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(a) Original (b) Super-Resolution

Figure 1: Original vs. Super-Resolution. The left panel shows a TBM metallography image (original
resolution), and the right panel shows its super-resolved version generated using our diffusion pipeline
(OSEDiff with a metallography-specific prompt). The SR image exhibits enhanced clarity, making
grain boundaries more continuous and easier to discern for analysis.

Abstract

Super-resolution (SR) holds promise for improving metallographic analysis, but
diffusion-based methods raise concerns about hallucinated structures that could
bias quantitative results. We present the first systematic study of diffusion SR
in quantitative metallography. Using OSEDiff with a fixed domain prompt, we
generate a fourfold super-resolved version of the Texture Boundary in Metallog-
raphy (TBM) dataset (SR–TBM) and train uncertainty-aware edge detectors on
both original and SR images. Expert audit confirmed that SR–TBM introduces
no spurious grain boundaries, establishing that diffusion SR can be trusted under
domain-guided prompting. At the same time, models trained on SR–TBM achieve
a 47% reduction in grain-size error (Heyn intercept metric) compared to models
trained on original TBM, surpassing prior baselines including MLOgraphy and
AutoSAM. These results demonstrate that diffusion SR, when guided appropriately,
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both preserves scientific validity and enhances performance in grain-size estima-
tion. We release SR–TBM and code to encourage reproducible, physics-aware
evaluation of generative enhancement methods in materials science. 1

1 Introduction

Quantitative metallography (QM) depends on extracting reliable grain-size statistics from microstruc-
tural images, yet this task is hindered by blurred, noisy, and low-resolution boundaries. Fine grains
often appear fragmented or ambiguous, making automated detection difficult. Conventional vision
approaches struggle: general-purpose models such as the Segment-Anything Model fail on purely
textural images [5], while specialized pipelines like MLOgraphy apply heavy post-processing that
can fracture true boundaries or erase uncertain segments [8]. Even state-of-the-art edge detectors
degrade when resolution is reduced or context is limited [7, 4, 6, 2].

The Texture Boundary in Metallography (TBM) dataset was introduced to confront this challenge [9].
TBM consists of high-resolution images with intricate textures and incomplete boundaries, deliber-
ately designed to test detection under adverse conditions. Standard pixelwise metrics such as IoU
or Dice prove inadequate here, since boundaries are rarely perfectly closed. Instead, the physics-
informed Heyn intercept method – long used in materials science (ASTM E112 [1]) – offers a more
faithful evaluation by estimating grain size directly, thus aligning model performance with scientific
goals [9].

One possible route forward is generative super-resolution (SR), which can enhance boundary continu-
ity and visibility. But diffusion-based SR introduces a crucial concern – hallucinated structures could
compromise downstream measurements. The open question is whether SR can genuinely improve
metallographic analysis without introducing misleading artifacts.

In this paper, we address this question through the first systematic study of diffusion-based SR for
metallography. Using OSEDiff [11] – a one-step diffusion network for real-world image super-
resolution – with a fixed domain prompt, we super-resolve TBM images fourfold to create SR–TBM,
then evaluate identical uncertainty-aware edge detectors trained on original and super-resolved data.
The SR-based model achieves markedly more accurate grain-size estimates – 47% lower error –
without generating false boundaries, as confirmed by expert audit. It also surpasses existing baselines
such as MLOgraphy and AutoSAM, establishing a new state-of-the-art [8, 10]. By releasing SR–
TBM and code, we provide a reproducible framework for testing trustworthy enhancement at the
intersection of AI and materials science.

2 Related Work

Grain-Boundary Detection in Metallography. Delineating grain boundaries in microstructural
images is challenging because boundaries are often faint, incomplete, or rely on surrounding texture
context [7, 4, 6, 9, 3]. The TBM benchmark [9] encapsulates these difficulties, providing a testbed
for algorithms under realistic conditions of fragmented boundaries and high texture complexity.
Traditional image segmentation or edge detection approaches struggle on TBM. MLOgraphy [8]
addresses the task with a U-Net–based predictor followed by aggressive post-processing to produce
closed contours. While effective on clean images, this method suffers on TBM due to its use
of small image patches (losing global context) and the removal of uncertain edges which might
actually be true boundaries. Subsequent work has moved towards using larger context windows
and accepting partial (open) boundaries during training to reduce dependence on post-processing,
thereby improving performance on datasets like TBM [3]. The Segment Anything Model (SAM),
a foundation model for general segmentation, was also tested on metallography via an automated
variant called AutoSAM [10, 3]. AutoSAM modifies SAM’s prompt encoder to function without
user input, producing full-image segmentation masks. However, without semantic cues, SAM-based
approaches underperform on textures [5], although AutoSAM did achieve a reasonable baseline on
TBM.

