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Abstract

Low-Rank Adaptation (LoRA), as a represen-001
tative Parameter-Efficient Fine-Tuning (PEFT)002
method, significantly enhances the training effi-003
ciency by updating only a small portion of the004
weights in Large Language Models (LLMs).005
Recently, weight-only quantization techniques006
have also been applied to LoRA methods to re-007
duce the memory footprint of fine-tuning. How-008
ever, applying weight-activation quantization009
to the LoRA pipeline is under-explored, and010
we observe substantial performance degrada-011
tion primarily due to the presence of activation012
outliers. In this work, we propose RoLoRA,013
the first LoRA-based scheme for effective014
weight-activation quantization. RoLoRA uti-015
lizes rotation for outlier elimination and pro-016
poses rotation-aware fine-tuning to preserve017
the outlier-free characteristics in rotated LLMs.018
Experimental results show RoLoRA consis-019
tently improves low-bit LoRA convergence and020
post-training quantization robustness in weight-021
activation settings. We evaluate RoLoRA022
across LLaMA2-7B/13B, LLaMA3-8B models,023
achieving up to 29.5% absolute accuracy gain024
of 4-bit weight-activation quantized LLaMA2-025
13B on commonsense reasoning tasks com-026
pared to LoRA baseline. We further demon-027
strate its effectiveness on Large Multimodal028
Models (LLaVA-1.5-7B) and prove the compat-029
ibility with advanced LoRA variants.030

1 Introduction031

While we have witnessed the success of Large Lan-032

guage Models (LLMs) such as GPT-4 (Achiam033

et al., 2023) and LLaMA (Touvron et al., 2023)034

across various tasks in recent years, the massive035

model size and expanding training cost for LLMs036

have necessitated the design of model compression037

and Parameter-Efficient Fine-Tuning (PEFT) meth-038

ods. Low-rank Adaption (LoRA) (Hu et al., 2021),039

as the most favored PEFT method, significantly040

enhances the fine-tuning efficiency of LLMs.041

Recently, quantization techniques, which con- 042

vert high-precision parameters into lower-bit for- 043

mats such as INT4, have been integrated with 044

LoRA methods (Dettmers et al., 2024; Li et al., 045

2024; Xu et al., 2024; Qin et al., 2024). Exist- 046

ing quantization-LoRA schemes can save memory 047

costs during fine-tuning, and some schemes (Li 048

et al., 2024; Xu et al., 2024) can also reduce infer- 049

ence costs by producing quantized LLMs directly. 050

However, these methods only perform weight-only 051

quantization, while LoRA weight-activation quanti- 052

zation is under-explored. Quantizing both weights 053

and activations in low-bit further saves run-time 054

GPU memory and accelerates compute-intensive 055

matrix-multiplication operations. We observe that 056

4-bit or 6-bit weight-activation quantization with 057

LoRA finetuning still incurs a high accuracy degra- 058

dation in LLMs, attributing to the outliers in weight 059

and activation distribution, which stretch the quan- 060

tization range and increase the quantization error. 061

Existing methods in the post-training quantiza- 062

tion research community have endeavored to tackle 063

the outlier challenge by mixed-precision subgroup- 064

ing (Zhao et al., 2024; Chee et al., 2024) or shifting 065

outliers from activation to weight (Xiao et al., 2023; 066

Shao et al., 2024). More recently, applying rota- 067

tion (Ashkboos et al., 2024; Liu et al., 2024c) to 068

the weight matrices of LLMs has demonstrated ef- 069

fectiveness in eliminating activation outliers and 070

keeping computational invariance (Ashkboos et al., 071

2023a). However, all these methods solve the prob- 072

lems from a post-training perspective, ignoring that 073

outliers will emerge and change distribution dur- 074

ing pre-training and fine-tuning (Bondarenko et al., 075

2021). In this work, we take a step further to uti- 076

lize the rotation for outliers-removal in LoRA fine- 077

tuning setting and investigate the optimal solution 078

for dynamically integrating rotation with LoRA 079

to preserve the outlier-free characteristics and im- 080

prove weight-activation quantization. Motivated 081

by this target, we propose Rotated outlier-free Low- 082
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Rank Adaptation (RoLoRA), which initially ap-083

