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ABSTRACT

Traditional Concept Factorization (CF) methods learn feature of one data
point from high-dimensional data space in the form of vector, which leads
to the loss of pixel-level neighborhood information in Two-Dimensional (2D)
images. In light of this, we present a novel Visible Multilayer Concept Factor-
ization for image-data representation, termed VMCF. Specifically, to uncover
deep latent features from complex data, VMCF adopts a multilayer frame-
work, equipped with a ‘Decomposition, Dimensionality reduction and Data
reconstruction’ network (D3-net) in each layer. To obtain locality-preserving
features, D3-net firstly performs adaptive graph regularized concept learning
on the input data of each layer. Then, D3-net performs 2D feature extraction
over the obtained basis images in order to reduce the loss of pixel-level neigh-
borhood information during dimension plunging. The reconstructed data
formed by the improved basis images and coefficient matrix is used as in-
put for the next layer. In this way, the dimensions of the original data can
gradually decrease at each layer, avoiding information loss caused by sudden
dimensionality reduction. Meanwhile, 2D-reduced basis images can medi-
ately improve the quality of new data representations. Extensive numerical
experiments on several public image databases have shown that VMCF out-
performs other state-of-the-art algorithms.

1 INTRODUCTION

The number and dimensionality of image data in real-world applications have shown explosive
growth with the popularization of high-definition devices, posing challenges for image data pro-
cessing and analysis. Luckily, Representation Learning (RL) techniques can well handle them by
extracting latent features, from data with high-dimensionality (Bengio et al., 2013). Therefore, RL
has become a trending topic in fields of image processing, data mining and computer vision.

In this paper, we focus on matrix-based RL algorithms since image data is often stored and calculated
in the form of matrix composed of pixel values in practical applications. Matrix Factorization (MF)
has been proven to be powerful for feature learning and clustering (Wang & Zhang, 2012), including
classical methods like Principle Component Analysis (PCA) (Wold et al., 1987), Nonnegative Matrix
Factorization (NMF) (Lee & Seung, 1999) and Concept Factorization (CF) (Xu & Gong, 2004).
Note that, benefiting from nonnegative constraints, NMF and CF are more suitable for processing
image data since image pixel values are typically nonnegative data. NMF aims to decompose a
nonnegative data matrix X into two matrices, whose product is the approximation to X . One factor
indicates basis vectors and the other factor corresponds to the parts-based representations. Benefit
by non-negative constraints, the basis vectors obtained from NMF are also non-negative and can be
considered as part of the original images. Taking facial image as an example, the obtained basis
vectors may be local parts of the face such as the nose, eyes, cheeks, etc.

On the basis of retaining the non-negative constraints, CF differs from NMF in that it can also be
performed in the Reproducing Kernel Hilbert Space by further decomposing the base matrix into
X itself and an auxiliary coefficient matrix. With both nonlinearity and high interpretability, CF
yields unusually brilliant results in data dimensionality reduction and clustering tasks (Li et al.,

1
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2024). Subsequently, an influx of CF variants have been introduced to cater to diverse application
scenarios, for example, robust ones (Yang et al., 2022) and multiview ones (Mu et al., 2023). One of
the most common branches is locality-preserving CF (Chen & Li, 2020). In the process of concept
factorization, keeping locality manifold information of data points can make sure their relative posi-
tional relationships (or similarity relationships) in high-dimensional data space can be retained even
in the mapped low dimensional space. That could potentially improve the discriminability of fea-
tures, thereby enhancing their performance in subsequent high-level tasks, such as data classification
and clustering (Zhang et al., 2021). To achieve this goal, various locality-preserving strategies have
been introduced into traditional CF model, which can be roughly divided into three categories, that
is, graph-regularized ones, local coordinate coding driven ones and self-representation based ones.
Graph-regularized CF methods, represented by Locally Consistent CF (LCCF) (Cai et al., 2010),
typically incorporate the graph Laplacian regularization into CF. Local coordinate coding driven CF
mainly incorporate the principle of local coordinate coding (LCC) into traditional CF to retain local
information in data. Illustrative methods in this group include Local Coordinate CF (LCF) (Liu
et al., 2013), and Graph-based Local concept coordinate factorization (GLCF) (Li et al., 2015a).
Different from above two kinds of CF methods, self-representation based ones regard the input data
as dictionary and then construct the affinity matrix using the new representation (i.e., coefficient
matrix) rather than the original raw data. Representative methods include SRMCF (Ma et al., 2018)
and JSGCF (Peng et al., 2019).

