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Abstract
In this paper, we introduce Hamilton–Jacobi–Bellman (HJB) equations for Q-functions in continuous-
time optimal control problems with Lipschitz continuous controls. The standard Q-function used in
reinforcement learning is shown to be the unique viscosity solution of the HJB equation. A neces-
sary and sufficient condition for optimality is provided using the viscosity solution framework. By
using the HJB equation, we develop a Q-learning method for continuous-time dynamical systems.
A DQN-like algorithm is also proposed for high-dimensional state and control spaces. The per-
formance of the proposed Q-learning algorithm is demonstrated using 1-, 10- and 20-dimensional
dynamical systems.
Keywords: Hamilton-Jacobi-Bellman equation, Optimal control, Q-learning, Reinforcement learn-
ing, Deep Q-Networks.

1. Introduction

Q-learning is one of the most popular reinforcement learning methods that seek efficient control
policies without the knowledge of an explicit system model Watkins and Dayan (1992). The key
idea of Q-learning is to combine dynamic programming and stochastic approximation in a way
to estimate the optimal state-action value function, also called the Q-function, by using trajec-
tory samples. For discrete-time Markov decision processes, Q-learning has been extensively stud-
ied (see Bertsekas (2019); Matni et al. (2019) and the references therein), while the literature on
continuous-time Q-learning is sparse. In discrete time, the Bellman equation for Q-functions can be
defined by using dynamic programming in a straightforward manner. However, the corresponding
Bellman equation for continuous-time Q-functions has not yet been fully characterized despite some
prior attempts using HJB equations Doya (2000); Munos (2000). A variant of Q-function is used in
Lee et al. (2012); Mehta and Meyn (2009), which has a different meaning from the Q-function in re-
inforcement learning. In other literature, a Q-function similar to that of reinforcement learning was
introduced, but with function-valued control input Palanisamy et al. (2015) or heavily utilizing the
linear-time-invariant (LTI) system structure Vamvoudakis (2017). A similar model-free approach
for LTI systems has been also studied in Jiang and Jiang (2012); Vrabie et al. (2009), although an
associated Q-function is not specifically defined. A continuous-time Q-function was also considered
to prove the convergence of stochastic approximation Devraj and Meyn (2017).
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In this paper, we consider continuous-time deterministic optimal control problems with Lips-
chitz continuous controls. We show that the associated Q-function corresponds to the unique vis-
cosity solution of a Hamilton–Jacobi–Bellman (HJB) equation in a particular form. In the viscosity
solution framework, even when it is not differentiable, the Q-function can be used to verify the
optimality of a given control and to design an optimal control strategy. We use the proposed HJB
equation to derive an integral equation that the optimal Q-function and optimal control trajecto-
ries should satisfy. Based on this equation, we propose a Q-learning algorithm for continuous-time
dynamical systems. For high-dimensional state and control spaces, we also propose a DQN-like
algorithm by using deep neural networks (DNNs) as a function approximator Mnih et al. (2015).
This opens a new avenue of research that connects viscosity solution theory for HJB equations and
Q-learning domain. The performance of the proposed Q-learning algorithm is tested through a set
of numerical experiments with 1-, 10- and 20-dimensional systems.

2. Continuous-Time Q-Functions and HJB Equations

Consider a controlled dynamical system of the form

ẋ(t) = f(x(t), u(t)), t > 0, (1)

where x(t) ∈ Rn is the system state and u(t) ∈ Rm is the control input. Let U := {u : [0, T ] →
Rm | u measurable} be the set of admissible controls. The standard finite-horizon optimal control
problem can be formulated as

inf
u∈U1

Jx(u) := inf
u∈U1

{∫ T

0
r(x(t), u(t)) dt+ q(x(T ))

}
(2)

with x(0) = x, where r : Rn × Rm → R and q : Rn → R are running and terminal cost functions
of interest, respectively, and U1 is a subset of U. The Q-function Q : Rn ×Rm × [0, T ]→ R of (2)
is defined by

Q(x,u, t) := inf
u∈U1

{∫ T

t
r(x(s), u(s)) ds+ q(x(T ))

∣∣∣ x(t) = x, u(t) = u

}
, (3)

which represents the minimal cost incurred from time t to T when starting from x(t) = x with
u(t) = u. In particular, when U1 = U, the Q-function reduces to the standard optimal value func-
tion v : Rn×[0, T ]→ R, defined by v(x, t) := infu∈U

{∫ T
t r(x(s), u(s)) ds+ q(x(T ))

∣∣∣ x(t) = x
}

.

