
RADIUS: RANGE-BASED GRADIENT SPARSITY FOR LARGE FOUNDATION
MODEL PRE-TRAINING

Mingkai Zheng 1 Zhao Zhang 1

ABSTRACT
We present Radius, a gradient sparsity algorithm and system to accelerate large foundation model (FM) training
while preserving downstream task performance. Radius leverages two key insights in large FM pre-training: 1)
only a small portion of gradients contribute to the model updates in each iteration, and 2) the spatial distribution
of the gradients with large magnitude is stable over time. Radius overcomes the scaling problem of existing top-k
sparsity methods, as it maintains the structure of sparse gradients thus avoids dense communication. We examine
the convergence and speed of Radius on pre-training GPT models (355M and 2.0B) in data-parallel and compare
it with the baseline top-k sparsification methods. Our results show that using the existing top-k method with
AdamW optimizer fails to converge, and the training speed improvement with sparse communication is marginal.
In contrast, Radius with 40% sparsity reduces per-step training time by 21% (19% for overall training time) across
64 NVIDIA A100 GPUs that are connected by the Slingshot 11 interconnect while preserving the downstream
task performance.

1 INTRODUCTION

Large Foundation Models (FMs), such as GPT-like Large
Language Models (LLMs), have shown unparalleled per-
formance in various fields, including Natural Language
Processing (NLP), digital agriculture (Bran et al., 2023),
biology (Ahdritz et al., 2022), economics (Lee et al., 2024),
and mathematics (Microsoft Research et al., 2023). Train-
ing a large FM model is expensive and time-consuming.
According to the results reported by Meta AI team, the
pre-training of LLaMA-7B and LLaMA-65B on a cluster of
NVIDIA A100-80GB GPUs consume 82,432 and 1,022,362
GPU hours, respectively (Touvron et al., 2023). Similarly,
pre-training a GPT-8.3B model using Megatron-LM on 512
NVIDIA V100 GPUs takes 2.1 days to finish an epoch
(Shoeybi et al., 2020). In addition to the intrinsic compu-
tation complexity of LLMs, such long pre-training time is
attributed to the frequent and high-volume communication
between GPUs. Optimus-CC (Song et al., 2023) reports that
communication accounts for 40% of the overall training time
of GPT-8.3B pre-training across 128 NVIDIA A100 GPUs.
Data Parallelism (DP) (Li et al., 2014) is a commonly used
training technique for accelerating the training process. By
replicating the initialized model and distributing the training

1Department of Electrical and Computer Engineering, Rut-
gers University, New Brunswick, New Jersey, USA. Correspon-
dence to: Mingkai Zheng <mz687@rutgers.edu>, Zhao Zhang
<zhao.zhang@rutgers.edu>.

Proceedings of the 8 th MLSys Conference, Santa Clara, CA, USA,
2025. Copyright 2025 by the author(s).

dataset to multiple workers, each worker performs forward
and backward computation and then uses the averaged gradi-
ents to update the model. Large FMs usually require model
parallelism techniques, such as Pipeline Parallelism (PP)
(Harlap et al., 2018; Huang et al., 2019; Narayanan et al.,
2021) and Tensor Parallelism (TP) (Shoeybi et al., 2020),
so that the aggregated High Bandwidth Memorys (HBMs)
can provide sufficient space for both the model and the
training dataset. PP distributes decoder layers of an LLM
onto multiple GPUs, whereas TP splits the multi-head atten-
tion operation and matrix-matrix multiplication operations
onto multiple GPUs. Taking the GPT model family as an
example, PP distributes the decoder layers over multiple
stages, where each stage is placed on one or several GPUs.
On the tensor dimension, TP splits the multi-head attention
operation and matrix-matrix multiplication operations onto
multiple GPUs. The combination of these three scaling tech-
niques forms 3D parallelism. It brings opportunities to train
increasingly larger LLMs but injects high communication
overhead into the training process.

Many gradient compression methods have been proposed
to reduce the communication overhead introduced by DP,
including low-rank approximation (Vogels et al., 2020; Bian
et al., 2024) and sparsification (Shi et al., 2019; Wang et al.,
2021; Li & Hoefler, 2022). These existing methods either
assume a very low-bandwidth network, a naive sparsity strat-
egy, or a fixed optimizer such as momentum SGD. With the
rapid evolution of communication hardware and optimizers,
the assumptions of these methods are no longer valid for

Radius: Range-based Gradient Sparsity for Large Foundation Model Pre-training

Figure 1. The distribution of gradients with top-1% greatest mag-
nitude values for pre-traing GPT-355M from step 80,000 to step
84,000

LLM pre-training. For instance, DGC (Lin et al., 2018)
requires a high sparsity, such as 1%, to justify its commu-
nication overhead of exchanging top-k values on a 1 Gbps
Ethernet. In contrast, modern GPU clusters, such as the Perl-
mutter supercomputer, are equipped with high-bandwidth
interconnects such as the 400 Gbps and 800 Gbps Infiniband
(De Sensi et al., 2020). When measuring the speedup of the
state-of-the-art gradient compression method (Song et al.,
2023) on Perlmutter, it did not provide an observable im-
provement. From the optimizer perspective, AdamW (Zhao
et al., 2024) (Adam with weight-decay) has become the
default optimizer for pre-training LLMs. It has been the-
oretically proven by DGC (Lin et al., 2018) that directly
applying the top-k sparsification method to optimizers, such
as Adam (Kingma & Ba, 2017) and AdamW (Loshchilov &
Hutter, 2019), can harm the convergence. This is because
these optimizers perform non-linear operations on the gra-
dients before updating the model parameters. Low-rank
approximation methods, such as PowerSGD (Vogels et al.,
2020), maintain the gradient in a matrix or vector structure,
but when the model size is sufficiently large, the time com-
plexity of computing the approximation of the gradient can
dominate communication. Thus, we need to revisit the top-k
sparsification method on its correctness and effectiveness in
reducing communication overhead.

To address the above challenges, we introduce Radius, a
range-based top-k gradient sparsification method for pre-
training large FMs. Radius is designed based on the follow-
ing two insights:

• After 15-20% of the total training steps, the indices of
gradients that have top-1% greatest magnitudes exhibit
temporal locality: their indices in a flattened gradient
vector are relatively stable across the remaining pre-

training steps. Figure 1 illustrates this observation in
an MLP layer and an Attention layer in GPT-355M
pertaining from step 80,000 to step 84,000, where the
horizontal axis shows the percentage of indices, and
the vertical axis is the normalized frequency gradients
falling within the top-1% range. We can see that for
both layers, a small percentage of gradients have nor-
malized frequency close to 1, suggesting that these
indices and their corresponding gradients are selected
as top-1% in almost every step.

• Infrequently performing top-k selection operation on
gradient does not cause a serious staleness effect with
Adam and AdamW.

Based on these two insights, Radius can leverage allreduce
to communicate sparse gradients in a structure, which ef-
fectively avoids the scalability bottleneck of allgather in
existing top-k methods.

