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Abstract

Constructing AI models that respond to text instructions is challenging, especially
for sequential decision-making tasks. This work introduces an instruction-tuned
Video Pretraining (VPT) model for Minecraft™ called STEVE-1, demonstrat-
ing that the unCLIP approach, utilized in DALL•E 2, is also effective for cre-
ating instruction-following sequential decision-making agents. By leveraging
pretrained models like VPT and MineCLIP and employing best practices from
text-conditioned image generation, STEVE-1 costs just $60 to train and can follow
short-horizon open-ended text and visual instructions in Minecraft. STEVE-1 sets a
new bar for open-ended instruction following in Minecraft with low-level controls
(mouse and keyboard) and raw pixel inputs, far outperforming previous baselines
and robustly completing 12 of 13 tasks in our early-game evaluation suite. All
resources, including our model weights, training scripts, and evaluation tools are
made available for further research.

1 Introduction

Recently there has been an exciting trend whereby powerful open-source foundation models like
LLaMA [59] can be finetuned with surprisingly little compute and data to become instruction-
following (e.g., [58, 13]). In this paper, we introduce such an instruction-tuning approach to the
sequential decision-making domain. We propose to instruction-tune pretrained generative models of
behavior, mirroring the advancements seen in recent instruction-tuned LLMs like Alpaca [58].

We utilize two foundation models for the popular open-ended video game Minecraft™: a foundation
model for behavior called VPT [5] and a model aligning text and video clips called MineCLIP [17].
VPT was trained on 70k hours of Minecraft gameplay and already has vast knowledge about the
Minecraft environment. However, just as the massive potential of LLMs was unlocked by aligning
them to follow instructions, it is likely that VPT has the potential for general, controllable behavior
if it is finetuned to follow instructions. To that end, we apply our method to the Minecraft domain
and introduce STEVE-1, an instruction-tuned VPT model for Minecraft which costs just $60 to train
and can follow short-horizon open-ended text and visual instructions in Minecraft. STEVE-1 sets
a new bar for open-ended instruction following in Minecraft with low-level controls (mouse and
keyboard) and raw pixel inputs, far outperforming previous baselines. All resources, including our
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Figure 1: Like unCLIP [48], our approach involves two models. First, we train the policy by finetuning
VPT to achieve goals given by pretrained MineCLIP [17] visual embeddings using our gameplay
dataset. Second, for the prior model, we train a CVAE [54] to sample MineCLIP visual embeddings
given a text prompt. This combinations allows STEVE-1 to follow both text and visual instructions.

model weights, training scripts, and evaluation tools are made available to foster more research into
instructable, open-ended sequential decision-making agents1. See Appendix F for related works.

2 Method
We present a method for finetuning VPT to follow natural, open-ended textual and visual instructions.
Specifically, we modify VPT to condition on goal information and then finetune it to follow goals
embedded in MineCLIP’s [17] latent space. MineCLIP [17] is a pretrained CLIP model for Minecraft
videos that generates aligned latent variables zτgoal , zy , where zτgoal is an embedding of 16 consecutive
Minecraft frames and zy is a text embedding. Our approach is inspired by unCLIP, the method behind
DALL•E 2 [48]. Like unCLIP [48], we use a hierarchical model consisting of a prior and a policy:

• The prior p(zτgoal |y) produces a latent variable zτgoal conditioned on a text instruction y. Our
prior model is a simple conditional variational autoencoder (CVAE) [54, 29] with a Gaussian
prior and a Gaussian posterior. Rather than learn to condition directly on text, we choose to
condition on frozen text representations zy from MineCLIP.

• The policy p(τ |zτgoal) produces a trajectory conditioned on a latent variable zτgoal . Our policy
model is a modified VPT model that conditions on the instruction zτgoal . To finetune VPT for
instruction-following, we use a method inspired by supervised RL approaches like Decision
Transformer [12], GLAMOR [42], and GCSL [18]. Specifically, we use a modification of
hindsight relabeling that we call packed hindsight relabelling to generate a new dataset of
trajectories with goals pulled from future states that periodically switch. This allows the
policy to learn to follow instructions without relying on a dataset of expensive instruction
labels and without training on a specific set of tasks. We finetune VPT on this dataset using
a supervised loss to predict each action autoregressively using a causal attention mask. See
Appendix D for a detailed explanation of packed hindsight relabelling.

We combine both models to produce a generative model of behavior conditioned on text instructions:
p(τ |y) = p(τ, zτgoal |y) = p(zτgoal |y)p(τ |zτgoal) (2.1)

At inference time, we use the prior to sample a latent goal zτgoal from the text instruction y. We then
use the policy to autoregressively sample actions at conditioned on the observation history o1...t
and the latent goal zτgoal . Similar to the observation in Appendix I of Baker et al. [5], even with
conditioning the policy often fails to follow its instruction and simply acts according to its prior
behavior. To mitigate this, we borrow another trick used in image generation models: classifier-free
guidance. Specifically, during inference we simultaneously compute logits for the policy conditioned
on the goal f(ot, . . . , ot+1, zτgoal) and for the unconditional policy f(ot, . . . , ot+1). We then compute
a combination of the two logits using a λ parameter to trade-off between the two:

logits = (1 + λ) fθ(ot, . . . , ot+1, zτgoal)︸ ︷︷ ︸
conditional logits

−λ fθ(ot, . . . , ot+1)︸ ︷︷ ︸
unconditional logits

(2.2)

1All resources can be found at our project webpage https://sites.google.com/view/steve-1.
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(b) MineCLIP Evaluation

Figure 2: Left: In our programmatic evaluations, STEVE-1 performed far better than the unconditional
VPT agent early-game-2x and the text-conditioned VPT agent when prompted appropriately. On
some tasks, visual outperforms text-based prompting, creating a gap that can likely be bridged
through better prompt engineering. Right: Across our 11 MineCLIP evaluation tasks, STEVE-1
achieves the shortest distance between the episode and the MineCLIP goal embedding when prompted
appropriately except for in two cases, where it mixes up digging and dirt and swimming and going
underwater. This shows the strong general performance of STEVE-1 across a wide variety of short-
horizon tasks. See Figure 12 for more information about the MineCLIP evaluation matrix.

By setting a higher value of λ, we can encourage the policy to follow actions that are more likely
when conditioned on the goal and, as demonstrated in Appendix E.2, this significantly improves
performance. Also, in order to train the policy to generate these unconditional logits, we occasionally
dropout the goal embedding zτgoal from the policy’s input (with probability 0.1). This lets us generate
both the conditional and unconditional logits using the same model with batch processing at inference
time.

See Appendix D for a detailed discussion of our datasets, modifications to VPT, and a more detailed
explanation of each part of our method including packed hindsight relabelling.

3 Results

We compute programmatic metrics by monitoring the agent’s travel distance and early-game item
collection (log, seed, and dirt). We also compute automatic MineCLIP metrics to evaluate the
agent’s capability level by recording the minimum cosine distance between the (text or visual) goal
embedding and the MineCLIP visual embedding at any timestep during an episode. We collectively
refer to all of our evaluation tasks including the 11 evaluation tasks from Figure 2 and the two prompt
chaining tasks from Section 3.2 as our early-game evaluation suite. For more details about our
evaluation metrics, see Appendix D.5.

3.1 Performance on Textual and Visual Goals

Due to the hierarchical nature of our model, we can evaluate the performance of our agent at achieving
either text or visual goals simply by choosing whether to use the prior to condition on text or bypass
the prior and condition on a MineCLIP video embedding directly. We first tested our model on a set
of 11 tasks that are achievable within the first 2.5 minutes of gameplay and which do not require
multiple steps to complete (e.g., chop a tree or dig a hole, but not build a house). In Figure 2, we
compare the performance of our text and visual-conditioned agents with the unconditional VPT agent
and text-conditioned VPT agent (Appendix I in [5]) across our programmatic tasks. We find that
when given the relevant text instruction, STEVE-1 collects 75× more dirt, 4.9× more wood, 22×
more seeds, and travels 4.3× farther than the unconditional agent, and STEVE-1 collects 3.3× more
dirt, 4.4× more wood, 8.1× more seeds, and travels 2.2× farther than the text-conditioned VPT
agent. This represents a significant improvement over the reported performance of text-conditioned
VPT, which collects several times fewer resources despite having twice as long of an episode to do
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so. We also run an automatic evaluation using MineCLIP embedding distances by measuring the
minimum distance of a goal embedding to any frame in the episode. As shown in Figure 2b, the
distance between the goal and the episode is significantly lower when the agent is conditioned on the
corresponding visual goal than otherwise.