ply in-block and between-block rotation to the pre-084

trained LLMs, and then utilize rotation-aware fine-085

tuning to produce outlier-free fine-tuned LLMs as086

shown in Figure 1. We explore the optimal rotation-087

aware fine-tuning scheme based on approximation088

error analysis.089

Extensive experimental results prove the effec-090

tiveness of RoLoRA across diverse LLMs, tasks,091

quantization settings, and LoRA variants. RoLoRA092

improves the 4-bit quantization for weights and ac-093

tivations (W4A4) performance up to 14.6 points094

on the MMLU benchmark compared to LoRA.095

Compared with existing low-bit LoRA meth-096

ods, RoLoRA outperforms previous SOTA IR-097

QLoRA (Qin et al., 2024) with up to 6.0 points098

on the MMLU benchmark. The proposed RoLoRA099

is highly efficient with negligible fine-tuning over-100

head compared to LoRA in the same setting.101

RoLoRA can also improve the quantization robust-102

ness of Large Multimodal Models (LMMs) such103

as LLaVA (Liu et al., 2024a), and we observe the104

multimodal understanding is largely retained even105

after W4A4 quantization as shown in Table 1.106

In summary, our work contributes as follows:107

• We propose RoLoRA, the first method that108

explores the feasibility of integrating rotation109

in LoRA with quantization settings.110

• RoLoRA enables robust weight-activation111

quantization of fine-tuned LLMs, especially112

in low-bit settings such as W4A4 and W6A6.113

• We verify the effectiveness of RoLoRA114

on the LLaMA series (2-7B, 2-13B, 3-115

8B) across quantizers (RTN/GPTQ), bitwidth116

(W4A4/W6A6), and benchmarks (Zero-shot117

commonsense, MMLU). We also demonstrate118

that RoLoRA can be applied to LMMs and is119

compatible with other LoRA variants.120

2 Related Work121

Quantization Quantization methods are power-122

ful tools for improving training and inference effi-123

ciency. The core insight is replacing full-precision124

weights and activations with lower-precision rep-125

resentation. Most existing LLM quantization tech-126

niques fall in the category of post-training quan-127

tization (PTQ) (Liu et al., 2023b; Frantar et al.,128

2023; Lin et al., 2024; Shang et al., 2024; Chee129

et al., 2024) that directly quantize the model with-130

out extensive training. Among these LLM PTQ131

Question: User: Explain the visual content of the
image in great detail. (category: “detail”)

GPT-4 Response: The image displays three open
pizza boxes with pizzas inside. The first pizza
box, situated to the left, contains a smaller pizza.
The second pizza box, positioned in the middle,
features a larger pizza topped with tortilla chips.
The third pizza box, located to the right, contains
another smaller pizza. Beside the large pizza, there
are two side orders of sauce in bowls, accompa-
nying the delicious meal. The arrangement show-
cases a delicious spread of pizzas, inviting every-
one to enjoy their different flavors and sizes.

LoRA GPTQ−−−→W4A4: The image shows a pizza.

RoLoRA GPTQ−−−→W4A4: The image features a
pizza with a variety of toppings, including cheese,
pepperonies, and chicken. There are three piz-
zas in total, with one of them being a pizza with
chicken. The pizzas are placed in a cardboard box,
which is open and ready for the pizzas. The pizzas
are served in a box, making it a convenient and
portable meal option.

Table 1: LLaVA-1.5-7B W4A4 quantization evaluation
on the example from LLaVA-Bench.

methods, most of them apply weight-only quantiza- 132

tion while few methods explore weight-activation 133

quantization (Xiao et al., 2023; Shao et al., 2024; 134

Zhao et al., 2024; Ashkboos et al., 2024). Com- 135

pared to the weight-only quantization, quantizing 136

both weights and activations enables low-precision 137

multiply-accumulation (MAC) units. The core chal- 138

lenge is that outliers in activations cause high quan- 139

tization errors. This work focuses on the weight- 140

activation quantization in the LoRA pipeline. 141

LoRA Considering that full parameter fine-tuning 142

becomes computationally impractical as the scale 143

of LLM continues to grow, Parameter-Efficient 144

Fine-Tuning (PEFT) methods (Li and Liang, 2021; 145

Hu et al., 2023; Zhang et al., 2023) are designed to 146

reduce the cost by training a relatively small subset 147

of parameters. Low-Rank Adaptation (LoRA) (Hu 148

et al., 2021) is the most adopted PEFT method, con- 149

sidering its flexibility and efficiency. More recently, 150

LoRA variants (Kopiczko et al., 2024; Liu et al., 151
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Figure 1: Activation distribution before and after rota-
tion. The visualized input activations are selected from
layers.1.self_attn.q_proj in LLaMA2-7B.

