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Abstract. The scarcity of pixel-level annotation is a prevalent problem in medi-

cal image segmentation tasks. In this paper, we applied a novel regularization 

strategy involving interpolation-based mixing for semi-supervised medical im-

age segmentation. The proposed method is a new consistency regularization 

strategy that encourages segmentation of interpolation of two unlabeled data to 

be consistent with the interpolation of segmentation maps of those data. This 

method represents a specific type of data-adaptive regularization paradigm 

which aids to minimize the overfitting of labelled data under high confidence 

values. This method is originally used on ACDC and MMWHS datasets. When 

applied to the FLARE22 dataset, this method shows excellent performances in 

inference time and CPU/GPU consumption, yet proves to be insufficient in ac-

curacy. The validation result shows that it can only segment liver with DSC of 

0.41, and fails to segment other organs with their DSC under 0.1. It appears that 

this method with 2D convolution, through simple and efficient, is unsuitable for 

the FLARE22 dataset and its task. More experiments need to be conducted to 

confirm whether this method can be used for complex tasks like FLARE22 after 

major modifications. 

Keywords: Semi-supervised Learning, Medical Image Segmentation, Interpo-

lation, Consistency Regularization  

1 Introduction 

Abdomen organ segmentation has many important clinical applications, such as 

organ quantification, surgical planning, and disease diagnosis. Supervised medical 

image segmentation is widely explored problem in computer vision, achieving expo-

nential growth recently. These methods mostly rely upon deep learning, requiring 

large-scale pixel-wise annotation data. However, manually annotating organs from 

CT scans is time-consuming and labor-intensive. Semi-Supervised Learning (SSL) is 

a promising direction in this regard, requiring only a few labelled data and compen-

sating for the large portion of unlabeled data by generating pseudo labels. Recently, 

SSL-based methods have been widely recognized for their superior performance in 

medical image segmentation. They not only eliminate the necessity of large-scale 
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annotations but also produce accurate segmentation results that are very close to those 

obtained from supervised models. 

 The FLARE dataset is composed of a small number of labeled case(50) and a 

large number of unlabeled cases(2000) in the training set,  50 visible cases for valida-

tion, and 200 hidden cases for testing. The segmentation targets include 13 organs: 

liver, spleen, pancreas, right kidney, left kidney, stomach, gallbladder, esophagus, 

aorta, inferior vena cava, right adrenal gland, left adrenal gland, and duodenum. In 

addition to the typical Dice Similarity Coefficient (DSC) and Normalized Surface 

Dice (NSD), our evaluation metrics also focus on the inference speed and resources 

(GPU, CPU) consumption. 

As for semi-supervised learning, consistency regularization is a plausible solution, 

that encourages realistic perturbations of an unlabeled image to produce consistent 

segmentation maps. For example, Bortsova et al. [1] proposes a transformation con-

sistent segmentation network, capable of exploring the equivariance of elastic pertur-

bations for precise lung X-ray segmentation and Li et al. [2] proposes a semi-

supervised segmentation framework using transformation consistency, encouraging 

consistent predictions of the network-in-training for different perturbation of the same 

input. Unlike these methods, which rely upon the low-density region assumption, 

our proposed method chooses perturbation directed towards another unlabeled sam-

ple, thereby reducing the necessity of expensive gradient calculation. 

     On the other hand, interpolation-based regularizes have been achieving state-of-

the-art performance in various tasks and across multiple architectures. Recently, this 

idea has been extended to an unsupervised setting by Berthelot et al. [3] where the 

authors propose that utilizing realism of the latent space interpolation from autoen-

coder can improve model learning. Driven by this speculation and the aforementioned 

success of consistency regularization in SSL methods, in this paper we applied an 

interpolation-based mixing technique in a semi-supervised setting and its utility in 

medical image segmentation.  

   When applied on the FLARE22 dataset, most of the modifications is on preprocess 

part. And the semi-supervised part and objective function are identical to the original 

method introduce by the original paper[4].  

 

2 Methodology 

2.1  Dataset and Preprocessing 

The original file contains 50 labeled and 2000 unlabeled .nii.gz file. The cases are 

converted into numpy format and sliced into 2d images, because the used method of  

consistency regularization is based on 2d convolution kernels and 2d interpolation. 

Besides, due to the high consumption of 3d convolution , I wondered that this 2d net-

work can show higher efficiency. 

I noticed that the Z dimensions in this dataset vary significantly, so all files are 

resampled to [z=64]. And X,Y dimensions are resampled to [256,256]. The resample 
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function is borrowed directly from nnUnet[5].  After resampling, the converted numpy 

array shape is [256,256,64] for all data in the datasets.  