Full results for STEVE-1 with both text and visual goals can be found in Appendix I. Videos of real-
time interactive sessions we had with the agent can be found at https://sites.google.com/view/steve-1.
These sessions demonstrate STEVE-1’s ability to responsively follow instructions in real-time in a
variety of situations. See Appendix C for investigations into how the performance of STEVE-1 scales
with more data and Appendix E for a series of ablations investigating what design choices matter for
downstream performance including pretraining, classifier-free guidance, and prompt-engineering.

3.2 Prompt Chaining

We also experiment with longer horizon tasks that require multiple steps, such as crafting and building.
We explore two different prompting methods: directly prompting with the target goal, and a simple
form of prompt chaining [11, 64, 16] where the task is decomposed into several subtasks and the
prompts are given sequentially for a fixed number of steps. We explore prompt chaining with visual
goals for two tasks: 1) building a tower and 2) making wooden planks. When using prompt chaining,
we first prompt STEVE-1 to gather dirt before building a tower, and to gather wooden logs before
crafting wooden planks. Figure 3 shows that directly prompting STEVE-1 with the final tasks results
in near-zero success rates. However, prompt chaining allows STEVE-1 to build a tower 50% of the
time and craft wooden planks 70% of the time. For the tower building task, STEVE-1 immediately
starts collecting dirt until the prompt switches, at which point its average height starts increasing
rapidly and its dirt decreases as it builds a tower. Similarly, for the crafting wooden planks task,
STEVE-1 immediately starts collecting a large amount of wooden logs until the prompt switches and
it rapidly converts these wooden logs into wooden planks (causing the amount of wooden logs in its
inventory to immediately decrease and the number of wooden planks to increase as it crafts more).
Figure 3 visualizes the average item counts and agent height for the prompt chaining episodes. See
Figure 18 and Figure 19 for visualizations of specific prompt chaining episodes.

4 Limitations and Conclusion

In this paper, we present a methodology for creating instruction-following foundation models of
behavior. Specifically, by leveraging two existing pretrained foundation models: a behavioral prior
(VPT [5]) and a domain-specific CLIP model (MineCLIP [17]), we create a powerful Minecraft agent
that can follow short-horizon open-ended text and visual instructions, all for only $60 of compute.
The resulting foundation model, STEVE-1, sets a new bar for open-ended instruction following in
Minecraft with low-level controls (mouse and keyboard) and raw pixel inputs, far outperforming
previous baselines and robustly completing 12 of 13 tasks in our early-game evaluation suite. We note
that generalist agents such as STEVE-1 can have potential negative effects on society. We include a
thorough discussion of these issues in Appendix A.

STEVE-1 is a significant advancement in creating generative models of text-to-behavior, but it has
several limitations, as described in Appendix B. First, STEVE-1 is mostly proficient at achieving
short-horizon tasks while struggling with longer-horizon tasks. While prompt chaining is a promising
approach for improving performance on complex tasks, more can be done in future work to improve
performance. Another limitation we observe is that prompt engineering, as with other generative
models, can be unintuitive and time-consuming. Future work should investigate improving the
steerability of STEVE-1 through a better understanding of natural language prompts. Additionally,
we note that evaluating and describing the capabilities of open-ended generalist agents is an open
research problem itself since capability depends strongly on preconditions, prompt engineering, and
our own ability to come up with varied and challenging tasks. Finally, since our approach is not
specific to the Minecraft domain, we hope that the method used to create STEVE-1 can inspire future
work in creating powerful generalist agents in other domains and environments.
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A Broader Impact

With the increasing capability level of artificial intelligence comes many potential benefits and also
risks. On the positive side, we anticipate that the techniques that used to create STEVE-1 could be
applied to the creation of helpful agents in other sequential decision making domains, including
robotics, video games, and the web. Our demonstration of such a low cost approach to creating a
powerful, instruction-following model also has the potential to improve the democratization of AI.
However, on the negative side, agents pretrained on large internet datasets reflect the biases of the
internet and, as suggested by our experiments, these pretraining biases can potentially remain after
instruction-tuning. If not addressed carefully, this could lead to devastating consequences for society.
We hope that while the stakes are low, works such as ours can improve access to safety research on
instruction-following models in sequential decision-making domains.

B Limitations and Future Work

B.1 Goal Misgeneralization

One of the most common mistakes that STEVE-1 makes during evaluation is to overgeneralize. For
instance, if we prompt STEVE-1 with a video of someone punching a cow, it may simply run to the
nearest animal and punch that animal instead. This is related to the concept of goal misgeneralization
[31]. Generalization can be helpful when the task we assign the agent is impossible to achieve from
the current state and the agent instead performs a closely related action, but harmful when the task
is achievable. We note two things: first, we believe the powerful generalization ability of STEVE-1
probably comes from the MineCLIP embeddings and it especially improves the ability of STEVE-1
to follow visual instructions when the exact items or blocks nearby are not available in the current
environment, which is an extremely common scenario. Second, we notice that the tendency of the
agent to misgeneralize decreases with scale. For example, with a model trained on less data, we find
that asking the agent to look up and punch a tree to get a wooden log often resulted in the agent
looking in the air and punching nothing; training the model on more data results in the agent first
walking over to a nearby tree and looking up to get a wooden log. Future work should look to measure
more closely the relationship between misgeneralization and scale.

B.2 Random Selection of Hindsight Goals

In this work, we choose to randomly select future episode timesteps as hindsight goals, rather than
use a more sophisticated strategy. This is primarily due to the simplicity of the approach, but also to
ensure a diverse and unbiased coverage of potential goals achievable within the short horizon. Future
works can investigate the effects of alternative approaches that filter for semantically interesting
timesteps as goals.

B.3 Difference in Performance Between Text and Visual Goals

In our experiments, we observed that STEVE-1 often performed better when conditioned with visual
goals compared to text goals converted through the prior. There are several potential factors that
could contribute to this performance gap between text and visual conditioning. First, the prior
model may not be accurately capturing the full meaning of the text prompt. Training the prior on
more data or using a more powerful model architecture could potentially improve the quality of the
sampled latent goals. Second, the visual goals can provide more precise demonstrations of the desired
behavior. Text goals are inherently more ambiguous. Providing additional information such as the
observation context to the prior and further prompt-engineering to make text prompts more detailed
and less ambiguous, could help close this gap. Because text conditioning provides more flexibility
and potential for generalization, closing the performance gap between text and visual conditioning is
an important direction for future work.

B.4 Challenges in Evaluating STEVE-1

See Table 4 for a non-exhaustive list of tasks that the STEVE-1 agent is able to achieve. It is worth
mentioning that evaluating and describing the capabilities of open-ended generalist agents is an open
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research problem itself since capability depends strongly on preconditions, prompt engineering, and
our own ability to come up with varied and challenging tasks. For example, there are many recent
works on the evaluation of LLMs (e.g., [34, 33, 66]) which highlight these challenges.

That being said, there are a number of tasks which STEVE-1 is unable to accomplish. As previously
mentioned, long-horizon tasks such as obtaining a diamond or building a house are currently beyond
the capability of STEVE-1. Further, STEVE-1 also struggles with more complex crafting tasks like
crafting an enchanting table, bookcase, or boat. Again, the virtually limitless and open-ended nature
of tasks in Minecraft makes it very difficult to test generalist agents in this domain. We hope future
works develop more sophisticated methods to evaluate the performance of generalist agents on short
and long-horizon tasks (potentially through an extension of our MineCLIP evaluation method).

