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Abstract. CT scanning has become a commonly used imaging method
in cancer diagnosis, displaying the anatomical structure of the human
body in detail. However, different types of cancer have varying manifes-
tations in CT imaging, posing great challenges for pan-cancer segmen-
tation in CT scans. Recently, SAM has gradually become a landmark in
medical image segmentation due to its powerful generality and general-
ization, providing a new paradigm for universal segmentation. However,
current SAM-based segmentation approaches have weak detail percep-
tion ability, heavy dependence on manual prompts, and lack of 3D feature
interaction. To address these, we have developed a universal cancer seg-
mentation model for CT scans based on the extraordinary segmentation
paradigm of SAM. Specifically, a 3D CNN-based U-shaped image encoder
and a cross-branch interaction module are developed to increase the de-
tail feature capture and spatial feature interaction of SAM. Besides, a
cancer indicator prompt encoder is introduced to remove the dependence
of SAM-based approaches on manual prompts. To fully utilize the ad-
vantages of SAM-based universal segmentation models and UNet-based
specific segmentation models, we have comprehensively considered the
prediction results of both, further reducing false positives and omissions
in pan-cancer segmentation. In addition, to fully utilize partially anno-
tated data for specific cancers, we use a combination of pseudo labels
and partial labels to generate fully annotated data, effectively avoiding
data conflict issues. Our method achieved an average score of 30% and
22% for the lesion DSC and NSD on the validation set and the aver-
age running time and area under GPU memory-time curve are 18s and
38960MB, respectively.

Keywords: Pan-cancer segmentation · SAM · Auto prompt · Founda-
tion model · Cross-slice interaction.
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1 Introduction

Cancer, a disease caused by the loss of normal regulation and excessive prolifer-
ation of human cells, poses a serious threat to human health and is one of the
leading causes of death worldwide [8,23]. Common cancers include breast can-
cer, lung cancer, colon cancer, rectal cancer, prostate cancer, skin cancer, and
stomach cancer, covering the whole body [34]. Early diagnosis and screening, as
well as timely treatment, can reduce the mortality rate of cancer [33]. Computer
tomography (CT) can provide important information on human tissue structure
and is widely used in cancer diagnosis and treatment. In clinical practice, radiol-
ogists and clinical doctors manually identify and measure abnormal areas based
on CT images [3]. However, this manual detection method is time-consuming,
labor-intensive, subjective, and highly dependent on experts. Consequently, de-
veloping an end-to-end cancer automatic detection algorithm using deep learning
has extremely high clinical value [4].

Compared with conventional organ segmentation tasks, cancer segmentation
mainly faces the following challenges [22]: (1) complex and variable shapes with
weak regularity; (2) Some cancers have low contrast and blurred boundaries; (3)
The location has diversity and may exist in multiple locations simultaneously.
Compared with specialized segmentation tasks, the general segmentation task
of whole-body pan-cancer segmentation has the following challenges [21]: (1)
difficulty in collecting high-quality datasets. The training data for pan-cancer
segmentation usually comes from different sources, with different purposes and
annotated cancers. Most data sources have only partially annotated pan-cancer;
(2) The differences in pan-cancer characteristics are prominent. The visual ap-
pearance of different types of cancer varies greatly, and the same cancer also has
significant differences among individuals.

