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ABSTRACT

Financial time series forecasting is both highly significant
and challenging. Previous approaches typically standardized
time series data before feeding it into forecasting models,
which inherently leads to a loss of important information
during the encoding process. Moreover, past time series
models generally require fixed numbers of variables or look-
back window lengths, which further limits the scalability
of time series forecasting. In addition, interpretability and
uncertainty in forecasting remain underexplored, as these
factors directly impact the reliability and practical value of
predictions. To address these issues, we first constructed a
diverse financial image-text dataset (FVLDB) and developed
the Uncertainty-adjusted Group Relative Policy Optimiza-
tion (UARPO) method to enable the model not only output
predictions but also analyze the uncertainty of those predic-
tions. We then launched FinZero, a multi-modal pre-trained
model finetuned by UARPO to perform reasoning, predic-
tion, and analytical understanding on the FVLDB financial
time series. Extensive experiments validate that FinZero ex-
hibits strong adaptability and scalability. After fine-tuning
with UARPO, FinZero achieves an approximate 13.48%
improvement in prediction accuracy over GPT-4o in the high-
confidence group, demonstrating the effectiveness of rein-
forcement learning fine-tuning of multi-modal large model
for financial time series forecasting tasks.

Index Terms— Financial Time Series, Reinforced Fine-
tuning, Uncertainty Quantification, Reasoning

1. INTRODUCTION

The field of time series forecasting has garnered increasing
attention [1, 2, 3], as time-series data is widely present in
various real-world industries (e.g., transportation, weather,
power, finance, etc.). Extracting future trends from historical
information holds significant practical value. Among these,
financial time series exhibit more distinctive characteristics
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as they are influenced by more complex factors [4, 5]. For
instance, the asset price movements are shaped by a broad
range of external macro- and micro-level influences [6, 7],
as well as the interplay between buyers and sellers in de-
termining transaction prices[8, 9, 10]. This implies that, in
such a game-theoretic environment, any discernible patterns
or identifiable features (e.g., the pronounced periodicity seen
in transportation or power time series) tend to diminish once
traders recognize and exploit them for profit. This "adap-
tive" nature of markets leads to the inability of historical
patterns to fully replicate in the future. Predicting such time
series is undoubtedly highly challenging. However, even
marginal improvements in forecasting performance can yield
substantial impacts, particularly in high-frequency trading
scenarios[11, 12, 13].

To improve time-series forecasting performance, includ-
ing financial time series such as exchange rate prediction, spe-
cialized models have been designed [14, 15, 16]. However,
several challenges remain unresolved. First, most current
time series models require standardization to transform the
data into a numerical range that the model can process, such
as the normalization techniques used in RevIN [17]. This in-
evitably leads to the loss of partial information from the orig-
inal values. Second, patching-based processing is commonly
adopted, but this may not fully align with the size and loca-
tion of critical features [18]. Third, time series models usu-
ally operate with several fixed configurations, such as look-
back window size, variable types and quantities, and data fre-
quency [19, 16], which significantly limit the model general-
ization. Although some large foundation time series models
[20, 21, 22, 23] have partially addressed these issues, the ad-
vanced reasoning capabilities of large models have not been
fully leveraged in time series applications. Besides, the inter-
pretability of reasoning and uncertainty quantification in fore-
casting results remain critical yet understudied challenges.

To address the aforementioned challenges, we have aban-
doned traditional model architectures that process raw time
series values and instead transformed the original time series
into image compositions. Leveraging reinforcement learning
fine-tuning development [24, 25, 26, 27, 28, 29, 30], we en-
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Question: As illustrated in the financial time series 
figure, the main figure shows the hourly 
frequency Bitcoin asset candlestick with Bollinger 
Band, complemented by subplots for Volume and 
TBR (Taker Buy Ratio) to enhence analysis. Please 
predict whether the price will rise or fall over the 
next 5 steps (hours)?
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<think> To analyze the price movement over the next 5 hours, we 
need to consider the current trend and the indicators such as 
Bollinger Bands, Volume, and Taker Buy Ratio (TBR). The Bollinger 
Bands provide a measure of volatility and can help identify 
potential oversold or overbought conditions. The Volume indicator 
shows the trading activity, which can indicate whether the market 
is more bullish or bearish. The TBR can also provide insights into 
the market sentiment.