We develop Radius based on Megatron-LM framework
(Shoeybi et al., 2020), and then verify the convergence of
Radius on GPT-355 and GPT-2.0B models trained using
OpenWebText dataset (Gokaslan & Cohen, 2019) on the
NERSC Perlmutter supercomputer. By applying a sparsity
of 40%, Radius achieves 19.03% speedup for GPT-2.0B pre-
training, without affecting their scores on the downstream
tasks evaluation, including GLUE and SuperGLUE.

2 BACKGROUND

In this section, we review the complex model parallelism in
LLM training and existing gradient compression methods.

2.1 3D parallelism

In this section, we describe 3D parallelism for training
LLMs, including data parallelism, pipeline parallelism, and
tensor parallelism.

2.1.1 Data parallelism

Data parallelism (DP) partitions a large dataset into smaller
chunks and distributes them to multiple workers, where
each worker has a replication of the initialized model (Li
et al., 2014; 2020). During the training process, to update
the model parameters, each worker computes the forward
pass to obtain the loss of the Neural Network (NN) and then
performs a backward pass to compute the gradients using
the training data and the activation values:

Loss =
1

N

N∑
n=1

f(θ, xn), (1)

G =
1

N

N∑
n=1

∇f(θ, xn), (2)

Radius: Range-based Gradient Sparsity for Large Foundation Model Pre-training

where θ is the model parameters, f is the loss function, xi is
a mini-batch of training data, and G is the gradient. As the
size of the dataset increases, the total computation time also
increases. By fixing the global batch size, the size of the
partitioned dataset decreases proportionally to the number
of workers. Nevertheless, this does not yield the same factor
of speedup on the total training process, because of the
existing communication and I/O overhead.

Many DP architectures have been proposed, including pa-
rameter server architecture (Li et al., 2014) and distributed
data-parallel (DDP) (Li et al., 2020). In the parameter-server
architecture, there is one server and multiple workers. Ini-
tially, the server distributes the partitioned dataset chunks
and the up-to-date model to the workers. Then, after all the
workers finish computing the gradients, they transmit their
gradients to the server, and the server updates its model
parameters using these gradients. Finally, the server dis-
tributes another set of dataset chunks and the model to the
workers to perform the next step of parameter updates. The
major disadvantage of this approach is that when all workers
transmit the gradients, each of which has the same size as
the model, communication congestion might occur, dramat-
ically slowing down the whole training process. Instead, in
the DPP architecture, each worker maintains and updates
its own model parameters. To exchange the gradients, ring
allreduce is usually adopted, and its communication cost
can be estimated as

Cring-allreduce = 2α(n− 1) + 2Dβ
n− 1

n
, (3)

where n is the number of workers, D is the size of the gra-
dient, α is the communication latency, and β is the inverse
of the communication bandwidth. When the number of
workers n is large enough, Cring-allreduce is dominated by
the size of the gradient and the communication bandwidth.
Moreover, when a model and the partitioned dataset are too
large to fit into the HBM of a GPU, DP cannot be used.

2.1.2 Pipeline parallelism

Pipeline parallelism (PP) (Harlap et al., 2018; Huang et al.,
2019; Narayanan et al., 2021) is one of the approaches to use
the aggregated HBM of multiple GPUs to hold the model
and the dataset. Since the modern Deep Learning (DL)
models have many layers of NNs (e.g., GPT-series models
are composed of multiple decoder layers), PP partitions
them onto multiple GPUs, and during the forward- and
backward-pass, each worker communicates to its adjacent
workers to transmit the activation values and intermediate
gradients. To improve the pipeline utilization rate, one mini-
batch is split into multiple micro-batches, and the model
updates its parameters after the forward- and backward-pass
of all micro-batches have been finished. When two adjacent
pipeline stages are partitioned onto GPUs in different nodes,

the corresponding inter-node point-to-point communication
cost is non-negligible.

2.1.3 Tensor parallelism

Tensor parallelism (TP) (Shoeybi et al., 2020) is another
model parallelism method specially designed for trans-
former models (Vaswani et al., 2023). Since the multi-
head attention operation can naturally be performed inde-
pendently and the matrix-matrix multiplication operations
in Multi-Layer Perceptron (MLP) layers can also be par-
allelized, by splitting these operations across workers, TP
effectively reduces the memory burden on each worker. The
main overhead introduced by TP is that the input xn and the
results need to be broadcasted to all workers that belong to
the same operation group in the forward pass, and the corre-
sponding allreduce operations are required in the backward
pass, which can cause substantial communication overhead
if these workers spread across nodes. Therefore, the com-
mon practice is to constrain the TP operations into workers
in the same node, where workers are usually connected with
each other through high communication bandwidth, such
as NVLink, which has bandwidth as high as 600 GB/s for
NVIDIA Amphere architecture GPUs.

2.2 Gradient compression

Gradient compression is one of the methods for reducing
the communication overhead mentioned above. From Equa-
tion (3), we see that Cring−allreduce is dominated by the
gradient size D when the number of workers n is large
enough. Thus, reducing D is a very effective method to re-
duce Cring−allreduce. More details can be found in Section
3.

3 RELATED WORK

Many gradient compression methods have been proposed to
reduce communication overhead, which can be summarized
into three main categories, namely sparsification (Lin et al.,
2018; Shi et al., 2019; Wang et al., 2021; Li & Hoefler,
2022), low-rank approximation (Vogels et al., 2020; Song
et al., 2023), and quantization (Wen et al., 2017; Bernstein
et al., 2018; Tang et al., 2021).

Gradient sparsification selects and exchanges the gradients
that have top-k greatest magnitudes. However, such naive
top-k-based method has two main issues. First, it has low
scalability. Since each worker has different top-k great-
est gradients with different indices in the gradient tensor,
Allgather method needs to be performed to collect such
magnitudes and indices across all workers. The cost of
ring-based allgather operation can be formulated as

Callgather = αn+Dβ
(n− 1)

n
. (4)

Radius: Range-based Gradient Sparsity for Large Foundation Model Pre-training

Given there are n workers in a allgather communication
group, each worker hence needs to prepare n buffers, where
each buffer has the same size as the selected top-k gradi-
ents, and the total communication volume is proportional
to n. Therefore, it eventually surpasses dense allreduce
when n is sufficiently large, and it introduces high memory
overhead, which limits its scalability. Second, the top-k
gradient selection operation is expensive. As the size of
the gradient increases, its time cost can exceed time cost
by performing allreduce on the sparsified gradient tensor.
Many research works have been proposed to solve these two
issues of top-k-based gradient sparsification method. For
instance, DGC (Lin et al., 2018) uses a randomly selected
subset of gradient tensor to reduce the top-k selection time.
Ok-Topk (Li & Hoefler, 2022) and gtop-k (Shi et al., 2019)
propose new methods to estimate the threshold of the top-k
magnitude. Moreover, Ok-Topk (Li & Hoefler, 2022) splits
the gradient tensor into many regions, and each worker is
only responsible for the reduction of its assigned region,
which reduces the memory overhead caused by allgather
operation. Researchers also propose to use Fast-Furious
Transform (FFT) for top-k selection on the gradients (Wang
et al., 2021).