However, when dealing with image data, these traditional local preservation CF methods generally
face several challenges. First, the local manifold structure between samples cannot be adaptively
maintained during concept factorization iterations. Second, existing CF methods represent an image
as a one-dimensional vector, and then concatenate a set of vectors into a matrix, which serves as the
input for CF. Such approach not only results in loss of pixel-level structural information within the
image, but also leads to higher computational complexity due to the large size of the matrix. Third,
direct reduction of higher image dimensions to a very small value through a one-step calculation
may also lead to the risk of important valuable information loss.

In view of this, we propose a novel framework to inherit the advantages of existing CF models and
meanwhile overcome above-mentioned drawbacks. Main contributions of this work are summarized
as follows:

(1) Technically, a Visible Multilayer Concept Factorization (VMCF), is proposed for image data
representation and clustering. Aimed at improving representation power, VMCF is equipped with
a ‘Decomposition-Dimensionality reduction-Data reconstruction’ network (shortly, D3-net) in each
layer. For the input data matrix of each layer, D3-net decomposes them by adaptive graph regularized
CF into two nonnegative parts, i.e., set of basis images and coefficient matrix. Then, D3-net extracts
two-dimensional features from the basis images and finally reconstruct the input data based on this.

(2) To achieve local-preserving representations of image data, the innovations of VMCF are twofold.
a) preserving sample-level local information by introducing an adaptive adjacency matrix into CF
framework to record and update neighborhood relationships between samples; b) preserving pixel-
level local information for basis images by restoring them to a set of two-dimensional matrices and
perform 2D feature extraction on it. Obtained basis images with higher quality and lower dimensions
can not only reduce the computational complexity of the model, but also indirectly improve the
accuracy of the coordinate matrix.

(3) To uncover hidden deep features, VMCF adopts a multi-layer structure. The multilayer struc-
ture can not only excavate deeper features than traditional shallow structures, but also reduce the
dimensionality of raw data layer by layer to avoid the loss of valuable information caused by too
fast decrease in data dimensionality.

The paper is outlined as follows. In Section 2, we briefly review related works. In Section 3, we
present VMCF in detail. We show the optimization procedures in Section 4. Section 5 describes the
simulation results. The paper is finally concluded in Section 6.

2 RELATED WORKS

In this section, we briefly review related algorithms, i.e., Concept Factorization (CF) (Xu & Gong,
2004) and Two-Dimensional Principle Component Analysis (2DPCA) (Yang et al., 2004).

2
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2.1 CONCEPT FACTORIZATION (CF)

Given a nonnegative data matrix X = [x1, x2, . . . , xN ] ∈ RD×N where D is the original dimen-
sionality of N samples, Concept Factorization mainly aims to calculate two nonnegative matrices
W ∈ RN×r and V ∈ Rr×N , to make the product of XWV approximates to X itself. That is, the
task of CF is to solve the following mathematical problem:

min
W,V

J = ∥X −XWV ∥2F , s.t.W, V ≥ 0 (1)

In the principle of CF, XW and V can be regarded as r bases and corresponding N coordinates (or
weights) respectively.

