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Abstract
Learning diffusion bridge models is easy; mak-
ing them fast and practical is an art. Diffusion
bridge models (DBMs) are a promising extension
of diffusion models for applications in image-to-
image translation. However, like many modern
diffusion and flow models, DBMs suffer from the
problem of slow inference. To address it, we pro-
pose a novel distillation technique based on the
inverse bridge matching formulation and derive
the tractable objective to solve it in practice. Un-
like previously developed DBM distillation tech-
niques, the proposed method can distill both con-
ditional and unconditional types of DBMs, dis-
till models in a one-step generator, and use only
the corrupted images for training. We evaluate
our approach for both conditional and uncondi-
tional types of bridge matching on a wide set of
setups, including super-resolution, JPEG restora-
tion, sketch-to-image, and other tasks, and show
that our distillation technique allows us to accel-
erate the inference of DBMs from 4x to 100x and
even provide better generation quality than used
teacher model depending on particular setup.

1. Introduction
Diffusion Bridge Models (DBMs) represent a specialized
class of diffusion models designed for data-to-data tasks,
such as image-to-image translation. Unlike standard diffu-
sion models, which operate by mapping noise to data (Ho
et al., 2020; Sohl-Dickstein et al., 2015), DBMs construct
diffusion processes directly between two data distributions
(Peluchetti, 2023a; Liu et al., 2022b; Somnath et al., 2023;
Zhou et al., 2024a; Yue et al., 2024; Shi et al., 2023; De Bor-
toli et al., 2023). This approach allows DBMs to modify
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Figure 1. Outputs of DBMs models distilled by our Inverse Bridge
Matching Distillation (IBMD) approach on various image-to-
image translation tasks and datasets (M5). Teachers use NFE≥ 500
steps, while IBMD distilled models use NFE≤ 4.

only the necessary components of the data, starting from an
input sample rather than generating it entirely from Gaus-
sian noise. As a result, DBMs have demonstrated impressive
performance in image-to-image translation problems.
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The rapid development of DBMs has led to two dominant ap-
proaches, usually considered separately. The first branch of
approaches (Peluchetti, 2023a; Liu et al., 2022b; 2023a; Shi
et al., 2023; Somnath et al., 2023) considered the construc-
tion of diffusion between two arbitrary data distributions
performing Unconditional Bridge Matching (also called
the Markovian projection) of a process given by a mixture
of diffusion bridges. The application of this branch includes
different data like images (Liu et al., 2023a; Li et al., 2023),
audio (Kong et al., 2025) and biological tasks (Somnath
et al., 2023; Tong et al., 2024) not only in paired but also in
unpaired setups using its relation to the Schrödinger Bridge
problem (Shi et al., 2023; Gushchin et al., 2024). The second
direction follows a framework closer to classical diffusion
models, using forward diffusion to gradually map to the
point of different distibution rather than mapping distribu-
tion to distribution as in previous case (Zhou et al., 2024a;
Yue et al., 2024). While these directions differ in theoretical
formulation, their practical implementations are closely re-
lated; for instance, models based on forward diffusion can
be seen as performing Conditional Bridge Matching with
additional drift conditions (De Bortoli et al., 2023).

Similar to classical DMs, DBMs also exhibit multi-step
sequential inference, limiting their adoption in practice. De-
spite the impressive quality shown by DBMs in the practical
tasks, only a few approaches were developed for their accel-
eration, including more advanced sampling schemes (Zheng
et al., 2024; Wang et al., 2024) and consistency distillation
(He et al., 2024), adapted for bridge models. While these
approaches significantly improve the efficiency of DBMs,
some unsolved issues remain. The first one is that the de-
veloped distillation approaches are directly applicable only
for DBMs based on the Conditional Bridge Matching, i.e.,
no universal distillation method can accelerate any DBMs.
Also, due to some specific theoretical aspects of DBMs, con-
sistency distillation cannot be used to obtain the single-step
model (He et al., 2024, Section 3.4).

Contributions. To address the above-mentioned issues of
DBMs acceleration, we propose a new distillation technique
based on the inverse bridge matching problem, which has
several advantages compared to existing methods:

1. Universal Distillation. Our distillation technique is ap-
plicable to DBMs trained with both conditional and un-
conditional regimes, making it the first distillation ap-
proach introduced for unconditional DBMs.

2. Single-Step and Multi-step Distillation. Our distilla-
tion is capable of distilling DBMs into generators with
any specified number of steps, including the distillation
of DBMs into one-step generators.

3. Target data-free distillation. Our method does not
require the target data domain to perform distillation.

4. Better quality of distilled models. Our distillation tech-
nique is tested on a wide set of image-to-image problems
for conditional and unconditional DBMs in both one and
multi-step regimes. It demonstrates improvements com-
pared to the previous acceleration approaches including
DBIM (Zheng et al., 2024) and CDBM (He et al., 2024).

2. Background

In this paper, we propose a universal distillation frame-
work for both conditional and unconditional DBMs.
To not repeat fully analogical results for both cases,
we denote by this color the additional conditioning
on xT used for the conditional models, i.e. for the
unconditional case this conditioning is not used.

2.1. Bridge Matching

We start by recalling the bridge matching method
(Peluchetti, 2023b;a; Liu et al., 2022b; Shi et al., 2023).
Consider two probability distributions p(x0) and p(xT ) on
RD dimensional space, which represent target and source
domains, respectively. For example, in an image inverse
problem, p(x0) represents the distribution of clean im-
ages and p(xT ) the distribution of corrupted images. Also
consider a coupling p(x0, xT ) of these two distributions,
which is a probability distribution on RD × RD. Cou-
pling p(x0, xT ) can be provided by paired data or con-
structed synthetically, i.e., just using the independent distri-
bution p(x0, xT ) = p(x0)p(xT ). Bridge Matching aims to
construct the diffusion that transforms source distribution
p(xT ) to target distribution p(x0) based on given coupling
p(x0, xT ) and specified diffusion bridge.

Diffusion bridges. Consider forward-time diffusion Q
called ”Prior” on time horizon [0, T ] represented by the
stochastic differential equation (SDE):

Prior Q : dxt = f(xt, t)dt+ g(t)dwt, (1)

f(xt, t) : RD × [0, T ]→ RD, g(t) : [0, T ]→ RD,

where f(xt, t) is a drift function, g(t) is the noise schedule
function and dwt is the differential of the standard Wiener
process. By q(xt|xs), we denote the transition probability
density of prior process Q from time s to time t. Diffusion
bridge is a conditional process Q|x0,xT

, which is obtained
by pinning down starting and ending points x0 and xT . This
diffusion bridge can be derived from prior process Q using
the Doob-h transform (Doob & Doob, 1984):

Diffusion Bridge Q|x0,xT
: x0, xT are fixed, (2)

dxt = {f(xt, t)dt+ g2(t)∇xt log q(xT |xt)}dt+ g(t)dwt,

For this diffusion bridge we denote the distribution at time t
of the diffusion bridge Q|x0,xT

by q(xt|x0, xT ).
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Figure 2. Overview of (Conditional) Bridge Matching with x̂0 reparameterization. The process begins by sampling a pair (x0, xT )
from the data coupling p(x0, xT ). An intermediate sample xt is then drawn from the diffusion bridge q(xt|x0, xT ) at a random time
t ∼ U [0, T ]. The model x̂0 is trained with an MSE loss to reconstruct x0 from xt. In the conditional setting (dashed red path), x̂0 is also
conditioned on xT as an additional input, leveraging information about the terminal state to improve reconstruction.

Mixture of bridges. Bridge Matching procedure starts with
creating a mixture of bridges process Π. This process is
represented as follows:

Mixture of Bridges Π :

Π(·) =
∫

Q|x0,xT
(·)p(x0, xT )dx0dxT . (3)

Practically speaking, the definition (3) means that to sample
from a mixture of bridges Π, one first samples the pair
(x0, xT ) ∼ p(x0, xT ) from data coupling and then samples
trajectory from the bridge Q|x0,xT

(·).