To fully utilize various data from different sources, some efforts have been
made to develop model training approaches under partial labels. Chen et al. [37]
co-train a het-erogeneous 3D network on multiple partially labeled datasets with
a task-shared encoder. Huang et al. [36] introduce weight-averaged models for
unified multi-organ segmentation on few-organ datasets. Xie et al. [45] propose
TransDoDNet, which introduces a dynamic head to enable the network to ac-
complish multiple segmentation tasks flexibly and can be trained under partially
labeled training data. In addition, to identify cancers of various shapes and ap-
pearances in complex backgrounds, plenty of deep learning-based approaches
have been proposed for cancer segmentation, demonstrating enormous poten-
tial [9,24]. However, these models are tailored for specific cancers, and when
applied to other types of cancers, new model parameters need to be trained,
which brings great inconvenience to the task of whole-body pan-cancer segmen-
tation [7]. The segment any model (SAM), a foundation model for universal seg-
mentation, has received considerable praise for its excellent segmentation ability
across different objects and powerful zero-shot generalization ability [1]. Based
on user manual prompts, including points, bounding boxes, and coarse masks,
SAM can segment corresponding objects. Therefore, with simple prompts, SAM
can effortlessly adapt to various segmentation tasks [43]. This mode can integrate
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multiple individual medical image segmentation tasks into a unified framework,
greatly facilitating clinical deployment and providing a new perspective for de-
veloping the pan-cancer segmentation model.

Due to the lack of reliable clinical annotations, the performance of SAM in the
medical field will rapidly decline [17]. Some foundation models adapt SAM to the
field of medical image segmentation by tuning SAM on medical datasets [19,18].
However, these approaches, are prone to disrupting the crucial detail features for
identifying small objects and boundaries, making it difficult to segment various
cancers with complex shapes, weak boundaries, small sizes, or low contrast .
Besides, these SAM-based models require the manual provision of task-related
prompts to generate target masks, resulting in semi-automatic pipeline segmen-
tation, which is inconvenient when dealing with pan-cancer segmentation tasks.

In this paper, we propose SAMCancer, a pan-cancer segmentation founda-
tion model that supplements local features to SAM to segment any cancer and
introduces a task-indicator prompt encoder for realizing end-to-end automatic
segmentation. Specifically, SAMCancer consists of the original SAM, a 3D U-
shaped CNN module, a cross-branch interaction module, and a task-indicator
prompt encoder. To inherit the powerful feature representation capability of
SAM, the structure of SAM has been preserved. To better identify cancers with
complex shapes, low contrast, and varying sizes in CT images, we introduced a
3D U-shaped CNN sub-network to capture local features and placed it in par-
allel with the ViT image encoder of SAM. Then, the cross-branch interaction
module is strategically positioned between the ViT-branch and the U-shaped
CNN-branch to promote their feature representation ability by exchanging their
global semantics and local information with each other. In addition, we extend
the SAM-based model to an automatic segmentation model by introducing the
task-indicator prompt encoder. Experimental results demonstrate the effective-
ness of the proposed SAMCancer.

2 Method

2.1 Preprocessing

Following SAM-based approaches, the 3D CT scan is converted to 2D slices
across the coronal plane to match the inputs of SAM-based models. No resam-
pling method is used in our data preprocessing. As the intensity range of CT is
usually (-1024, 2048), directly compressing such a large range to (0, 255) may
lose valuable information. Therefore, under the guidance of experts, we choose
different density windows for objects during training. Specifically, the intensity
ranges of tissue and lung are set as (-200, 300) and (-1300, 300). The intensity
range of (-200, 300) is used for inference.

2.2 Proposed Method

Network architecture: As depicted in Fig. 1, the proposed SAMCancer consists of
the original SAM, a 3D U-shaped CNN image encoder, a cross-branch interaction
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Fig. 1. Network architecture. Based on SAM, a 3D U-shaped CNN image encoder and
a cross-branch interaction module are proposed to enhance the feature representation
ability of the model, and a task-indicator prompt encoder is introduced to realize end-
to-end automatic segmentation.
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Fig. 2. Details of the cross-branch interaction and task-indicator prompt encoder.

module, and a task-indicator prompt encoder. The input of SAMCancer consists
of the target slice and its four adjacent slices above and below it. The ViT-
branch image encoder is responsible for extracting the feature of the target slice,
while the 3D U-shaped CNN image encoder is used to extract abundant detail
features of all input slices. By introducing local features of adjacent slices, the
model can better cope with cancers with difficult appearances. In addition, we
introduce a cross-branch interaction module as a bridge for information exchange
between ViT-branch and CNN-branch, as depicted in Fig. 2, to further enhance
the feature extraction capability of the model. After encoding image features,
a task-indicator prompt encoder (details are presented in Fig. 2) is applied to
prompt the mask decoder by the learnable cancer indicators. In addition to the
mask decoder, we also adopt a segmentation head to predict the segmentation
result based on the output features of the CNN-branch. Finally, the segmentation
results of cancer are determined by the combined prediction results of the mask
decoder and segmentation head.