It is also worth noting that it is currently not possible to test STEVE-1 or VPT [5] in the MineDojo
[17] environment, which is meant for generalist agent evaluation, since the action spaces are not
compatible. We believe that bridging this gap could be greatly beneficial to the generalist agent
community and we hope future works investigate this further.

B.5 Towards Improved Long-Horizon Performance

STEVE-1 is a significant advancement in creating generative models of text-to-behavior, but it
has several limitations. First, STEVE-1 is mostly proficient at achieving short-horizon tasks while
struggling on longer-horizon tasks like obtaining a diamond. Solving long-horizon tasks while taking
actions using low-level mouse/keyboard controls is a very challenging and exciting research direction
and, while prompt chaining is a promising approach for improving performance on complex tasks,
more can be done in future work to improve performance.

One potential bottleneck is the fact that during packed hindsight relabeling, the hindsight goals
are limited to at most 200 timesteps in the future (∼10 seconds). Thus, tasks which require more
than 200 timesteps to complete are technically out-of-distribution for STEVE-1. Although sampling
hindsight goals from farther into the future could theoretically enhance long-horizon performance,
our experiments in Appendix E.7 indicate that the performance tends to decrease if we increase
this hyperparameter too much. We suspect that while increasing this hyperparameter may be able
to improve long-horizon performance, it also increases noise and comes at the cost of reducing
performance on short-horizon goals. Investigating whether it is possible to achieve a better tradeoff is
an important avenue for future work. We also suspect that the long-horizon capabilities of STEVE-1
could be improved through scaling or finetuning with reinforcement learning, or leveraging LLMs or
VLMs to automatically provide prompt chains to the STEVE-1 agent.

B.6 Applying the STEVE-1 Approach to Other Domains

We designed STEVE-1 for Minecraft due to the availability of two key ingredients: (1) a strong
behavioral prior (VPT [5]), and (2) a powerful visual-language model which maps text and video
to a joint embedding space (MineCLIP [17]). However, the method used to create STEVE-1 is not
specific to the Minecraft domain. Given the rapid development of generative models, we expect
that similar models to VPT and MineCLIP will become available in many other domains. As these
models become available, future work could investigate the applicability of the STEVE-1 approach to
these other domains.

C Scaling

Recent works in language modeling have found that scaling up pretraining FLOPs, by training on
more data or by training a model with more parameters, can improve performance on downstream
tasks [28, 57, 63]. In certain cases when measuring performance with metrics such as exact-match
[52], performance improvement may appear to be “emergent” [63], appearing suddenly as the model
is trained with more compute. Here, we aim to gain a basic understanding of how the performance
of STEVE-1 on various tasks scales by training with more data (learning rate schedule is chosen
appropriately).

To assess performance gain, we first isolated the performance of the policy from the prior, measuring
performance of the agent through training on programmatic tasks (travel distance, seeds, logs, dirt)
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Figure 3: Top left: By sequentially chaining visual prompts like “get dirt” and “build a tower”,
STEVE-1 successfully gathers dirt and then uses this dirt to build a tower. The prompts switch at the
dotted vertical line. Bottom left: The success rates of the chained prompts improve steadily as we
train STEVE-1 on more data. Right: The performance of STEVE-1 in different tasks scales in different
ways when conditioning on a relevant visual prompt for the metric versus other irrelevant visual
prompts (e.g., the break wood prompt is the relevant prompt for the “Wooden Logs Collected” metric,
while the other prompts are “irrelevant”). For instance, in the wood-collection and dirt-collection
tasks, performance starts increasing after training on 60M frames of gameplay. See Figure 14 for
sample frames from each visual prompt.

with visual goals. Due to compute constraints, we chose to use the 2x VPT model, which has 248M
parameters. We found that both seed collection and travel distance did not improve significantly
past 20M frames. From inspecting gameplay, we suspect that travel distance is a relatively easy task
since it is close to VPT’s default behavior of running around and exploring. For seed collection,
performance remains suboptimal, suggesting that further scaling may be beneficial. This hypothesis
is supported by the observation that performance on log and dirt collection remained roughly level
until 60M frames when it began to rapidly improve. Figure 3 shows the scaling curves for STEVE-1
on each programmatic task when conditioning on relevant vs. irrelevant visual prompts for that task.
Since we do not observe regression on any tasks as we train the model with more compute, we expect
the model to continue to perform better as we train larger models on larger datasets.

We also evaluated the scaling properties of STEVE-1 for our multi-step tasks with and without prompt
chaining. Without prompt chaining, the tasks remain challenging for STEVE-1 throughout training.
However, we note that after 60M frames, STEVE-1 learns to gather wooden logs and build a small
tower when told to build a tower. This is likely because our visual prompt for tower building shows a
video of a tower being built out of wooden logs. With prompt chaining, the performance of STEVE-1
steadily increases with more data. We conjecture that this is because the success of a chained prompt
requires the success of each element in the chain. Since different abilities emerge at different scales,
one would expect chained prompts to steadily get more reliable as these subgoals become more
reliably completed. In the case of building wooden planks, we note that crafting is one such task
that gets significantly more reliable as the agent is trained on more data. Figure 3 shows the scaling
curves for STEVE-1 on the prompt chaining tasks.

In summary, we see evidence of tasks that do not require much data for STEVE-1 to learn, tasks
that steadily get more reliable as the agent is trained longer, and tasks where capability suddenly
spikes after the agent reaches some threshold. Put together, this suggests that further scaling would
likely significantly improve the agent, although we leave the task of predicting exactly how much
performance there is to gain to future studies.

D Detailed Method

Inspired by the rapid recent progress in instruction-tuning Large Language Models (LLMs), we
choose to leverage the recently released Video Pretraining (VPT) [5] model as a starting point for
our agent. Since VPT was trained on 70k hours of Minecraft gameplay, the agent already has vast
knowledge about the Minecraft environment. However, just as the massive potential of LLMs was
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Figure 4: To create goal-conditioned data for finetuning, we randomly select timesteps from episodes
and use hindsight relabeling to set the intermediate goals for the trajectory segments to those visual
MineCLIP embeddings. This self-supervised data teaches the agent which actions lead to which states.

unlocked by aligning them to follow instructions, it is likely that the VPT model has the potential
for general, controllable behavior if it is finetuned to follow instructions. In this work, we present
a method for finetuning VPT to follow natural, open-ended textual and visual instructions, which
opens the door for a wide range of uses for VPT in Minecraft.

Our approach is inspired by unCLIP, the method behind the recent text-to-image generation model,
DALL•E 2 [48]. Our goal is to create a generative model of behavior in Minecraft conditioned on
text instructions y. To do so, we utilize a dataset of Minecraft trajectory segments, some of which
contain instruction labels y: [(τ1, y1), (τ2, y2), . . . , (τn, ∅)] where τ is a trajectory of observations
and actions. We also employ a pretrained CLIP model called MineCLIP [17], which generates aligned
latent variables zτt:t+16 , zy, where zτt:t+16 is an embedding of any 16 consecutive timesteps from
the trajectory. MineCLIP is trained using a contrastive objective on pairs of Minecraft videos and
transcripts from the web. For simplicity of notation, we refer to the MineCLIP embedding of the
last 16 timesteps of a trajectory segment as zτgoal . Like unCLIP [48], we utilize a hierarchical model
consisting of a prior and a policy:

• A prior p(zτgoal |y) that produces a latent variable zτgoal conditioned on a text instruction y.

• A policy p(τ |zτgoal) that produces a trajectory conditioned on a latent variable zτgoal .