Bridge Matching problem. The mixture of bridges Π can-
not be used for data-to-data translation since it requires first
to sample a pair of data and then just inserts the trajectory.
In turn, we are interested in constructing a diffusion, which
can start from any sample xT ∼ p(xT ) and gradually trans-
form it to x0 ∼ p(x0). This can be done by solving the
Bridge Matching problem (Shi et al., 2023, Proposition 2)

Bridge Matching problem: (4)

BM(Π)
def
= argmin

M∈M
KL(Π||M),

whereM is the set of Markovian processes associated with
some SDE and KL(Π||M) is the KL-divergence between
a constructed mixture of bridges Π and diffusion M . It is
known that the solution of Bridge Matching is the reversed-
time SDE (Shi et al., 2023, Proposition 9):

The SDE of Bridge Matching solution : (5)

dxt = {ft(xt)− g2(t)v∗(xt, t)}dt+ g(t)dw̄t,

xT ∼ pT (xT ),

where w̄ is a standard Wiener process when time t flows
backward from t = T to t = 0, and dt is an infinitesimal
negative timestep. The drift function v∗ is obtained solving
the following problem (Shi et al., 2023; Liu et al., 2023a):

Bridge Matching problem with a tractable objective: (6)

min
ϕ

Ex0,t,xt

[
∥vϕ(xt, t)−∇xt

log q(xt|x0)∥2
]
,

(x0, xT ) ∼ p(x0, xT ), t ∼ U([0, T ]), xt ∼ q(xt|x0, xT ).

Time moment t here is sampled according to the uniform
distribution on the interval [0, T ].

Relation Between Flow and Bridge Matching. The Flow
Matching (Liu et al., 2023b; Lipman et al., 2023) can be
seen as the limiting case σ → 0 of the Bridge Matching for
particular example see (Shi et al., 2023, Appendix A.1).

2.2. Augmented (Conditional) Bridge Matching and
Denoising Diffusion Bridge Models (DDBM)

For a given coupling p(x0, xT ) = p(x0|xT )p(xT ), one can
use an alternative approach to build a data-to-data diffusion.
Consider a set of Bridge Matching problems indexed by xT

between p0 = p(x0|xT ) and p(xT ) = δxT
(x) (delta mea-

sure centered at xT ). This approach is called Augmented
Bridge Matching (De Bortoli et al., 2023). The key dif-
ference of this version in practice is that it introduces the
condition of the drift function v∗(xt, t, xT ) on the starting
point xT in the reverse time diffusion (5):

dxt = {ft(xt)− g2(t)v∗(xt, t, xT )}dt+ g(t)dw̄t.

The drift function v∗ can be recovered almost in the same
way just by the addition of this condition on xT :

Augmented (Conditional) Bridge Matching Problem.

min
ϕ

Ex0,t,xt,xT

[
∥vϕ(xt, t, xT )−∇xt

log q(xt|x0)∥2
]
,

(x0, xT ) ∼ p(x0, xT ), and xt ∼ q(xt|x0, xT ).

Since the difference is the addition of conditioning on xT ,
we call this approach Conditional Bridge Matching.

Relation to DDBM. As was shown in the Augmented
Bridge Matching (De Bortoli et al., 2023), the conditional
Bridge Matching is equivalent to the Denoising Diffusion
Bridge Model (DDBM) proposed in (Zhou et al., 2024a).
The difference is that in DDBM, the authors learn the score
function of s(xt, xT , t) conditioned on xT of a process for
which x0 ∼ p(x0|xT ) and q(xt) ∼ q(xt|x0, xT ): Then, it
is combined with the drift of forward Doob-h transform (5)
to get the reverse SDE drift v(xt, t, xT ):

v(xt, t, xT ) = s(xt, xT , t)−∇xt log q(xT |xt),

3
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dxt = {f(xt, t)dt− g2(t)v(xt, t, xT )}dt+ g(t)dw̄t,

or reverse probability flow ODE drift:

vODE(xt, t, xT ) =
1

2
s(xt, xT , t)−∇xt log q(xT |xt),

dxt = {f(xt, t)dt− g2(t)vODE(xt, t, xT )}dt,

which is used for consistency distillation in (He et al., 2024).

2.3. Practical aspects of Bridge Matching

Priors used in practice. In practice (He et al., 2024; Zhou
et al., 2023; Zheng et al., 2024), the drift of the prior pro-
cess is usually set to be f(xt, t) = f(t)xt, i.e, it depends
linearly on xt. For this process the transitional distribution
q(xt|x0) = N (xt|αtx0, σ

2
t I) is Gaussian, where:

f(t) =
d logαt

dt
, g2(t) =

dσ2
t

dt
− 2

d logαt

dt
σ2
t .

The bridge process distribution is also a Gaussian
q(xt|x0, xT ) = N (xT |atxT + btx0, c

2
t I) with coefficients:

at =
αt

αT

SNRT

SNRt
, bt = αt

(
1− SNRT

SNRt

)
,

c2t = σ2
t

(
1− SNRT

SNRt

)
,

where SNRt =
α2

t

σ2
t

is the signal-to-noise ratio at time t.

Data prediction reparameterization. The regression target
of the loss function (6) for the priors with the drift v(xt, t)
is given by∇xt log q(xt|x0) = −xt−αtx0

σ2
t

. Hence, one can

use the parametrization v(xt, t, xT ) = −xt−αtx̂0(xt,t,xT )
σ2
t

and solve the equivalent problem:

Reparametrized (Conditional) Bridge Matching problem:

min
ϕ

Ex0,t,xt,xT

[
λ(t)∥x̂ϕ

0 (xt, t, xT )− x0∥2
]
, (7)

(x0, xT ) ∼ p(x0, xT ), t ∼ U([0, T ]), xt ∼ q(xt|x0, xT ),

where λ(t) is any positive weighting function. Note that xT

is used only for the Conditional Bridge Matching model.

2.4. Difference Between Acceleration of Unconditional
and Conditional DBMs

Since both conditional and unconditional approaches learn
drifts of SDEs, they share the same problems of long in-
ference. However, these models significantly differ in the
approaches that can accelerate them. The source of this
difference is that Conditional Bridge Matching considers
the set of problems of reversing diffusion, which gradually
transforms distribution p(x0|xT ) to the fixed point xT . Fur-
thermore, the forward diffusion has simple analytical drift

and Gaussian transitional kernels. Thanks to it, for each xT

to sample, one can use the probability flow ODE and ODE-
solvers or hybrid solvers to accelerate sampling (Zhou et al.,
2024a) or use consistency distillation of bridge models (He
et al., 2024). Another beneficial property is that one can con-
sider a non-Markovian forward process to develop a more
efficient sampling scheme proposed in DBIM (Zheng et al.,
2024) similar to Denoising Diffusion Implicit Models (Song
et al., 2021). However, in the Unconditional Bridge Match-
ing problem, the forward diffusion process, which maps
p(x0) to p(xT ) without conditioning on specific point xT ,
is unknown. Hence, the abovementioned methods cannot
be used to accelerate this model type.

3. IBMD: Inverse Bridge Matching Distillation
This section describes our proposed universal approach to
distill the both Unconditional and (Conditional) Bridge
Matching models v∗ (called the teacher model) into a few-
step generator using only the corrupted data pT (xT ). The
key idea of our method is to consider the inverse problem of
finding the mixture of bridges Πθ, for which Bridge Match-
ing provides the solution vθ with the same drift as the given
teacher model v∗. We formulate this task as the optimiza-
tion problem (M3.1). However, gradient methods cannot
solve this optimization problem directly due to the absence
of tractable gradient estimation. To avoid this problem, we
prove a theorem that allows us to reformulate the inverse
problem in the tractable objective for gradient optimiza-
tion (M3.2). Then, we present the fully analogical results
for the Conditional Bridge Matching case in (M3.3). Next,
we present the multi-step version of distillation (M3.5) and
the final algorithm (M3.4). We provide the proofs for all
considered theorems and propositions in Appendix A.

