 s 2.220.01 s 0.390.002 s 0.390.001 s 0.00455.1×10−5 s
With AD 1.720.003 s 6.650.14 s 1.770.06 s 1.830.04 s 0.00493.8×10−5

factors. Relative to gradient-free methods, R1 is able to more efficiently explore the space of failures
and repaired policies by using end-to-end gradients of the sampling distribution; since the space of
policy repairs can be quite high, this is particularly helpful during the repair step. In particular, we
observed that the gradient-free method L2C did not substantially change policy performance in any
task; this is likely because this method is based on REINFORCE and requires a much larger sample
budget than that used in these experiments (we limited all methods to 1000 total simulator queries).

Relative to adversarial gradient-based optimization, RADIUM benefits from its posterior sampling-
based approach: not only does sampling improve the diversity of the counterexamples, leading to a
better repaired policy, but MCMC is also more robust than GD to poorly-conditioned gradients, since
it is able to reject large repair steps that decrease the performance of the policy, even when we apply
the same gradient normalization to both GD and R1.

Of course, there are two significant downsides to relying on gradients. First, automatic differentiation
increases the computational cost of each simulation query (typically by 2-5x, as shown in Table 3),
which in turn caused GD and R1 to run 2x more slowly than L2C and R0 on the same hardware.
Despite this computational cost, our results in Table 1 indicate that gradient-based methods like R1

are able to find higher-quality solutions, making this trade-off worthwhile in some contexts. The
second downside is the lack of widely available differentiable simulation environments, particularly
including differentiable rendering. In this work, we developed our own simple simulation and
renderer, but we hope that increased interest in downstream uses for end-to-end gradients (like R1)
motivates further development of differentiable photorealistic renderers (Jakob et al., 2022).

6 CONCLUSION

In this paper, we have proposed a novel framework for predicting the ways in which a learning-based
system might fail and repairing the learned policy to preemptively mitigate those failures. Our
framework reframes traditional adversarial optimization as an iterative sampling process to prioritize
diversity in the predicted failures, yielding more robust repaired policies and avoiding overfitting
to a narrow set of predicted failures. We present both gradient-free and gradient-based variants
of our framework, and we examine the tradeoff in computation time and solution quality between
these methods, using end-to-end gradients through differentiable simulation and rendering for the
gradient-based variant. We find that our method yields more robust repaired policies than prior
methods on a range of problems.
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Figure 3: Examples of failure cases (left) and repaired policies (right) generated using our method.

6.1 LIMITATIONS & FUTURE WORK

The main limitation of our approach is that it requires a simulator with enough fidelity to predict the
failures of interest; moreover, the gradient-based version of our framework requires a differentiable
simulator, which is even more difficult to come by. This means that our method cannot predict any
failures not modeled by the simulator (e.g. loose cables). In future, we hope to explore algorithms for
combining accelerated testing in simulation with limited, but higher fidelity, testing in hardware.

In future work, we also hope to integrate with emerging photorealistic differentiable renderers like
Mitsuba (Jakob et al., 2022). As of this writing, ease of use and interoperability with machine learning
libraries is still difficult with these renderers, but we hope that additional engineering effort in this
area will result in an easy-to-use, high-quality differentiable renderer that can be integrated with
existing robotics simulation frameworks.

7 ETHICS STATEMENT

Verification methods like ours are inherently dual-use: an algorithm that an engineer can use to test
her design can also be used by a malicious actor to break an already-deployed system. We mitigate
this risk in two ways. First, our approach requires a simulator model of the system under test; without
access to this model, bad actors cannot use our method to generate attacks. Second, our failure
prediction method comes with a failure repair method attached, so system designers can harden their
systems against any attacks generated using our method. On balance, we hope that our method will
help engineers fine-tune their designs to mitigate the risk of failure prior to deployment, enabling
them to more confidently design, debug, and deploy autonomous systems.

8 REPRODUCIBILITY STATEMENT

We have included code to reproduce our experiments in the supplementary materials, including the
specific commands and seeds used to generate our results.
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SUPPLEMENTARY MATERIAL

SAMPLING USING METROPOLIS-ADJUSTED LANGEVIN ALGORITHM (MALA)

For reference, we include the pseudocode in Algorithm 2 for sampling from an unnormalized
likelihood function using the Metropolis-Adjusted Langevin Algorithm (MALA; Ma et al. (2019)).
MALA can be interpreted as a special case of Hamiltonian Monte Carlo (HMC; Betancourt (2017))
where the Hamiltonian dynamics are simulated for only a single step, and setting the gradient to
zero recovers RMH sampling. Compared with HMC, MALA generates samples that are more highly
auto-correlated but requires fewer evaluations of the likelihood and its gradient. In our case, since
each step requires a forward and backward pass through the simulator and renderer, we find that this
trade-off favors MALA.