2024b; Hayou et al., 2024) emerged to improve the152

effectiveness and efficiency of LoRA. Combining153

LoRA and quantization (Dettmers et al., 2024) has154

also been a promising direction as quantization can155

further save the GPU memory in LoRA finetuning.156

To further reduce the information distortion of low-157

bit finetuning, various improvements of QLoRA158

have been proposed (Xu et al., 2024; Li et al., 2024;159

Qin et al., 2024). However, these methods only ap-160

ply quantization to the weight during fine-tuning161

to reduce memory consumption. This work is the162

first quantized LoRA scheme that considers the163

robustness to weight-activation quantization.164

3 Preliminary and Motivation165

3.1 Low-Rank Adaptation (LoRA)166

For a pre-trained weight matrix W0 ∈ Rd×k, LoRA167

models the weight update ∆W ∈ Rd×k utilizing a168

low-rank decomposition, expressed as AB, where169

A ∈ Rd×r and B ∈ Rr×k represent two low-rank170

matrices, with r ≪ min(d, k). Consequently, the171

fine-tuned weight W ′ can be represented as:172

W ′ = W0 +∆W = W0 +AB, (1)173

where W0 remains static during the fine-tuning174

process, and the underlined parameters are being175

trained. Additionally, based on Eq. (1), we can176

merge the learned ∆W with the pre-trained weight177

W0 and obtain W ′ in advance of deployment, and178

given that both W ′ and W0 both fall within the179

dimensionality of Rd×k, LoRA and its related vari-180

ants do not introduce any extra latency during the181

inference compared to the original model.182

3.2 Outlier in Transformer183

Starting from small-scale transformer models such184

as BERT and ViT, researchers have revealed that185

outliers exist within the weight and activation distri-186

bution (Huang et al., 2023; Wei et al., 2022). Their187

existence in LLMs is also observed in various stud- 188

ies. As shown in the left side of Figure. 1, acti- 189

vation outliers are distributed per channel. While 190

these outliers improve the representative capacity 191

of the transformers (Sun et al., 2024), they bring 192

non-trivial challenges for quantization (Xiao et al., 193

2023; Liu et al., 2023b). 194

Most previous solutions to this outlier problem 195

in quantization can be categorized into three types: 196

(1) isolating these outlier values in a sub-group with 197

higher precision, such as LLM.int8 (Dettmers et al., 198

2022), Atom (Zhao et al., 2024), QuiK (Ashkboos 199

et al., 2023b), and AdaDim (Heo et al., 2024). How- 200

ever, there is non-trivial overhead for the grouping 201

and mixed-precision. (2) shifting the challenge 202

of quantization from activations to weights, such 203

as SmoothQuant (Xiao et al., 2023) and Omni- 204

Quant (Shao et al., 2024). However, these meth- 205

ods negatively influence the weight quantization 206

robustness and fail at W4A4 scenarios. (3) rotat- 207

ing activation or weight matrices to remove out- 208

liers, such as QuaRot (Ashkboos et al., 2024) and 209

SpinQuant (Liu et al., 2024c). Among these meth- 210

ods, recent rotation-based solutions demonstrate 211

superior effectiveness. However, previous rotation- 212

based methods tackle the outlier challenge from 213

a post-training perspective and have not been ex- 214

plored under PEFT settings. 215

Thus, it leads to a question: Can we preserve 216

the outlier-free characteristics of rotated LLMs and 217

benefit from them during PEFT? We show in this 218

work that we can achieve such a target and step 219

further to investigate the most promising rotation- 220

based fine-tuning solutions in this work. 221

3.3 Eliminating Outlier with Rotation 222

A rotation matrix R is defined as an orthogonal ma- 223

trix with |R| = 1, where R also follows the char- 224

acteristics of the orthogonal matrix that RR⊤ = I. 225

If the entries of R are either +1 or 1, it becomes a 226

Hadamard matrix H . Based on the definition, we 227

can efficiently generate H with 2k entries1 based 228

on the Hadamard transform (also known as the 229

Walsh–Hadamard transform (Ritter, 1996) as an ex- 230

ample of a generalized class of Fourier transforms): 231

H2k =

[
H2k−1 H2k−1

H2k−1 −H2k−1

]
= H2 ⊗H2k−1 ,

(2) 232

1For the n ̸= 2k entries, we can also decompose it into
n = 2km and construct Hn = Hm ⊗H2k efficiently.
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Figure 2: Overview of the proposed Rotated outlier-free LoRA (RoLoRA)

where ⊗ denotes the Kronecker product. The ro-233

tation is highly efficient as the matrix-vector prod-234

uct with a d× d Hadamard matrix HdX requires235

O(d log2(d)) operations. Previous research (Ashk-236

boos et al., 2023a) has revealed that applying rota-237

tion on the weights of pre-norm transformers can re-238

tain its computational consistency and further lead239

to fewer outliers in the weight and activation dis-240

tribution (Ashkboos et al., 2024; Liu et al., 2024c).241

Concretely, the multiplication of weight matrices242

with a rotation matrix statistically blends weights243

with large and small magnitudes together into a244

more Gaussian-like distribution, thus producing ac-245

tivations with fewer outliers and easier to quantize.246

The outlier elimination effect of rotation is also247

theoretically proved in Chee et al. (2024).248

4 Method249

Motivated by existing challenges of activation250

outliers and the success of rotation-based solu-251

tions (Ashkboos et al., 2024; Liu et al., 2024c),252

we introduce Rotated outlier-free Low-Rank253

Adaptation (RoLoRA). RoLoRA initially apply in-254

block and between-block rotation to the pre-trained255

LLMs, and rotation-aware fine-tuning on the ro-256

tated LLMs will retain the optimal outlier-free char-257

acteristic, producing fine-tuned LLMs highly ro-258

bust to weight-activation quantization.259

4.1 Applying Rotation260

Before starting fine-tuning with rotation, we first261

modify the model to keep computational invariance262

before and after rotation. First, we need to ensure263

no scaling operation in the normalization module.264

For the LLaMA series, this can be implemented265

by absorbing the RMSNorm scale parameters α266

into the weight matrix right after the RMSNorm267

layer (Elhage et al., 2023).268

Then, we perform between-block rotation to269

make sure that the outliers in between-block ac-270

tivation are eliminated. As shown in Figure 2,271

we classify the weight matrices in LLMs into two 272

groups: left-side weights, including Wq,Wk,Wv 273

in self-attention modules, and Wup,Wgate in feed- 274

forward network modules (which corresponds to 275

the Wu,Wg in Figure 2). right-side weights, in- 276

cluding Wo in self-attention modules and Wdown 277

in feed-forward network modules. For the weights 278

of these two groups, we adopt different rotation 279

strategies with 280

WR
left ← RWleft,W

R
right ←WrightR

−1, (3) 281

where the rotation R is randomly generated 282

Hadamard matrix. As we also rotated the input 283

X before embedding layer with X ← XR−1 and 284

output Y after lm_head with Y ← RY , the final 285

output of the model will be identical to the original 286

model. To avoid overflow issues in the rotation 287

process, we converted the FP16 weights to FP64 288

and converted them back after the multiplication. 289

These rotations are applied before any training and 290

inference, which indicates that there will be no 291

overhead after the merging to original weights. 292

The rotation that directly applies to weights ef- 293

fectively reduces the outlier in between-block ac- 294

tivation, and we refer to the operation as Between 295

Block Rotation (BBR). Figure. 1 demonstrates the 296

effect of applying BBR as the activation distribu- 297

tion is smoother and de-centralized. However, an- 298

other challenge remains that the activation in these 299

modules still suffers from outliers, especially preva- 300

lent in FFN as discussed in previous research (Bon- 301

darenko et al., 2024). We cannot directly apply 302

rotation similar to BBR because of the non-linear 303

operations such as SwiGLU (Shazeer, 2020) in 304

FFN. To solve this, we adopt the online rotation 305

node before inputting the activation input to Wdown. 306

This online rotation is implemented following the 307

fast Hadamard kernel (Chee et al., 2024; Ashkboos 308

et al., 2024), which can be seen as a layer dynam- 309

ically rotating the activation. This online rotation 310

operation is highly efficient, and the overhead is 311
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Figure 3: Two schemes for performing rotation-aware
fine-tuning: (a) LAR and (b) LBR.