Loss function: we use the summation between Dice loss and cross-entropy loss
because compound loss functions have proven robust in various medical image
segmentation tasks [25].
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Table 1. Development environments and requirements.

System Ubuntu 20.04.6 LTS
CPU Intel(R) Xeon(R) Gold 6143 CPU @ 2.80GHz
RAM 32×8GB; 2666MT/s
GPU (number and type) Two NVIDIA RTX3090 24G
CUDA version 11.1
Programming language Python 3.8
Deep learning framework torch 1.8.0, torchvision 0.9.0
Specific dependencies N/A
Code https://github.com/xianlin7/SAMCT

Other strategies: We reduce false positives on CT scans from healthy patients
by introducing a classifier in the task-indicator prompt encoder. For the inputs
of healthy patients, we do not provide positive prompt embeddings for the mask
decoder. We use the partial labels to train the model first and obtain the pseudo
labels of each scan. Then, we combine the combination of pseudo labels and
partial labels to generate the fully annotated data. The whole process is simple,
and our focus is more on the model structure. Unlabeled images were not used
in our solution. We did not use the pseudo labels generated by the FLARE23
winning algorithm. We did not adopt any additional acceleration strategies for
the inference process. However, by using only a small number of adjacent slices,
our method can achieve acceptable inference speed and resource consumption.

2.3 Post-processing

We directly used the output of the model as the result without any post-
processing.

3 Experiments

3.1 Dataset and evaluation measures

The segmentation targets cover various lesions. The training dataset is cu-
rated from more than 50 medical centers under the license permission, includ-
ing TCIA [6], LiTS [5], MSD [38], KiTS [13,15,14], autoPET [12,11], TotalSeg-
mentator [39], and AbdomenCT-1K [31], FLARE 2023 [30], DeepLesion [42],
COVID-19-CT-Seg-Benchmark [28], COVID-19-20 [35], CHOS [20], LNDB [32],
and LIDC [2]. The training set includes 4000 abdomen CT scans where 2200
CT scans with partial labels and 1800 CT scans without labels. The valida-
tion and testing sets include 100 and 400 CT scans, respectively, which cover
various abdominal cancer types, such as liver cancer, kidney cancer, pancreas
cancer, colon cancer, gastric cancer, and so on. The lesion annotation process
used ITK-SNAP [44], nnU-Net [16], MedSAM [26], and Slicer Plugins [10,27].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
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measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 45 seconds and 4 GB, respectively.

Table 2. Training protocols.

Network initialization He
Batch size 16
Patch size 5×256×256
Total epochs 80
Optimizer Adam
Initial learning rate (lr) 0.0005
Lr decay schedule Periodic decay
Training time 120 hours
Loss function Dice loss and cross-entropy loss
Number of model parameters 153.53M*

Number of flops 106.83G*

CO2eq 26.54 Kg*

Table 3. Quantitative evaluation results.

Methods Public Validation Online Validation Testing
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

SAMCancer 27.19 ± 21.20 15.07 ± 15.79 29.92 21.92 25.21 15.72

Table 4. Ablation study.