These two models can then be combined to produce a generative model of behaviors conditioned on
text instructions:

p(τ |y) = p(τ, zτgoal |y) = p(zτgoal |y)p(τ |zτgoal) (D.1)

D.1 Policy

To learn our policy, we finetune VPT, a foundation model of Minecraft behaviors pθ(τ) trained
on 70k hours of Minecraft gameplay videos. Specifically, VPT consists of a ResNet [22] that
processes frames of dimension 128× 128× 3, and a Transformer-XL [15] which processes the frame
representations and autoregressively predicts the next action using the joint hierarchical action space
described in Baker et al. [5]. In order to modify the architecture to condition on goal information, we
add an affine transformation of zτgoal to the output of the ResNet before passing it to the transformer:

Process Frames: ResNetθ(ot) → xt

[+ Conditioning on MineCLIP Embedding Goal]: xt → xt +Wθzτgoal + bθ

Predict Actions: TransformerXLθ(xt, . . . , xt+T ) → at+T

In order to finetune VPT to condition on goals, we finetune the model using a method inspired by
supervised RL approaches like Decision Transformer [12], GLAMOR [42], and GCSL [18]. We use
a modification of hindsight relabeling which we call packed hindsight relabeling (see Figure 4) to
generate a new dataset of trajectories with goals pulled from future states that periodically switch. In
contrast with hindsight relabeling, packed hindsight relabeling packs multiple relabeled sequences
into a single sequence. Specifically, our method to generate this dataset consists of two steps:

1. Given a trajectory τ with T timesteps, randomly generate indices to select goals from:
i1, i2, . . . , in. These indices are chosen by starting at the first timestep and repeatedly
sampling a new timestep by adding a random value to the previous timestep. This ensures
that the data reflects that some goals may take longer to achieve than others.
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2. For each chosen goal at timestep ij , set the goals for timesteps ij−1 + 1, . . . , ij to be the
goal at timestep ij , denoted zτij .

Our final dataset Drelabeled consists of observation sequences (o1, . . . , oT ), action sequences
(a1, . . . , aT ), and packed hindsight relabeled goals (z1, . . . , zT ). We then finetune VPT on this
dataset using a supervised loss to predict each action autoregressively using a causal attention mask:

Lpolicy(θ) = EDrelabeled [− log pθ(at|o1...t, z1...t)] (D.2)

D.2 Prior

In order to condition not only on embeddings of visual goals but on latent goals, we need the prior, a
model that produces a latent variable zτgoal conditioned on a text instruction y. Our model is a simple
conditional variational autoencoder (CVAE) [54, 29] with a Gaussian prior and a Gaussian posterior.
Rather than learn to condition directly on text, we choose to condition on frozen text representations
from MineCLIP zy. Both the encoder and decoder of our CVAE are parameterized as two-layer
MLPs with 512 hidden units and layer normalization [4]. We train the model on our dataset, for
which we have text labels Dlabels using the following loss:

Lprior(ϕ) = E(zτgoal ,zy)∼Dlabels

[
KL(qϕ(zτgoal |zy)∥p(zτgoal))− Ec∼qϕ(zτgoal |zy)

[
log pϕ(zτgoal |c, zy)

]]
(D.3)

D.3 Datasets

To train our policy, we gather a gameplay dataset with 54M frames (≈ 1 month at 20FPS) of Minecraft
gameplay along with associated actions from two sources: contractor gameplay and VPT-generated
gameplay. To train our prior, we use a dataset of text-video pairs gathered by humans and augmented
using the OpenAI API gpt-3.5-turbo model [41] and MineCLIP. See Appendix G for more
detailed dataset information.

OpenAI Contractor Dataset We use 39M frames sourced from the contractor dataset which VPT
[5] used to train its inverse dynamics model and finetune its policy. The dataset was gathered by
hiring human contractors to play Minecraft and complete tasks such as house building or obtaining a
diamond pickaxe. During gameplay, keypresses and mouse movements are recorded. We use the
same preprocessing as VPT, including filtering out null actions.

VPT-Generated Dataset We generate an additional dataset of 15M frames by generating random
trajectories using the various pretrained VPT agents. The diversity of this dataset is improved by
randomly switching between models during trajectories [44], randomly resetting the agent’s memory,
and randomly turning the agent to face a new direction.

Text-Video Pair Dataset To train our prior model, we also manually gather a dataset of 2,000 text
instructions paired with 16-frame segments from our gameplay dataset. This dataset corresponds
to less 30 minutes of gameplay and takes just a few hours to collect. We augment this dataset by
using the alignment between text and video embeddings from MineCLIP. For each text instruction,
we find the top k most similar gameplay segments in our dataset and use the corresponding 16-frame
segment as additional training data. For augmentation, we also add 8,000 text-instructions generated
by the OpenAI API gpt-3.5-turbo model [41], in addition to our 2,000 hand-labeled instructions.

D.4 Inference

At inference time, we use the prior to sample a latent goal zτgoal from the text instruction y. We then
use the policy to autoregressively sample actions at conditioned on the observation history o1...t
and the latent goal zτgoal . Similar to the observation in Appendix I of Baker et al. [5], even with
conditioning the policy often fails to follow its instruction and simply acts according to its prior
behavior. To mitigate this, we borrow another trick used in image generation models: classifier-free
guidance. Specifically, during inference we simultaneously compute logits for the policy conditioned
on the goal f(ot, . . . , ot+1, zτgoal) and for the unconditional policy f(ot, . . . , ot+1). We then compute
a combination of the two logits using a λ parameter to trade-off between the two:
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logits = (1 + λ) fθ(ot, . . . , ot+1, zτgoal)︸ ︷︷ ︸
conditional logits

−λ fθ(ot, . . . , ot+1)︸ ︷︷ ︸
unconditional logits

(D.4)

By setting a higher value of λ, we can encourage the policy to follow actions that are more likely
when conditioned on the goal and, as demonstrated in Appendix E.2, this significantly improves
performance. Also, in order to train the policy to generate these unconditional logits, we occasionally
dropout the goal embedding zτgoal from the policy’s input (with probability 0.1). This lets us generate
both the conditional and unconditional logits using the same model with batch processing at inference
time.

D.5 Evaluation

Evaluating the performance of our agent is a challenging task due to the wide variety of instructions
that are possible and the difficulty of evaluating whether the agent has successfully achieved its
task. We use a combination of programmatic evaluation metrics and automatic MineCLIP evaluation
metrics to get a sense of the agent’s capability level. We collectively refer to all of our evaluation tasks
including the 11 evaluation tasks from Figure 2 and the two prompt chaining tasks from Section 3.2
as our early-game evaluation suite.

Programmatic Evaluation We compute programmatic evaluation metrics by monitoring the
MineRL [19] environment state throughout each evaluation episode. As done in VPT [5], we compute
multiple programmatic metrics including travel distance and early-game item collection. The travel
distance is the maximum displacement of the agent along on the horizontal (X-Z) plane, measured
from the initial spawn point. For early-game inventory counts, we store the maximum number of log,
seed, and dirt items seen in the agent’s inventory during the episode.

MineCLIP Evaluation We explore the use of text-visual alignment in MineCLIP latent space
between trajectories and text or visual goals to evaluate our agent over a wider variety of tasks where
programmatic evaluation isn’t practical. To determine the degree to which a task has been completed
at all during an evaluation episode, we record the minimum cosine distance between the (text or
visual) goal embedding and the visual MineCLIP embedding at any timestep during an episode.

E Additional Ablations

In this section, we describe additional ablations on design choices for our method, including the
use of classifier-free guidance during training, text augmentation strategies, different VAE variants,
and varying chunk sizes during finetuning. We use programmatic evaluation metrics to compare the
performance of the various ablations.

E.1 Pretraining

Baker et al. [5] finds that by pretraining a behavioral prior with imitation learning on internet-scale
datasets for Minecraft, the learned policy can be effectively finetuned to accomplish tasks that are
impossible without pretraining. In this section, we demonstrate that pretraining is also massively
beneficial for instruction-tuning in Minecraft. We hypothesize that due to the strong performance of
STEVE-1 and the relatively small amount of compute (≈ 1% additional compute) used for instruction
finetuning, most of the capabilities of our agent come from the pretraining rather than the finetuning.
To test this hypothesis, we finetune several varients of STEVE-1 from various pretrained weights:
foundation-2x, bc-early-game-2x, rl-from-foundation-2x, and with randomly initialized
weights. In this experiment, each model was finetuned on 100M frames.