Low-rank approximation uses a tensor with a lower rank
to approximate the gradient tensor. Singular Value Decom-
position (SVD) is one of the commonly used methods for
constructing such low-rank matrix. Because of the signif-
icantly high computation overhead of SVD, it is not often
incorporated into the training process. PowerSGD (Vogels
et al., 2020) uses an iterative approach to approximate the
results of SVD, which reduces such computation overhead.
Optimus-CC (Song et al., 2023) applies PowerSGD to re-
duce the communication overhead in data parallelism and
pipeline parallelism and achieves good performance.

Quantization uses fewer number of bits to represent each
value in the gradient tensor. SignSGD (Bernstein et al.,
2018) and 1-bit Adam (Tang et al., 2021) use 1-bit binary
value to represent the gradients. TernGrad (Wen et al., 2017)
quantize the gradients from either full precision or half
precision to {-1, 0, 1} represented by 2 bits.

4 SYSTEM DESIGN

In this section, we describe the design of Radius in detail.
The pseudo-code of Radius is shown in Algorithm 1.

4.1 Allreduce-based top-k sparsification

The only communication collective in Radius is allreduce.
It is designed so to avoid the aforementioned high bandwidth
and high memory requirement of the existing allgather-
based top-k sparsification method (Equation (4)). To avoid
exchanging the top-k gradient values with their correspond-

Algorithm 1 Radius

Require: Loss function: f
Require: Learning rate: α
Require: Model parameters on worker n at step t: wt

n

Require: Dataset partition on worker n at step t: xt
n

Require: Gradients on worker n at step t: Gt
n

Require: Compression density: D ∈ (0, 1]
Require: Top-k indices at step t: top-k idxt

Require: Resampling interval top-k indices: T
1: for t = 1, 2, 3 . . . T do
2: Gt

n ← ∇f(wt
n, x

t
n)

3: if t < threshold then
4: All-reduce(Gt

n): Gt ←
∑N

n=1 G
t
n/N

5: Gt
n ← Gt

6: else
7: if t % T == 0 then
8: Gt

n ← residual +Gt
n

9: All-reduce(Gt
n): Gt ←

∑N
n=1 G

t
n/N

10: residual← 0
11: Gt

n ← Gt

12: else
13: Gt

n,top−k ← Gt
n[top-k idxt]

14: All-reduce(Gt
n,top-k):

Gt
top-k ←

∑N
n=1 G

t
n,top-k/N

15: Gt
n[top-k idxt]← Gt

top−k

16: residual←residual+Gt
n[∼ top-k idxt]

17: Gt
n[∼ top-k idxt]← 0

18: end if
19: end if
20: Gt

n ← gradient clip(Gt
n)

21: Gt
n ← gradient correction(Gt

n)
22: if t ≥ threshold and t % T == 0 then
23: top-k idxt← top-k selection(|Gt|, D)
24: end if
25: wt

n+1 ← wt
n − αGt

n

26: end for

ing indices, we leverage our observation that the indices of
top-k gradients are relatively stable after 15%-20% of the
total number of training steps. From Figure 1, we can see
that the distributions of the top-1% gradients in those layers
are stable across many training steps.

This suggests the top-k indices selected in one training step
can be reused in the following steps, and frequently perform-
ing the top-k selection operation is unnecessary. However,
reusing the same top-k indices for too many steps can also
lead to divergence (Li & Hoefler, 2022). Therefore, in ad-
dition to the compression density d, we introduce another
hyper-parameter T , the top-k indices resampling interval.
When t % T = 0, dense allreduce is preformed, and then
top-k indices selection is performed. Since all workers have

Radius: Range-based Gradient Sparsity for Large Foundation Model Pre-training

the same aggregated gradient results after the allreduce op-
eration, every worker is guaranteed to have the same top-k
indices at the end of this step. When t % T ̸= 0, the pre-
viously obtained top-k indices are reused to compress the
gradient.

As the top-k indices are identical on all workers, sparse
representation, such as coordinate list (COO), compressed
sparse row (CSR), and compressed sparse column (CSC), is
not needed. Only a dense matrix, which is 1/d times smaller
than the original gradient matrix, needs to be transmitted,
saving the communication bandwidth by 1/d times.

Algorithm 2 Gradient correction

Require: Betas: β1, β2

Require: Weight decay: λ
Require: Model parameters at step t: wt

Require: Gradients at step t: Gt

Require: The first-order momentum at step t: mt

Require: The second-order momentum at step t: vt
1: mt ← β1mt−1 + (1− β1)Gt

2: vt ← β2vt−1 + (1− β2)G
2
t

3: m̂t ← mt/(1− βt
1)

4: v̂t ← vt/(1− βt
2)

5: Gt ← m̂t/(
√
v̂t + ϵ) + λwt

4.2 Gradient correction

It is important to realize that small gradients do not neces-
sarily lead to small changes in the model parameters. For
advanced optimizers, the value used to update a model pa-
rameter is a combination of nonlinear operations on opti-
mizer states, gradients, and model parameters. Inspired
by DGC (Lin et al., 2018), we perform the gradient cor-
rection operations, shown in Algorithm 2, before selecting
the indices of top-k gradients. Gradient correction here is
the same as the operations performed within the AdamW
optimizer (Loshchilov & Hutter, 2019), one of the most
commonly used optimizers for training LLMs. Performing
the top-k selection on the corrected gradients gives a more
accurate selection of the indices with major model param-
eter changes in the following T steps. Gradient clipping
is performed before the gradient correction to maintain the
same execution order without using Radius.

4.3 Error feedback

Gradient sparsification approximates the gradient informa-
tion, and those gradient values not selected by the top-k
operation are the approximation errors. At every training
step, each worker in a DP group has its own small batch
of training data and computes its own gradient value. With
the same top-k indices on all workers, each worker thus
has its own approximation errors. Similar to PowerSGD

(Vogels et al., 2020), we use a residual buffer to accumulate
the non-top-k gradient values when t % T ̸= 0. We com-
pensate the gradient with the accumulated errors and then
compute the average of the results for all workers when t %
T = 0. After the error compensation operation, we set the
residual buffer to 0 to prepare it for the next T steps. This
method has been proven effective in many different types of
gradient sparsification methods, and it also prevents Radius
from divergence.

5 IMPLEMENTATION

We implemented Radius based on Megatron-LM (Shoeybi
et al., 2020). The top-k gradient selection is performed
by torch.topk function. As the operations in gradient
correction are identical to AdamW optimizer, they are imple-
mented by reusing the fused implementation of AdamW in
Apex (NVIDIA, 2018) to reduce the computation overhead.