3.1. Bridge Matching Distillation as Inverse Problem

In this section, we focus on the derivation of our distilla-
tion method for the case of Unconditional Bridge Match-
ing. Consider the fitted teacher model v∗(xt, t), which
is an SDE drift of some process M∗ = BM(Π∗), where
Π∗ constructed using some data coupling p∗(x0, xT ) =
p∗(x0|xT )p(xT ). We parametrize pθ(x0, xT ) =
pθ(x0|xT )p(xT ) and aim to find such Πθ build on
pθ(x0, xT ), that BM(Π∗) = BM(Πθ). In practice,
we parametrize pθ(x0|xT ) by the stochastic generator
Gθ(xT , z), z ∼ N (0, I), which generates samples based
on input xT ∼ p(xT ) and the gaussian noise z. Now, we
formulate the inverse problem as follows:

min
θ

KL(BM(Πθ)||M∗). (8)

Note, that since the objective (8) is the KL-divergence be-
tween BM(Πθ) and M∗, it is equal to 0 if and only if
BM(Πθ) and M∗ coincide. Furthermore, using the disinte-
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Figure 3. Overview of our method Inverse Bridge Matching Distillation (IBMD). The goal is to distill a trained (Conditional) Bridge
Matching model into a generator Gθ(z, xT ), which learns to produce samples using the corrupted data p(xT ). Generator Gθ(z, xT )
defines the coupling pθ(x0, xT ) = pθ(x0|xT )p(xT ) and we aim to learn the generator in such way that Bridge Matching with pθ(x0, xT )
produces the same (Conditional) Bridge Matching model x̂ϕ

0 = x̂θ
0. To do so, we learn a bridge model x̂ϕ

0 using coupling pθ in the same
way as the teacher model was learned. Then, we use our novel objective given in Theorem 3.2 to update the generator model Gθ .

gration and Girsanov theorem (Vargas et al., 2021; Pavon &
Wakolbinger, 1991), we have the following result:

Proposition 3.1 (Inverse Bridge Matching problem). The
inverse problem (8) is equivalent to

min
θ

Ext,t

[
λ(t)||v(xt, t)− v∗(xt, t)||2

]
, s.t. (9)

v = argmin
v′

Ext,t,x0

[
∥v′(xt, t)−∇xt

log q(xt|x0)∥2
]
,

(x0, xT ) ∼ pθ(x0, xT ), t ∼ U([0, T ]), xt ∼ q(xt|x0, xT ),

where λ(t) is any positive weighting function.

Thus, this is the constrained problem, where the drift v
is the result of Bridge Matching for coupling pθ(x0, xT )
parametrized by the generator Gθ. Unfortunately, there is
no clear way to use this objective efficiently for optimizing
a generator Gθ since it would require gradient backpropaga-
tion through the argmin of the Bridge Matching problem.

3.2. Tractable objective for the inverse problem

In this section, we introduce our new unconstrained refor-
mulation for the inverse problem (9), which admits direct
optimization using gradient methods:

Theorem 3.2 (Tractable inverse problem reformulation).
The constrained inverse problem (9) w.r.t θ is equivalent to
the unconstrained optimization problem:

min
θ

[
Ext,t,x0

[
λ(t)∥v∗(xt, t)−∇xt

log q(xt|x0)∥2
]
−

min
ϕ

Ext,t,x0

[
λ(t)∥vϕ(xt, t)−∇xt log q(xt|x0)∥2

]]
,

(x0, xT ) ∼ pθ(x0, xT ), t ∼ U([0, T ]), xt ∼ q(xt|x0, xT ),

Where the constraint in the original inverse problem (9) is
relaxed by introducing the inner bridge matching problem.

This is the general result that can applied with any diffusion
bridge. For the priors with with drift f(xt, t) = f(t)xt, we
present its reparameterized version.
Proposition 3.3 (Reparameterized tractable inverse prob-
lem). Using the reparameterization (M2.3) for the prior with
the linear drift f(xt, t) = f(t)xt, the inverse problem in
Theorem 3.2 is equivalent to:

min
θ

[
Ext,t,x0

[
λ(t)∥x̂∗

0(xt, t)− x0∥2
]
−

min
ϕ

Ext,t,x0

[
λ(t)∥x̂ϕ

0 (xt, t)− x0∥2
]]
,

(x0, xT ) ∼ pθ(x0, xT ), t ∼ U([0, T ]), xt ∼ q(xt|x0, xT ).

Thanks to the unconstrained reformulation, this problem ad-
mits explicit gradients with respect to the generator Gθ, as
all samples (x0, xT , xt) are obtained via reparameterizable
transformations: x0 = Gθ(xT , z) with z ∼ N (0, I), and
xt ∼ q(xt | x0, xT ), where q(xt | x0, xT ) is a Gaussian dis-
tribution (under priors with linear drift f(xt, t) = f(t)xt).
This enables differentiability of the entire objective, which
involves an expectation over pθ(x0, xT ), and allows opti-
mization using standard gradient-based methods.

Interpretation of the auxiliary model ϕ. Note that the
minimal value of the inner problem is the averaged variance
of x0 ∼ pθ(x0 | xt, xT ):

min
ϕ

Ext,t,x0

[
λ(t)

∥∥∥x̂ϕ
0 (xt, t)− x0

∥∥∥2] =

Ext,t,x0

[
λ(t)

∥∥Epθ(x0|xt)[x0]− x0

∥∥2] =
Ext,t

(
λ(t)

[
Epθ(x0|xt)

[∥∥Epθ(x0|xt)[x0]− x0

∥∥2]]︸ ︷︷ ︸
Variance of pθ(x0|xt)

)
.

For t = T , this is directly the variance of the generator
x0 ∼ pθ(x0 | xT ). Since this part comes with a negative
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sign in the objective, its minimization enforces the generator
to produce more diverse outputs and avoid collapsing.

3.3. Distillation of conditional Bridge Matching models

Since Conditional Bridge Matching is, in essence, a set
of Unconditional Bridge Matching problems for each xT

(M2.2), the analogical results hold just by adding the condi-
tioning on xT for v, i.e., using v(xt, t, xT ) or x̂0, i.e. using
x̂0(xt, t, xT ). Here, we provide the final reparametrized
formulation, which we use in our experiments:

Theorem 3.4 (Reparameterized tractable inverse problem
for conditional bridge matching).

min
θ

[
Ext,t,x0,xT

[
λ(t)∥x̂∗

0(xt, t, xT )− x0∥2
]
− (10)

min
ϕ

Ext,t,x0,xT

[
λ(t)∥x̂ϕ

0 (xt, t, xT )− x0∥2
]]
,

(x0, xT ) ∼ pθ(x0, xT ), t ∼ U([0, T ]), xt ∼ q(xt|x0, xT ).

where λ(t) is some positive weight function.

To use it in practice, we parameterize x̂0(xt, t, xT ) by a
neural network with an additional condition on xT .

3.4. Algorithm

We provide a one-step Algorithm 1 that solves the inverse
Bridge Matching problem in the reformulated version that
we use in our experiments. We provide a visual abstract of
it in Figure 3. Note that a teacher in the velocity parame-
terization v∗(xt, t) can be easily reparameterized (M2.3) in
x0-prediction model using x̂∗(xt, t) =

σ2
t v

∗(xt,t)+xt

αt
.

3.5. Mulitistep distillation

We also present a multi-step modification of our distilla-
tion technique if a one-step generator struggles to distill
the models, e.g., in inpainting setups, where the corrupted
image xT contains less information. Our multi-step tech-
nique is inspired by similar approaches used in diffusion
distillation methods (Yin et al., 2024a, DMD) and aims to
avoid training/inference distribution mismatch.

We choose N timesteps {0 < t1 < t2 < ... < tN = T}
and add additional time input to our generator Gθ(xt, z, t).
For the conditional Bridge Matching case, we also add
conditions on xT and use Gθ(xt, z, t, xT ). To perform in-
ference, we alternate between getting prediction from the
generator x̃0 = Gθ(xt, z, t) and using posterior sampling
q(xtn−1

|x̃0, xtn) given by the diffusion bridge. To train
the generator in the multi-step regime, we use the same
procedure as in one step except that to get input xt for in-
termediate times tn < tN , we first perform inference of our
generator to get x0 and then use bridge q(xt|x̃0, xT ).