negligible during training and inference. It is re-312

ferred to as in-block rotation (IBR). Note that IBR313

can also be applied to the self-attention module, but314

we observe in the experiments of Table 7 that there315

is no performance improvement with this rotation.316

4.2 Rotation-aware Fine-tuning317

After performing both BBR and IBR, the between-318

block and in-block activation outliers are elimi-319

nated. This characteristic can lower the quanti-320

zation error during QLoRA training, enabling a321

more accurate gradient estimation and smoother322

optimization for fine-tuning. However, existing re-323

search (Bondarenko et al., 2021; Kovaleva et al.,324

2021) revealed that outliers will change distribu-325

tion or emerge during fine-tuning and pre-training.326

This poses a new challenge of dynamically inte-327

grating rotation into LoRA to effectively maintain328

outlier-free characteristics. To design the optimal329

rotation-aware fine-tuning scheme, we first ana-330

lyze the approximation difficulty when rotation is331

applied. We assume that the optimal weight distri-332

bution for specific downstream tasks is W ∗, and we333

approximate it with the LoRA weights AB merged334

with pre-trained weights W0. The optimization of335

LoRA fine-tuning could be indicated as336

min
A,B
∥W ∗ − (W0 +AB)∥F , (4)337

where the ∥ · ∥F denotes the Frobenious norm. To338

insert the LoRA module in the rotated models, we339

propose two rotation-aware fine-tuning schemes,340

namely LoRA After Rotation (LAR) and LoRA341

Before Rotation (LBR), as shown in Figure 3.342

In LAR, we first merge the rotation matrix with343

pre-trained weights and then use R1W0 + AB to344

approximate W ∗. For LBR, we first merge the345

LoRA weights and rotate them to be R1(W0+AB).346

We assume the optimal weights to be the full-fine-347

tuning results WFT , and the optimization for these348

two schemes becomes:349

LAR: min
A,B

∥AB −OLAR∥F , OLAR = WFT −R1W0

LBR: min
A,B

∥AB −OLBR∥F , OLBR = R−1
1 WFT −W0

(5)350
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Figure 4: SVD approximation error of optimization tar-
gets with different LoRA-rotation integration schemes.

the final optimization is very different. We apply 351

SVD of the approximation target OLAR, OLBR ∈ 352

Rd×k by O = USV T . The principal singular val- 353

ues and vectors in the first r dimensions are uti- 354

lized to initialize the LoRA weights with rank r as 355

A ∈ Rm×r and B ∈ Rr×n: 356

A = U[:,:r] S
1/2

[:r,:r] ∈ Rd×r, B = S
1/2

[:r,:r] V
T
[:,:r] ∈ Rr×k.

(6) 357

We verify the approximation error of different rank 358

choices r to simulate the LoRA on two rotation 359

schemes. We use a pre-trained LLaMA2-7B as 360

W0 and a full-parameter fine-tuned model on the 361

Alpaca dataset (Taori et al., 2023) as WFT for the 362

experiments. which is shown in Figure. 4. Based 363

on the results, LAR outperforms LBR in low-rank 364

settings with lower approximation error, suggesting 365

LAR is the better design for rotation-aware fine- 366

tuning. The better approximation indicates that 367

after the two-stage merging with rotation matrices 368

and LoRA weights, the final weights can still retain 369

the outlier-free property, which is further validated 370

by ablation experiments in Section 5.5. 371

As a result of the optimal rotation-aware fine- 372

tuning scheme under the LAR setting, we can ef- 373

fectively retain the outlier-free characteristic during 374

LLM fine-tuning, as shown in Figure 5. 375

5 Experiments 376

5.1 Settings 377

Model, LoRA, Quantizer The models for our 378

experiments include LLaMA2-7B/13B (Touvron 379

et al., 2023) and LLaMA3-8B (AI@Meta, 2024). 380

We follow the settings in LLaMA-Factory (Zheng 381

et al., 2024) to implement the training pipeline. The 382

dataset for fine-tuning is Alpaca (Taori et al., 2023) 383

with 52K samples. The weight PTQ methods are 384

the baseline Round-To-Nearest (RTN) and widely 385

used GPTQ (Frantar et al., 2023), and the activation 386

quantizer is RTN across all experiments. 387

Tasks Our RoLoRA was verified on seven 388

zero-shot commonsense reasoning tasks using 389
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Table 2: Comparison of the averaged accuracy on seven Zero-shot Common Sense Reasoning (ZCSR) tasks and
MMLU benchmark across LLaMA series. The detailed accuracy for each tasks are listed in Table 10 and Table 11.

#Bits Quantizer Method LLaMA-2 7B LLaMA-2 13B LLaMA-3 8B

ZCSR7 Avg. MMLU4 Avg. ZCSR7 Avg. MMLU4 Avg. ZCSR7 Avg. MMLU4 Avg.