In Algorithm 1, we use MALA to sample N i.i.d. samples. We do this by running MALA N times in
parallel from different starting conditions; each of the N samples from the previous sampling round
is used to initialize a different parallel MALA instance.

Algorithm 2: Metropolis-Adjusted Langevin Algorithm (MALA; Ma et al. (2019))
Input: Number of steps m, stepsize λ, unnormalized likelihood p(x), initial guess x0

1 for i = 1, . . . ,m do
2 η ∼ N (0, 2λI); // Gaussian diffusion
3 xi = xi−1 + λ∇ log p(xi−1) + η; // Add gradient drift

4 Paccept ← p(xi)e
−||xi−1−xi−λ∇ log p(xi)||

2/(4λ)

p(xi−1)e
−||xi−xi−1−λ∇ log p(xi−1)||2/(4λ)

;

5 With probability 1−min(1, Paccept): xi ← xi−1; // Accept/reject
6 end

Return: A sample drawn with the given likelihood xm ∼ p(x).

PROOF OF THEOREM 4.1

We will show the proof for sampling from the failure generating process with likelihood given by
Eq. (4); the proof for the repair generating process follows similarly. The log-likelihood for the
failure generating process is

log pϕ,0(ϕ)− τ [J∗ − J(θ, ϕ)]+ (7)

Ma et al. (2019) show that MALA sampling enjoys the convergence guarantees of Theorem 4.1 so
long as the target log likelihood is strongly convex outside of a ball of finite radius R (see Theorem 1
in Ma et al. (2019)). Since log pϕ,0(ϕ) is assumed to be stronglym-convex, it is sufficient to show that
as ||ϕ|| → ∞, the strong convexity of the log-prior dominates the non-convexity in τ [J∗− J(θ, ϕ)]+.

For convenience, denote f(ϕ) = −τ [J∗ − J(θ, ϕ)]+ and g(ϕ) = log pϕ,0(ϕ). We must first show
that f(ϕ) + g(ϕ) is (m−L)-strongly convex, for which it suffices to show that f(ϕ) + g(ϕ)− (m−
L)/2||ϕ||2 is convex. Note that

f(ϕ) + g(ϕ)− m− L
2
||ϕ||2 = f(ϕ) +

L

2
||ϕ||2 + g(ϕ)− m

2
||ϕ||2 (8)

g(ϕ) − m
2 ||ϕ||

2 is convex by m-stong convexity of g, so we must show that the remaining term,
f(ϕ) + L/2||ϕ||2, is convex. Note that the Hessian of this term is ∇2f(ϕ) + LI . Since we have
assumed that J is L-Lipschitz smooth (i.e. its gradients are L-Lipschitz continuous), it follows that
the magnitudes of the eigenvalues of ∇2f are bounded by L, which is sufficient for ∇2f(ϕ) + LI to
be positive semi-definite, completing the proof.
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PROOF OF THEOREM 4.2

We can treat Alg. 1 as a two-stage Gibbs sampling procedure and apply the Hammersley-Clifford
Theorem (Robert and Casella, 2004) to get the joint distribution

fθ,ϕ(θ
∗, ϕ∗) = pθ,0(θ

∗)pϕ,0(ϕ
∗)

e−[J∗−J(θ∗,ϕ∗)]+

Eϕ∼pϕ,0

[
eJ(θ∗,ϕ)−J∗] (9)

Integrating over ϕ yields the marginal distribution of θ, completing the proof.

fθ∗ =

∫
ϕ

fθ,ϕ(θ
∗, ϕ)dϕ =

pθ,0(θ
∗)

Eϕ∼pϕ,0

[
eJ(θ∗,ϕ)−J∗] ∫

ϕ

pϕ,0(ϕ)e
−[J∗−J(θ∗,ϕ∗)]+dϕ (10)

= pθ,0(θ
∗)
Eϕ∼pϕ,0

[
e−[J∗−J(θ∗,ϕ)]+

]
Eϕ∼pϕ,0

[
eJ(θ∗,ϕ)−J∗] (11)

= pθ,0(θ
∗)
Eϕ∼pϕ,0

[
e−(J∗−J(θ∗,ϕ))|J∗ − J(θ∗, ϕ) ≥ 0

]
+ Eϕ∼pϕ,0

[1|J∗ − J(θ∗, ϕ) < 0]