4. Related work
Diffusion Bridge Models (DBMs) acceleration. Unlike a
wide scope of acceleration methods developed for classical
diffusion/flow models, only a few approaches were devel-
oped for DBM acceleration. Acceleration methods include
more advanced samplers (Zheng et al., 2024; Wang et al.,
2024) based on a reformulated forward diffusion process as
a non-markovian process inspired by Denoising Diffusion
Implicit Models (Song et al., 2021). Also, there is a distilla-
tion method based on the distilling probability-flow ODE
into a few steps using consistency models (He et al., 2024),
which is applicable only for conditional DBMs. However,
for theoretical reasons (He et al., 2024, Section 3.4), consis-
tency models for Diffusion Bridges cannot be distilled into
one-step generators. Unlike existing distillation methods,
our method is applicable to both conditional and uncondi-
tional DBMs and can distill into a one-step generator.

Related diffusion and flow models distillation techniques.
Among the methods developed for the distillation of classi-
cal diffusion and flow models, the most related to our work
are methods based on simultaneous training of few-step
generators and auxiliary ”fake” model, that predict score or
drift function for the generator (Yin et al., 2024b;a; Zhou
et al., 2024b; Huang et al., 2024). Unlike these approaches,
we consider the distillation of Diffusion Bridge Models -
the generalization of flow and diffusion models.

Furthermore, previous distillation methods for diffusion and
flow models rely on marginal-based losses such as Fisher
divergence, these approaches do not account for the full
structure of path measures. This limitation becomes critical
in the context of Diffusion Bridge Models (DBMs), where
the dynamic aspects of the forward and reverse processes
play a fundamental role. To better motivate the need for
our KL-based objective, we next discuss the conceptual
differences between KL divergence of path measures and
Fisher divergence, illustrating why Fisher-based objectives
like those used in SiD (Zhou et al., 2024b) are insufficient
in the general setting of bridge matching. Consider two
reverse-time diffusions D1 and D2 given by the same start-
ing distribution p(xT ) and SDEs:

D1 : dxt = v(xt, t)dt+ g2(t)dw̄t, xT ∼ p(xT ),

D2 : dxt = v̂(xt, t)dt+ g2(t)dw̄t, xT ∼ p(xT )

Let p(xt) and p̂(xt) be the corresponding marginals. Then
the KL divergence and Fisher divergence are given by:

KL(D1||D2) = Et,pt(xt)

[
1

2g2(t)
∥v(xt, t)− v̂(xt, t)∥2

]
+

KL(p(xT )||p̂(xT ))︸ ︷︷ ︸
=0 if p(xT )=p̂(xT )

, (11)

DFisher(D1||D2)=Et,p(xt)∥∇xt log p(xt)−∇xt log p̂(xt)∥2.
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In SiD (Zhou et al., 2024b), Fisher divergence (DFisher) is
averaged over time and compares only marginal distribu-
tions p(xt) and p̂(xt) of path measures. However, path
measures with the same marginal distributions might not be
equal; thus, in general, minimizing Fisher divergence does
not guarantee that D1 ≈ D2 as stochastic processes. For
classical diffusion models, the forward drift f(xt, t) is fixed,
and reverse drifts are fully determined by score functions:

v̂(xt, t) = f(xt, t)− g2(t)∇xt
log p̂(xt),

v(xt, t) = f(xt, t)− g2(t)∇xt
log p(xt).

Substituting these into the KL expression (11) shows that in
this specific setting — with a fixed forward SDE — KL di-
vergence between path measures becomes equivalent (up to
a constant) to the time-averaged Fisher divergence between
the marginals. This explains why Fisher-based methods like
SiD (Zhou et al., 2024b) may succeed in this context.

However, this equivalence breaks down in the case of
unconditional bridge matching. Here, the forward drift
f(xt, t) is not fixed and depends on the data coupling
p(x0, xT ). In turn, the forward drift fθ(xt, t) for the gen-
erated coupling pθ(x0, xT ) also depends on θ. As a result,
f(xt, t) ̸= fθ(xt, t), and the reverse drifts cannot be ex-
pressed solely in terms of marginal scores. Hence, KL
divergence in the case of unconditional bridge matching
is not equivalent to Fisher divergence between marginals.
This difference is expected since, in the case of an uncondi-
tional diffusion bridge, one does not have a fixed forward
process, which specifies the ”dynamic part” of the measure.
This highlights the importance of using KL divergence be-
tween path measures as a high-level objective instead of the
previously used Fisher Divergence.

5. Experiments
This section highlights the applicability of our IBMD distil-
lation method in both unconditional and conditional settings.
To demonstrate this, we conducted experiments utilizing
pretrained unconditional models used in I2SB paper (Liu
et al., 2023a). Then we evaluated IBMD in conditional
settings using DDBM (Zhou et al., 2024a) setup (M5.2).
For clarity, we denote our models as IBMD-DDBM and
IBMD-I2SB, indicating that the teacher model is derived
from DDBM or I2SB framework, respectively. We provide
all the technical details in Appendix B.

5.1. Distillation of I2SB (5 setups)
Since known distillation and acceleration techniques are
designed for the conditional models, there is no clear base-
line for comparison. Thus, this section aims to demonstrate
that our distillation technique significantly decreases NFE
required to obtain the same quality of generation.

Experimental Setup. To test our approach for uncondi-
tional models, we consider models trained and published in

Algorithm 1 Inverse Bridge Matching Distillation (IBMD)
Input :Teacher network x̂∗

0 : RD × [0, T ]× RD → RD;
Bridge q(xt|x0, xT ) used for training x∗;
Generator network Gθ : RD × RD → RD;
Bridge network x̂ϕ

0 : RD × [0, T ]× RD → RD;
Input distribution p(xT ) accessible by samples;
Weights function λ(t) : [0, T ]→ R+;
Batch size N ; Number of student iterations K;
Number of bridge iterations L.

Output :Learned generator Gθ of coupling pθ(x0, xT ) for
which Bridge Matching outputs drift v ≈ v∗.

// Conditioning on xT is used only for distillation of Condi-
tional Bridge Matching models.
for k = 1 to K do

for l = 1 to L do
Sample batch xT ∼ p(xT )

Sample batch of noise z ∼ N (0, I)
x0 ← Gθ(xT , z)
Sample time batch t ∼ U [0, T ]
Sample batch xt ∼ q(xt|x0, xT )

L̂ϕ ← 1
N

∑N
n=1

[
λ(t)||x̂ϕ

0 (xt, t, xT )− x0||2
]
n

Update ϕ by using ∂L̂ϕ

∂ϕ

Sample batch xT ∼ p(xT )
Sample batch of noise z ∼ N (0, I)
x0 ← Gθ(xT , z)
Sample time batch t ∼ U [0, T ]
Sample batch xt ∼ q(xt|x0, xT )

L̂θ← 1
N

∑N
n=1

[
λ(t)||x̂∗

0(xt, t, xT )− x0||2 −
λ(t)||x̂ϕ

0 (xt, t, xT )− x0||2
]
n

Update θ by using ∂L̂θ

∂θ

I2SB paper (Liu et al., 2023a), specifically (a) two models
for the 4x super-resolution with bicubic and pool kernels,
(b) two models for JPEG restoration using quality factor
QF= 5 and QF= 10, and (c) a model for center-inpainting
with a center mask of size 128 × 128 all of which were
trained on ImageNet 256× 256 dataset (Deng et al., 2009).

For all the setups we use the same train part of ImageNet
dataset, which was used to train the used models. For the
evaluation we follow the same protocol used in the I2SB
paper, i.e. use the full validation subset of ImageNet for
super-resolution task and the 10′000 subset of validation for
other tasks. We report the same FID (Heusel et al., 2017)
and Classifier Accuracy (CA) using pre-trained ResNet50
model metrics used in the I2SB paper. We present our results
in Table 1, Table 3, Table 2, Table 4 and Table 6. We provide
the uncurated samples for all setups in Appendix C.