FP16 - LoRA 68.4 43.5 70.5 52.4 70.0 62.7

W4A4
RTN

LoRA 35.8 23.5 34.4 24.2 36.7 23.3
RoLoRA 54.1 (↑18.3) 25.8 (↑2.3) 58.7 (↑24.3) 30.5 (↑6.3) 50.0 (↑13.3) 32.1 (↑8.8)

GPTQ
LoRA 37.0 23.5 34.4 24.4 36.6 23.9

RoLoRA 62.3 (↑25.3) 31.0 (↑7.5) 63.9 (↑29.5) 38.9 (↑14.5) 56.6 (↑20.0) 38.5 (↑14.6)

W6A6
RTN

LoRA 65.3 35.9 67.3 47.3 67.7 55.3
RoLoRA 66.8 (↑1.5) 40.5 (↑4.6) 68.4 (↑1.1) 47.7 (↑0.4) 67.8 (↑0.1) 59.4 (↑4.1)

GPTQ
LoRA 65.5 35.7 68.0 47.6 67.8 54.3

RoLoRA 67.1 (↑1.6) 40.8 (↑5.1) 68.8 (↑0.8) 47.9 (↑0.3) 68.1 (↑0.3) 59.4 (↑5.1)

EleutherAI evaluation harness (Gao et al., 2021).390

These tasks include BoolQ (Clark et al., 2019),391

PIQA (Bisk et al., 2020), HellaSwag (Zellers et al.,392

2019), WinoGrande (Sakaguchi et al., 2021), ARC-393

easy and ARC-challenge (Clark et al., 2018), and394

OBQA (Mihaylov et al., 2018). Additionally,395

we also report the accuracy of Massively Mul-396

titask Language Understanding (MMLU) bench-397

mark (Hendrycks et al., 2020) for our evaluation.398

Baselines We consider two settings for experi-399

ments. The first is conducting FP16 fine-tuning400

with RoLoRA, where we compare the W4A4 and401

W6A6 quantization results with LoRA. The sec-402

ond is conducting RoLoRA fine-tuning with 4-403

bit weight quantization, which we refer to as404

QRoLoRA, and comparing the W4A4 perfor-405

mance with other low-bit LoRA methods including406

QLoRA (Dettmers et al., 2024), LoftQ (Li et al.,407

2024), and IR-LoRA (Qin et al., 2024).408

5.2 Main Results409

We first evaluate RoLoRA against LoRA in FP16410

fine-tuning and then apply weight-activation PTQ411

to the fine-tuned LLMs. To ensure a fair com-412

parison, both RoLoRA and LoRA use the same413

settings (rank, epoch, learning rate, etc.). As listed414

in Table 2, RoLoRA enhances the quantization ro-415

bustness of the LLaMA series across various quan-416

tization settings on zero-shot commonsense rea-417

soning and MMLU benchmarks. Specifically for418

the W4A4 low-bit setting, RoLoRA outperforms419

LoRA with an absolute up to 29.5% and 14.6%420

on ZCSR and MMLU, respectively. Furthermore,421

RoLoRA makes it feasible for near-lossless W6A6422

quantization of the LLaMa series.423

We further evaluate RoLoRA against424

QLoRA (Dettmers et al., 2024) and serval425

baseline methods, including LoftQ (Li et al.,426

2024), IR-QLoRA (Qin et al., 2024), on 4-bit 427

fine-tuning and then apply W4A4 PTQ to the 428

low-bit fine-tuned LLaMA2-7B. The performance 429

across seven commonsense reasoning tasks and 430

four MMLU subtasks is detailed in Table 3. We 431

can see that RoLoRA consistently improves the 432

performance of the quantized model using the 433

same quantizer. In particular, for W4A4 GPTQ, 434

RoLoRA exceeds QLoRA by 20.5% on the 435

average accuracy of commonsense reasoning 436

tasks. Across the experiments on both FP16 437

and 4-bit fine-tuning, we observe that RoLoRA 438

achieves higher performance improvement on the 439

LLMs quantized by GPTQ (Frantar et al., 2023) 440

in general. This observation supports our claim 441

that RoLoRA retains the outlier-free activation 442

in fine-tuning as GPTQ only helps lower the 443

quantization error of weights but not for activation. 444

5.3 Visual Instruction Tuning 445

We further verify the effectiveness of RoLoRA on 446

visual instruction tuning tasks with LLaVA-1.5- 447

7B (Liu et al., 2023a), which consists of a language 448

model, Vicuna-7B (Chiang et al., 2023), and a vi- 449

sion encoder CLIP ViT-L-336px (Radford et al., 450

2021). We finetune the LLaVA-1.5-7B on LLaVA- 451

Instruct-150K2. We only perform quantization on 452

the language model and evaluate the LLaVA with 453

quantized Vicuna and full-precision vision encoder 454

on LLaVA-bench (COCO) (Liu et al., 2024a) with 455

GPT-4 (Achiam et al., 2023). The relative score 456

across the conversation, detail description, and 457

complex reasoning are reported in Table. 4, where 458

we can observe from the results that RoLoRA help 459

improve the quantization robustness and keep the 460

multi-modal ability during PTQ to the better ex- 461

2https://huggingface.co/datasets/liuhaotian/LLaVA-
Instruct-150K
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Table 3: Comparison of the averaged accuracy of different Low-bit LoRA methods on Zero-shot Common Sense
Reasoning tasks and MMLU benchmark on LLaMA2-7B.

#Bits Quantizer Method BoolQ PIQA HellaS. WinoG. Arc-e Arc-c OBQA Avg. Hums. STEM Social Other Avg.