Eϕ∼pϕ,0

[
eJ(θ∗,ϕ)−J∗]

(12)

= pθ,0(θ
∗)
Eϕ∼pϕ,0

[
e−(J∗−J(θ∗,ϕ))|J∗ ≥ J(θ∗, ϕ)

]
+ Eϕ∼pϕ,0

[1|J∗ < J(θ∗, ϕ)]

Eϕ∼pϕ,0

[
eJ(θ∗,ϕ)−J∗] (13)

= pθ,0(θ
∗)
Eϕ∼pϕ,0

[
e−(J∗−J(θ∗,ϕ))|J∗ ≥ J(θ∗, ϕ)

]
+ P[J(θ∗, ϕ) > J∗]

Eϕ∼pϕ,0

[
eJ(θ∗,ϕ)−J∗] (14)

(15)

CODE

We include anonymized code implementing our method, all baselines, and all environment/task
combinations in the attached .zip archive, which also includes instructions for installing this code
and reproducing our experiments. We plan to open-source this code, which also includes our simple
differentiable rendering engine, upon publication.

VIDEO

We provide videos of the predicted failures and repaired policies in the attached video file. These
videos were generated using the same rendering engine used in our experiments, to provide a sense
of the scene geometry and rendering quality used in our experiments. Note that the videos were
rendered at a higher resolution than used for our experiments.

ENVIRONMENT DETAILS

GRASPING

Each task in the grasping environment involved a target object (either a box or a mug) on a table along
with a distractor object (a cube). A 64x64 depth image was rendered from a fixed camera position and
passed to a grasp identification policy, which was structured as an auto-encoder with 3 convolutional
layers and 3 transposed convolutional layers (each with kernel size 7, stride 2, and 32 channels, and
ReLU activations). The policy was trained to identify grasp affordances on the object in the form
of an image of the same size as the output highlightling the “graspable” regions of the object (this
is a common strategy in robot manipulation). θ includes all parameters of the autoencoder, and the
environmental parameters ϕ included the 2D pose [x, y, ψ] of the target object and the x position of
the distractor object, all treated as Gaussian random variables. The affordance autoencoder network
was trained using ground-truth affordances from hand-labelling of the target object.

Cost The cost function for all grasping tasks was the mean square error between the predicted and
ground-truth grasp affordances.
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Hyperparameters We ran experiments for N = 5 rounds of m = 10 steps with population size
n = 5. All methods used learning rate λ = 10−3 for ϕ and 10−5 for θ, with tempering parameter
α = 40.

DRONE

All drone environments included a corridor 8m wide and 30m long, with the drone starting roughly
10m away from the target (placed at the origin and marked by a black square and red “H”). In both
the static and dynamic tasks, there are 5 obstacles in the scene, modeled as green cylinders with radius
0.5m. The drone has Dubins car dynamics restricted to the xy plane, with control actions for velocity
and yaw rate. Control actions are predicted by a policy that takes 32x32 RGB and depth images
as input, encodes the images using three convolutional layers (kernel size 7, stride 1, 32 channels),
and predicts control actions using a fully connected network with 4 hidden layers of 32 units each
(all layers used ReLU activation). θ includes all parameters of the policy, and the environmental
parameters ϕ include the initial position of the drone (treated as a Gaussian random variable centered
10m away from the target) and the initial positions of all obstacles (treated as uniformly distributed
throughout the corridor between the starting point and the target). The dynamic case adds initial
velocities to ϕ in x and y for each obstacle, sampled from a Gaussian distribution. The drone’s initial
policy was trained to mimic an oracle with perfect state information, which we implemented as
an optimization-based receding-horizon path planner with perfect information about the state and
velocity of the drone and all obstacles.

Cost The cost for both drone examples was the (soft) minimum reward over a trajectory plus the
distance to the goal at the end of the trajectory:

J = −logsumexp(−rt) +
1

2

√
x2T + y2T (16)

rt = −10σ(5min
i
di) (17)

where the reward at each timestep rt is based on the minimum distance mini di to any obstacle in the
scene and sigma is the sigmoid function (used as a smooth approximation of the indicator function).

Hyperparameters We ran experiments forN = 6 rounds ofm = 10 steps with n = 5 and learning
rate λ = 10−2 for ϕ and λ = 10−5 for θ, with tempering parameter α = 40.