To achieve minimal memory overhead, instead of storing
the indices in Int64 format, we used a buffer of binary
values to represent whether a gradient value is selected
as top-k or not. Furthermore, we used SGD optimizer to
perform model parameter updates, but its momentum buffer
was discarded to further reduce Radius’s memory overhead.
It is worth mentioning that PyTorch prevents the slicing
operation from using a binary buffer of size greater than
INT32 MAX. Therefore, to support models with parameters
greater than 2.1B, each layer has its own indices buffer
instead of using one unified buffer to store all the indices.

Table 1. Model architecture

MODEL nLAYERS nHEADS dMODEL dHEAD

GPT-355M 24 16 1024 64
GPT-2.0B 24 32 2560 80

6 RESULTS

We evaluated the convergence and scalability of Radius
by pre-training GPT-355M and GPT-2.0B. In this section,
we will first describe the experiment setup. Then, we will
present the experiment results in detail. Finally, we will
provide some discussions on the results.

6.1 Experiment setup

In this section, we describe our experiment environment,
the model architectures, the pre-training dataset, and the
hyperparameter settings used to pre-train the GPT models.

6.1.1 Experiment environment

Our experiment used 16 compute nodes of the Perlmutter su-
percomputer, where each node has 4 NVIDIA A100-80GB

Radius: Range-based Gradient Sparsity for Large Foundation Model Pre-training

Table 2. Train, validation perplexity, wall-clock time, and overall training speedup.

BASELINE
RADIUS

d = 0.9, T = 200 d = 0.5, T = 200 d = 0.4, T = 200 d = 0.4, T = 400 d = 0.1, T = 200

GPT-355M TRAIN PPL 14.64 — 14.65 — — —
VAL. PPL 14.32 — 14.31 — — —

GPT-2.0B
TRAIN PPL 10.86 10.87 10.89 10.94 10.94 11.85
VAL. PPL 11.42 11.37 11.39 11.41 11.46 11.98

WALL-CLOCK TIME (DAYS) 6.44 6.82 5.73 5.43 5.41 4.78
SPEEDUP — -5.55% 12.40% 18.55% 19.03% 34.76%

GPUs connected by NVLink3, providing a total intra-node
communication bandwidth of 600 GB/s. The inter-node
communication network is HPE Slingshot 11, and each
GPU within a node has a NIC of 25 GB/s, which provides
an aggregated bandwidth of 100 GB/s.

6.1.2 Models architecture and training dataset

We pre-trained both GPT model with 355M parameters
(GPT-355M) and GPT model with 2.0B parameters (GPT-
2.0B). GPT-355M model has 24 decoder layers, where
within each decoder layer, it has 16 attention heads and
a hidden dimension of 1024, resulting in each attention head
of dimension 64. GPT-2.0B model has the same number
of decoder layers, but each decoder layer has 32 attention
heads and a hidden dimension of 2560, which results in each
attention head of dimension 80. The details of the model
architectures are summarized in Table 1.

We used OpenWebText Corpus (Gokaslan & Cohen, 2019)
as our pre-training dataset, an open-source version of the
WebText dataset, which can be accessed through Hugging
Face.

We used mixed precision training. We store the model
parameters in half-precision format (bfloat16), and to
guarantee the training stability, we use the full precision
format (float32) for the gradient.

We first verify the convergence of Radius with d = 0.5 and
T = 200 by pre-training the GPT-355M model, then we use
Radius to pre-train the GPT-2.0B model. We only provide
the wall-clock training time, the average per-step speedups,
and the overall speedups for different density d and top-k
indices resampling interval T for pre-training the GPT-2.0B
model because performing compression on the gradients of
the GPT-355M model cannot provide observable speedup
as the size of its gradients is much lower than Perlmutter’s
inter-node communication bandwidth.

6.1.3 Hyper-parameter selection and training strategy

We followed the training scripts provided by Megatron-LM
to set the hyper-parameters, including the learning rate, the

learning rate scheduler, the minimum learning rate, the gra-
dient clipping, and the weight decay. We pre-trained GPT-
355M and GPT-2.0B for 500,000 iterations and 300,000
iterations, and we switched from using dense allreduce to
Radius at 80,000 iteration and 60,000 iteration, respectively.
We used DP = 64, PP = 1, and TP = 1 to pre-train both
models. We used global batch size 512 and micro-batch size
8 as the default setting if not otherwise mentioned in the
following sections.

6.2 Training efficiency

The full training perplexity (PPL) curves for GPT-2.0B
model using the baseline method (dense allreduce), and
Radius with different compression rates d’s and resampling
intervals T ’s are shown in Figure 2, and the speedup for
each method is shown in Table 2.

Figure 2. Training PPL vs wall-clock time for training GPT-2.0B.

The average computation and communication time break-
down per training step are provided in Figure 3, from which
we can see that compressing gradients by half can reduce
the communication cost by 58.76%. If we continue com-
pressing the gradients to d = 0.4, the communication cost
can be reduced by 89.69%. d = 0.1 can provide the highest
speedup, but as we will see in the following section, its final
training and validation PPL values are much higher than the

https://huggingface.co/datasets/Skylion007/openwebtext
https://huggingface.co/datasets/Skylion007/openwebtext

Radius: Range-based Gradient Sparsity for Large Foundation Model Pre-training

baseline.

Since Radius is designed based on the observation that top-k
gradient values exhibit temporal stability after 15-20% of
the total steps trained by using dense allreduce, Radius
can only speed up the rest, resulting in a lower speedup
for the overall training process. We pre-trained GPT-355M
using Radius with d = 0.4 and T = 200 starting from 5% of
training steps, but its loss on downstream evaluation tasks
is significant.

Radius adds computation overhead to the training process
from two sources: the top-k indices sampling and gradi-
ent correction. Because the operation of resampling top-k
indices is performed every T steps, this overhead can be
amortized by T to every training step. We used the fused
implementation of AdamW to implement gradient correc-
tion so that its computation overhead is not more expensive
than calling a optimizer.step(). When the speedup
achieved by exchanging compressed gradients cannot cover
the computation overhead, we can see a slowdown in the
wall-clock training time, such as the case when d = 0.9 and
T = 200 in Figure 3.

Figure 3. Average per-step time breakdown for pre-training GPT-
2.0B model on 64 A100 GPUs with DP = 64, TP = 1, and PP = 1,
using dense allreduce and Radius. Radius with d = 0.9 and T =
200, d = 0.5 and T = 200, d = 0.4 and T = 200, d = 0.4 and T =
400, d = 0.1 and T = 200. The averaged communication time per
step is compressed from 964.99 ms to 944.71 ms (1.02×), 2299
607.82 ms (1.59×), 508.69 ms (1.90×), and 508.15 ms (1.90×),
216.39 (4.46×), respectively.