Then the 3d array is sliced along Z, each file is sliced into 64 slices with shapes of 

[256,256]. The slices are saved as .h5 format. Data augmentation to the slices is a 

random combination of flip and rotate, which is identical to the original method ap-

plied on ACDC dataset. In the end, all 50 labeled cased are converted to 3,200 slices 

along with their labels. And the unlabeled cases are converted into 12,8000 slices. But 

in the practice of training, I only used 1000 unlabeled cases, that to say 6,4000 slices. 

 

2.2  Consistency Regularization with Interpolation 

   Consistency Regularization has been used in existing literature as a means to en-

hance the robustness of a network pipeline by enforcing the network against various 

perturbations on the unlabeled data, to increase the generalizability of these new data 

points. Among them, the most effective perturbation would be in the adversarial di-

rection – in the direction almost perpendicular to the decision boundary between the 

positive and negative examples, i.e., the direction in which the network is most liable 

to misclassify the pixels. However, most existing literature incorporates perturbations 

that may or may not be in the adversarial direction, and thus, results in loss of gener-

alizability. Some other methods do perturb the input in the adversarial direction but 

require a large amount of unlabeled data and thus, might not be feasible in the bio-

medical domain. 
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Fig. 1. Overall framework of the proposed architecture. 

 

Thus, we have proposed a pixel-wise data perturbation strategy as consistency reg-

ularization in our work, which operates as described. The network is trained in such a 

way so as to ensure stable and accurate segmentation of image points interpolated 

from existing points. Considering two unlabeled image data-points u1 and u2, we 

interpolate another unlabeled image point Mα(u1; u2), where 

Mα(u1; u2) = αu1 + (1 − α)u2, for some hyperparameterα. Now, consistency regu-

larization is applied between the output of the interpolated image data-point f(Mα(u1; 

u2) and the interpolation of the outputs of the original unlabeled points Mα(f(u1); 

f(u2)) = αf(u1) + (1 − α)f(u2). This exploits the fact that the network learns to predict 

a pixel-level segmentation mask of the input images, and further, consistency is main-

tained between the outputs of the interpolated inputs and the interpolated outputs of 

the original inputs. Thus, the unlabeled samples in the datasets are used to generate 

the new interpolated images and the corresponding pseudo-labels. It takes two unla-

beled images as input and returns the interpolated image and the corresponding pseu-

do label, which is used by the network pipeline. Therefore, the Consistency Regulari-

zation technique can be summarized as: 

Mα(fθ’(u1), fθ’(u2)) ≅ fθ(Mα(u1,u2))      (1) 

 

This data mixing technique would help the model learn more robust features im-

proving the semi-supervised learning on subsequent (target) tasks since random per-

turbations do not guarantee adversarial perturbation. 

2.3  Objective Function 

Consider labelled samples (xi,yi) ∼ Ll from joint distribution P(X,Y) and unlabeled 

samples (ui, uj) ∼ Lul from borderline distribution P(X) = P(X,Y)/P(X|Y). Using SGD 

for every iteration t, the encoder-decoder parameter θ is updated 

minimizing the objective function: 

L = LCE + r(t).LU         (2) 
where LCE is the cross-entropy loss applied over the labelled 

data Ll and LU is the interpolation consistency regularization loss applied over the 

unlabeled data Lul, r(t) is the ramp function adjusting the weight of LU after every 

iteration. LU is calculated over (ui,uj) of sampled mini batches and the pseudo labels yi 

= Fθ’(ui) and yj = Fθ’(uj) (θ’ is the exponential moving average of θ). Next, interpolation 

um = Mα(ui,uj) and model prediction ym = Fθ(um) are computed updating θ to bring ym 

closer to the interpolation of the pseudo labels, Mα(yi,yj). The deviation in ym and 

Mα(yi,yj) is penalized using the mean squared loss. Therefore, LU can be expressed as: 

 

LU = Eui,uj∼Lull(Fθ(Mα(ui; uj)), 

                                            Mα(Fθ’(ui),Fθ’(uj)))                             (3) 
The overall approach is depicted in Figure 1. 
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3      Experiments and Results 

3.1  Dataset and Experimental Setup 

   The method is originally applied on two public datasets: the ACDC 2017[6]and 

MMWHS dataset[7] In this paper, I applied this method to FLARE22 dataset after 

some modifications.  