2.2 TWO-DIMENSIONAL PRINCIPLE ANALYSIS (2DPCA)

Given an image matrix A ∈ Rm×n , 2DPCA tries to learn features Y = AX by projecting A onto
a n-dimensional projection vector X . Ideally, an optimal projection X should maximize the total
scatter of the projected features Y . Thus, 2DPCA gives the following criterion.

argmax
X

J (X) = trace (Sx) (2)

where Sx denotes the covariance matrix of the projected features Y , and trace(Sx) denotes the trace
of the matrix Sx. The definition of Sx and derivation process are as follows

Sx = E(Y − EY )
T

= E [AX − E (AX)] [AX − E (AX)]
T

= E [(A− EA)X] [(A− EA)X]
T

(3)

According to trace(AB) = trace(BA), Eq.(2) can be rewritten as

argmax
X

J (X) = XTE
[
(A− EA)

T
(A− EA)

]
X (4)

Let Gt = E
[
(A− EA)

T
(A− EA)

]
, we can easily find Gt is the image covariance matrix of

matrix A, which can be directly obtained by the training samples. Suppose that there are M images
in total, Gt can be evaluated by

Gt =
1

M

M∑
j=1

(
Aj − Ā

)T (
Aj − Ā

)
(5)

Since we usually need to have more than one optimal projection axis Xopt, the solutions of Eq.(4)
can be composed by Xopt = [X1, . . . , Xd], where X1, . . . , Xd are orthonormal eigenvectors of Gt

corresponding to the d largest eigenvalues.

3 VISIBLE MULTILAYER CONCEPT FACTORIZATION (VMCF)

3.1 FRAMEWORK OF VMCF

To uncover deep hidden features of image data, VMCF designs a novel multilayer structure,
equipped with a D3-net in each layer, that is, ‘Dcomposition - Dimensionality reduction - Data
reconstruction’ network. Specifically, we represent the input image data matrix for each layer as
X(m−1) =

[
xm−1
1 , xm−1

2 , . . . , xm−1
N

]
∈ R(wm−1×hm−1)×N , with its column is the 1D represen-

tation of one picture, m = 1, 2, . . . ,M is the number of layer, and N is the number of samples.
Note that, w and h denote width and height of an image and wm−1 × hm−1 is the dimensionality
of X(m−1) , and especially, w0 × h0 is the dimensionality of input data X(0) of VMCF. D3-net first
decomposes X(m−1) into two parts, that is, basis images X(m−1)W (m−1) ∈ R(wm−1×hm−1)×r and
coefficients V (m−1) ∈ Rr×N , using the Adaptive graph regularized CF, where r is the rank. Then,
D3-net unfold each basis image into 2D representation and reduce its dimensionality to wm × hm
in both row and column directions using 2DPCA. In this way, the dimensionality of the image

3
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Figure 1: The D3-net flowchart, illustrating a single layer of our proposed VMCF

data has slowly decreased, and the neighborhood relationships between image pixels have also been
retained. The obtained improved low dimensional basis images may also potentially enhance the
quality of subsequent reconstructed data. D3-net afterwards flatten the newly obtained basis images
to (XW )

(m)
new ∈ R(wm×hm)×r, and reconstruct X̂(m) by (XW )

(m)
new V

(m−1). Reconstructed X̂(m)

can proceed to the next layer after being detected by the error analysis module. The framework of
D3-net is shown in Figure 1.

3.2 ADAPTIVE GRAPH REGULARIZED CF

In this subsection, we introduce the first module of D3-net: ‘Decomposition’, in detail. To decom-
pose the input data and to learn locality-preserving new representations adaptively, we define a novel
Adaptive graph regularized Concept Factorization, termed ACF. For the input matrix X , ACF aims
to find two nonnegative matricesW ∈ RN×r and V ∈ Rr×N , whose productXWV is approximate
toX itself. XW can be seen as a set of basis vectors, or as basis images in the context of image data,
and V is its corresponding coordinate matrix. To enable matrix V have the ability to retain local man-
ifold information automatically without specifying the neighborhood parameters, ACF introduces
the adaptive graph regularization term into root CF. Specifically, to automatically keep the local
manifold information of feature space, an adaptive weight matrix Q = [q1, q2, . . . , qN ] ∈ RN×N is
introduced to minimize the neighborhood reconstruction errors over V , that is,