Proposition 1 Suppose that U1 = U. Then, the Q-function (3) corresponds to v for each u ∈ Rm,
i.e., Q(x,u, t) = v(x, t) for all (x,u, t) ∈ Rn × Rm × [0, T ].

Proof Fix (x,u, t) ∈ Rn × Rm × [0, T ]. Let ε be an arbitrary positive constant. Then, there
exists u ∈ U such that

∫ T
t r(x(s), u(s)) ds + q(x(T )) < v(x, t) + ε, where x(s) satisfies (1) with

x(t) = x in the Carathéodory sense: x(s) = x +
∫ s
t f(x(τ), u(τ)) dτ . We now construct a new

control ũ ∈ U1 = U as ũ(s) := u if s = t; ũ(s) := u(s) if s > t. Such a modification of controls
at a single point does not affect the trajectory or the total cost. Therefore, we have

v(x, t) ≤ Q(x,u, t) ≤
∫ T

t
r(x(s), ũ(s)) ds+ q(x(T )) < v(x, t) + ε.
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Since ε was arbitrary, we conclude that v(x, t) = Q(x,u, t) for any u ∈ Rm.

Thus, if U1 is chosen to be the entire set of measurable function U, the Q-function has no addi-
tional interesting property. Motivated by this observation, we restrict the control to be a Lipschitz
continuous function. Since any Lipschitz continuous function is differentiable almost everywhere,
we define the set of admissible controls U1 ⊂ U as U1 := {u ∈ U | ‖u̇‖L∞ ≤M a.e.}, where M is
a fixed constant. Then, for any u ∈ U1, there exists a unique measurable function a : [0, T ]→ Rm
with |a(t)| ≤M such that the following ODE holds a.e.: u̇(t) = a(t), 0 ≤ t ≤ T . Thus, from now
on, we will focus on the optimal control problem (2) when the control u is Lipschitz continuous
such that |u̇(t)| ≤M a.e. By using the dynamic programming principle, we can deduce that

Q(x,u, t) = inf
u∈U1

{∫ t+h

t
r(x(s), u(s)) ds+Q(x(t+ h), u(t+ h), t+ h)

∣∣∣x(t) = x, u(t) = u

}
.

(4)

To derive the Hamilton-Jacobi equation that the Q-function satisfies, suppose for a moment that
Q ∈ C1(Rn × Rm × [0, T ]). We will discard this regularity assumption on Q by introducing
the viscosity solution framework in Section 2.1. Then, the Taylor expansion of Q in (4) yields
infu∈U1

{
1
h

∫ t+h
t r(x(s), u(s)) ds+ ∂tQ+∇xQ · f(x,u) +∇uQ · u̇(t) +O(h)

}
= 0. Letting

h tend to zero, we arrive at the following HJB equation for the Q-function:

∂tQ+∇xQ · f(x,u) + inf
a∈Rm,|a|≤M

{∇uQ · a}+ r(x,u) = 0.

Note that a∗ = −M∇uQ/|∇uQ| minimizes the Hamiltonian, and thus the HJB equation can be
expressed as

∂tQ+∇xQ · f(x,u)−M |∇uQ|+ r(x,u) = 0. (5)

In what follows, we uncover several mathematical properties of the HJB equation (5) and the Q-
function.

2.1. Viscosity Solution: Existence and Uniqueness

In general, the Q-function is not a C1-function. As a weak solution of the HJB equation, we use the
framework of viscosity solutions Crandall et al. (1984); Crandall and Lions (1983). We begin by
defining the viscosity solution of (5) in the following standard manner Bardi and Capuzzo-Dolcetta
(1997); Evans (2010):

Definition 2 A continuous function Q : Rn × Rm × [0, T ]→ R is a viscosity solution of (5) if

1. Q(x,u, T ) = q(x) for all u ∈ Rm.

2. For any R ∈ C1(Rn × Rm × (0, T )), if Q − R has a local maximum at (x0,u0, t0), then
∂tR(x0,u0, t0) +∇xR(x0,u0, t0) · f(x0,u0)−M |∇uR(x0,u0, t0)|+ r(x0,u0) ≥ 0.

3. For any R ∈ C1(Rn × Rm × (0, T )), if Q − R has a local minimum at (x0,u0, t0), then
∂tR(x0,u0, t0) +∇xR(x0,u0, t0) · f(x0,u0)−M |∇uR(x0,u0, t0)|+ r(x0,u0) ≤ 0.
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From now on, we assume the following regularity conditions on f , r and q:1

• (A1) The functions f , r and q are bounded: ‖f‖L∞ + ‖r‖L∞ + ‖q‖L∞ < C.