Results. For both super-resolution tasks (see Table 1, Ta-
ble 3), our 1-step distilled model outperformed teacher
model inference using all 1000 steps used in the training.
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Table 1. Results on the image super-resolution task. Baseline re-
sults are taken from I2SB (Liu et al., 2023a).

4× super-resolution (bicubic) ImageNet (256 × 256)

NFE FID ↓ CA ↑
DDRM (Kawar et al., 2022) 20 21.3 63.2
DDNM (Wang et al., 2023) 100 13.6 65.5
ΠGDM (Song et al., 2023) 100 3.6 72.1
ADM (Dhariwal & Nichol, 2021) 1000 14.8 66.7
CDSB (Shi et al., 2022) 50 13.6 61.0
I2SB (Liu et al., 2023a) 1000 2.8 70.7

IBMD-I2SB (Ours) 1 2.6 72.3

Table 2. Results on the image JPEG restoration task with QF=5.
Baseline results are taken from I2SB (Liu et al., 2023a).

JPEG restoration, QF= 5. ImageNet (256 × 256)

NFE FID ↓ CA ↑
DDRM (Kawar et al., 2022) 20 28.2 53.9
ΠGDM (Song et al., 2023) 100 8.6 64.1
Palette (Saharia et al., 2022) 1000 8.3 64.2
CDSB (Shi et al., 2022) 50 38.7 45.7
I2SB (Liu et al., 2023a) 1000 4.6 67.9
I2SB (Liu et al., 2023a) 100 5.4 67.5

IBMD-I2SB (Ours) 1 5.2 66.6

Note that our model does not use the clean training target
data p(x0), only the corrupted p(xT ), hence this improve-
ment is not due to additional training using paired data. We
hypothesize that it is because the teacher model introduces
approximation error during many steps of sampling, which
may accumulate. For both JPEG restoration (see Table 2,
Table 4), our 1-step distilled generator provides the qual-
ity of generation close to the teacher model and achieves
around 100x time acceleration. For the inpainting problem
(see Table 6), we present the results for 1, 2 and 4 steps
distilled generator. Our 2 and 4-step generators provide a
quality similar to the teacher I2SB model, however, there
is still some gap for the 1-step model. These models pro-
vide around 5x time acceleration. We hypothesize that this
setup is harder since it requires to generate the entire center
fragment from scratch, while in other tasks, there is already
some good approximation given by corrupted images.

5.2. Distillation of DDBM (3 setups)
This section addresses two primary objectives: (1) demon-
strating the feasibility of conditional model distillation
within our framework and (2) comparing with the CDBM
(He et al., 2024) - a leading approach in Conditional Bridge
Matching distillation, presented into different models: CBD
(consistency distillation) and CBT (consistency training).

Experimental Setup. For evaluation, we use the same
setups used in competing methods (He et al., 2024; Zheng

Table 3. Results on the image super-resolution task. Baseline re-
sults are taken from I2SB (Liu et al., 2023a).

4× super-resolution (pool) ImageNet (256 × 256)

NFE FID ↓ CA ↑
DDRM (Kawar et al., 2022) 20 14.8 64.6
DDNM (Wang et al., 2023) 100 9.9 67.1
ΠGDM (Song et al., 2023) 100 3.8 72.3
ADM (Dhariwal & Nichol, 2021) 1000 3.1 73.4
CDSB (Shi et al., 2022) 50 13.0 61.3
I2SB (Liu et al., 2023a) 1000 2.7 71.0

IBMD-I2SB (Ours) 1 2.5 72.5

Table 4. Results on the image JPEG restoration task with QF=10.
Baseline results are taken from I2SB (Liu et al., 2023a).

JPEG restoration, QF= 10. ImageNet (256 × 256)

NFE FID ↓ CA ↑
DDRM (Kawar et al., 2022) 20 16.7 64.7
ΠGDM (Song et al., 2023) 100 6.0 71.0
Palette (Saharia et al., 2022) 1000 5.4 70.7
CDSB (Shi et al., 2022) 50 18.6 60.0
I2SB (Liu et al., 2023a) 1000 3.6 72.1
I2SB (Liu et al., 2023a) 100 4.4 71.6

IBMD-I2SB (Ours) 1 3.7 72.4

et al., 2024). For the image-to-image translation task, we
utilize the Edges→Handbags dataset (Isola et al., 2017)
with a resolution of 64× 64 pixels and the DIODE-Outdoor
dataset (Vasiljevic et al., 2019) with a resolution of 256×256
pixels. For these tasks, we report FID and Inception Scores
(IS) (Barratt & Sharma, 2018). For the image inpainting
task, we use the same setup of center-inpainting as before.

Results. We utilized the same teacher model checkpoints
and as in CDBM. We present the quantitative and qualitative
results of IBMD on the image-to-image translation task in
Table 5 and in Figures 12, 10 respectively. The compet-
ing methods, DBIM (Zhou et al., 2024a, Section 4.1) and
CDBM (He et al., 2024, Section 3.4), cannot use single-step
inference due to the singularity at the starting point xT .

We trained our IBMD with 1 and 2 NFEs on the
Edges→Handbags dataset. We surpass CDBM at 2 NFE,
outperform the teacher at 100 NFE, and achieve perfor-
mance comparable to the teacher at 50 NFE with 1 NFE,
resulting in a 50× acceleration. For the DIODE-Outdoor
setup, we trained IBMD with 1 and 2 NFEs. We surpassed
CBD in FID at 2 NFE, achieving results comparable to CBT
with a slight drop in performance and maintaining strong
performance at 1 NFE with minor quality reductions.

For image inpainting, we show in Table 6 quantitative re-
sults of IBMD, and in Figure 9 we show the quantitative
results. We train IBMD with 4 NFE for image inpainting.
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Table 5. Results on the Image-to-Image Translation Task (Training Sets). Methods are grouped by NFE (> 2, 2, 1), with the best metrics
bolded in each group. Baselines results are taken from CDBM.

NFE Edges→ Handbags (64 × 64) DIODE-Outdoor (256 × 256)
FID ↓ IS ↑ FID ↓ IS ↑

DDIB (Su et al., 2023) ≥ 40 186.84 2.04 242.3 4.22
SDEdit (Meng et al., 2022) ≥ 40 26.5 3.58 31.14 5.70
Rectified Flow (Liu et al., 2022a) ≥ 40 25.3 2.80 77.18 5.87
I2SB (Liu et al., 2023a) ≥ 40 7.43 3.40 9.34 5.77
DBIM (Zheng et al., 2024) 50 1.14 3.62 3.20 6.08
DBIM (Zheng et al., 2024) 100 0.89 3.62 2.57 6.06
CBD (He et al., 2024)

2
1.30 3.62 3.66 6.02

CBT (He et al., 2024) 0.80 3.65 2.93 6.06
IBMD-DDBM (Ours) 0.67 3.69 3.12 5.92
Pix2Pix (Isola et al., 2017) 1 74.8 4.24 82.4 4.22
IBMD-DDBM (Ours) 1.26 3.66 4.07 5.89

Table 6. Results on the Image Inpainting Task. Methods are
grouped by NFE (> 4, 4, 2, 1), with the best metrics bolded
in each group. Baselines results are taken from CDBM.