∑N
i=1 ∥V − V qi∥

2
F .

By combining the adaptive graph regularization term and the standard concept factorization term,
we can obtain the objective function of ACF in the form of matrix as follows.

min
W,V,Q

∥X −XWV ∥2F + α ∥V − V Q∥2F
s.t.W, V,Q ≥ 0, Qii = 0, i = 1, 2, . . . , N

(6)

where W,V,Q ≥ 0 are the nonnegative constraints, α ≥ 0 is trade-off parameter, and Qii = 0 is
added to avoid the trivial solution Q = I . Substituting Eq.(6) into the scenario of the m-th layer of
VMCF, we can obtain the following formula.

min
W (m−1),V (m−1),Q(m)

∥∥X(m−1) −X(m−1)W (m−1)V (m−1)
∥∥2
F
+ α

∥∥V (m−1) − V (m−1)Q(m)
∥∥2
F

s.t.W (m−1), V (m−1), Q(m) ≥ 0, Q
(m)
ii = 0, i = 1, 2, . . . , N

(7)

3.3 2D FEATURE EXTRACTION AND DATA RECONSTRUCTION

Basis matrix XW obtained by ACF conveys dual message. In one respect, for image data, it can
be seen as basis images, which means that taking facial data as an example, the visualized basis
matrix is the partial representation of the full face, such as nose, mouth, cheeks, etc. In another
respect, since CF series methods iteratively update XW and V , XW potentially affect the quality
of the reconstructed data X and the new representation V . Therefore, in ‘Dimensionality reduction’
module in D3-net, we reduce the dimensionality and preserve pixel-level locality in basis images.
We first reshape (XW )

(m−1) obtained in the m-th layer into r individual wm−1 by hm−1 matrices,

4
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where each matrix Ai, i = 1, 2, . . . , r, represents one basis image. D3-net then performs 2D feature
extraction over each basis image by 2DPCA (Yang et al., 2004). Note that 2DPCA can only work
in the column direction of images, to project basis images onto a low-dimensional feature space
in both row and column directions, D3-net performs two-directional 2DPCA over Ai. Suppose
that the dimensionality of each basis image is reduced from wm−1 × hm−1 to wm × hm, where
wm < wm−1, hm < hm−1, and two projection matrices for dual directions are C∈ Rwm−1×wm

and R∈ Rhm−1×hm , which reflects information between columns and rows of images respectively.
Basis image Ai is projected onto C and R simultaneously, yielding a wm by hm matrix Yi =
RTAiC. Yi is the low-dimensional feature matrix and can be used to reconstruct the basis image
Ai by Âi = RYiC

T . D3-net finally obtains new basis matrix (XW )
(m)
new by flattening each Yi to a

(wm × hm) × 1 vector and concatenating r vectors into a matrix. Subsequently, the reconstructed
X̂(m) in the m-th layer can be obtained by calculating (XW )

(m)
new V

(m−1).

4 OPTIMIZATION OF ACF

In this section, we show how to optimize the objective function of ACF in the ‘Decomposition’
module in VMCF. For the sake of simplicity, we first discuss the general form of the objective
function in Eq.(6). We can find that the involved variables, i.e.,W , V , and Q depend on each other,
so they cannot be solved directly. As common procedures (Zhao & Tan, 2017), we solve it by using
the Multiplicative Update Rules (MUR) to obtain local optimal solutions. To be specific, we solve
it by updating the variables alternately and compute one of the variables each time by fixing others.

Firstly, we rewrite the objective function in the form of matrix traces as follows.

min J (W,V,Q) = tr
(
(X −XWV )

T
(X −XWV )

)
+ αtr

(
(V − V Q)

T
(V − V Q)

)
s.t.W, V,Q ≥ 0, Qii = 0, i = 1, 2, . . . , N

(8)

where tr(·) denotes the trace of matrix.

1) Fix others and update the factors W and V . We first show how to optimize W and V . Let ψik

and ϕik be the Lagrange multipliers for the constraints wik ≥ 0, vik ≥ 0, and Ψ = [ψik], Φ = [ϕik],
the Lagrange function L1 for W and V can be reconstructed as follows.