• (A2) The functions f , r and q are Lipschitz continuous: ‖f‖Lip +‖r‖Lip +‖q‖Lip < C, where
‖ · ‖Lip is a Lipschitz constant of argument.

Then, the HJB equation (5) has a unique viscosity solution, which corresponds to the Q-function.

Theorem 3 The Q-function (3) is the unique viscosity solution of the HJB equation (5). Moreover,
it is a bounded and Lipschitz continuous function.

Proof To accommodate the Lipschitz continuity constraint on controls, we consider an augmented
system ẋ(t) = f(x(t), u(t)), u̇(t) = a(t) with |a(t)| ≤ M , where u(t) and a(t) are interpreted
as a new state and a new input, respectively. Let z(t) := (x(t), u(t)) be the augmented state, and
F (z,a) := (f(x,u),a) be the augmented vector field. Then, the Q-function can be expressed as
Q(z, t) = inf |a|≤M

{∫ T
t r(z(s)) ds+ q̃(z(T ))

∣∣∣ z(t) = z
}

, where q̃(z) = q(x). The HJB equa-
tion (5) can be rewritten as ∂tQ + H(∇zQ, z) = 0 with Q(z, T ) ≡ q̃(z), where the Hamiltonian
H = H(p, z) is defined by H(p, z) := H(p1,p2, z1, z2) = p1 · f(z1, z2) −M |p2| + r(z1, z2).
By the assumptions (A1) and (A2), we have

|H(p, z)−H(q, z)| ≤ |p1 − q1||f(z1, z2)|+M |p2 − q2| ≤ (M + ‖f‖L∞)|p− q|,
|H(p, z)−H(p,y)| ≤

(
|p|‖f‖Lip + ‖r‖Lip

)
|z − y|.

These imply that the Hamiltonian satisfies the Lipschitz continuity conditions, and thus the standard
proof for the existence and the uniqueness of viscosity solution can be directly used (e.g., Evans
(2010)). Furthermore, by Bardi and Capuzzo-Dolcetta (1997), the Q-function corresponds to the
unique viscosity solution. The boundedness and the Lipschitz continuity of the Q-function can be
proved as in Evans (2010).

2.2. Optimal Controls

To characterize a necessary and sufficient condition for optimality of a control u ∈ U1, we consider
the function gu(s;x,u, t) :=

∫ s
t r(x(τ), u(τ)) dτ + Q(x(s), u(s), s), with x(t) = x, u(t) = u.

By (4), we deduce that the control u is optimal if and only if s 7→ gu(s;x,u, t) is a constant function
for each (x,u, t). On the other hand, the dynamic programming principle implies that the function
s 7→ gu(s;x,u, t) is non-decreasing for any control u ∈ U1. Thus, the control u is optimal if and
only if the function s 7→ gu(s;x,u, t) is non-increasing. If the Q-function is differentiable, this
implies d

dsgu(s;x,u, t) = r(x(s), u(s)) + ∇xQ · f(x(s), u(s)) + ∇uQ · u̇ + ∂tQ ≤ 0. Since
Q-function satisfies HJB equation (5), we have

0 = ∂tQ+∇xQ · f(x(s), u(s))−M |∇uQ|+ r(x(s), u(s))

≤ ∂tQ+∇xQ · f(x(s), u(s)) +∇uQ · u̇+ r(x(s), u(s)) ≤ 0.

1. These assumptions can be relaxed by using a modulus associated with each function as in (Bardi and Capuzzo-
Dolcetta, 1997, Chapter III.1–3).
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Therefore, when Q is differentiable, u ∈ U1 is optimal if and only if u̇ = −M∇uQ/|∇uQ| with
u(t) = u. To obtain the rigorous principle of optimality when Q is not differentiable, we use
generalized derivatives of the Q-function, namely, sub- and superdifferntials of Q. The following
optimality theorem is a direct application of the classical results in (Bardi and Capuzzo-Dolcetta,
1997, Theorem 3.39, Ch. 3).

Theorem 4 Suppose that f and q are continuously differentiable. Then, the trajectory-control pair
(x∗, u∗) is optimal if and only if

u̇∗(s) = −M p1
|p1|

∀p = (p0, p1, p2) ∈ D±Q(x∗(s), u∗(s), s), a.e. s ≥ t. (6)

Proof Note that the controlled system is equivalent to the extended dynamics ż(t) = F (z(t), a(t))
defined in the proof of Theorem 3. Then, the assertions can be obtained by directly applying (Bardi
and Capuzzo-Dolcetta, 1997, Theorem 3.39 in Chapter 3) to this augmented system.