From the chart, we observe:
1. The price is currently trending upwards.
2. The Bollinger Bands are slightly above the price, indicating a 
possible overbought condition.
3. The Volume is relatively high, suggesting a strong buying 
pressure.
4. The TBR is close to 0.6, which is a neutral level but leaning 
towards a bullish sentiment.

Given these observations, the price is likely to continue its upward 
trend due to the overbought condition and strong buying pressure. 
However, the neutral TBR level suggests that there might be some 
consolidation before a significant move.

Therefore, I predict that the price will rise over the next 5 hours.
</think>
<answer>rise</answer>
<score>75</score>
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Fig. 1. The overall pipeline of the FinZero model, which is fine-tuned via the UARPO method on the FVLDB.

hance the visual reasoning capabilities of multimodal large
model (MLM). Our focus is on financial time-series trend
prediction and reasoning tasks. To better support this, we
constructed the FVLDB dataset, comprising over 10,000 fi-
nancial time series image-text pairs. To ensure dataset diver-
sity, we performed stratified sampling across multiple dimen-
sions, including asset types, prediction task categories, histor-
ical sequence lengths and frequencies, time series indicator
varieties, and image styles. To tackle the inherent uncertainty
and non-stationarity in financial time series forecasting, we
propose the Uncertainty-Adjusted Relative Policy Optimiza-
tion (UARPO) method. UARPO evaluates both intra-group
relative advantage (IGRA, performance within a group) and
cross-group relative advantage (CGRA, performance between
groups over a recent window). Additionally, it adjusts ad-
vantage levels based on prediction uncertainty (Uncertainty-
Adjusted Relative Advantage, UARA).

In this work, we propose the FinZero model, as illustrated
in Figure 1, which fine-tunes 3B-parameter multimodal large
model via the UARPO method in the FVLDB dataset, which
enables MLM to explicitly account for prediction uncer-
tainty. Comparative experiments with GPT-4 show a 13.48%
improvement in prediction accuracy in the high-confidence
group, validating the effectiveness of RL-based cross-modal
fine-tuning for financial time-series forecasting and reason-
ing. By providing confidence score and reasoning traces,
FinZero helps users better understand model predictions and
their rationale, ultimately supporting more informed finan-
cial decision-making, making it particularly valuable for
real-world financial applications where risk assessment is
paramount.

2. METHODS

2.1. Uncertainty Adjusted Related Policy Optimization

The GRPO [31] is employed to fine-tune the DeepSeek-R1
[32]. As an improvement over the PPO [33], GRPO elimi-
nates the need for an additional model as a policy model (as
required by methods like PPO) and leverages Group Rela-

tive Advantage sampled from multiple outputs within a group,
thereby avoiding the necessity for extra value function ap-
proximation. GRPO primarily focuses on the relative ad-
vantages among multiple outputs within each sample group,
while other methods like REINFORCE++ [34] utilize dis-
counted cumulative rewards to construct advantage variations
that reflect the training process, which helps improve train-
ing stability. Additionally, how to reflect the uncertainty in
model inference results holds significant importance, as it aids
decision-making by assessing the confidence level of reason-
ing outcomes.

Based on the above, we propose the UARPO algorithm,
which introduces two key enhancements: (1) Under the same
prediction target, a multi-dimensional advantage function
combining In-Group Relative Advantage (IGRA) within sam-
ples and Cross-Group Relative Advantage (CGRA) across
groups; (2) Construction of an uncertainty function (UA)
based on the model’s inference confidence scores, ultimately
forming Uncertainty-Adjusted Relative Advantage (UARA).
The optimization objective can be expressed as Equation (1):
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(1)

ÂI
i,t ≜ r̃i =
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std(r)

, (2)

ÂSτ
t ≜ s̃τt =

sτt − mean(sτt−l,t)
std(sτt−l,t)

, (3)

where πθ and πθold are the current and old policy mod-
els, q and o are questions and outputs sampled from the
question dataset and the old policy πθold , respectively. ε is



Algorithm 1 Iterative UARPO
1: Input: Initial policy model πθinit ; reward model rϕ; task promptsD; hyperparam-

eters ϵ, β, µ; stack length L
2: Initialize: policy model πθ ← πθinit ; target special stack sτL
3: for iteration = 1 to I do
4: Update reference model πref ← πθ

5: Initialize stack S[0..L− 1]
6: for step = 1 to M do
7: Sample batchDb ⊂ D
8: Update the old policy πθold ← πθ

9: Sample G outputs {oi}Gi=1 ∼ πθold (·|q) for each question q ∈ Db.
10: Compute rewards {ri}Gi=1 and confidence scores {ui}Gi=1 for each out-

put Oi by runnning rϕ.
11: Compute current step average reward 1

G

∑G
i=1 rτL for current target τ .