We compared Radius to PowerSGD (Vogels et al., 2020), a
low-rank approximation-based communication compressing
method, implemented by Optimus-CC (Song et al., 2023),
using rank = 128. We measured the breakdown of communi-
cation and computation overhead for Radius and PowerSGD
on 64 A100 GPUs on Perlmutter. The detailed results are
shown in Table 3. We found that the computation overhead
introduced by PowerSGD (mainly due to the orthogonal-
ization operations) outweighs its speedup gained through
compressed gradient communication. Radius with d = 0.4 is
5.14% faster than PowerSGD with rank = 128, and the final
validation PPL is much lower than it reported by Optimus-
CC.

Table 3. Breakdown of the per-step time for the baseline, Pow-
erSGD, and Radius measured on 64 A100 GPUs.

TIME PER STEP
(MS)

ALLREDUCE
(MS)

COMPUTATION
OVERHEAD (MS)

BASELINE 1852.94 964.99 0.00

POWERSGD
(RANK=128) 1538.43 75.79 574.70

RADIUS
(D=0.5, T=200) 1562.75 607.82 66.98

RADIUS
(D=0.4, T=200) 1463.18 508.69 66.54

RADIUS
(D=0.1, T=200) 1214.66 216.39 110.32

6.3 Training error analysis

The training loss, per-step training loss errors between base-
line (dense allreduce) and different Radius schemes, and
the validation PPL curves for GPT-355M and GPT-2.0B are
shown in Figure 4 and Figure 5, respectively.

From Figure 5b, we can see that for compression rate d
= 0.5, the training loss error between baseline and Radius
oscillates, and as the training process continues, the error
range and the expected error become smaller. When d =
0.1, the training error is significant, especially after the first
100,000 iterations of the switch. By comparing those five
Radius schemes, we can see that a higher compression rate
leads to higher training loss error. A similar trend can be
observed from the validation PPL curves in Figure 5c.

The oscillation on the training loss error and the degradation
on the final validation PPL are caused by the aforemen-
tioned error feedback mechanism. When t % T ̸= 0, the
error between the sparsified gradient and the original gradi-
ent is accumulated into a residual buffer, and when t % T
= 0, the accumulated errors are added to the gradient and
then all workers in a DP group exchange their gradients.
Because of the non-linear nature of operations in AdamW
optimizer, unlike the case in DGC (Lin et al., 2018), which
uses the SGD optimizer, accumulating gradients (no mat-
ter whether they are corrected or not) cannot recover the
original optimizer state. Although adding the errors back
to the gradient causes the optimization direction to change,
if we consider the training process as walking through the
error space in high dimension, it maintains approximately
the same optimization direction as if the dense allreduce
is utilized because approximately half of the gradient infor-
mation is maintained for every training step. However, for
very high compression rates, such as 10%, the sparsified
gradient cannot approximate the correct descent direction
and thus cannot maintain the final validation PPL close to
the baseline. This can be observed from the plots for Radius
with d = 0.1 and T = 200 in Figure 5.

Radius: Range-based Gradient Sparsity for Large Foundation Model Pre-training

(a) Training loss curve (b) Training loss error (baseline − Radius) (c) Validation PPL curve

Figure 4. Curves of pre-training GPT-355M with baseline (dense allreduce) and Radius

Table 4. Evaluation results on zero-shot downstream tasks, including LAMBADA, RACE, MathQA, PIQA, and WinoGrande for the
pre-trained GPT-355M and GPT-2.0B models

LAMBADA
OPENAI

(ACC / PPL)

LAMBADA
STANDARD

(ACC / PPL)

RACE
(ACC)

MATHQA
(ACC)

PIQA
(ACC)

WINOGRANDE
(ACC)

GPT-355M BASELINE 43.12 / 16.00 32.54 / 44.22 31.01 23.05 65.18 52.41

d = 0.5, T = 200 42.73 / 16.24 32.72 / 44.18 31.20 22.58 65.34 51.62

GPT-2.0B

BASELINE 50.15 / 9.73 41.49 / 19.17 33.01 22.98 70.02 57.77

d = 0.9, T = 200 50.44 / 9.73 41.80 / 18.91 32.82 23.35 69.70 57.62

d = 0.5, T = 200 50.86 / 9.49 42.05 / 18.65 32.54 23.18 70.46 57.62

d = 0.4, T = 200 50.57 / 9.52 41.68 / 18.97 32.82 23.05 70.18 56.83

d = 0.4, T = 400 50.26 / 9.52 41.22 / 19.53 33.01 22.88 69.91 57.14

d = 0.1, T = 200 48.71 / 10.63 40.00 / 22.53 33.30 22.71 69.21 55.41

6.4 Evaluation on downstream tasks

We evaluated the pre-trained GPT-355M and GPT-2.0B mod-
els without fine-tuning on several zero-shot downstream
tasks using the lm-evaluation-harness framework (Gao et al.,
2024), including LAMBADA (Paperno et al., 2016), GLUE
(Wang et al., 2018), SuperGLUE (Wang et al., 2019), RACE
(Lai et al., 2017), MathQA (Amini et al., 2019), PIQA (Bisk
et al., 2020), and WinoGrande (Sakaguchi et al., 2019).
The evaluation scores for GPT-355M model and GPT-2.0B
model trained with different schemes are shown in Table 4,
Table 5, and Table 6.

We report both the scores of LAMBADA OpenAI, the LAM-
BADA dataset with plain text, and LAMBADA Standard,
the LAMBADA dataset with post-processing. The LAM-
BADA Standard splits contractions like “don’t” into “do
n’t”. These post-processed texts cannot be properly han-
dled by GPT2 tokenizer. Thus, models’ evaluation scores
for LAMBADA Standard are lower than those for LAM-
BADA OpenAI. Since we used OpenWebText dataset from
Hugging Face instead of following instructions provided by
Megatron-LM to build WebText dataset, many evaluation
scores of our baseline models are lower than those reported
by Megatron-LM, especially the LAMBADA scores.

The evaluation scores generally align well with the training

and validation accuracy and PPL in Table 2. We can also see
that compared to the baseline results, Radius with d ≥ 0.4
can achieve higher evaluation scores in many GLUE and Su-
perGLUE downstream tasks. For some specific tasks, such
as SST-2 and BoolQ, the accuracy degradation is noticeable.
The evaluation scores in Table 4, Table 5, and Table 6 are
not the average scores and contain variance. Due to the
constrained computation budget, we could only perform a
one-time pre-training with Radius using the same random
seed as the baseline.