Physics-Aware Evaluation. Rather than judging predictions purely by pixel overlap with ground
truth, Cohen et al. [3] advocated evaluating grain-size fidelity using the Heyn intercept method

1Source code and dataset: https://github.com/Scientific-Computing-Lab/SR-TBM.
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(ASTM E112 standard [1]). This entails measuring the average grain size from predicted boundaries
and comparing it to the true average grain size, thus focusing on the correctness of quantitative
metallurgical outcomes. This metric tolerates small gaps or slightly misplaced boundaries as long as
the overall grain size distribution is preserved. Prior TBM studies found that even when IoU/Dice
are low, a model might still yield acceptable grain-size estimates. We adopt this Heyn intercept
evaluation as our primary metric for assessing the effect of super-resolution on analysis.

Uncertainty-Aware Edge Detection. Annotating grain boundaries is subjective – experts may
disagree on faint edges or where a boundary begins/ends. Zhou et al. [13] introduced the UAED
model, which learns a distribution over edge labels to account for annotation uncertainty. UAED
produces both an edge probability map and an uncertainty map, and is trained with a specialized loss
that emphasizes uncertain regions (to encourage robustness). In our work, we fine-tune the pretrained
UAED, using a single ground-truth label per pixel, as we do not have multiple annotators. We use
this pretrained model as a starting point for the optimization due to UAED’s ability to model soft
boundaries and ambiguity being well-suited to metallography, where some boundaries are weak and
not all true edges are sharply defined.

Diffusion Models for Super-Resolution. Diffusion-based generative models have recently achieved
impressive results in natural image super-resolution. OSEDiff (One-Step Effective Diffusion) by
Wu et al. [11] is a state-of-the-art approach that formulates SR as a single diffusion step starting
from a low-quality input image instead of pure noise. By fine-tuning a latent diffusion model
(Stable Diffusion) with a specially designed loss, OSEDiff produces high-quality upscaled images
in one step, offering >100× speedups over multi-step diffusion models, such as StableSR [11].
Importantly, OSEDiff allows text prompts to guide the super-resolved output, which can inject
domain-specific prior knowledge. While diffusion SR has been extensively validated on natural
images, its reliability on scientific images like micrographs remains uncertain. There is a legitimate
worry that a powerful generative model might hallucinate structures that look plausible but are not
real, thus corrupting measurements. To our knowledge, no prior work has systematically examined
diffusion SR in metallography or its effect on physical metrics like grain size. Our study fills this
gap, evaluating whether a diffusion model can be trusted to enhance metallographic images without
biasing quantitative analyses.

3 Method: Diffusion-Based SR for Metallography

One-Step Diffusion (OSEDiff) with Domain Prompting. We leverage OSEDiff to perform 4×
super-resolution on metallography images. In the OSEDiff framework [11], a pre-trained Stable
Diffusion U-Net (fine-tuned for SR) is used to transform a low-resolution image to a higher resolution
in a single forward pass, guided by a text prompt. The original OSEDiff pipeline employs an
automated prompt generator (DAPE from Wu et al. [12]) that uses a vision–language model to
describe the input image. However, we found this approach unreliable for metallography: DAPE
often produced irrelevant or misleading prompts (e.g., describing a micrograph as “snake skin texture”
or “blue sky”), leading the model to generate artifacts or incorrect textures. Instead, we supply
a fixed, domain-specific prompt — “metallographic image” — at inference time for all images.
This simple prompt steers the diffusion model toward outputs that resemble real micrographs. As
illustrated in Figure 2, this prompt choice is critical: using a generic VLM-generated prompt yields a
washed-out image with under-defined boundaries (panel b), whereas our metallurgy-specific prompt
produces a sharp, realistic microstructure with clearly defined grain boundaries (panel c). By guiding
the generative model with domain knowledge, we ensure the SR output remains faithful to true
metallographic patterns.