As mentioned above, The FLARE dataset is composed of a small number of labeled 

case(50) and a large number of unlabeled cases(2000) in the training set,  50 visible 

cases for validation, and 200 hidden cases for testing. The segmentation targets in-

clude 13 organs: liver, spleen, pancreas, right kidney, left kidney, stomach, gallblad-

der, esophagus, aorta, inferior vena cava, right adrenal gland, left adrenal gland, and 

duodenum. But only 1000 unlabeled cases are used for semi-supervised training. And 

within labeled data, 10 case are split for validation and the left for labeled training. 

We have used ResNet-50 as the encoder backbone of the architecture, using an 

ADAM optimizer with an initial learning rate of 1e-5. For evaluation purposes, three 

widely used metrics are used: Dice Similarity Score (DSC), Average Symmetric Dis-

tance(ASD), and Hausdorff Distance (HD). Average of all the metric scores over all 

the classes and reported in this paper. Mixing parameter α was set experimentally. 
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Algorithm 1 shows the pseudo-code of the method during training. Curiously, un-

like other SSL procedure, this method does not pretrain backbone network with la-

beled data. Instead, they used a two-way batch sampler to extract batch from labeled 

and unlabeled data at the mean time with the same amount(12 slices for each in this 

case). Then as the Algorithm 1 shows, both supervised loss(CE loss) and unsuper-

vised loss(MSE loss) is calculated  and combined to make the overall loss. That to 

say, they trained the supervised and unsupervised part at the mean time. Therefore, 

the given iteration of training is counted on the labeled part. And for the unlabeled 

part and the consistency regularization just iterated as much as needed. However, 

according to the poor result on FLARE22 dataset, whether this training procedure can 

improve efficiency of training without losing too much accuracy needs to be studied 

on other dataset. At least, it seems to work well on its original dataset(ACDC and 

MMWHS) 

 

3.2  Results on the FLARE22 dataset 

  The validation results shows that it can yield 0.4120 DSC accuracy on liver seg-

mentation, but on other organs, the DSC score are all under 0.10 except for 0.1070 on 

aorta. Whether the validation result is accurate needs to be further investigated. But 

based on the current validation, it suggests that this 2d consistency regularization with 

interpolation between two unlabeled slices is unsuitable for FLARE22 dataset or its 

task. However, it does appear to be efficient and have low consumption(RAM<2G, 

GPU<2G) as expected. Here is an example of the segmentation result of validation 

cases. 

Fig. 2. An example of segmentation result 
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3.2  Discussion 

    In the original paper, this SSL method achieves DSC of 73.56%, 79.05%, and 

89.80% on the ACDC 2017 dataset for 1.25%, 2.5%, and 10% labelled volumes re-

spectively. 

There are some possible reasons to account for the poor performance on the 

FLARE22 dataset. First of all,  This method is a pure 2d method so that cannot cap-

ture inter-slice information of the 3d file. However, the dataset it originally applied on 

is also 3d medical images. The reasons maybe that the segmentation categories are 

less in ACDC dataset(3 targets plus background). And in FLARE22 dataset, segmen-

tation categories expand into 13 organs including some minor ones. Thus, this simple 

interpolation and consistency regularization method can’t handle the significant in-

crease of difficulty. Besides, the original dataset is consisted of MRI data, so the z-

dimension is relatively smaller and more invariant for segmentation targets. And since 

the target organs in FLARE22 dataset are more variant in z-dimension and the unla-

beled slices are chose randomly for interpolation, it significantly weakens the effect of 

consistency regularization.  

Based on the current results, I believe that to adapt for the FLARE22 dataset, intro-

duction of more inter-slice information can improve the result significantly. As all the 

samples fed into the model is resampled into same sizes,  executing a positional en-

coding to guide  the interpolation of two unlabeled slices can be of help. With the help 

of positional encoding, we can make sure the interpolation is carried out between two 

slices in the same phase of each case. Further experiments need to be done to confirm 

whether this simple SSL method can be used for 3d CT dataset with complicated 

segmentation targets like FLARE22. 

 

4   Conclusion 

Here I have tried to apply a semi-supervised learning strategy that encourages con-

sistency regularization by interpolation for segmentation of FLARE22. The original 

paper suggests that is advantageous over the previous SSL models in multiple aspects: 

unlike adversarial perturbations or generative models, it requires almost no additional 

computations. When applied to FLARE22 dataset, it does show high-efficiency and 

have low consumption. However, it fails to meet the segmentation accuracy standard. 

The main reason is its over-simplified 2d consistency regularization is unable to ad-

just complicated 3d CT dataset and multiple organs. More experiments need to be 

conducted to confirm whether this method can be used for complex tasks like 

FLARE22 after major modifications.  
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