At a point (x,u, t) where Q is differentiable, the sub- and superdifferentials of Q are identical
to the classical derivative of Q. Thus, at such a point, we can construct the optimal control by using
u̇∗ = −M ∇uQ

|∇uQ| . At a point where Q is not differentiable, one can choose any control given by (6).

3. Q-Learning Using the HJB Equation

In the infinite-horizon case, we consider the following discounted cost function (with γ > 0):

Jx(u) =

∫ ∞
0

e−γtr(x(t), u(t)) dt, x(0) = x,

and the Q-function is defined byQ(x,u) := inf
u∈U1

{∫ ∞
0

e−γtr(x(t), u(t))dt | x(0) = x, u(0) = u

}
.

Again, using the dynamic programming principle, we can derive the following HJB equation:

γQ(x,u)− r(x,u)−∇xQ · f(x,u) +M |∇uQ| = 0. (7)

As in Theorem 3, we can show that the Q-function is the unique viscosity solution of the HJB
equation (7). A necessary and sufficient condition for optimality can be characterized in a way
similar to Theorem 4.

We now discuss how the HJB equation (7) can be used to design a Q-learning algorithm for es-
timating Q(x,u) using sample trajectories. To provide the essential idea, we assume for a moment
that Q is differentiable. We then have

d

dt
Q(x(t), u(t)) = ∇xQ · f(x(t), u(t)) +∇uQ · u̇(t)

= γQ(x(t), u(t))− r(x(t), u(t)) +M |∇uQ|+∇uQ · u̇(t).

Suppose now that an optimal control is employed, i.e., u̇ := −M∇uQ/|∇uQ|. Then, the time
derivative of Q-function along the trajectory is further simplified as

d

dt
Q(x(t), u(t)) = γQ(x(t), u(t))− r(x(t), u(t)). (8)

5
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By integrating (8) along the optimal trajectory-control pair, we obtain

Q(x,u) =

∫ t

0
e−γtr(x(t), u(t)) dt+ e−γtQ(x(t), u(t)), ∀t ≥ 0. (9)

However, since the optimal Q-function and optimal trajectories are unknown a priori, we itera-
tively update the Q-function and the control u with u̇ = −M∇uQ/|∇uQ| by using sample data.
The iteration is based on the equation (9), which is the characterizing equation of the optimal Q-
function. Specifically, for a given control u̇ = a, we obtain the system trajectory starting from
randomly chosen (x,u) for time interval [0, h] with small h > 0 and collect the sample data∫ h
0 e
−γtr(x(t), u(t)) dt, x′ := x(h) and u′ := u(h). We then update a new estimate for Q-function

by using (9) and sample data as Q(x,u) ←
∫ h
0 e
−γtr(x(t), u(t)) dt + e−γhQ(x′,u′) so that (9)

holds asymptotically.
To handle high-dimensional state and control spaces, we propose a DQN-like algorithm by

using DNNs as a function approximator. Let Qθ(x,u) denote the approximate Q-function param-
eterized by θ. We update the network parameter θ by minimizing the mean squared error (MSE)
loss between Qθ(x,u) and the target y =

∫ h
0 e
−γtr(x(t), u(t)) dt + e−γhQθ(x

′,u′). To enhance
the stability of learning procedure, we use K sample points of (xi,ui) for defining MSE loss
L(θ) := 1

K

∑K
i=1(Qθ(xi,ui) − yi)2 and introduce the target network parameter θ− in estimating

target value yi as in DQN Mnih et al. (2015). The target network is slowly updated as a weighted
sum of θ and itself as in Lillicrap et al. (2016). The algorithm minimizes the error between the left
and right-hand sides of (9) for each iteration, making the Qθ asymptotically satisfies (9) as much as
possible. The overall procedures are summarized in Algorithm 1. Note that this algorithm does not
need the knowledge of an explicit system model as in discrete-time Q-learning or DQN.

Algorithm 1: Continuous-Time Q-Learning
Randomly initialize network parameter θ and initialize the target network parameter θ− ← θ;
Define the domain Ω := [xmin,xmax]n × [umin,umax]m;
for iter = 1 to N do

if ∇uQθ(x,u) 6= 0 then
Set aθ(x,u) as −M ∇uQθ(x,u)

|∇uQθ(x,u)| ;
else

Set aθ(x,u) as a random vector of length M ;
end
Randomly choose K samples of (xi,ui) ∈ Ω;
for i=1 to K do

Obtain discounted running cost Ri :=
∫ h
0 e
−γtr(xi(t), ui(t)) dt and the terminal point

(xi(h), ui(h)) by using aθ;
Set the target as yi := Ri + e−γhQθ−(xi(h), ui(h));

end
Update the network parameter θ by minimizing the MSE loss: 1

K

∑
i(Qθ(xi,ui)− yi)2;

Update the target network parameter as θ− ← τθ + (1− τ)θ−;
end

6
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(a) (b)

Figure 1: Numerical experiment result for n = m = 1: (a) learning curve; (b) controlled trajectory
of x(t), u(t) and a(t).