Figure 5 shows the performance of these models on our programmatic tasks with visual goals. Note
that while an agent trained on our dataset from scratch can accomplish basic tasks like dirt collection
fairly well, it is unable to find and chop down trees, in contrast to the pretrained agents. This demon-
strates that the abilities present in the agent due to pretraining are successfully transferred to the fine-
tuned agent. Out of all the pretrained weights we tried, we noticed that rl-from-foundation-2x
performed the best, having qualitatively better performance at tasks like crafting and chopping down

16



scratch fd bc rl
0

5

10

W
oo

d
en

L
og

s
C

ol
le

ct
ed

scratch fd bc rl
0

25

50

75

D
ir

t
C

ol
le

ct
ed

0 2 4 6 8 10
0

10

20

W
oo

d
en

L
og

s
C

ol
le

ct
ed

0 2 4 6 8 10

20

40

60

D
ir

t
C

ol
le

ct
ed

Conditional Scale λPretrained Weights

Figure 5: Left: We trained STEVE-1 on 100M frames starting from four different pretrained
weights: random initialization (scratch), foundation-2x (fd), bc-early-game-2x (bc), and
rl-from-foundation-2x (rl). The rl-from-foundation-2x agent is generally the most per-
formant after fine-tuning. Using pretrained weights performs better than training from scratch,
especially for more complicated tasks like collecting wood. Right: By using classifier-free guidance
[23], STEVE-1 collects 7.5× more dirt and 15× more wood than when λ = 0 (no guidance). See
Figure 17 in the Appendix for similar results with other programmatic tasks.

Prompt Dirt Collected

“break a flower” 0.7 (-0.2, 1.6)
“collect seeds” 2.7 (0.9, 4.5)
“dig as far as possible” 3.9 (2.8, 5.0)
“get dirt” 9.2 (5.7, 12.7)
“get dirt, dig hole, dig dirt, gather a ton of dirt, collect dirt” 26.7 (19.9, 33.5)

Figure 6: Similar to in image generation, switching to a longer, more specific prompt dramatically
improves the performance of STEVE-1. Values in parentheses are 95% confidence intervals.

trees. Indeed, Figure 5 shows that this model has strong performance, likely due to the massive
amount of compute it was trained with during its RL training [5].

E.2 Classifier-Free Guidance

Baker et al. [5] observed that when conditioning the agent on text, it tended to ignore its instruction
and instead perform the prior behavior learned during pretraining. As discussed in section D.4,
classifier-free guidance gives a knob for trading off between goal-conditioned and prior behaviors.
Figure 5 shows the effect of this parameter λ on the log and dirt collection tasks. The performance of
the agent reaches its maximum around λ = 5.0 to λ = 7.0, after which it starts to drop off. These
results demonstrate the importance of classifier-free guidance, which improves the performance of
STEVE-1 by orders of magnitude.

E.3 Prompt Engineering

Prompt engineering as a discipline has rapidly emerged over the last year due to the observation
that the quality of the output of text-to-X models can dramatically change depending on the prompt
[67]. For example, Table 5 in the appendix shows how a prompt for Stable Diffusion [50] might
be written. By listing out the various attributes of the image such as visual medium, style, and
the phrase “trending on ArtStation”, the user is able to get a higher quality image [20, 36]. In
this section, we explore how this same style of prompt engineering can improve the performance
of STEVE-1. Figure 6 shows how a simple prompt of “get dirt” might be changed in order to
more accurately specify the type of behavior that is desired. Just like in image generation models,
the performance of STEVE-1 significantly improves by modifying the prompt in this fashion. By
changing to more complicated prompts, STEVE-1 is able to collect 1.6× more wood, 2× more dirt,
and 3.3× more seeds.

E.4 Classifier-Free Guidance During Training

We examine the importance of using classifier-free guidance during training by finetuning a model
with no guidance which does not drop out the goal embedding zτgoal

from the policy’s input (i.e.,
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Figure 7: Ablation on Guidance. In the “no guidance” variant, we set puncond = 0, meaning
that we do not drop any zτgoal

from the policy’s input during training. The “guidance” variants set
puncond = 0.1, dropping 10% of the time during training. Whereas the “no guidance” model is
only compatible with λ = 0 at inference, the “guidance” model can use λ > 0, allowing for better
performance.

puncond = 0.0) and comparing it to the version which uses guidance (puncond = 0.1). The chunk
size is set to the range 15 to 50 and we train each policy for 100M frames. In Figure 7, we compare
the performance of using visual goals (MineCLIP video embedding) on the no guidance model using
conditional scale λ = 0 and the guidance model using conditional scales λ = 0 and λ = 3. We
observe that while the no guidance model slightly outperforms the guidance model at λ = 0 across a
few metrics, the agent with guidance outperforms the no guidance agent by a factor of 2 to 3 times
for the inventory collection tasks when we increase the conditional scale to λ = 3 (which we cannot
do for the no guidance model). For the travel distance metric, both of the guidance versions perform
similarly to the no guidance version.

E.5 Text Augmentation

During finetuning, instead of using only self-supervision with future MineCLIP video embedding
as the goal, we considered using the text embeddings from the 2,000 human labeled trajectory
segments as goal embeddings, either solely or in addition to the self-supervised video embeddings.
In order to more fairly compare with the CVAE prior approach, we augment the human-labeled
data with additional text-gameplay pairs generated as described in Appendix H.2. We implement
this experiment by replacing the visual embeddings used for relabeling in Algorithm 1 with text
embeddings, when available, with a 90% probability. To experiment with not using visual embeddings
at all, we can replace the visual embeddings with zeros in the same way. In Figure 8, we observe that
using only the visual embeddings during training, in combination with the CVAE, can outperform
using MineCLIP text embeddings directly in the other two baselines. In this experiment, the chunk
size is set to the range 15 to 50 and we train each policy for 100M frames.

E.6 VAE Variants

We study the dataset used to train the CVAE prior model. In Figure 9, we observe that augmentation
helps in some programmatic tasks, including the dirt and seed collection tasks, but slightly hurts the
wooden log collection and travel distance metrics. In this experiment, we use the same policy with
each CVAE variant and we tune the conditional scale λ for each variant. The chunk size is set to the
range 15 to 200 and we train the policy for 100M frames.
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Figure 8: Ablation on Text Augmentation. In the “text (raw text)” ablation, we train the model
using only the text labels from human labelled trajectory segments, and directly use the MineCLIP
text embedding of the text label as the goal embedding during training and at inference. For the “text
+ visual (raw text)” ablation, we use both the visual embedding in self-supervised manner and the
text embedding from the human labelled trajectory segments during training and use the MineCLIP
text embedding during inference. Even with augmentation, the dataset only contained around 2% text
embeddings. The “visual (text VAE)” version is as reported in the main method, using the CVAE to
convert MineCLIP text embedding to visual embedding during inference.
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Figure 9: Ablation on VAE Training Data. “Human” baseline uses only the 2,000 human-labelled
trajectory segments (text-video pairs), as training example for the CVAE prior model. “Human +
Aug” baseline adds additional pairs of text-video examples as described in Appendix D.3.

E.7 Chunk Size

During finetuning, we compare different goal chunk sizes by varying the
max_btwn_goals=[100,200,300,400], while keeping the min_btwn_goals=15. See Al-
gorithm 1 for more details. A larger max_btwn_goals introduces more noise, with actions that led
to achieving the further away goal being less correlated to the actions present in that goal chunk. In
Figure 10, we observe that the best max_btwn_goals chunk size is around 200, and increasing the
chunk size beyond that causes a drop in performance. We train each policy for 160M frames and tune
the conditional scale for each.
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Figure 10: Ablation on Segment Chunk Size. We vary the max_btwn_goals parameter in Algo-
rithm 1. The performance is roughly the best at around 200, beginning to decline with greater values.
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Figure 11: Even without training the prior on the concept of dirt or digging at all, STEVE-1 can still
be instructed to dig holes and get dirt. This demonstrates that STEVE-1 can generalize to unseen text
instructions.