RTN

QLoRA (Dettmers et al., 2024) 47.1 51.5 27.5 49.1 28.4 24.6 25.4 36.2 24.1 24.7 22.9 21.8 23.5
LoftQ (Li et al., 2024) 51.5 50.8 26.6 50.4 27.5 26.0 25.0 36.8 23.9 24.0 22.2 22.2 23.2

W4A16
IR-QLoRA (Qin et al., 2024) 45.5 49.7 26.7 50.6 25.7 26.8 26.8 36.0 24.3 24.6 23.9 21.9 23.7

↓ RoLoRA 59.9 60.5 43.5 51.8 43.7 28.6 28.8 45.3 (↑8.5) 24.7 25.3 23.6 24.3 24.5 (↑0.8)

W4A4
GPTQ

QLoRA (Dettmers et al., 2024) 51.4 51.6 27.7 51.9 29.6 25.3 26.4 37.7 24.9 24.0 22.2 22.5 23.6
LoftQ (Li et al., 2024) 55.9 49.2 27.2 49.1 26.6 26.1 24 36.9 24.1 23.8 23.3 22.7 23.6

IR-QLoRA (Qin et al., 2024) 51.1 49.8 27.6 49.3 27.6 24.6 27.4 36.8 24.6 24.8 22.9 22.7 23.9
RoLoRA 68.7 73.1 66.8 61.3 61.2 37.8 38.2 58.2 (↑20.5) 28.3 32.7 32.3 27.2 29.9 (↑6.0)

tent with an increase up to 18.9 overall scores. We462

also provide an example of the detail description463

task on a given image shown in Table. 1. While464

the W4A4 LoRA model only gives a rough superfi-465

cial description of the images, our W4A4 RoLoRA466

model fully elaborates the details, such as the top-467

pings and containers.468

Table 4: Comparison of the W4A4 quantization perfor-
mance on LLaVA-Bench of LLaVA-1.5-7B.

#Bits Quantizer Method Conv. Detail Reas. Overall

W4A4
RTN

LoRA 43.2 29.6 31.6 34.9
RoLoRA 68.8 40.5 51.9 53.8 (↑18.9)

GPTQ
LoRA 70.6 41.8 47.9 53.5

RoLoRA 67.5 48.3 66.2 60.8 (↑7.3)

5.4 Compatibility with other LoRA variants469

We further verify our method on a representative470

LoRA variant, DoRA (Liu et al., 2024b). DoRA471

decomposes the pre-trained weight into magnitude472

and directional components and finetunes both. We473

also follow this scheme in our rotation-aware fine-474

tuning stage and refer to this scheme as RoDoRA.475

As shown in Table 5, RoDoRA achieves 7.8% and476

20.6% higher accuracy on W4A4 LLaMA2-7B us-477

ing RTN and GPTQ as quantizers.478

Table 5: Compatibility of with DoRA on LLaMA2-7B.

#Bits Quantizer Method ZCSR7 Avg.

W4A4
RTN

DoRA (Liu et al., 2024b) 36.4
RoDoRA 44.2 (↑7.8)

GPTQ
DoRA (Liu et al., 2024b) 36.6

RoDoRA 57.2 (↑20.6)

5.5 Ablation Study and Analysis479

When to Apply Rotation? Different from the480

Rotation-Aware Fine-tuning (RAF) scheme that481

rotates the LLMs before LoRA fine-tuning, we482

can also directly apply rotation on an already-483

finetuned LoRA model. This possible paradigm484

of LoRA→Rotate→PTQ is referred to as post-485

training rotation. We evaluate post-training rotation486

using the same training setting as RoLoRA across487

the LLaMA series. The W4A4 GPTQ performance 488

on seven zero-shot commonsense reasoning tasks 489

are listed in Table 6. The results indicate that apply- 490

ing rotation before LoRA can consistently enhance 491

the quantization robustness of the fine-tuned LLMs. 492

Table 6: Ablation on when to apply rotation.

Method LLaMA2-7B LLaMA2-13B LLaMA3-8B

RoLoRA 62.3 63.9 56.6
Post-Training Rotation 58.7 (↓3.6) 61.3 (↓2.6) 55.2 (↓1.4)

Where to Apply Rotation? In Figure 2, we intro- 493

duce two types of rotation in our pipeline, namely 494

Between-Block Rotation applied on all weight ma- 495

trices and In-Block Rotation applied on down_proj 496

in FFN. As discussed in Section 4.1, we can also 497

apply a similar head-wise IBR R3 for self-attention. 498

The R3 rotates the Wv and Wo in Figure 2 by 499

WR
v ← WvR3,W

R
o ← R−1

3 Wo. These choices 500

for rotation targets are verified on LLaMA2-7B 501

W4A4 PTQ shown in Table 7. The results suggest 502

that applying and only applying both R1 and R2 is 503

the best option to eliminate outliers. 504

Table 7: Ablation on where to apply rotation.

Method Rotation ZCSR7 Avg.

RoLoRA R1, R2 54.1

(−) FFN In-Block Rotation R1 40.4 (↓13.7)
(−) Between-Block Rotation R2 49.7 (↓4.4)
(+) Attention In-Block Rotation R1, R2, R3 53.8 (↓0.3)

How to Apply LoRA? In Section 4.2, we propose 505

two rotation-aware fine-tuning schemes LoRA Af- 506

ter Rotation (LAR) and LoRA Before Rotation 507

(LBR) shown in Figure 3. We prove that LAR is the 508

better paradigm based on the approximation error 509

analysis compared with full-finetuning. In Table 8, 510

we quantitatively compare the W4A4 quantization 511

performance of two schemes on the fine-tuning of 512

the LLaMA2-7B. The LAR scheme demonstrates 513

better effectiveness, which corresponds to the ap- 514

proximation analysis shown in Figure 4. 515

Outliers Retaining the outlier-free characteristic 516

during LLM fine-tuning is the most important mo- 517
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Figure 5: Left: The training dynamics of the average Kurtosis of activations, Middle: The distribution of Kurtosis of
activations across all layers in the final model after fine-tuning with LoRA and RoLoRA, Right: The accumulative
quantization error of W4A4 GPTQ across all layers in the final model after fine-tuning with LoRA and RoLoRA.

Table 8: Ablation on how to apply LoRA.

#Bits-Quantizer Method ZCSR7 Avg. MMLU4 Avg.