12: Compute ÂI
i,t for the t-th token of oi through group relative advantage

estimation.
13: if step > L then
14: Compute ÂI

i,t for the t-th token through latest L step relative advantage
estimation for target τ

15: Gather two part relative advantage and multiply with coressponding confi-
dence score

16: for UARPO iteration = 1, ..., µ do
17: Update the policy model πθ by maximizing the UARPO objective.
18: Update rϕ through continuous traning using a replay mechanism.
19: Update rϕ with replay mechanism
20: Output: πθ

a clipping-related hyper-parameter introduced in PPO for
stabilizing training. ÂI

i,t represents the in-group relative ad-
vantage as in GRPO, where r = [r0, r1, . . . , ri, . . . , rG],
ÂSτ

t represents the cross-group relative advantage where
sτt−l,t = [st−l, st−l+1, . . . , st|τ ] and sτt = 1

G

∑G
i=1 r

τ
i,t,

which indicate the advantage of the current group’s overall
performance relative to the average performance over multi-
ple steps in a recent window period under the same prediction
objective. sτt−l,t is a group consisting of multiple steps with
window length l. Ûi,t ≜ α · score−const

100 is the uncertainty
adjustment function, and α denotes an adjustable coefficient.
The algorithmic iterative process can be described as Algo-
rithm 1.

2.2. Rewards and Uncertainty

• Accuracy Reward Prediction accuracy is commonly used
to evaluate the performance of reinforcement learning mod-
els and construct loss functions. Specifically, it measures
the consistency between the model’s predictions and the
ground-truth outcomes (rise/fall) of each sample.

• Completion Length Reward Previous works have found
that text length expansion occurs in large model RL reason-
ing, which is helpful for improving reasoning time and en-
abling complex reasoning. Therefore, we provide this type
of reward. Specifically, when the text reasoning length is
no more than 200 tokens, a gradually increasing reward is
offered.

• Format Reward Format reward help the model learn the
target output format during fine-tuning. FinZero is required
to follow the output format as shown in the system prompt
of Figure 2.

• Confidence Score Prior works [35, 36] have explored
the feasibility and methods for large models to learn task
uncertainty. Given the high uncertainty inherent in finan-
cial decision-making, where uncertainty analysis is critical
for model development and real-world application, we
integrate model reasoning uncertainty into reinforcement
learning fine-tuning. During each image-text reasoning
process, the model outputs a confidence score based on
the input information and its reasoning. This score quan-
tifies the model’s uncertainty about its reasoning result for
the given task, enabling it to learn problem difficulty and
uncertainty through training.

3. EXPERIMENTS

3.1. FVLDB Dataset

To validate our idea, we specifically construct a financial
time-series image-text dataset (FVLDB as Figure 2) with
over 10000+ samples. The images in FVLDB contain a
wealth of financial assets, along with corresponding text de-
scriptions and questions. To enhance data diversity, FVLDB
includes index data from global stock markets, as well as data
on cryptocurrency assets such as Bitcoin. The time-series
length, sampling frequency, type, and number of features of
the assets in each image are variable, and the image styles
are also diverse. This flexibility enables the model to process
diverse data types.

3.2. Setup

The FinZero utilize the Qwen2.5-VL-3B model as the back-
bone and fine-tuned it directly on the FVLDB dataset with
the UARPO algorithm. For baselines, we select the original
Qwen2.5-VL-3B model, the Qwen2.5-VL-7B model, and the
larger-scale GPT-4o model. Additionally, we also fine-tuned
Qwen2.5-VL-3B with GRPO, and also constructed a Naive
Model, which extends the trend of the past period of time.
The Adam optimizer was adopted with a learning rate of 1e-
6, and the fine-tuning process ran for two epochs. All exper-
iments were conducted on a server equipped with two 80G
Nvidia A100 GPUs.