SR–TBM Dataset Creation. We applied OSEDiff (with the “metallographic image” prompt) to
every image in the TBM dataset to create a super-resolved version. TBM contains 80 polarized
light micrographs of metal microstructures; following the original benchmark protocol, we use 64
images for training, 8 for validation, and 8 for testing. Each original image (256×256 px after
downsampling in prior work) is upscaled by a factor of 4× to 1024×1024 px using OSEDiff’s default
settings. The super-resolved dataset, which we call SR–TBM, has a one-to-one correspondence
with TBM: for every original image there is a corresponding SR image. To focus our evaluation on
SR’s contribution (rather than trivial scale differences), we also upscaled the original TBM images
to 1024×1024 via simple bilinear interpolation (an “empty” magnification adding no new detail).
This way, both Original and SR images have the same resolution and pixel density during training,

3



(a) Original TBM (b) OSEDiff + DAPE Prompt (c) Domain-Specific Prompt

Figure 2: Effect of Prompt Choice on Super-Resolution Results. (a) Original TBM micrograph
patch. (b) Super-resolution using OSEDiff with an automatically generated prompt ("sky, yellow")
results in an unrealistic, blurry output that fails to resolve grain boundaries. (c) Using the fixed
domain prompt "metallographic image" yields a plausible high-resolution image with clearly defined
grain boundaries and microstructural detail. This highlights the importance of appropriate prompting
to obtain trustworthy SR results in scientific images.

and any performance differences can be attributed to the added high-frequency information from
OSEDiff rather than an advantage of larger image size. Figure 1 (above) and Appendix B–Figure 5
show examples of the resulting SR images, which exhibit visibly enhanced detail while maintaining
the integrity of grain boundaries.

Training UAED on Original vs. SR Data. To quantify the effect of super-resolution, we train two
identical edge-detection models: one on the Original TBM images and one on SR–TBM images.
We choose UAED [13] as the model for its robustness to uncertain edges. We fine-tune UAED
from its publicly available pre-trained weights (trained on generic edge datasets) separately for each
dataset. Both models use the same training hyperparameters, data splits, and augmentations, ensuring
a fair comparison. In both cases, images are 1024×1024 (the original model sees the bilinearly
upscaled TBM, the other sees the diffusion SR output). We emphasize that aside from the input data,
everything is held constant: the train/val/test split is identical, augmentation (random flips/rotations)
is identical, and training runs for the same number of epochs. This paired experiment isolates the
impact of the SR content. At test time, each model produces a probability map of grain boundaries
on the 8 held-out images. We convert the probability maps to binary edge maps by thresholding
at the value that maximizes the F1 score on the validation set (ensuring a fair operating point for
each). Additionally, we skeletonize the predicted edges to a single-pixel width before computing
grain-size metrics, so that boundary thickness does not affect the Heyn intercept measurement (per
ASTM standard practice).

4 UAED training

UAED Architecture. Our trained model is a dual-head UNet++ built on top of a flexible encoder
API. The encoder is efficientnet-b7 with ImageNet initialization and depth = 5. The decoder
is a UNet++ variant with dense skip pathways and nearest-neighbor upsampling. Decoder channel
widths are fixed to (256, 128, 64, 32, 16) with BatchNorm and ReLU after each 3×3 convolution.

The network exposes two capacity-matched decoder branches sharing the same encoder features:
(i) a mean/logit head that outputs a single-channel edge score map, and (ii) an uncertainty head that
outputs a single-channel per-pixel dispersion map. Both heads apply a 3×3 Conv2d segmentation
head at the final decoder stage. Spatial sizes are preserved by center-cropping the head outputs back
to the input H×W .

Learning Objective and Training Protocol. We instantiate a UAED that yields a mean (edge logit)
and a per-pixel dispersion (uncertainty) map. Training follows the UAED codebase: a heteroscedastic,
class-imbalanced edge loss with RCF-style balancing and a schedule that anneals the influence of
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the uncertainty term over epochs.1 We use AdamW with learning rate 1e−4, weight decay 5e−4,
batch size 2, for 100 epochs, identical across Original TBM and SR-TBM. Mixed-precision training
is enabled; no random crops are used. Augmentations are limited to the ones used in our training
script (horizontal/vertical flips and 90◦ rotations unless otherwise specified); color-space transforms
are disabled to avoid altering etch contrast. All other training hyperparameters (e.g., itersize,
std_weight, std_weight_final) remain at their script defaults.

Inference and Post-processing. At inference, the mean head is converted to probabilities via sigmoid
to produce a boundary probability map; the uncertainty head yields a non-negative dispersion map.
We use a maximum F1-Score condition in threshold selection produce a binary boundary mask. For
Heyn intercept calculation skeletons are extracted with standard thinning.