AV

All AV examples use bicycle kinematics for all agents, with state [x, y, ψ, v], including position,
heading, and velocity, and control actions [δ, a] for steering angle and acceleration. The continuous
time dynamics

ẋ = v cosψ (18)
ẏ = v sinψ (19)

ψ̇ =
v

l
tan δ (20)

v̇ = a (21)

were discretized with timestep 0.1 s. The parameter l denotes axle length and was set to 1m. Control
actions were predicted based on 32x32 RGB and depth images using the same structure as the drone
policy (3 convolutional layers and 4 fully connected layers, but the convolutional layers had kernel
size 6). In both the highway and intersection tasks, θ includes all trainable parameters of the policy
network.

HIGHWAY

The highway example included 2 lanes of traffic, with total width 15m. We placed one non-ego agent
in each lane; these agents track a series of waypoints using an LQR controller. The environmental
parameters ϕ include all of these waypoints (5 2D waypoints per non-ego agent), which we modeled
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as drawn from a Gaussian distribution about a straight-line path. Future work could explore using a
generative model as the prior for non-ego driving agents. The task was simulated for 60 timesteps.
The driving policy was pre-trained using proximal policy optimization (PPO) with the same reward
as used for testing.

Cost The cost was the soft minimum reward observed over the course of the trajectory:

J = −logsumexp(−rt) (22)
rt = −10σ(5min

i
di) + 0.1vt (23)

where the reward at each timestep rt is based on the minimum distance mini di to any obstacle in the
scene and the forward velocity ; sigma is the sigmoid function (used as a smooth approximation of
the indicator function).

Hyperparameters We ran experiments for N = 10 rounds of m = 10 steps with population size
n = 5. All methods used learning rate λ = 10−2 for ϕ and 2× 10−5 for θ, with tempering parameter
α = 20.

INTERSECTION

The intersection example included a 4-way intersection, with 2 lanes of traffic in each 15m wide road.
We placed two non-ego agent moving left to right in the crossing street and one non-ego agent crossing
right to left. Similarly to the highway task, these agents were controlled via LQR to track uncertain
trajectories centered about straigt lines. The task was simulated for 70 timesteps. The driving policy
was trained using behavior cloning with supervision from an oracle with perfect information about
the state of the other agents, which we implemented as a receding-horizon optimization-based path
planner.

Cost The cost was the soft minimum reward observed over the course of the trajectory plus a term
to test whether the ego agent successfully crosses the intersection.

J = −logsumexp(−rt) + 0.1[xT − xtarget]+ (24)
rt = −10σ(5min

i
di) (25)

where the reward at each timestep rt is based on the minimum distance mini di to any obstacle in
the scene and xtarget = 20; sigma is the sigmoid function (used as a smooth approximation of the
indicator function).

Hyperparameters Prediction and repair experiments were run for N = 10 rounds of m = 10 steps
with n = 5 and learning rate λ = 10−2 for ϕ and 10−4 for θ, with tempering parameter α = 20.

BASELINES

GRADIENT DESCENT

This baseline is meant to represent the standard approach of adversarial training with counterexamples.
We implement this method identically to Algorithm 1 except that 1) we omit tempering, and 2) instead
of using MALA to sample new states, we simply take one step of gradient ascent on the log posterior:
xi = xi−1 + λ∇ log p(xi−1) (this corresponds to gradient descent on the cost).

LEARNING TO COLLIDE

This method was utilized in Ding et al. (2020) for proposing safety-critical scenarios in autonomous
driving setting. The key idea was to consider the adversarial scenario model as an agent and the
driving algorithm as an environment with the reward function optimized using policy gradient
method REINFORCE. The original work incorporates the optimization of a reward function designed
specifically for the autonomous driving scenario which would yield risky scenarios. For the purpose
of performance comparison with our method, we have adopted the core idea of using the policy
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gradient method for optimizing a standardized optimization algorithm across all different scenarios.
Our implementation of REINFORCE uses a Gaussian perturbation with standard deviation 0.05 and
a moving average baseline with update rate 0.5.

COMPUTE REQUIREMENTS

Our experiments for failure prediction and repair required running 4 methods (2 of ours and 2
baselines) on 6 tasks with 4 random seeds each: a total of 96 experiments individual runs. Each
of these experiments can be run in under 30 minutes on an NVIDIA GeForce RTX 2080 Ti, using
approximately 1-2 GB of GPU memory. When running our experiments, we primarily used an AWS
instance with 4 GPUs, each able to fit at least 4 simultaneous runs in memory at once. We estimate
that producing the results in our paper required approximately 4-5 hours, with a roughly equal amount
of additional time used for parameter tuning, with a cost of around 100 USD in GPU-equipped AWS
EC2 instances (not counting any compute used for preliminary experiments during development and
debugging).
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