3.3. Results

As shown in Figure 3, the model’s rewards continuously in-
crease during the UARPO fine-tuning process: the format re-
ward and completion length reward rise rapidly in the early
stage of training and then stabilize, while the accuracy re-
ward also increases steadily with training; meanwhile, the
loss value decreases consistently. The prediction performance
of the fine-tuned model on the test set is presented in Ta-
ble 1. After UARPO fine-tuning, FinZero exhibits more com-
petitive prediction performance compared to baseline mod-
els, whether in price prediction tasks or volatility prediction



QUESTION
“As illustrated in the financial time series figure, the main 
figure shows the XXX frequency XXX Composite Index 
candlestick. Please analyze whether the XXX over the next XXX 
steps (days) will rise or fall.”

SYSTEM_PROMPT
“A conversation between User and Assistant. When user 
presented with a financial inquiry, the Assistant employs 
rigorous analytical methodologies to evaluate market 
dynamics, generating a directional forecast (rise/fall) 
accompanied by a confidence metric that quantifies 
prediction uncertainty through probabilistic assessment. 
The Assistant first thinks through the reasoning process 
internally and then provides both the answer and the 
confidence score. 
The reasoning process, answer, and confidence score must be 
enclosed within <think> </think>, <answer> </answer>, and 
<score> </score> tags, respectively. 
For example: 
<think> analysis and reasoning process here </think><answer> 
answer here </answer><score>confidence score here</score>. ”

PICTURES

Fig. 2. Overview of Image-Text Pairs for the FVLDB Dataset.

Fig. 3. Overview of the FinZero Training.

Table 1. Main Results of Model Accuracy Comparison.
Volitality ACC (%) Price ACC (%)

Model 5 21 63 Avg 5 21 63 Avg

Naive 48.54 46.23 48.46 47.75 50.00 52.04 50.00 50.68

Qwen2.5-VL-3B 46.67 45.69 50.51 47.62 54.20 51.64 52.54 52.79

Qwen2.5-VL-7B 50.49 43.64 51.16 48.43 55.55 51.91 51.14 53.53

GRPO 53.68 54.86 52.15 53.56 53.24 53.63 53.76 53.54

GPT-4o 54.28 48.26 53.38 51.97 56.16 51.22 51.14 52.84

FinZero 56.31 65.74 52.93 58.33 54.52 56.31 65.88 58.90

Table 2. Model Prediction Accuracy Across Confidence
Score Groups.

Low (%) Middle (%) High (%)

Qwen2.5-VL-3B 51.2 51.7 49.3

Qwen2.5-VL-7B 47.38 47.81 54.36

GRPO 53.85 53.19 54.61

GPT-4o 49.85 49.42 54.75

FinZero 54.48 56.67 62.13

Fig. 4. Finetuning Accuracy Trend Comparison.

tasks. While FinZero with 3B parameter size surpasses larger
parameter models such as GPT-4o. Additionally, when test
set samples are divided into three equal groups based on the
model’s uncertainty scores sorted from highest to lowest as
in Table 2, it shows that for the FinZero, the prediction ac-
curacy of samples with high confidence scores is further im-
proved - the prediction accuracy of the highest-score group is
increased by approximately 13.5% relative to that of GPT-4o.

Furthermore, compared to Qwen2.5-VL-3B fine-tuned
by GRPO, FinZero achieves better average prediction per-
formance. Meanwhile, grouping based on confidence scores
exhibits a more pronounced positive correlation with predic-
tion accuracy. Besides, we illustrate the accuracy changes of
the two models during the fine-tuning process, as shown in
Figure 4.

4. CONCLUSIONS

This study introduces FinZero, a model for multimodal finan-
cial time-series reasoning. The FinZero achieve competitive
forecasting accuracy rivaling larger models like Qwen-7B and
GPT-4o. Moreover, FinZero provides uncertainty scores that
reliably indicate prediction confidence - higher scores corre-
late with greater accuracy. This work demonstrates the poten-
tial of cross-modal reinforcement learning to advance finan-
cial reasoning, offering both a robust method and a practical
tool for reliable predictions.
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