5 Results

Qualitative Evaluation. Visually, the diffusion-based super-resolution greatly improves the clarity
of micrographs. In Figure 1, the super-resolved image reveals grain boundaries that were barely
discernible in the original. The fine details of the microstructure are reconstructed with higher
contrast and continuity. Crucially, we observe no hallucinated boundaries or unrealistic textures in
the SR images — grains appear physically plausible and consistent with the original structures. We
had an experienced material scientist examine all SR test images, and no spurious grain boundaries
were found, providing confidence that the SR process did not introduce false features. Appendix B–
Figure 5 provides additional examples comparing original vs. SR images from TBM: in each case,
the SR version presents a sharper image with preserved true boundaries (even faint ones become
more continuous) and no obvious artifacts. These results indicate that, with our guided prompting,
diffusion SR can enhance image quality without compromising scientific validity in metallography.

Table 1: Heyn grain size comparison on TBM test set. Each model’s predicted average grain size
(mean lineal intercept length, ℓ̄) is compared to the ground truth (GT) value, and the error is reported
in pixels and as a percentage of GT. Incorporating diffusion super-resolution (UAED SR–TBM)
dramatically reduces grain-size error relative to using original images, indicating improved fidelity to
true grain statistics. (All values scaled to 1024 px image size for consistency.)

Dataset ℓ̄pred [px] ℓ̄GT [px] ∆|pred − GT| [px] % Error
(

∆
ℓ̄GT × 100

)
MLOgraphy 115.30 105.44 9.86 9.35%
AutoSAM 113.7 105.44 8.26 7.83%
UAED TBM 95.46 105.44 9.99 9.47%
UAED SR-TBM 110.82 105.44 5.38 5.10%

Quantitative Grain-Size Analysis. Table 1 reports the average grain size estimated from the
predicted boundary maps, using the Heyn intercept method, for several models (detailed . We
compare our UAED-based edge detector trained on original images (UAED TBM) versus on super-
resolved images (UAED SR–TBM), and also include two reference baselines from prior work:
MLOgraphy and AutoSAM (applied to the TBM test set). All methods are evaluated on the same 8
test micrographs, and all grain-size values are normalized to correspond to a 1024 px image scale
(for fairness, baseline outputs originally at 256 px were scaled up by 4× when measuring intercept
lengths). As shown, the SR-trained UAED yields by far the most accurate grain-size estimates. Its
predicted mean lineal intercept (ℓ̄) is 110.82 px, very close to the ground-truth 105.44 px, resulting in
an absolute error of 5.38 px (5.10%). This is a 47% reduction in error compared to the same model
trained on original TBM images (which had 9.99 px error, 9.47%). It is also a 35% improvement
over the previous best method, AutoSAM (8.26 px error, 7.83%). Notably, the UAED model trained
on original low-quality images underestimates the grain size (predicted 95.46 px vs. true 105.44 px),
likely because it misses some boundaries or produces overly fragmented edges, whereas the SR-
trained model gets much closer. MLOgraphy and UAED (original) have similar error rates around
9–9.5%, while AutoSAM was somewhat better at ∼7.8%; our SR approach substantially outperforms
all of them on this physics-based metric. This confirms that diffusion SR can meaningfully boost
quantitative grain-size accuracy in metallography.

1Exact loss and annealing expressions are implemented in our training script and left unchanged; see the
released code for the cross_entropy_loss_RCF function.
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(a) ROC curve comparison (b) Precision–Recall curve comparison

Figure 3: ROC and PR curve comparison. Models trained on original TBM (blue) and super-
resolved SR–TBM (orange dashed) achieve nearly identical ROC (AUC = 0.862 vs. 0.856) and
PR (AP = 0.580 vs. 0.568) performance, confirming that super-resolution does not alter predictive
capability.

(a) Input Image (b) TBM Prediction (c) SR-TBM Prediction

Figure 4: Edge prediction on original vs. super-resolved images. (a) Input image. (b) Prediction
from TBM-trained model. (c) Prediction from SR–TBM-trained model. Yellow = True Positive
(TP), Red = False Negative (FN), Green = False Positive (FP). Both models yield visually similar,
high-quality edge maps, showing SR preserves boundary integrity.