W4A4-GPTQ
LAR 62.3 31.0
LBR 61.1 (↓1.2) 30.4 (↓0.6)

tivation for RoLoRA. To quantitatively validate518

the effect of outlier elimination, we use kurtosis519

κ =
∑k

i (xi−µ)4

σ4+ϵ
of the activation to measure the520

outlier presence, where µ and σ are respectively521

the empirical mean and standard deviation of ac-522

tivation distribution. Generally, a large kurtosis523

value indicates an activation distribution with heavy524

tails and a higher likelihood of outliers. We visu-525

alize the kurtosis dynamic during fine-tuning with526

LoRA and RoLoRA in Figure 5. In the early train-527

ing epochs, the rotation effectively suppresses the528

activation outliers. The rotation-aware fine-tuning529

can retain this optimal property. After fine-tuning530

with RoLoRA, as shown in Figure 5, the kurtosis531

κ across all layers is significantly reduced, which532

further gives rise to the low quantization error com-533

pared to the LoRA baseline. We also compare the534

activation distribution of RoLoRA against LoRA535

across layers in Figure 7 in the Appendix.536

LoRA rank settings We explore the robustness of537

LoRA and RoLoRA towards various rank settings538

r ∈ {4, 8, 16, 32, 64} when fine-tuning LLaMA2-539

7B and evaluated on zero-shot commonsense rea-540

soning tasks. The optimal rank setting for RoLoRA541

and LoRA are 16 and 32, respectively. The lower542

optimal rank indicates the potential of our RoLoRA543

to save trainable parameters. Overall, RoLoRA544

consistently outperforms LoRA regardless of the545

rank setting, demonstrating its robustness.546

Efficiency For the fine-tuning efficiency of547

RoLoRA, the additional training time is only in-548

curred by the online rotation operation (R2 in Fig-549

ure 2) as the other rotation (R1 in Figure 2) can be550

directly merged into the original weights. There is551

only one additional matrix multiplication, and the552

60

61

62

LoRA  W4A4 (GPTQ)
RoLoRA  W4A4 (GPTQ)

4 8 16 32 64
Rank r

36

37

38

Figure 6: Average accuracy of W4A4 LLaMA2-7B fine-
tuned with RoLoRA for varying ranks r.

increased rotation parameter can theoretically be 553

considered negligible. We reported the fine-tuning 554

cost of RoLoRA compared to LoRA in the same set- 555

tings (rank r = 16, batch size as 8, 3 total epochs) 556

in Table 9, where RoLoRA significantly improve 557

W4A4 quantized LLaMA2-7B performance with 558

extremely low additional overhead. 559

Table 9: The fine-tuning costs comparison on LLaMA2-
7B with batch size as 8 on NVIDIA H800 80G GPUs.

Method Training Time GPU Memory ZCSR7 Avg.

LoRA 3.55 h 23.0 GB 37.0 (GPTQ)
RoLoRA 3.65 h 23.1 GB 62.3 (GPTQ)

6 Conclusion 560

This paper presents RoLoRA, the first work to ex- 561

plore the feasibility of weight-activation quantiza- 562

tion in LoRA. RoLoRA applies rotation for elim- 563

inating outliers in activation distribution and per- 564

forms rotation-aware fine-tuning to preserve the 565

outlier-free characteristics. We theoretically and 566

empirically investigate how to integrate rotation 567

into LoRA better. RoLoRA improves the perfor- 568

mance of W4A4 and W6A6 LLMs by a great mar- 569

gin across various tasks with the same training cost. 570

Moreover, RoLoRA can also help visual instruction 571

tuning and is compatible with other LoRA variants. 572
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Limitation573

In this work, we propose a rotation-based fine-574

tuning method that can effectively improve quanti-575

zation robustness to low-bit weight-activation PTQ576

via retaining the outlier-free characteristics. The577

fine-tuning is conducted on NVIDIA H800 GPUs,578

while the recent NVIDIA Blackwell-architecture579

GPUs with 4-bit floating point support may further580

improve the efficiency. We will take the limitations581

into account and improve in future work.582
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A Detailed Evaluation Results825

Table 10 and Table 11 listed the full evaluation results on zero-shot commonsense reasoning tasks and826

MMLU benchmarks, respectively. We use the ‘acc_norm’ in the evaluation report given by EleutherAI827

evaluation harness (Gao et al., 2021) as the accuracy if there are such metrics. Otherwise, we use ‘acc’.828

Table 10: Full accuracy comparison on zero-shot commonsense reasoning tasks of LLaMA series.

#Bits Quantizer Method BoolQ PIQA HellaS. WinoG. Arc-e Arc-c OBQA Avg.

LLaMA2-7B

FP16 - LoRA 81.2 79.8 78.6 70.6 73.9 47.7 46.8 68.4

W4A4
RTN LoRA 46.0 49.5 27.0 49.6 27.8 24.2 26.8 35.8

RoLoRA 67.1 67.7 59.7 56.9 58.3 35.0 34.2 54.1

GPTQ LoRA 52.3 52.5 26.9 50.4 28.6 25.3 22.8 37.0
RoLoRA 73.5 76.2 71.8 64.1 67.7 42.2 40.4 62.3

W6A6
RTN LoRA 76.3 78.0 75.3 69.2 71.2 45.7 41.6 65.3

RoLoRA 77.9 79.1 76.3 68.5 74.8 47.3 43.6 66.8

GPTQ LoRA 76.3 78.2 75.4 69.5 72.1 46.1 40.8 65.5
RoLoRA 77.4 79.1 76.5 70.4 75.2 47.2 44.0 67.1