L1 = tr
(
(X −XWV )

T
(X −XWV )

)
+ αtr

(
V LV T

)
+ tr

(
ΨWT

)
+ tr

(
ΦV T

)
(9)

where L = (I −Q) (I −Q)
T , I is an identity matrix. Then, W and V can be alternately updated

by fixing others. The derivatives w.r.t. W and V can be formulated as

∂L1/∂W = 2XTXWV V T − 2XTXV T +Ψ (10)

∂L1/∂V = 2WTXTXWV − 2WTXTX + 2αV L+Φ (11)
By applying the KKT conditions (Wu, 2007) ψikwik = 0 and ϕikvik = 0, we can obtain the
following equations for ψik and ϕik:(

XTXWV V T
)
ik
wik −

(
XTXV T

)
ik
wik = 0 (12)(

XTXWV V T
)
ik
vik −

(
XTXV T

)
ik
vik + α(V L)ikvik = 0 (13)

Note that the above two equations can lead to the following multiplicative updating rules for the
basis images W and the corresponding coefficients V .

wik ← wik

(
XTXV T

)
ik

(XTXWV V T )ik
(14)

vik ← vik

(
XTXV T

)
ik

(XTXWV V T + αV L)ik
(15)

2) Fix others and update the adaptive weights Q. With the computed W and V , the adaptive
weights Q also can be updated by solving the formulation in Eq.(8) in a similar way as W and V .
Since W and V can be seen as constants in this step, we can reformulate Eq.(8) as

min J (Q) = tr
(
(V − V Q)

T
(V − V Q)

)
s.t.Q ≥ 0, Qii = 0, i = 1, 2, . . . , N

(16)

5
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Table 1: List of Used Datasets and Dataset Information

Database Data type #Points #Dim #Class

AR Face images 2600 32×32 100

MIT CBCL Face images 3240 32×32 10

CMU PIE Face images 11554 32×32 68

ETH80 Object images 3280 32×32 80

(a) AR (b) MIT CBCL (c) CMU PIE (d) ETH80

Figure 2: Examples of evaluated databases

Let τik be a Lagrange multiplier for the constraint qik ≥ 0 and Γ = [τik], the Lagrange function for
Q can be defined as

L2 = tr
(
(V − V Q)

T
(V − V Q)

)
+ tr

(
ΓQT

)
(17)

Then we can compute the derivative of L∈ w.r.t. Q as

∂L2/∂Q = 2
(
V TV Q− V TV

)
+ Γ (18)

Using the KKT condition τikqik = 0 we can obtain:(
V TV Q− V TV

)
ik
qik = 0 (19)

which leads to the following updating rule for weights Q:

qik ← qik

(
V TV

)
ik

(V TV Q)ik
, and qii = 0 (20)

After Q is obtained in each iteration, we can return it to further update matrices W and V .

5 SIMULATION RESULTS AND ANALYSIS

In this section, we conduct simulations to examine our proposed VMCF for data representation
and clustering. Four public image databases are evaluated, including three commonly-used face
databases AR (Martinez & Benavente, 1998), MIT CBCL (Rowley et al., 1998), CMU PIE (Sim
et al., 2002) and one object database ETH80 (Leibe & Schiele, 2003). Detailed information of these
used databases is shown in Table.1. Some samples are shown in Figure 2. The experimental results
of our method are compared with those of seven related algorithms, i.e., shallow models including
CF (Xu & Gong, 2004), LCF (Liu et al., 2013), SRMCF (Ma et al., 2018), LGCF (Li et al., 2017a)
and deep models including MCF (Li et al., 2015b), GMCF (Li et al., 2017b), and DSCF-net (Zhang
et al., 2020). We perform all the simulations on a PC with Intel Core i7-10700 CPU @ 2.90 GHz.