Importantly, we verify that this improvement does not come at the cost of pixel-level performance.
The UAED–SR model’s traditional edge detection scores remain on par with the UAED model trained
on original data. Specifically, the average precision (AP) and ROC–AUC for detecting boundary
pixels are essentially unchanged (within 0.5% difference between SR-trained and original-trained
models on the test set) (Figure 3,Figure 4). This further validates that the SR-TBM does not result in
significant hallucinated edge boundaries that would skew pixel based metrics. This result, coupled
with the improvement shown for the average grain size, suggests that diffusion SR provides genuinely
better input data, enabling more accurate detection of true boundaries that translate into better grain
measurements. In summary, by integrating a trustworthy SR step in the metallographic analysis
pipeline, we achieve both qualitatively clearer images and quantitatively superior grain-size estimates.
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A Appendix: Evaluation Metrics

We evaluate model performance using both a physics-informed grain-size metric and standard edge
detection metrics. All metrics are computed on the held-out test split of 8 images.
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Heyn Intercept (Grain-Size) Error

A skeletonization procedure is first applied to the edge map, thinning all edges to a single pixel width.
This ensures that the metric is unaffected by edge width. Let B be a binary boundary map (GT B⋆

or prediction B̂). Following the method described in the TBM benchmark and [9], we estimate the
mean lineal intercept (Heyn) length by sampling M = 50 randomly oriented test lines {ℓm}Mm=1,
with orientations θm ∼ U [0, π) and uniformly sampled positions. For each line, let Lm be its length
within the field of view and nm(B) the number of intersections with B. The Heyn estimate is

ℓ̄(B) =

∑M
m=1 Lm∑M

m=1 nm(B)
.

We report the absolute Heyn error (in pixels)

∆Heyn =
∣∣ℓ̄(B̂)− ℓ̄(B⋆)

∣∣ as well as the percent change from GT: ∆%
Heyn = 100 ·∆Heyn/ℓ̄(B

⋆).

This physics-informed metric captures whether edge maps preserve grain-size statistics, remaining
robust to small gaps or soft boundaries. We evaluate Heyn only for our UAED variants (Original vs.
SR) to isolate the effect of super-resolution; baselines are compared with AP/AUC.

A.1 Average Precision (AP) and ROC–AUC

To compare pixel-level boundary detection performance, we also calculate the Average Precision
(precision–recall AUC) and the ROC–AUC for the edge probability maps produced by the models.
Ground-truth edges are treated as positive class pixels. We note that baselines like MLOgraphy and
AutoSAM were originally evaluated on TBM using these metrics. In our experiments, we found that
the UAED model trained on SR–TBM achieves virtually the same AP and ROC–AUC as the model
trained on original TBM, indicating no loss (and in fact a slight gain) in per-pixel accuracy despite
the generative upscaling.

Average Precision (AP). Given per-pixel scores {si} and binary labels yi ∈ {0, 1}, thresholding at
τ yields

TP(τ), FP(τ), FN(τ), TN(τ).

Precision–recall at τ are

Prec(τ) =
TP(τ)

TP(τ) + FP(τ)
, Rec(τ) =

TP(τ)

TP(τ) + FN(τ)
.

AP is the area under the PR curve:

AP =

∫ 1

0

P (R) dR ≈
K∑

k=1

(
Rk −Rk−1

)
P̃ (Rk),

where {(Rk, Pk)}Kk=1 are PR points obtained by sweeping τ and P̃ denotes the (monotone) in-
terpolated precision. AP is threshold-independent and is well-suited to sparse, partially labeled
boundaries.

ROC-AUC. Define true/false positive rates at τ :

TPR(τ) =
TP(τ)

TP(τ) + FN(τ)
, FPR(τ) =

FP(τ)

FP(τ) + TN(τ)
.

ROC-AUC is the area under the ROC curve:

AUC =

∫ 1

0

TPR(FPR) dFPR ≈
K∑

k=1

(
FPRk − FPRk−1

)
˜TPR(FPRk).

It complements AP by summarizing sensitivity–specificity tradeoffs when calibrated scores are
available.
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B Appendix: Qualitative Results

(a) Original (b) Super-Resolution

(c) Original (d) Super-Resolution

(e) Original (f) Super-Resolution

Figure 5: Original vs. Super-Resolution images. Each row shows an original metallographic
image (left) and its corresponding super-resolved version (right) generated using OSEDiff. Note the
enhanced resolution, high quality reconstruction, and preserved grain boundaries in the right column.
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