Inpainting, Center (128 × 128) ImageNet (256 × 256)
NFE FID ↓ CA ↑

DDRM (Kawar et al., 2022) 20 24.4 62.1
ΠGDM (Song et al., 2023) 100 7.3 72.6
DDNM (Wang et al., 2023) 100 15.1 55.9
Palette (Saharia et al., 2022) 1000 6.1 63.0
I2SB (Liu et al., 2023a) 10 5.4 65.97
DBIM (Zheng et al., 2024) 50 3.92 72.4
DBIM (Zheng et al., 2024) 100 3.88 72.6
CBD (He et al., 2024)

4

5.34 69.6
CBT (He et al., 2024) 4.77 70.3
IBMD-I2SB (Ours) 5.1 70.3
IBMD-DDBM (Ours) 4.03 72.2
CBD (He et al., 2024)

2

5.65 69.6
CBT (He et al., 2024) 5.34 69.8
IBMD-I2SB (Ours) 5.3 65.7
IBMD-DDBM (Ours) 4.23 72.3
IBMD-I2SB (Ours) 1 6.7 65.0
IBMD-DDBM (Ours) 5.87 70.6

It outperforms CBD and CBT at 4 NFE with a significant
gap, surpassing both at 2 NFE and maintaining strong per-
formance at 1 NFE while achieving teacher-level results at
50 NFE with a 12.5× speedup.

Concerns regarding the evaluation protocol used in prior
works. For Edges-Handbags and DIODE-Outdoor setups,
we follow the evaluation protocol originally introduced in
DDBM (Zhou et al., 2024a) and later used in works on
acceleration of DDBM (Zheng et al., 2024; He et al., 2024).
For some reason, this protocol implies evaluation of the
train set. Furthermore, test sets of these datasets consist of
a tiny fraction of images (around several hundred), making
the usage of standard metrics like FID challenging due to
high statistical bias or variance of their estimation. Still,
to assess the quality of the distilled model on the test sets,

we provide the uncurated samples produced by our distill
model and teacher model on these sets in Figures 13 and
11 in Appendix C. We also provide the uncurated samples
on the train part in Figures 12 and 10 to compare models’
behavior on train and test sets. From these results, we see
that the teacher model exhibits overfitting on both setups,
e.g., it produces exactly the same images as corresponding
reference images. In turn, on the test sets, teacher models
work well for the handbag setups, while on the test set of
DIODE images, it exhibits mode collapse and produces gray
images. Nevertheless, our distilled model shows exactly
the same behavior in both sets, i.e., our IBMD approach
precisely distills the teacher model as expected.

6. Discussion
Potential impact. DBMs are used for data-to-data trans-
lation in different domains, including images, audio, and
biological data. Our distillation technique provides a univer-
sal and efficient way to address the long inference of DBMs,
making them more affordable in practice.

Limitations. Our method alternates between learning an
additional bridge model and updating the student, which
may be computationally expensive. Moreover, the student
optimization requires backpropagation through the teacher,
additional bridge, and the generator network, making it 3x
time more memory expensive than training the teacher.
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Inverse Bridge Matching Distillation

A. Proofs
Since all our theorems, propositions and proofs for the inverse Bridge Matching problems which is formulated for the already
trained teacher model using some diffusion bridge, we assume all corresponding assumptions used in Bridge Matching.
Extensive overview of them can be found in (Shi et al., 2023, Appendix C).

Proof of Proposition 3.1. Since both BM(Πθ) and M∗ given by reverse-time SDE and the same distribution pT (xT ) the
KL-divergence expressed in the tractable form using the disintegration and Girsanov theorem (Vargas et al., 2021; Pavon &
Wakolbinger, 1991):

KL(BM(Πθ)||M∗) = Ext,t

[
g2(t)||v(xt, t)− v∗(xt, t)||2

]
,

(x0, xT ) ∼ pθ(x0, xT ), t ∼ U([0, T ]), xt ∼ q(xt|x0, xT ).

The expectation is taken over the marginal distribution p(xt) of Πθ since it is the same as for BM(Πθ) (Shi et al., 2023,
Proposition 2). In turn, the drift v(xt, t) is the drift of Bridge Matching using Πθ, i.e. BM(Πθ):

v = argmin
v′

Ext,t,x0

[
∥v′(xt, t)−∇xt

log q(xt|x0)∥2
]
,

(x0, xT ) ∼ pθ(x0, xT ), t ∼ U([0, T ]), xt ∼ q(xt|x0, xT ).

Combining this, the inverse problem can be expressed in a more tractable form:

min
θ

Ext,t

[
g2(t)||v(xt, t)− v∗(xt, t)||2

]
, s.t. (12)

v = argmin
v′

Ext,t,x0

[
∥v′(xt, t)−∇xt log q(xt|x0)∥2

]
dt,

(x0, xT ) ∼ pθ(x0, xT ), t ∼ U([0, T ]), xt ∼ q(xt|x0, xT ).

We can add positive valued weighting function λ(t) for the constraint:

v = argmin
v′

Ext,t,x0

[
λ(t)∥v′(xt, t)−∇xt log q(xt|x0)∥2

]
dt,

since it is the MSE regression and its solution is conditional expectation for any weights given by:

v(xt, t) = Ex0|xt,t

[
∇xt

log q(xt|x0)].

We can add positive valued weighting function λ(t) for the main functional:

Ext,t

[
λ(t)||v(xt, t)− v∗(xt, t)||2

]
,

since it does not change the optimum value (which is equal to 0) and optimal solution, which is the mixture of bridges with
the same drift as the teacher model.

Proof of Theorem 3.2. Consider inverse bridge matching optimization problem:

min
θ

Ext,t

[
λ(t)||v(xt, t)− v∗(xt, t)||2

]
, s.t. (13)

v = argmin
v′

Ext,t,x0

[
∥v′(xt, t)−∇xt

log q(xt|x0)∥2
]
,

(x0, xT ) ∼ pθ(x0, xT ), t ∼ U([0, T ]), xt ∼ q(xt|x0, xT ).

First, note that since v = argminv′ Ext,t,x0

[
∥v′(xt, t)−∇xt log q(xt|x0)∥2

]
, i.e. minimizer of MSE functional it is given

by conditional expectation as:

v(xt, t) = Ex0|xt,t

[
∇xt

log q(xt|x0)|xt, t
]
. (14)

Then note that:

min
v′

Ext,t,x0

[
λ(t)∥v′(xt, t)−∇xt

log q(xt|x0)∥2
]
=

12



Inverse Bridge Matching Distillation

Ext,t,x0

[
λ(t)∥v(xt, t)−∇xt

log q(xt|x0)∥2
]
=

Ext,t,x0

[
λ(t)||v(xt, t)||2

]︸ ︷︷ ︸
Ext,t

[
λ(t)||v(xt,t)||2

] −2Ext,t,x0

[
λ(t)⟨v(xt, t),∇xt log q(xt|x0)⟩

]
+ Ext,t,x0

[
λ(t)||∇xt log q(xt|x0)||2

]
=

Ext,t

[
λ(t)||v(xt, t)||2

]
− 2Ext,t

[
λ(t)

〈
v(xt, t),Ex0|xt,t

[
∇xt

log q(xt|x0)
]︸ ︷︷ ︸

=v(xt,t)

〉]
+ Ext,t,x0

[
λ(t)||∇xt

log q(xt|x0)||2
]
=

Ext,t

[
λ(t)||v(xt, t)||2

]
− 2Ext,t

[
λ(t)||v(xt, t)||2

]
+ Ext,t,x0

[
λ(t)||∇xt log q(xt|x0)||2

]
=

−Ext,t

[
λ(t)||v(xt, t)||2

]
+ Ext,t,x0

[
λ(t)||∇xt

log q(xt|x0)||2
]
. (15)

Hence, we derive that

Ext,t

[
λ(t)||v(xt, t)||2

]
= Ext,t,x0

[
λ(t)||∇xt

log q(xt|x0)||2
]
−min

v′
Ext,t,x0

[
λ(t)∥v′(xt, t)−∇xt

log q(xt|x0)∥2
]
.