LLaMA2-13B

FP16 - LoRA 83.9 81.2 80.9 74.2 74.4 51.3 47.6 70.5

W4A4
RTN LoRA 39.8 52.1 26.1 45.7 25.9 25.8 25.4 34.4

RoLoRA 70.6 73.9 67.2 59.6 66.8 38.7 34.2 58.7

GPTQ LoRA 38.0 50.2 26.0 49.0 25.9 26.4 25.4 34.4
RoLoRA 74.0 77.2 73.9 66.0 73.3 43.9 38.8 63.9

W6A6
RTN LoRA 80.8 78.1 77.8 70.3 73.0 49.2 42.2 67.3

RoLoRA 80.3 78.8 78.0 71.1 77.6 49.6 43.2 68.4

GPTQ LoRA 81.9 79.2 78.5 69.3 74.3 51.5 41.2 68.0
RoLoRA 80.6 79.3 78.1 72.5 77.4 49.4 44.0 68.8

LLaMA3-8B

FP16 - LoRA 64.6 82.4 81.4 75.1 81.8 56.5 48.0 70.0

W4A4
RTN LoRA 46.7 52.2 29.7 47.6 29.3 24.7 26.6 36.7

RoLoRA 58.0 67.3 57.7 56.0 49.0 30.2 31.8 50.0

GPTQ LoRA 42.5 54.4 29.4 49.0 31.1 22.5 27.0 36.6
RoLoRA 63.2 71.1 66.7 60.2 60.3 38.2 36.8 56.6

W6A6
RTN LoRA 75.5 78.3 77.4 70.8 76.4 51.2 44.0 67.7

RoLoRA 78.6 79.5 76.7 71.1 77.6 49.8 40.8 67.8

GPTQ LoRA 77.9 78.3 77.9 71.3 75.2 50.5 43.2 67.8
RoLoRA 78.1 79.3 76.8 71.9 76.7 50.9 42.8 68.1

B Hyper-parameters for Reproduction829

In Table 12, we list the detailed hyper-parameters for reproducing RoLoRA and LoRA results. We do830

not apply searches on any hyperparameters for better accuracy, all the settings for the LLaMA series and831

LLaVA align with the default settings of Zheng et al. (2024) and Liu et al. (2024a).832

C Activation Distribution Visualization833

We visualize the magnitude of the activation of fine-tuned LLaMA2-7B using LoRA and RoLoRA in834

Figure 7. The visualizations reveal a noticeable amount of outliers presented in the LoRA fine-tuned835

model, but are highly eliminated in RoLoRA counterpart.836
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Table 11: Full accuracy on MMLU Benchmark of LLaMA series.

#Bits Quantizer Method Hums. Other Social STEM Avg.

LLaMA2-7B

FP16 - LoRA 41.5 50.8 48.2 34.7 43.5

W4A4
RTN LoRA 24.2 24.8 22.7 21.7 23.5

RoLoRA 24.7 26.2 27.2 25.7 25.8

GPTQ LoRA 24.3 24.5 23.0 22.0 23.5
RoLoRA 30.1 33.0 32.0 29.4 31.0

W6A6
RTN LoRA 35.4 40.6 37.5 30.4 35.9

RoLoRA 38.2 45.4 44.7 35.2 40.5

GPTQ LoRA 34.2 39.4 39.4 30.6 35.7
RoLoRA 37.8 46.1 46.2 34.9 40.8

LLaMA2-13B

FP16 - LoRA 49.6 59.2 59.9 42.8 52.4

W4A4
RTN LoRA 25.0 25.7 23.4 22.4 24.2

RoLoRA 28.9 32.5 33.2 28.4 30.5

GPTQ LoRA 25.5 24.2 24.1 23.4 24.4
RoLoRA 37.7 42.3 43.7 32.7 38.9

W6A6
RTN LoRA 44.3 52.8 55.0 38.6 47.3

RoLoRA 45.0 52.9 55.2 39.1 47.7

GPTQ LoRA 44.8 54.7 53.8 39.0 47.6
RoLoRA 45.6 53.7 55.2 38.7 47.9

LLaMA3-8B

FP16 - LoRA 57.4 70.7 72.8 52.7 62.7

W4A4
RTN LoRA 23.6 24.3 23.7 21.8 23.3

RoLoRA 30.8 34.5 33.5 30.5 32.1

GPTQ LoRA 24.6 23.0 23.4 24.3 23.9
RoLoRA 36.0 42.2 43.6 33.5 38.5

W6A6
RTN LoRA 49.7 63.0 64.4 47.2 55.3

RoLoRA 52.7 67.5 70.0 51.1 59.4

GPTQ LoRA 48.8 61.8 63.9 45.7 54.3
RoLoRA 52.9 68.3 69.6 50.4 59.4

Table 12: Detailed hyper-parameters for fine-tuning different LLMs and LMMs.

Model LLaMA2-7B LLaMA2-13B LLaMA3-8B LLaVA-1.5-7B

Epoch 3 3 3 1
Learning Rate 3 3 3 1

Batch Size (Per GPU) 8 4 8 2
Gradient Accumulation 1 2 1 64

Warmup Ratio 0.01 0.01 0.01 0.03
Optimizer AdamW AdamW AdamW AdamW

LoRA Rank r 16 16 16 128
LoRA Dropout 0 0 0 0.05
LoRA Target Wq,Wv Wq,Wv Wq,Wv Wq,Wk,Wv,Wo,Wu,Wd,Wg

Learning Rate 1e−4 1e−4 1e−4 2e−4
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Figure 7: Final activation distribution of the fine-tuned model produced using RoLoRA and LoRA. We select the
output activation of q_proj across layers with the index of 0, 1, 6, 11, 16, 21, 26, 31.
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