5.1 EXPERIMENTAL SETUP

1) Clustering Evaluation Process. Following the common procedures in (Cai et al., 2010) and
(Yang et al., 2024), we perform K-means algorithm with cosine distance on the obtained new rep-
resentation from each evaluated model. For each number K of clusters, we randomly choose K
categories from each database and use the K categories data to form the matrix X . The rank r of

6
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Figure 3: Clustering performance on AR database

matrix is set to K + 1 for all the evaluated methods according to (Sugiyama, 2007). For fair com-
parison, we average the numerical results over 20 random initializations for theK-means algorithm.

2) Evaluation Metrics. Two widely-used quantitative evaluation metrics are used in our simula-
tions, i.e., Clustering Accuracy (AC) and F -score. AC is the percentage of the computed cluster
labels to the true labels provided by the original databases. AC can be obtained by

AC =
∑N

i=1
δ (ri,map (pi))/N (21)

where N is the number of samples and the function map (pi) is the permutation mapping function
that maps the cluster label pi obtained by the clustering method to the true label ri provide by the
original data corpus.

F -score is also a commonly used clustering quantification indicator, which is defined as

Fµ =

(
µ2 + 1

)
PRECISION ×RECALL

µ2PRECISION +RECALL
(22)

where we set the parameter µ = 1 in our simulations.

3) Parameter Selection for Multilayer Models. Note that there are four multilayer models tested
in our simulations, including MCF, GMCF, DSCF-net and our VMCF. According to previous works
in (Zhang et al., 2021) and (Zhang et al., 2020), we set the number of model layers to 3 for all the
evaluated multilayer CF models. And we specify the target dimensions of basis images, i.e., wm

and hm, m = {1, 2, 3} in these 3 layers of our VMCF as {24, 24}, {16, 16}, and {8, 8}.

5.2 QUANTITATIVE CLUSTERING RESULTS AND ANALYSIS

1) Face Image Clustering. We firstly test representation and clustering power of each method on
three face image databases. Clustering performance in terms of AC and F -score over varied values
of K is tested. The value of K ranges from 2 to 10 with step 1. The clustering curves of AC and
F -score are reported in Figures 3-5. The averaged AC and F -score according to the curves are
summarized in Tables 2-4. We can easily find that: (1) the increasing value of K can decrease the
AC and F -score of each model since the clustering data of less categories is relatively easier; (2)
multilayer models roughly achieve better clustering results than single-layer ones, which indicates
that multilayer structure can indeed improve representation and clustering performance than shallow
structure; (3) our VMCF delivers higher AC and F -score than the other baselines in most cases.

2) Object Image Clustering. Then we evaluate each model for representing and clustering the
object image data over ETH80 database. The clustering curves are shown in Figure 6, and the
averaged values of ACs and F -scores are reported in Table 5. We can see that the clustering curves
also show a downward trend with the increase of the number of categories. And our proposed VMCF
outperforms the other baseline methods in this study.
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Figure 4: Clustering performance on MIT CBCL database
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Figure 5: Clustering performance on CMU PIE database
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Figure 6: Clustering performance on ETH80 database
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Method AC F -score
Mean std Best Mean std Best

CF 0.3645 0.1472 0.6623 0.3528 0.1503 0.6575
MCF 0.4173 0.1607 0.7252 0.4082 0.1530 0.7038
LCF 0.4243 0.2166 0.9067 0.4017 0.2083 0.8648

SRMCF 0.4372 0.1873 0.7865 0.4390 0.1819 0.7818
LGCF 0.4038 0.1655 0.7257 0.4066 0.1695 0.7145
GMCF 0.4824 0.1811 0.8279 0.4579 0.1790 0.7799

DSCF-net 0.5358 0.2139 0.9802 0.5264 0.2090 0.9660
Ours 0.5793 0.1964 1.0000 0.5813 0.1992 1.0000

Table 2: Averaged AC and F -score values of evaluated methods based on AR database

Method AC F -score
Mean std Best Mean std Best

CF 0.3798 0.1495 0.6447 0.3608 0.1448 0.6209
MCF 0.4291 0.1603 0.6837 0.4146 0.1679 0.6710
LCF 0.4395 0.1912 0.7787 0.4357 0.1865 0.7789