E.8 Generalization to Novel Text Instructions

We train the prior on a dataset of human and GPT-generated instructions designed to be representative
of the tasks that appear in our gameplay dataset. Here, we have performed a set of simple generaliza-
tion experiments to measure the degree to which the prior can generalize to unseen instructions.

Instruction Training Set Contamination The “Text Prompt” column in Table 3 shows which of
the prompts used in evaluation show up in our training dataset. Among our evaluation instructions,
the bolded and italicized instructions show up in the instruction-trajectory dataset. While some
instructions do show up, most of the instructions do not show up in our training set (verbatim).

Training Set Decontamination To measure the effect on performance of removing a concept from
the training set, we ran an experiment where we removed every instruction with the words “dirt” or
“dig” in them and retrained the VAE model. This corresponds to around 10% of the instructions.
As shown in Figure 11, we found that even without training on the concept of dirt or digging at all,
STEVE-1 can still be instructed to dig holes and get dirt. This demonstrates clearly that STEVE-1 can
generalize to unseen text instructions — likely because most of the text-understanding comes from
the pretrained MineCLIP model which was trained on a highly diverse dataset of YouTube videos
and captions. The prior VAE only needs to learn a mapping between the text and visual MineCLIP
embeddings. Note that there is a slight decrease in performance across all tasks likely due to the
smaller VAE training set (∼ 10% less).

The instruction-following capability of STEVE-1 is shared between: the policy, which learns to follow
instructions in the visual MineCLIP embedding space; the MineCLIP text-encoder, which is trained
to align well with the visual embeddings and performs most of the text-understanding; and our prior
VAE model, which learns a simple function to translate between text and visual embeddings. This
modeling setup lets us fully exploit pretrained models such as MineCLIP to gain impressive language
understanding without relying on having our own large datasets or compute.

F Related Work

Minecraft as a Test-bed for AI Minecraft has gained popularity as a benchmark for AI research
due to its complex and dynamic environment, making it a rich test-bed for reinforcement learning
and other AI methods (e.g., [26, 19, 17, 21, 40, 62, 38, 9]). We leverage the MineRL environment
[19] to research the creation of agents that can follow open-ended instructions in complex visual
environments using only low-level actions (mouse and keyboard). We build STEVE-1 on top of
two recent foundation models. In order to align text and videos, we use MineCLIP [17], a CLIP
[47] model trained on paired web videos of Minecraft gameplay and associated captions. To train
STEVE-1’s policy, we fine-tune VPT [5], a foundation model of Minecraft behavior that is pretrained
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on 70k hours of web videos of Minecraft along with estimated mouse and keyboard actions. Several
prior works [61, 62] have explored the use of LLMs in creating instructable Minecraft agents. These
works typically use LLMs to make high-level plans that are then executed by lower-level RL [40, 62]
or scripted [46] policies. Since STEVE-1 is a far more flexible low-level policy, the combination
of STEVE-1 with LLMs is a promising direction for future work. Fan et al. [17] introduced an
agent trained using RL with MineCLIP as a shaping reward on 12 different tasks and conditioned on
MineCLIP-embedded text-prompts. However, this agent failed to generalize beyond the original set
of tasks without further RL finetuning using the MineCLIP reward function. Cai et al. [9] proposed
a Goal-Sensitive Backbone architecture for goal-conditioned control in Minecraft which is trained
on a fixed set of goals, while STEVE-1 learns goal-reaching behavior from a large dataset in a
self-supervised way without training on an explicit set of tasks.

Foundation Models for Sequential Decision-Making Foundation models which are pretrained on
vast amounts of data and then finetuned for specific tasks have recently shown great promise in a
variety of domains including language [8, 14, 59], vision [48, 10, 47], and robotics [7, 53, 25, 39, 65].
GATO [49] and RT-1 [7] have demonstrated the potential of training transformers to perform both
simulated and real-world robotic tasks. With the exception of Kumar et al. [30], which uses Q-
learning, the vast majority of cases [32, 7, 49] where deep learning has been scaled to large, multitask
offline-RL datasets have used supervised RL. Supervised RL (e.g., [42, 18, 12]) works by framing the
sequential decision-making problem as a prediction problem, where the model is trained to predict the
next action conditioned on some future outcome. While these approaches are simple and scale well
with large amounts of compute and data, more work is needed to understand the trade-offs between
supervised RL and Q-learning or policy gradient-based methods [43, 44, 6, 55]. Recent works explore
the use of hindsight relabeling [3] using vision-language models [47, 2] to produce natural language
relabeling instructions. DIAL [65] finetunes CLIP [47] on human-labeled trajectories, which is
then used to select a hindsight instruction from a candidate set. Sumers et al. [56] uses Flamingo
[2] zero-shot for hindsight relabeling by framing it as a visual-question answering (VQA) task. In
contrast, STEVE-1 relabels goals using future trajectory segment embeddings given by the MineCLIP
[17] visual embedding.

Text-Conditioned Generative Models There has been a recent explosion of interest in text-to-X
models, including text-to-image (e.g., [48, 51, 50]), text-to-3D (e.g., [27, 35]), and even text-to-music
(e.g., [1]). These models are typically either autoregressive transformers modeling sequences of
discrete tokens [60, 8] or diffusion models [24]. Most related to our work is unCLIP, the method used
for DALL•E 2 [48]. unCLIP works by training a generative diffusion model to sample images from
CLIP [47] embeddings of those images. By combining this model with a prior that translates text
to visual CLIP embeddings, unCLIP can produce photorealistic images for arbitrary text prompts.
unCLIP and many other diffusion-based approaches utilize a technique called classifier-free guidance
[23], which lets the model trade-off between mode-coverage and sample fidelity post-training. We
utilize the basic procedure of unCLIP and classifier-free guidance for training STEVE-1.

G Dataset Details

G.1 Gameplay Dataset

To train our policy, we gather a gameplay dataset of 54M frames (≈ 1 month at 20FPS) which
consists of two types of episodes: 7,854 episodes (38.94M frames) of a contractor dataset made
available from Baker et al. [5] and 2,267 episodes (14.96M frames) of gameplay generated by running
various pretrained VPT agents.

OpenAI Contractor Dataset The majority of our data comes from the contractor data used to train
VPT [5]. OpenAI released five subsets of contractor data: 6.x, 7.x, 8.x, 9.x, and 10.x. We use an equal
mix of 8.x, 9.x, and 10.x, which correspond to “house building from scratch”, “house building from
random starting materials”, and “obtain diamond pickaxe”. Contractors were given anywhere from
10 to 20 minutes to accomplish these goals to the best of their abilities while their screen, mouse, and
keyboard were recorded. We use the same preprocessing as VPT, including filtering out null actions.
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VPT-Generated Dataset We generated an additional dataset of 15M frames by generating random
trajectories using the various pretrained VPT agents. In order to increase the diversity of data as
well as to get data of the agent switching tasks randomly throughout the middle of episodes, we
added random switching between the different pretrained agents during episodes. Specifically, at
the beginning of an episode we randomly sample two VPT agents from (foundation_model_2x,
bc_early_game_2x, bc_house_3x, rl_from_foundation_2x, rl_from_house_2x) and switch
between them at each timestep with a probability of 1/1000. Since the RL agents all act quite
similarly, we avoid sampling two RL agents at once. Additionally, with a probability of 1/750 each
timestep, we cause the agent to spin a random number of degrees. This adds more data where the
agent spontaneously changes tasks, increasing downstream steerability.