Now we use it to reformulate the initial objective:

Ext,t

[
λ(t)||v(xt, t)− v∗(xt, t)||2

]
=

Ext,t

[
λ(t)||v(xt, t)||2

]
− 2Ext,t

[
λ(t) ⟨v(xt, t), v

∗(xt, t)⟩
]
+ Ext,t

[
λ(t)||v∗(xt, t)||2

]
=

Ext,t,x0

[
λ(t)||∇xt

log q(xt|x0)||2]−min
v′

Ext,t,x0

[
λ(t)∥v′(xt, t)−∇xt

log q(xt|x0)∥2
]

︸ ︷︷ ︸
=Ext,t

[
λ(t)||v(xt,t)||2

] −

2Ext,t

[
λ(t) ⟨v(xt, t), v

∗(xt, t)⟩
]
+ Ext,t

[
λ(t)||v∗(xt, t)||2

]
=

Ext,t,x0

[
λ(t)||∇xt

log q(xt|x0)||2
]
− 2Ext,t

[
λ(t) ⟨v(xt, t), v

∗(xt, t)⟩
]
+ Ext,t

[
λ(t)||v∗(xt, t)||2

]︸ ︷︷ ︸
Ext,t,x0

[
λ(t)||v∗(xt,t)||2

] −
min
v′

Ext,t,x0

[
λ(t)∥v′(xt, t)−∇xt

log q(xt|x0)∥2
]

Therefore, we get:

Ext,t

[
λ(t)||v(xt, t)− v∗(xt, t)||2

]
=

Ext,t,x0

[
λ(t)||∇xt

log q(xt|x0)||2
]
− 2Ext,t

[
λ(t) ⟨v(xt, t), v

∗(xt, t)⟩
]
+ Ext,t,x0

[
λ(t)||v∗(xt, t)||2

]
−

min
v′

Ext,t,x0

[
λ(t)∥v′(xt, t)−∇xt log q(xt|x0)∥2

]
To complete the proof, we use the relation v(xt, t) = Ex0|xt,t

[
∇xt log q(xt|x0)|xt, t

]
from Equation 14. Integrating these

components, we arrive at the final result:

Ext,t

[
λ(t)||v(xt, t)− v∗(xt, t)||2

]
=

Ext,t,x0

[
λ(t)||∇xt

log q(xt|x0)||2
]
− 2Ext,t

[
λ(t)

〈
Ex0|xt,t

[
∇xt

log q(xt|x0)|xt, t
]
, v∗(xt, t)

〉 ]
+ Ext,t,x0

[
λ(t)||v∗(xt, t)||2

]
−

min
v′

Ext,t,x0

[
λ(t)∥v′(xt, t)−∇xt log q(xt|x0)∥2

]
=

Ext,t,x0

[
λ(t)||∇xt

log q(xt|x0)||2
]
− 2Ext,t,x0

[
λ(t) ⟨∇xt

log q(xt|x0), v
∗(xt, t)⟩

]
+ Ext,t,x0

[
λ(t)||v∗(xt, t)||2

]
−

min
v′

Ext,t,x0

[
λ(t)∥v′(xt, t)−∇xt log q(xt|x0)∥2

]
=

Ext,t,x0

[
λ(t)∥v∗(xt, t)−∇xt

log q(xt|x0)∥2
]
−min

v′
Ext,t,x0

[
λ(t)∥v′(xt, t)−∇xt

log q(xt|x0)∥2
]
.

Proof of Proposition 3.3. Consider the problem from Proposition 3.2:

min
θ

[
Ext,t,x0

[
λ(t)∥v∗(xt, t)−∇xt

log q(xt|x0)∥2
]
−min

ϕ
Ext,t,x0

[
λ(t)∥vϕ(xt, t)−∇xt

log q(xt|x0)∥2
]]
,

13
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For the priors with the drift f(t)x the regression target is∇xt
log q(xt|x0) = −xt−αtx0

σ2
t

. Hence one can use the parametriza-

tion v(xt, t) = −xt−αtx̂0(xt,t)
σ2
t

We use reparameterization of both v∗ and vϕ given by:

v∗(xt, t) = −
xt − αtx̂

∗
0(xt, t)

σ2
t

, vϕ(xt, t) = −
xt − αtx̂

ϕ
0 (xt, t)

σ2
t

and get:

min
θ

[
Ext,t,x0

[
λ(t)∥v∗(xt, t)−∇xt log q(xt|x0)∥2

]
−min

ϕ
Ext,t,x0

[
λ(t)∥vϕ(xt, t)−∇xt log q(xt|x0)∥2

]]
=

min
θ

[
Ext,t,x0

[
λ(t)

α2
t

σ4
t︸ ︷︷ ︸

def
=λ′(t)

∥x̂∗
0(xt, t)− x0∥2

]
−min

ϕ
Ext,t,x0

[
λ(t)

α2
t

σ4
t︸ ︷︷ ︸

def
=λ′(t)

∥x̂ϕ
0 (xt, t)− x0∥2

]]
=

min
θ

[
Ext,t,x0

[
λ′(t)∥x̂∗

0(xt, t)− x0∥2
]
−min

ϕ
Ext,t,x0

[
λ′(t)∥x̂ϕ

0 (xt, t)− x0∥2
]]
,

where λ′(t) is just another positive weighting function.

Proof of Theorem 3.4. In a fully analogical way, as for the unconditional case we consider the set of the Inverse Bridge
Matching problems indexes by xT : {

min
θ

[
KL(BM(Πθ|xT

)||M∗
|xT

)
]}

xT
,

where M∗
|xT

is a result of Bridge Matching conditioned on xT and Πθ|xT
is a Mixture of Bridges for each xT constructed

using bridge q(xt|x0, xT ) and coupling pθ(x0|xT )δxT
(x).

By employing the same reasoning as in the proof of Proposition 3.1, the inverse problem can be reformulated as follows:

min
θ

Ext,t,xT

[
g2(t)||v(xt, t, xT )− v∗(xt, t, xT )||2

]
, s.t.

v = argmin
v′

Ext,t,x0,xT

[
∥v′(xt, t, xT )−∇xt log q(xt|x0)∥2

]
dt,

(x0, xT ) ∼ pθ(x0, xT ), t ∼ U([0, T ]), xt ∼ q(xt|x0, xT ).

Following the proof of Theorem 3.2, we obtain a tractable formulation incorporating a weighting function:

min
θ

[
Ext,t,x0,xT

[
λ(t)∥v∗(xt, t, xT )−∇xt

log q(xt|x0)∥2
]
−

min
ϕ

Ext,t,x0,xT

[
λ(t)∥vϕ(xt, t, xT )−∇xt log q(xt|x0)∥2

]]
.

Utilizing the reparameterization under additional conditions (M2.3), we obtain the following representations:

v∗(xt, t, xT ) = −
xt − αtx̂

∗
0(xt, t, xT )

σ2
t

, vϕ(xt, t, xT ) = −
xt − αtx̂

ϕ
0 (xt, t, xT )

σ2
t

.

Consequently, applying the proof technique from Proposition 3.3, we derive the final expression:

min
θ

[
Ext,t,x0

[
λ(t)∥x̂∗

0(xt, t, xT )− x0∥2
]
−min

ϕ
Ext,t,x0

[
λ(t)∥x̂ϕ

0 (xt, t, xT )− x0∥2
]]
,

(x0, xT ) ∼ pθ(x0, xT ), t ∼ U([0, T ]), xt ∼ q(xt|x0, xT ).
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Task Dataset Teacher NFE L/K ratio LR Grad Updates Noise
4× super-resolution (bicubic) ImageNet I2SB 1 5:1 5e-5 3000 ✓
4× super-resolution (pool) ImageNet I2SB 1 5:1 5e-5 3000 ✓
JPEG restoration, QF = 5 ImageNet I2SB 1 5:1 5e-5 2000 ✓

JPEG restoration, QF = 10 ImageNet I2SB 1 5:1 5e-5 3000 ✓
Center-inpainting (128× 128) ImageNet I2SB 4 5:1 5e-5 2000 ✗

Sketch to Image Edges→ Handbags DDBM 2 5:1 1e-5 300 ✓
Sketch to Image Edges→ Handbags DDBM 1 5:1 1e-5 14000 ✓
Normal to Image DIODE-Outdoor DDBM 2 5:1 1e-5 500 ✓
Normal to Image DIODE-Outdoor DDBM 1 5:1 1e-5 3700 ✓

Center-inpainting (128× 128) ImageNet DDBM 4 1:1 3e-6 3000 ✓

Table 7. Table entries specify experimental configurations: NFE indicates multi-step training (Sec. M3.5); L/K represents bridge/student
gradient iteration ratios (Alg. M3.4); Grad Updates shows student gradient steps; Noise notes stochastic pipeline incorporation.