6.5 Comparison between naive top-k and Radius

To highlight the convergence property of Radius, we evalu-
ated Radius and naive top-k approach by pre-training GPT-
355M on the Vista supercomputer, an HPC system com-
posed of NVIDIA GH200-96GB superchips connected by
NVIDIA Quantum-2 MQM9790 NDR switch having 64
ports of 400 Gb/s InfiniBand per port, and provide their
training loss curves and validation PPL curves in Figure
6. Here, the naive top-k refers to the top-k sparsification
method that first re-computes the top-k gradients in every
step and then uses allgather to exchange top-k values and
indices between all workers. It also uses error feedback
to store each worker’s non-top-k values locally and then
adds them to the gradient in the next step before the top-k

Radius: Range-based Gradient Sparsity for Large Foundation Model Pre-training

(a) Training loss curves (b) Training loss error curves (c) Validation PPL curves

Figure 5. Curves of pre-training GPT-2.0B with baseline (dense allreduce) and Radius

Radius: Range-based Gradient Sparsity for Large Foundation Model Pre-training

Table 5. Evaluation results on GLUE downstream tasks for pre-trained GPT-355M and GPT-2.0B models

GLUE

MNLI
(M / MM)

QQP
(ACC / F1)

QNLI
(ACC)

SST-2
(ACC)

MRPC
(ACC / F1)

RTE
(ACC)

GPT-355M BASELINE 34.80 / 34.94 36.82 / 53.80 50.41 58.03 68.38 / 81.22 53.43

d = 0.5, T = 200 35.11 / 35.62 36.81 / 53.80 49.79 52.64 68.38 / 81.22 54.51

GPT-2.0B

BASELINE 34.36 / 34.76 37.28 / 50.75 51.20 51.03 59.80 / 72.94 51.99

d = 0.9, T = 200 34.95 / 35.45 36.11 / 51.47 50.63 50.00 59.56 / 72.82 53.43

d = 0.5, T = 200 34.48 / 35.12 36.74 / 53.50 50.32 49.31 66.42 / 79.52 50.90

d = 0.4, T = 200 35.24 / 35.33 36.71 / 52.41 50.49 49.77 61.27 / 74.60 49.46

d = 0.4, T = 400 35.31 / 35.12 37.34 / 52.27 50.74 49.31 56.86 / 70.47 53.07

d = 0.1, T = 200 34.90 / 34.53 36.93 / 52.06 50.01 49.89 67.65 / 80.47 56.32

Table 6. Evaluation results on SuperGLUE downstream tasks for the pre-trained GPT-355M and GPT-2.0B models

SUPER GLUE

BOOLQ
(ACC)

CB
(ACC / F1)

COPA
(ACC)

MULTIRC
(ACC)

RECORD
(F1 / EM)

RTE
(ACC)

WIC
(ACC)

WSC
(ACC)

GPT-355M BASELINE 57.31 28.57 / 15.69 71.00 54.48 80.43 / 79.64 53.43 50.00 40.39

d = 0.5, T = 200 58.07 26.79 / 18.28 69.00 54.87 80.23 / 79.44 54.51 50.16 39.42

GPT-2.0B

BASELINE 59.39 33.93 / 31.05 77.00 48.80 84.7 / 83.94 51.99 50.16 38.46

d = 0.9, T = 200 58.41 39.29 / 28.75 77.00 50.33 84.01 / 84.78 53.79 49.84 36.54

d = 0.5, T = 200 57.77 30.36 / 28.88 76.00 48.82 85.27 / 84.46 50.54 50.78 42.31

d = 0.4, T = 200 58.62 30.36 / 27.90 76.00 48.37 85.26 / 84.50 49.46 49.84 38.46

d = 0.4, T = 400 58.93 37.50 / 29.84 78.00 51.46 85.02 / 84.21 53.07 49.69 38.46

d = 0.1, T = 200 60.03 21.43 / 19.52 76.00 52.95 84.62 / 83.86 56.32 50.16 36.54

selection operation.

(a) Training loss errors (b) Validation PPL errors

Figure 6. Comparison between using naive top-k and Radius for
pre-training GPT-355M. After switching from the baseline method
(dense allreduce), naive top-k quickly exhibits the trend of di-
vergence, whereas Radius can follow the baseline method and
continue reducing the training loss and the validation PPL.

As mentioned above, the low scalability of naive top-k limits
its applicability in LLM pre-training. Because of allgather,
naive top-k with d = 0.5 causes more than 10× slowdown
on the communication process for aggregating gradients
between all workers in a group of DP = 8. When testing
naive top-k with d = 0.5 and d = 0.4, we could only manage

to use DP = 8 to pre-train GPT-355M, due to its extremely
high requirement on HBM size.

As we can see from both Figure 6a and Figure 6b, after
switching from the baseline method (dense allreduce) to
the naive top-k method at step 80,000, they fail to follow
the convergence trend. Specifically, the naive top-k method
with d = 0.01 rapidly diverges in the following 10,000 steps.
Though naive top-k with d = 0.4 and d = 0.5 seem to keep
making progress at step 90,000, as we continue the pre-
training, the training loss and validation PPL gradually stop
reducing, and both curves eventually flatten.

6.6 Exploration on top-k resampling interval T

In addition to the compression rate d, Radius has a unique
hyper-parameter: top-k resampling interval T . In Figure 7,
we fix the sparsity to 50% and plot the training loss error
curves for Radius with different T ’s.

One counterintuitive but interesting phenomenon is that
when T = 10, the training loss error is larger than that of
those with larger T ’s. Our explanation is that when T is
too small, such as T = 10, the magnitudes of the non-top-
k gradient values accumulated through T training steps

Radius: Range-based Gradient Sparsity for Large Foundation Model Pre-training

(a) Training loss errors (b) Validation PPL errors

Figure 7. Comparison between using different top-k indices resam-
pling intervals T ’s with fixed compression rate d = 0.5 to pre-train
GPT-355M

are still much smaller than those top-k values. Therefore,
in the following T training steps, the roughly same top-k
indices are used again. As this process continues, the effect
of completely losing those small gradient values starts to
reflect on the training loss and validation PPL curves. When
T is large enough, those small gradient values accumulated
through T steps may have magnitudes large enough to be
selected as the top-k values. Thus, in the next T steps, the
corresponding model parameters of these small gradients
can be updated, and the staleness effect can be alleviated.
Note that this does not suggest that T can be randomly large.
When T = 1000, we can see that the validation PPL error
curve oscillates vigorously. Through extensive experiments,
we found that T = 200 performs well for GPT models with
different numbers of parameters and can be used as the
default value.

6.7 Strong scaling efficiency

We analyzed Radius’s strong scaling efficiency ranging from
8 to 128 GPUs. We set PP and TP to 1, and thus each
GPU represents one worker in the DP group. The results
are shown in Table 7. Compared to the baseline, Radius
achieved much better scaling efficiency. When 128 GPUs
are used (i.e., DP = 128), Radius with d = 0.4 and d =
0.1 can sustain the scaling efficiency at 42.5% and 55.5%,
respectively, whereas the baseline can only achieve 32.8%.

Table 7. Strong scaling results for Radius.