G.2 Text-Video Pair Dataset

To train our prior, we also manually gather a dataset of 2,000 human-labelled trajectory segments
(text-video pairs) by manually labeling gameplay from our datasets. We used a simple web app that
presented a video of 16 frames to the user from a randomly sampled episode. This only corresponds
to 32,000 frames of labeled data, which corresponds to labeling 0.06% of the full dataset, or 27
minutes of labeled data. Using this web app, the dataset was collected in just a few hours. However,
as discussed in Appendix H.2, combining this with automatically labeled data using gpt-3.5-turbo
and MineCLIP results in a strong prior model.

G.3 Prompt Design

In our experiments we used both short and longer prompts. The short prompts are either taken from
previous literature (e.g., the language-conditioning experiment in the VPT appendix [5]) or they were
simply the first prompt we tried. The longer prompts were created by taking inspiration from the
prompt engineering methods used with text-to-image models such as Stable Diffusion [50]. To design
these prompts, we simply strung together a lot of terms related to our task in order to increase the
specificity of the prompts. We were excited to discover that this style of prompt design inspired by
the prompt-engineering community works well in STEVE-1.

H Training Details

H.1 Policy Training

STEVE-1 was trained using distributed data parallel in PyTorch [45]. During training, segments of 640
timesteps were sampled from the dataset. Due to memory constraints, these segments were further
broken up into chunks of 64, which are processed sequentially. Since VPT uses a Transformer-XL
[15], this sequential processing lets the policy attend to previous batches up to the limit of its context
length. We optimized the weights using AdamW [37] with a maximum learning rate of 4e-5 and a
linear warmup for the first 10M frames followed by a cosine learning rate decay schedule that decays
to 10% of the original learning rate. See Table 1 for an exhaustive list of hyperparameters used during
training.

During training, we sample data using packed hindsight relabeling (Figure 4). This involves sampling
a segment of an episode, randomly selecting some timesteps at which to change goals, and then
filling in the corresponding goal embeddings for the entire episode with the embeddings from the
corresponding goal segments. See Algorithm 1 for a detailed explanantion of packed hindsight
relabelling.

H.2 Prior Training

The prior model is a simple CVAE [54] that conditions on MineCLIP [17] text embeddings and models
the conditional distribution of visual embeddings given the corresponding text embedding. This
model is trained on a combination of around 2,000 hand-labeled trajectory segments and augmented
with additional data by automatically searching for text-gameplay pairs from our gameplay dataset.
This is done using the following steps:
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Hyperparameter Name Value
trunc_t 64
T 640
batch_size 12
num_workers 4
weight_decay 0.039428
n_frames 160M
learning_rate 4e-5
optimizer AdamW [37]
warmup_frames 10M
p_uncond 0.1
min_btwn_goals 15
max_btwn_goals 200
vpt_architecture 2x

Table 1: Policy Hyperparameters

Hyperparameter Name Value
architecture MLP
hidden_dim 512
latent_dim 512
hidden_layers 2
batch_size 256
learning_rate 1e-4
β 0.001
n_epochs 50
n_search_episodes 2000
k 5
offset 8

Table 2: Prior Hyperparameters

Algorithm 1: Sampling Episode Segments with Packed Hindsight Relabeling
Function sample_episode_segment(T, min_btwn_goals, max_btwn_goals)

segment = sampleSegment(episode, T)
curr_timestep = segment.start
goal_switching_indices = []
while curr_timestep < segment.end do

curr_timestep += uniform(min_btwn_goals, max_btwn_goals)
goal_switching_indices.append(curr_timestep)

relabeled_goal_embeds = []
for n in range(1, len(goal_switching_indices)) do

relabeled_goal_embeds[in−1:in] = segment.goal_embeddings[in]
return segment.obs, segment.actions, relabeled_goal_embeds

1. Combine the 2,000 text labels with 8,000 additional labels generated by querying
gpt-3.5-turbo.

2. For each of these 10,000 text labels, search through 1,000 episodes sampled from the
gameplay dataset to find the top 5 closest visual MineCLIP embeddings to the text embedding
of the text label.

These 50,000 automatically-mined text-video pairs are added to the original 2,000 hand-labeled
examples to form the final dataset used for prior training.

We noticed when prompting STEVE-1 using visual goals that when the visual goal showed the agent
hitting a block but not following through and breaking it that STEVE-1 actually avoided breaking
blocks. Unfortunately, many of the automatically discovered text-gameplay clips include gameplay
of this kind. In order to prevent this issue, we added an offset to the embeddings found in this manner.
By selecting embeddings from a timestep offset steps after the originally-selected timestep, the
agent is much more likely to follow through with breaking blocks.

We trained our prior model for 50 epochs on this dataset and used early-stopping with a small
validation set. An exhaustive list of hyperparameters used for creating the prior model can be found
at Table 2.
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H.3 Training Costs

The $60 cost we report corresponds to the cost of renting a 8xA10g node using spot instances on
AWS for 12 hours using our instances prices in May 2023.

I Additional Visualizations

I.1 MineCLIP Evaluation

We ran MineCLIP evaluation on both text and visual prompts. The MineCLIP evaluation results can
be found in Figure 12.

I.2 Steerability with Programmatic Metrics

Similar to Figure 20 in the VPT appendix [5], we plot the programmatic metric performances (mean
and 95% confidence intervals) across the different goal prompt conditioning, both using visual
prompts (Figure 15) and text prompts with CVAE prior (Figure 16) conditioning, on our policy
trained with hyperparameters in Table 1 and using conditional scaling λ = 7 (for visual prompts)
and λ = 6.0 (for text prompts with CVAE prior). Each conditioning variant is run with 10 trials,
each trial with a different environmental seed and with an episode length of 3000 timesteps (2.5
minutes gameplay). Across the conditioning variant, we use the same set of environmental seeds.
For comparison, we also plot the metrics for an unconditional VPT (early_game) agent (“VPT
(uncond)”) and the text-conditioned agent investigated in VPT appendix [5] (“VPT (text)*”) when
conditioned on the relevant text. When using visual goal conditioning, we the use MineCLIP video
encoder to embed a 16-frame clip of the agent performing the desired task taken from our training
dataset. An example frame from each of the visual goals is illustrated in Figure 14. When using text
VAE goal conditioning, we use the MineCLIP text encoder to encode the text prompts (Table 3) and
use the CVAE prior to sample the goal embedding from the MineCLIP text embedding.

We note several differences in our experimental setup compared to that in VPT [5]. We only run
our evaluation episodes for 3000 timesteps, equivalent to 2.5 minutes of gameplay, compared to
5 minutes in the VPT paper. Due to a limited computational budget, we generate 10 episodes per
conditioning variant, and 110 episodes for the unconditional (“VPT (uncond)”), compared to VPT’s
1000 episodes. Lastly, when measuring the inventory count, we log the maximum inventory count
seen throughout the episode, which is a lower bound on the potential number of items collected since
the agent can later throw out, place, or use these items to craft. As a result of these caveats, we denote
the “VPT (text)*” legend in Figure 15 and Figure 16 with an asterisk as we use the results reported in
[5] directly for comparison.

We make several observations. First, we observe that our agents is more steerable: when conditioned
to collect certain items (in bold), the agent collects (relatively) many more of those items than when
conditioned on other instructions unrelated to that item, as well as compared to the unconditional VPT.
When conditioned on tasks unrelated to the item (e.g. break a flower when interested in measuring
logs collected), we also observe that the agent pursues that item less than the unconditional agent.
Second, we observe that for the bolded instructions which we expect to stand out, we outperform
VPT performance (dashed blue line) [5], even with half the amount of time in the episode rollout.
This suggests that our agent is both more steerable relative to the unconditioned VPT agent and the
text-conditioned VPT agent investigated in the VPT appendix [5].