4. Numerical Experiments

We consider the following linear system with an exponentially discounted quadratic cost:

ẋ(t) = Ax(t) +Bu(t), Jx(u) :=

∫ ∞
0

e−γt(|x(t)|2 + |u(t)|2) dt, x(0) = x, u(0) = u,

where x(t) ∈ Rn, u(t) ∈ Rm, A ∈ Rn×n and B ∈ Rn×m. We restrict the control u as a Lipschitz
continuous function with Lipschitz constant 1. The parameters for simulation are chosen as xmin =
umin = −1,xmax = umax = 1, γ = 0.1, h = 0.05, τ = 10−2,K = 10 and N = 103. As the
DNNs for approximating Q-functions, we use fully connected networks consisting of an input layer
with m + n nodes, two hidden layers with 128 nodes and an output layer with a single node. For
the two hidden layers, we use ReLU activation function. For training the networks, we use Adam
optimizer with a learning rate 10−3 Kingma and Ba (2015).

4.1. One-dimensional problem

As a toy example for sanity check, we first consider a one dimensional model, where n = m = 1,
A = 0 and B = 1. In order to measure the performance of control, we fix the initial state and
control (x,u) = (1, 1) and we integrate the running cost over [0, 10]. Figure 1(a) shows the log of
costs at each iteration of Algorithm 1. The solid line represents the learning curve averaged over
five different trials and the shaded region represents the minimum and maximum of the cost over
different trials. The running cost rapidly decreases as the network parameters θ is learned. We also
note that the variation over five different trials vanishes as the parameters are learned. Figure 1(b)
shows the trajectory of x(t), u(t), and a(t) generated by u̇(t) = a(t) := − ∇uQθ(x(t),u(t))

|∇uQθ(x(t),u(t))| using
the learned Q-function Qθ(x,u) after 103 iteration. The optimal control for this one dimensional
problem is to drive both x(t) and u(t) as soon as possible to 0. Starting from (x,u) = (1, 1), this
can be done by first driving the control u(t) to negative value so that x(t) moves towards the origin,
and then reducing the absolute value of u(t) so that both x(t) and u(t) approaches 0 asymptotically.
Such a behavior is observed in Figure 1(b). This confirms that the learned policy is near optimal.

7
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4.2. 10- and 20-dimensional problems

For 10- and 20-dimensional problems, where n = m = 10 or n = m = 20, respectively, we
set the coefficient matrices A ∈ Rn×n and B ∈ Rn×m such that each element of A is randomly
sampled from U [0, 1] and then multiplied by 0.1, and each element of B is randomly sampled from
the uniform distribution U [0, 1] and then multiplied by 5:

Aij = 0.1Xij , Bij = 5Yij , Xij , Yij ∼ U [0, 1].

(a) (b)
Figure 2: Numerical experiment result: (a) learning curve for n = m = 10; (b) learning curve for
n = m = 20.

We integrate the running cost from randomly chosen initial position and control (x,u) ∈
[0, 0.1]m+n. The learning curves are shown in Figure 2. As in the one-dimensional problem, the
solid curves denote the average of the running costs over five trials and the shaded regions represent
the minimum and maximum of the running costs. The results show that the cost decreases super-
exponentially in both 10- and 20-dimensional problems. Note that the y-axis of Figure 2(a) and
Figure 2(b) are plotted with log-scale, and thus the decay of cost is rapid. Again, the results confirm
that our continuous-time Q-learning algorithm presents the desired performance.

5. Conclusion

We introduced a Q-function for continuous-time deterministic optimal control problems with Lips-
chitz continuous control. By using the dynamic programming principle, we derived the correspond-
ing HJB equation and showed that its unique viscosity solution corresponds to the Q-function. An
optimality condition was also characterized in terms of the Q-function without the knowledge of
system models. Using the HJB equation and the optimality condition, we construct a Q-learning
algorithm and its DQN-like approximate version. The simulation results show that the proposed
Q-learning algorithm is fast and stable, and that the learned controller presents a good performance,
even in the 20-dimensional case.
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