NUMBER OF GPUS 8 16 32 64 128

BASELINE 1 0.896 0.715 0.522 0.328

d = 0.9, T = 200 1 0.862 0.688 0.478 0.304

d = 0.5, T = 200 1 0.921 0.779 0.598 0.398

d = 0.4, T = 200 1 0.929 0.785 0.632 0.425

d = 0.1, T = 200 1 0.959 0.869 0.738 0.555

7 CONCLUSION

In this work, we proposed Radius, a top-k-based gradient
compression method for reducing the communication vol-
ume in training Large FMs, without causing downstream
task performance degradation. Radius leverages the tempo-
ral stability of gradient values in training LLMs and solely
uses allreduce communication for higher scalability of the
top-k sparsification methods. Our experiments show that
with compression density d = 0.4, Radius reduces the GPT-
2.0B pretraining time by 19% without loss in downstream
task performance. With a more aggressive compression
density d = 0.1, Radius achieves a speedup of 35% in time.
Although the downstream task performance is comparable
to that of higher compression densities, we observe insta-
bility in the training loss. In future work, we plan to apply
Radius to 3D parallelism FM training and reduce communi-
cation overhead in pipeline and tensor parallelism.

8 ACKNOWLEDGMENTS

This research used resources of the National Energy Re-
search Scientific Computing Center (NERSC), a Department
of Energy Office of Science User Facility using NERSC
award DDR-ERCAP0032037. The authors acknowledge
the Texas Advanced Computing Center (TACC) at The
University of Texas at Austin for providing computational
resources that have contributed to the research results re-
ported within this paper. URL: http://www.tacc.utexas.edu.
Mingkai Zheng and Zhao Zhang are partially supported by
the NSF ICICLE AI Institute (OAC-2112606) and OAC-
2340011.

REFERENCES

Ahdritz, G., Bouatta, N., Floristean, C., Kadyan, S.,
Xia, Q., Gerecke, W., O’Donnell, T. J., Berenberg, D.,
Fisk, I., Zanichelli, N., Zhang, B., Nowaczynski, A.,
Wang, B., Stepniewska-Dziubinska, M. M., Zhang, S.,
Ojewole, A., Guney, M. E., Biderman, S., Watkins,
A. M., Ra, S., Lorenzo, P. R., Nivon, L., Weitzner,
B., Ban, Y.-E. A., Sorger, P. K., Mostaque, E., Zhang,
Z., Bonneau, R., and AlQuraishi, M. OpenFold:
Retraining AlphaFold2 yields new insights into its
learning mechanisms and capacity for generalization.
bioRxiv, 2022. doi: 10.1101/2022.11.20.517210.
URL https://www.biorxiv.org/content/
10.1101/2022.11.20.517210.

Amini, A., Gabriel, S., Lin, P., Koncel-Kedziorski, R., Choi,
Y., and Hajishirzi, H. MathQA: Towards Interpretable
Math Word Problem Solving with Operation-Based For-
malisms, 2019.

Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and Anand-

http://www.tacc.utexas.edu
https://www.biorxiv.org/content/10.1101/2022.11.20.517210
https://www.biorxiv.org/content/10.1101/2022.11.20.517210

Radius: Range-based Gradient Sparsity for Large Foundation Model Pre-training

kumar, A. signSGD: Compressed Optimisation for Non-
Convex Problems, 2018. URL https://arxiv.org/
abs/1802.04434.

Bian, S., Li, D., Wang, H., Xing, E., and Venkatara-
man, S. Does Compressing Activations Help Model
Parallel Training? In Gibbons, P., Pekhimenko,
G., and Sa, C. D. (eds.), Proceedings of Machine
Learning and Systems, volume 6, pp. 239–252, 2024.
URL https://proceedings.mlsys.org/
paper files/paper/2024/file/
71381211d0abef73ed1887b83c4547b1-
Paper-Conference.pdf.

Bisk, Y., Zellers, R., Bras, R. L., Gao, J., and Choi, Y. PIQA:
Reasoning about Physical Commonsense in Natural Lan-
guage. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Bran, A. M., Cox, S., Schilter, O., Baldassari, C., White,
A. D., and Schwaller, P. ChemCrow: Augmenting
large-language models with chemistry tools, 2023. URL
https://arxiv.org/abs/2304.05376.

De Sensi, D., Di Girolamo, S., McMahon, K. H., Roweth,
D., and Hoefler, T. An In-Depth Analysis of the Slingshot
Interconnect. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analy-
sis, pp. 1–14, 2020. doi: 10.1109/SC41405.2020.00039.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi,
A., Foster, C., Golding, L., Hsu, J., Le Noac’h, A., Li,
H., McDonell, K., Muennighoff, N., Ociepa, C., Phang,
J., Reynolds, L., Schoelkopf, H., Skowron, A., Sutawika,
L., Tang, E., Thite, A., Wang, B., Wang, K., and Zou,
A. A framework for few-shot language model evaluation,
07 2024. URL https://zenodo.org/records/
12608602.

Gokaslan, A. and Cohen, V. OpenWebText Cor-
pus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Harlap, A., Narayanan, D., Phanishayee, A., Seshadri, V.,
Devanur, N., Ganger, G., and Gibbons, P. PipeDream:
Fast and Efficient Pipeline Parallel DNN Training, 2018.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, M. X.,
Chen, D., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., and
Chen, Z. GPipe: Efficient Training of Giant Neural
Networks using Pipeline Parallelism, 2019. URL https:
//arxiv.org/abs/1811.06965.

Kingma, D. P. and Ba, J. Adam: A Method for Stochas-
tic Optimization, 2017. URL https://arxiv.org/
abs/1412.6980.

Lai, G., Xie, Q., Liu, H., Yang, Y., and Hovy, E. RACE:
Large-scale ReAding Comprehension Dataset From Ex-
aminations. In Palmer, M., Hwa, R., and Riedel, S.

(eds.), Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pp. 785–794,
Copenhagen, Denmark, September 2017. Association for
Computational Linguistics. doi: 10.18653/v1/D17-1082.
URL https://aclanthology.org/D17-1082.

Lee, J., Stevens, N., Han, S. C., and Song, M. A Survey
of Large Language Models in Finance (FinLLMs), 2024.
URL https://arxiv.org/abs/2402.02315.

Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed,
A., Josifovski, V., Long, J., Shekita, E. J., and Su, B.-Y.
Scaling Distributed Machine Learning with the Parameter
Server. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), pp.
583–598, Broomfield, CO, October 2014. USENIX
Association. ISBN 978-1-931971-16-4. URL https:
//www.usenix.org/conference/osdi14/
technical-sessions/presentation/li mu.

Li, S. and Hoefler, T. Near-optimal sparse allreduce
for distributed deep learning. In Proceedings of the
27th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’22, pp.
135–149, New York, NY, USA, 2022. Association for
Computing Machinery. ISBN 9781450392044. doi:
10.1145/3503221.3508399. URL https://doi.org/
10.1145/3503221.3508399.

Li, S., Zhao, Y., Varma, R., Salpekar, O., Noordhuis, P.,
Li, T., Paszke, A., Smith, J., Vaughan, B., Damania, P.,
and Chintala, S. PyTorch Distributed: Experiences on
Accelerating Data Parallel Training, 2020. URL https:
//arxiv.org/abs/2006.15704.