Methods Public Validation Online Validation
DSC(%) NSD(%) DSC(%) NSD(%)

one slice 26.72 ± 19.82 14.25 ± 13.51 27.96 18.91
five slices 27.19 ± 21.20 15.07 ± 15.79 29.92 21.92

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.
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Training protocols Due to the amount of partial labeled data is large, we did
not use unlabeled data. For the partial labels, We divide them into 5 folds for
training and obtain pseudo labels for the validation data of each fold, separately.
By combining the pseudo labels with partial labels, we obtain fully annotated
data. Then, we train the SAMCancer with the fully annotated data. For data
augmentation, methods including contrast adjustment, gamma augmentation,
random rotation, and scaling are adopted. We take turns using each slice as
the target slice and then combine it with its four adjacent slices as a patch
after resizing their sizes into 256×256. No special patch sampling strategy was
adopted. The best-performing model on the local validation set is selected as the
optimal model. More details of the training protocol are presented in Table 2.

4 Results and discussion

4.1 Quantitative results on validation set

Quantitative results are summarized in Table 3. Our method achieves a mean
DSC of 27.19% and a NSD of 15.07% on the FLARE 2024 public validation
dataset. On the FLARE 2024 online validation dataset, the proposed approach
achieves a mean DSC of 29.92% and a NSD of 21.92%.

Table 5. Quantitative evaluation of segmentation efficiency in terms of the run-
ning them and GPU memory consumption. Total GPU denotes the area under GPU
Memory-Time curve. Evaluation GPU platform: NVIDIA QUADRO RTX5000 (16G).

Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 30.45 3563 69021
0051 (512, 512, 100) 12.99 3563 22074
0017 (512, 512, 150) 13.44 3563 22249
0019 (512, 512, 215) 13.71 3563 23359
0099 (512, 512, 334) 15.87 3563 31983
0063 (512, 512, 448) 13.18 3563 22280
0048 (512, 512, 499) 29.67 3563 79407
0029 (512, 512, 554) 25.26 3563 64418

Ablation study results are summarized in Table 4. Compared to the single
slice input of SAM-based methods, the structure that support multiple slice
inputs achieve better performance, indicating the effectiveness of the proposed
SAMCancer.

4.2 Qualitative results on validation set

Qualitative results are depicted in Fig. 3. By injecting more planar and spatial
details into SAM, the proposed method can effectively reduce false positives
on the background and improve the accuracy of cancer recognition under low
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contrast. However, due to the limitations of the dataset, the proposed method
performs poorly on discrete small cancers and rare regional cancers.

Case #FLARETs_0027 (slice #64)

Case #FLARETs_0038 (slice #160)

Case #FLARETs_0013 (slice #62)

Case #FLARETs_0029 (slice #344)

Image Ground Truth Ablation Study Ours

Fig. 3. Qualitative results.

4.3 Segmentation efficiency results on validation set

The average running time in online validation dataset is 18.05s per case in infer-
ence phase, and average used GPU memory is 3563 MB. The area under GPU
memory-time curve is 38960. Table 5 lists segmentation efficiency of some typ-
ical cases. In addition, the false positive rate of the proposed approach on the
healthy CT scans is 0.04 ± 0.05.
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4.4 Results on final testing set

Quantitative results on final testing set are summarized in Table 3. Our method
achieves a mean DSC of 25.21% and a NSD of 15.72%.

4.5 Limitation and future work

Our method did not utilize the unlabeled data and did not fully utilize the
partially labeled data. In addition, our data preprocessing at the 3D level is not
rich. In the future, we will explore how to fully utilize available data for model
training under any annotation type. In addition, it is also important for universal
medical image segmentation to fully preprocess various 3D data within a unified
framework and with the automatic hyperparameter setting.

5 Conclusion

In this work, we design a pan-cancer segmentation foundation model based on
SAM to segment various cancers. By introducing the 3D U-shaped CNN en-
coder and the cross-branch interaction module, we can promote the model to
recognize various cancers with complex appearances. Besides, introducing the
task-indicator prompt encoder makes the SAM-based model an end-to-end au-
tomatic pipeline. These designs may be helpful for other universal medical image
segmentation tasks.
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