I.3 Prompt Chaining Visualization

We visualize two specific episodes from the prompt chaining experiments in Section 3.2 in Figure 18
(building a tower) and Figure 19 (crafting wooden planks).
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(a) MineCLIP Text Evaluation
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(b) MineCLIP Visual Evaluation

Figure 12: MineCLIP Evaluation. We measure the cosine distance between the goal embedding
given to the agent and the MineCLIP video embeddings throughout the episode and record the
minimum across the episode. Dashed box indicates the minimum along the row, and the number in
the diagonal box indicates the rank of the diagonal element in the row (0 specifies that the diagonal
is the minimum element in the row). The ideal performance would be where the minimum values
of each row lie on the diagonal. That is, the agent performs a specific task best when it is asked
to perform that specific task. Left: We use the prior to convert the text into the goal embedding.
Across our 11 text MineCLIP evaluation tasks, STEVE-1 achieves the shortest distance between the
episode and the MineCLIP goal embedding when prompted appropriately for most cases. This shows
the strong general performance of STEVE-1 across a wide variety of short-horizon tasks. Right:
We embed the visual goal loops (Figure 14) with MineCLIP video encoder. Across our 11 visual
MineCLIP evaluation tasks, STEVE-1 achieves the shortest distance between the episode and the
MineCLIP goal embedding when prompted appropriately except for in two cases, where it mixes up
digging and dirt and swimming and going underwater. This shows the strong general performance of
STEVE-1 across a wide variety of short-horizon tasks.
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Figure 13: Visual Evaluation Success-Rate Matrix. We manually reviewed the same videos used
for the MineCLIP Visual Evaluation matrix in Figure 2b in order to verify that the MineCLIP scores
correspond well to human judgment. Thus, the values in this matrix are subject to human error
and subjectivity. Each cell value shows how often the agent achieves the Evaluation Prompt when
conditioned on the Conditioned Prompt (success-rate). The dotted cell(s) is/are the maximum value
in the row. Across the tasks, STEVE-1 achieves the highest success-rate when prompted appropriately
except in three cases, where it breaks wood more than leaves, explores more than it swims, and swims
more than it goes underwater. This shows the strong general performance of STEVE-1 across a wide
variety of early-game short-horizon tasks.
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Figure 14: Sample frames from each of the 11 visual goals. Note that the text overlaid on the frame is
not present when we encode the 16-frame clip with the MineCLIP video encoder, and is only present
for the figure visualization.

Shortened Name Conditioning Variant Name Text Prompt
dig dig as far as possible dig as far as possible
dirt get dirt get dirt
sky look at the sky look at the sky
leaves break leaves break leaves
wood chop a tree chop a tree
seeds collect seeds collect seeds
flower break a flower break a flower
explore go explore go explore
swim go swimming go swimming
underwater go underwater go underwater
inventory open inventory open inventory
dirt (engineered) get dirt . . . get dirt, dig hole, dig dirt,

gather a ton of dirt, collect dirt
wood (engineered) chop down the tree . . . chop down the tree, gather

wood, pick up wood, chop it
down, break tree

seeds (engineered) break tall grass . . . break tall grass, break grass,
collect seeds, punch the
ground, run around in circles
getting seeds from bushes

Table 3: A summary of the different ways we refer to the 11 early-game evaluation task prompts.
“Shortened Name” is the way we refer to the prompts in any success-rate matrix or MineCLIP matrix.
This is also how we refer to the visual prompts which have no actual text. “Conditioning Variant
Name” is the name used to refer to the “Text Prompts” in Figure 16, since not all text prompts fit in
the figure. A “Conditioning Variant Name” with “. . . ” indicates that this is an engineered text prompt
that does not fit in the figure. Also, in reference to the experiments Appendix E.8, the bolded and
italicized prompts in the “Text Prompt” column are those that were present verbatim in the text-video
pair dataset.
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Figure 15: Conditioning with Visual Goals. We plot the performance of the programmatic metrics,
along with their mean values and 95% confidence intervals, across different goal conditioning. See
Figure 14 for visualization of these visual prompts. Plots are similar to Figure 20 in the VPT appendix
[5]. Each conditioning variant is run with 10 trials, each with a different environmental seed and with
an episode length of 3000 time steps (2.5 minutes gameplay). We use the policy that was trained using
the hyperparameters specified in Table 1, and with conditional scaling values λ = 7. The dashed
horizontal lines refer to an unconditional VPT agent (“VPT (uncond)”) and a text-conditioned agent
from the VPT appendix (“VPT (text)*”) that was conditioned on the relevant text, for the purpose of
comparison.
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Figure 16: Conditioning with Text goals. See Table 3 for the exact text string used for each
conditioning variant. We use the same policy model but with a conditional scaling value λ = 6. We
observe strong steerability which outperforms text-conditioned VPT in Appendix I of [5], and we
observe that prompt-engineering can improve performance.
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Figure 17: The conditional scale λ in classifier-free guidance [23] can be tuned to improve perfor-
mance in each of the programmatic tasks. By tuning λ to use classifier-free guidance at inference
time, STEVE-1 is able to collect 7.5× more dirt, 15× more wood, 23× more seeds, and travel 1.7×
further than at λ = 0 (no guidance).
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Task Prompts Precondition

dig a hole, get dirt, look at the
sky, break leaves, get wood,
get seeds, break a flower, go
explore, go swimming, go
underwater, open inventory

Use the best-performing
prompts in Table 3 in the
Appendix.

For grass and flowers, it works
best when grass and flowers
are in the current biome. We
found breaking flowers to be
less reliable than the others.

make a tower “build a tower” building blocks in hotbar. To
obtain building blocks, you
can use the dig a hole or get
wood prompts from Table 3.

craft wooden planks “make wooden planks, craft
wooden planks” (*)

wooden logs. To obtain
wooden logs, use the get
wood prompt from Table 3.

place torches, place a crafting
table, place wooden planks

“place [torches/a crafting
table/wooden planks]”

[torches/crafting table/wooden
planks] in the hotbar

make a crafting table “make a crafting table” wooden planks.

break stone “mine stone, go mining, get
stone” (*)

get cobblestone “mine stone, go mining, get
cobblestone” (*)

pickaxe in hotbar.

create a wooden pickaxe “craft a wooden pickaxe,
make a wooden pickaxe” (*)

already looking at a placed
crafting table, has necessary
materials.

hit a sheep, hit a pig, hit a cow “kill a [sheep/pig/cow]” agent is close to and looking
at the sheep/pig/cow. (See
Appendix B.1).

Table 4: Examples of tasks that STEVE-1 is able to achieve. (*) denotes that this is a single
prompt-engineered prompt. Note that this list represents only a subset of the capabilities of STEVE-
1 due to the difficulty associated with evaluating and describing the capabilities of open-ended
models, which is an open research problem itself since capability depends strongly on preconditions,
prompt engineering, and our own ability to come up with varied and challenging tasks. Please see
Appendix B.4 for further discussion.

Model Simple Prompt Complex Prompt

Stable Diffusion [50] steampunk market interior steampunk market interior, colorful,
3D scene, Greg Rutkowski, Zabrocki,
Karlkka, Jayison Devadas, trending
on ArtStation, 8K, ultra-wide-angle,
zenith view, pincushion lens effect
[20]

STEVE-1 collect seeds break tall grass, break grass, collect
seeds, punch the ground, run around
in circles getting seeds from bushes

Table 5: Example of evolving simple prompts into more complex ones for various models.
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Figure 18: Build a Tower task. (Left) We track the amount of dirt in the inventory and the agent’s
height position (y-axis) throughout the episode. In the first 1500 timesteps, the agent is conditioned
on the visual get dirt goal, then the agent is conditioned on the visual build a tower goal for the final
1500 timesteps. Vertical dotted lines with numbers indicate the corresponding frames on the right.
(Right) The agent’s observation frames at 4 different points in the episode. First the agent collects
dirt, then begins to build the tower using the dirt blocks.
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Figure 19: Make Wooden Planks task. (Left) We track the number of logs and planks in the
inventory. In the first 1500 timesteps, the agent is conditioned on the visual break wood goal, then the
agent is conditioned on crafting the visual wooden planks goal for the final 1500 timesteps. Similarly
to Figure 18, a vertical dotted line annotated with a number indicates the corresponding frame to
the right. (Right) The agent’s observation frames at 4 different points in the episode. First the agent
breaks trees to collect wooden logs, then opens the inventory and crafts wooden planks.
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