Lin, Y., Han, S., Mao, H., Wang, Y., and Dally, W. J. Deep
Gradient Compression: Reducing the communication
bandwidth for distributed training. In The International
Conference on Learning Representations, 2018.

Loshchilov, I. and Hutter, F. Decoupled Weight Decay
Regularization, 2019. URL https://arxiv.org/
abs/1711.05101.

Microsoft Research, AI4Science, and Microsoft Azure
Quantum. The Impact of Large Language Models
on Scientific Discovery: a Preliminary Study using
GPT-4, 2023. URL https://arxiv.org/abs/
2311.07361.

Narayanan, D., Shoeybi, M., Casper, J., LeGresley, P., Pat-
wary, M., Korthikanti, V. A., Vainbrand, D., Kashinkunti,
P., Bernauer, J., Catanzaro, B., Phanishayee, A., and Za-
haria, M. Efficient Large-Scale Language Model Train-
ing on GPU Clusters Using Megatron-LM, 2021. URL
https://arxiv.org/abs/2104.04473.

https://arxiv.org/abs/1802.04434
https://arxiv.org/abs/1802.04434
https://proceedings.mlsys.org/paper_files/paper/2024/file/71381211d0abef73ed1887b83c4547b1-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/71381211d0abef73ed1887b83c4547b1-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/71381211d0abef73ed1887b83c4547b1-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/71381211d0abef73ed1887b83c4547b1-Paper-Conference.pdf
https://arxiv.org/abs/2304.05376
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://arxiv.org/abs/1811.06965
https://arxiv.org/abs/1811.06965
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://aclanthology.org/D17-1082
https://arxiv.org/abs/2402.02315
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://doi.org/10.1145/3503221.3508399
https://doi.org/10.1145/3503221.3508399
https://arxiv.org/abs/2006.15704
https://arxiv.org/abs/2006.15704
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2311.07361
https://arxiv.org/abs/2311.07361
https://arxiv.org/abs/2104.04473

Radius: Range-based Gradient Sparsity for Large Foundation Model Pre-training

NVIDIA. Apex. https://github.com/NVIDIA/
apex, 2018.

Paperno, D., Kruszewski, G., Lazaridou, A., Pham, Q. N.,
Bernardi, R., Pezzelle, S., Baroni, M., Boleda, G., and
Fernández, R. The LAMBADA dataset: Word prediction
requiring a broad discourse context, 2016. URL https:
//arxiv.org/abs/1606.06031.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
WinoGrande: An Adversarial Winograd Schema Chal-
lenge at Scale, 2019. URL https://arxiv.org/
abs/1907.10641.

Shi, S., Wang, Q., Zhao, K., Tang, Z., Wang, Y., Huang, X.,
and Chu, X. A Distributed Synchronous SGD Algorithm
with Global Top-k Sparsification for Low Bandwidth
Networks. In 2019 IEEE 39th International Conference
on Distributed Computing Systems (ICDCS), pp. 2238–
2247, Los Alamitos, CA, USA, jul 2019. IEEE Computer
Society. doi: 10.1109/ICDCS.2019.00220. URL
https://doi.ieeecomputersociety.org/
10.1109/ICDCS.2019.00220.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J.,
and Catanzaro, B. Megatron-LM: Training Multi-Billion
Parameter Language Models Using Model Parallelism,
2020.

Song, J., Yim, J., Jung, J., Jang, H., Kim, H.-J., Kim, Y., and
Lee, J. Optimus-CC: Efficient Large NLP Model Train-
ing with 3D Parallelism Aware Communication Compres-
sion. In Proceedings of the 28th ACM International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2, ASPLOS 2023,
pp. 560–573, New York, NY, USA, 2023. Association
for Computing Machinery. ISBN 9781450399166. doi:
10.1145/3575693.3575712. URL https://doi.org/
10.1145/3575693.3575712.

Tang, H., Gan, S., Awan, A. A., Rajbhandari, S., Li,
C., Lian, X., Liu, J., Zhang, C., and He, Y. 1-bit
Adam: Communication Efficient Large-Scale Training
with Adam’s Convergence Speed, 2021. URL https:
//arxiv.org/abs/2102.02888.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lam-
ple, G. LLaMA: Open and Efficient Foundation Lan-

guage Models, 2023. URL https://arxiv.org/
abs/2302.13971.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
Is All You Need, 2023. URL https://arxiv.org/
abs/1706.03762.

Vogels, T., Karimireddy, S. P., and Jaggi, M. Pow-
erSGD: Practical Low-Rank Gradient Compression for
Distributed Optimization, 2020. URL https://
arxiv.org/abs/1905.13727.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O.,
and Bowman, S. GLUE: A Multi-Task Benchmark
and Analysis Platform for Natural Language Under-
standing. In Proceedings of the 2018 EMNLP Work-
shop BlackboxNLP: Analyzing and Interpreting Neu-
ral Networks for NLP, pp. 353–355, Brussels, Belgium,
November 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/W18-5446. URL https:
//aclanthology.org/W18-5446.

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A.,
Michael, J., Hill, F., Levy, O., and Bowman, S. Su-
perGLUE: A Stickier Benchmark for General-Purpose
Language Understanding Systems. In Wallach, H.,
Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/
paper/2019/file/
4496bf24afe7fab6f046bf4923da8de6-
Paper.pdf.

Wang, L., Wu, W., Zhang, J., Liu, H., Bosilca, G., Herlihy,
M., and Fonseca, R. SuperNeurons: FFT-based Gradient
Sparsification in the Distributed Training of Deep Neural
Networks, 2021. URL https://arxiv.org/abs/
1811.08596.

Wen, W., Xu, C., Yan, F., Wu, C., Wang, Y., Chen, Y., and
Li, H. TernGrad: Ternary Gradients to Reduce Com-
munication in Distributed Deep Learning, 2017. URL
https://arxiv.org/abs/1705.07878.

Zhao, R., Morwani, D., Brandfonbrener, D., Vyas, N.,
and Kakade, S. Deconstructing What Makes a Good
Optimizer for Language Models, 2024. URL https:
//arxiv.org/abs/2407.07972.

https://github.com/NVIDIA/apex
https://github.com/NVIDIA/apex
https://arxiv.org/abs/1606.06031
https://arxiv.org/abs/1606.06031
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://doi.ieeecomputersociety.org/10.1109/ICDCS.2019.00220
https://doi.ieeecomputersociety.org/10.1109/ICDCS.2019.00220
https://doi.org/10.1145/3575693.3575712
https://doi.org/10.1145/3575693.3575712
https://arxiv.org/abs/2102.02888
https://arxiv.org/abs/2102.02888
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1905.13727
https://arxiv.org/abs/1905.13727
https://aclanthology.org/W18-5446
https://aclanthology.org/W18-5446
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://arxiv.org/abs/1811.08596
https://arxiv.org/abs/1811.08596
https://arxiv.org/abs/1705.07878
https://arxiv.org/abs/2407.07972
https://arxiv.org/abs/2407.07972