SRMCF 0.4605 0.1300 0.6794 0.4394 0.1306 0.6538
LGCF 0.4404 0.1555 0.7052 0.4370 0.1648 0.7024
GMCF 0.5274 0.1346 0.7387 0.5125 0.1316 0.7311

DSCF-net 0.5915 0.1738 0.8856 0.5816 0.1781 0.8669
Ours 0.7105 0.1327 0,9114 0.6975 0.1370 0.9223

Table 3: Averaged AC and F -score values of evaluated methods based on MIT CBCL database

Method AC F -score
Mean std Best Mean std Best

CF 0.4571 0.1202 0.6266 0.4343 0.1063 0.5855
MCF 0.5267 0.1001 0.6571 0.4892 0.1005 0.6253
LCF 0.4953 0.1113 0.6646 0.4724 0.1195 0.6565

SRMCF 0.5433 0.093 0.6763 0.5067 0.1096 0.6663
LGCF 0.4877 0.1193 0.6428 0.4791 0.1247 0.6979
GMCF 0.5551 0.1359 0.8048 0.5548 0.1371 0.8068

DSCF-net 0.5955 0.1266 0.8125 0.5980 0.1214 0.8348
Ours 0.6460 0.0997 0.8316 0.6266 0.1228 0.8661

Table 4: Averaged AC and F -score values of evaluated methods based on CMU PIE database

AC F -scoreMethod
Mean std Best Mean std Best

CF 0.4630 0.1094 0.6211 0.4209 0.1110 0.5791
MCF 0.5511 0.0848 0.7046 0.5008 0.1038 0.6713
LCF 0.6048 0.1144 0.8152 0.5583 0.1120 0.7330

SRMCF 0.6019 0.1086 0.8439 0.5655 0.0983 0.7725
LGCF 0.5313 0.1234 0.7314 0.4579 0.1249 0.6702
GMCF 0.6137 0.1108 0.8173 0.5716 0.0970 0.7581

DSCF-net 0.6422 0.1087 0.8565 0.5940 0.1003 0.7917
Ours 0.6927 0.0965 0.8782 0.6325 0.0970 0.8215

Table 5: Averaged AC and F -score values of evaluated methods based on ETH80 database
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5.3 RUNTIME COMPARISON

We also test the running time of each evaluated method over AR and MIT CBCL. To facilitate
the comparison, we report the averaged running time of each layer for multilayer models. For each
database, we randomly choose 3, 6, 9 categories to train each model. The averaged runtime based on
20 runs are shown in Figure 7. We can find that (1) the runtime increases with the increasing number
of training samples; (2) SRMCF and LGCF usually needs more time than other methods. The main
reason may be that it needs more time for the convergence of the algorithm; (3) our VMCF delivers
acceptable results in terms of runtime performance. This is mainly due to the gradual decrease in
the dimensionality of the basis images.
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Figure 7: Averaged runtime comparison of each method based on AR and MIT CBCL databases

6 CONCLUSION

We mainly discussed the unsupervised locality-preserved representation learning problem for high-
dimensional image data. In order to improve the representation and clustering abilities, we tech-
nically proposed a new visible multilayer concept factorization method. To capture hidden deep
information while slowly reducing data dimensionality, our VMCF designs a multilayer structure
equipped with a D3-net in each layer. D3-net jointly incorporates adaptive graph regularized CF, 2D
feature extraction for basis images and data reconstruction into a unified framework. In this way,
both sample-level and pixel-level neighboring information can be retained simultaneously. Mean-
while, learning low dimensional representations of the basis images layer by layer can not only avoid
the loss of valuable information caused by significant dimensionality reduction in one step, but also
indirectly improve the quality of reconstructed data and new data representations. We evaluated
VMCF for image representation and clustering, and compared the results with related single-layer
and multilayer methods. Extensive results demonstrated the effectiveness of our VMCF. In future,
more effective multilayer concept factorization strategy will be investigated.
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