B. Experimental details
All hyperparameters are listed in Table 7. We used batch size 256 and ema decay 0.99 for setups. For each setup, we started
the student and bridge networks using checkpoints from the teacher models. In setups where the model adapts to noise: (1)
We added extra layers for noise inputs (set to zero initially), (2) Noise was concatenated with input data before input it to the
network. Datasets, code sources, and licenses are included in Table 8.

Training time. We present the training time of each in Table 9. About 75% of this training time is used to get the last
10-20% decrease of FID (e.g., drop from 3.6 to 2.5 FID in pooling SR setup or from 4.3 to 3.8 FID in JPEG with), while
training for the first 25% of time already provides a good-quality model. On Sketch-to-image and Normal-to-image in
multistep regime with 2 NFEs, convergence appears faster than in the corresponding single-step version.

Table 8. The used datasets, codes and their licenses.
Name URL Citation License
Edges→Handbags GitHub Link (Isola et al., 2017) BSD
DIODE-Outdoor Dataset Link (Vasiljevic et al., 2019) MIT
ImageNet Website Link (Deng et al., 2009) \
Guided-Diffusion GitHub Link (Dhariwal & Nichol, 2021) MIT
I2SB GitHub Link (Liu et al., 2023a) CC-BY-NC-SA-4.0
DDBM GitHub Link (Zhou et al., 2023) \
DBIM GitHub Link (Zheng et al., 2024) \

Task Teacher Dataset Approximate time on 8×A100 NFE
4× super-resolution (bicubic) I2SB Imagenet 40 hours 1
4× super-resolution (pool) I2SB Imagenet 40 hours 1
JPEG restoration, QF = 5 I2SB Imagenet 40 hours 1
JPEG restoration, QF = 10 I2SB Imagenet 40 hours 1
Center-inpainting (128×128) I2SB Imagenet 24 hours 4
Center-inpainting (128×128) DDBM Imagenet 12 hours 4
Sketch to Image DDBM Edges/Handbags 40 hours 1
Sketch to Image DDBM Edges/Handbags 1 hour 2
Normal to Image DDBM DIODE-Outdoor 48 hours 1
Normal to Image DDBM DIODE-Outdoor 7 hours 2

Table 9. Training times and NFE across different tasks, teachers, and datasets.

B.1. Distillation of I2SB models.

We extended the I2SB repository (see Table 8), integrating our distillation framework. The following sections outline the
setups, adapted following the I2SB.
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Multi-step implementation In this setup, we use the student model’s full inference process during multi-step training
(Section 3.5). This means that x0 is generated with inferenced of the model Gθ through all timesteps (T = tN , . . . , t1 = 0)

in the multi-step sequence. The generated x0 is subsequently utilized in the computation of the bridge L̂ϕ or student L̂θ

objective functions, as formalized in Algorithm 1.

4× super-resolution. Our implementation of the degradation operators aligns with the filters implementation proposed
in DDRM (Kawar et al., 2022). Firstly, we synthesize images at 64× 64 resolution, then upsample them to 256× 256 to
ensure dimensional consistency between clean and degraded inputs. For evaluation, we follow established benchmarks
(Saharia et al., 2022; Song et al., 2023) by computing the FID on reconstructions from the full ImageNet validation set, with
comparisons drawn against the training set statistics.

JPEG restoration. Our JPEG degradation implementation, employing two distinct quality factors (QF=5, QF=10), follows
(Kawar et al., 2022). FID is evaluated on a 10, 000-image ImageNet validation subset against the full validation set’s
statistics, following baselines (Saharia et al., 2022; Song et al., 2023).

Inpainting. For the image inpainting task on ImageNet at 256 × 256 resolution, we utilize a fixed 128 × 128 centrally
positioned mask, aligning with the methodologies of DBIM (Zheng et al., 2024) and CDBM (He et al., 2024). During
training, the model is trained only on the masked regions, while during generation, the unmasked areas are deterministically
retained from the initial corrupted image xT to preserve structural fidelity of unmasked part of images. We trained the model
with 4 NFEs via the multi-step method (Section 3.5) and tested it with 1, 2, and 4 NFEs.

B.2. Distillation of DDBM models.

We extended the DDBM repository (Table 8) by integrating our distillation framework. Subsequent sections outline the
experimental setups, adapted from the DDBM (Zheng et al., 2024).

Multi-step implementation In this setup, the multi-step training (Section 3.5) adopts the methodology of DMD (Yin et al.,
2024a), wherein a timestep t is uniformly sampled from the predefined sequence (t1, . . . , tN ). The model Gθ then generates
x0 by iteratively reversing the process from the terminal timestep tN = T to the sampled intermediate timestep t. This
generated x0 is subsequently used to compute the bridge network’s loss L̂ϕ or the student network’s loss L̂θ, as detailed in
Algorithm 1.

Edges→ Handbags The model was trained utilizing the Edges→Handbags image-to-image translation task (Isola et al.,
2017), with the 64× 64 resolution images. Two versions were trained under the multi-step regime (Section 3.5), with 2 and
1 NFEs during training. Both models were evaluated using the same NFE to match training settings.

DIODE-Outdoor Following prior work (Zhou et al., 2023; Zheng et al., 2024; He et al., 2024), we used the DIODE outdoor
dataset, preprocessed via the DBIM repository’s script for training/test sets (Table 8). Two versions were trained under the
multi-step regime (Section 3.5), with 2 and 1 NFEs during training. Both models were evaluated using the same NFE to
match training settings.

Inpainting All setups matched those in Section B.1 inpainting, except we use a CBDM checkpoint (Zheng et al., 2024).
This checkpoint is adjusted by the authors to: (1) condition on xT and (2) ImageNet class labels as input to guide the model.
Also this is the same checkpoint used in both CDBM (He et al., 2024) and DBIM (Zheng et al., 2024) works.

C. Additional results
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Figure 4. Uncurated samples for IBMD-I2SB distillation of 4x-super-resolution with bicubic kernel on ImageNet 256× 256 images.
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Figure 5. Uncurated samples for IBMD-I2SB distillation of 4x-super-resolution with pool kernel on ImageNet 256× 256 images.
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Figure 6. Uncurated samples for IBMD-I2SB distillation of Jpeg restoration with QF=5 on ImageNet 256× 256 images.
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Figure 7. Uncurated samples for IBMD-I2SB distillation of Jpeg restoration with QF=10 on ImageNet 256× 256 images.
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Figure 8. Uncurated samples for IBMD-I2SB distillation trained for inpaiting with NFE= 4 and inferenced with different inference NFE
on ImageNet 256× 256 images. 21
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Figure 9. Uncurated samples for IBMD-DDBM distillation trained for inpaiting with NFE= 4 and inferenced with different inference
NFE on ImageNet 256× 256 images. 22
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Figure 10. Uncurated samples from IBMD-DDBM distillation trained on the DIODE-Outdoor dataset (256× 256) with NFE= 2 and
NFE= 1, inferred using the corresponding NFEs on the training set.23



Inverse Bridge Matching Distillation

Figure 11. Uncurated samples from IBMD-DDBM distillation trained on the DIODE-Outdoor dataset (256× 256) with NFE= 2 and
NFE= 1, inferred using the corresponding NFEs on the test set. 24
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Figure 12. Uncurated samples from IBMD-DDBM distillation trained on the Edges → Handbags dataset (64× 64) with NFE= 2 and
NFE= 1, inferred using the corresponding NFEs on the training set.25
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Figure 13. Uncurated samples from IBMD-DDBM distillation trained on the Edges → Handbags dataset (64× 64) with NFE= 2 and
NFE= 1, inferred using the corresponding NFEs on the test set. 26


