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ABSTRACT

Contrastive representation learning has emerged as a promising technique for con-
tinual learning as it can learn representations that are robust to catastrophic for-
getting and generalize well to unseen future tasks. Previous work in continual
learning has addressed forgetting by using previous task data and trained mod-
els. Inspired by event models created and updated in the brain, we propose a new
mechanism that takes place during task boundaries, i.e., when one task finishes
and another starts. By observing the redundancy-inducing ability of contrastive
loss on the output of a neural network, our method leverages the first few samples
of the new task to identify and retain parameters contributing most to the transfer
ability of the neural network, freeing up the remaining parts of the network to learn
new features. We evaluate the proposed methods on benchmark computer vision
datasets including CIFAR10 and TinyImagenet and demonstrate state-of-the-art
performance in the task-incremental, class-incremental, and domain-incremental
continual learning scenarios. 1

1 INTRODUCTION

Deep neural networks (DNNs) have been solving a variety of computer vision tasks with high perfor-
mance. While this feat has been achieved via access to large and diverse datasets, in many practical
scenarios data is not available in its entirety at first and becomes available over time, potentially
including new unseen classes and different target distributions. When presented with a sequence of
classification tasks to learn and remember, DNNs suffer from a well-known catastrophic forgetting
problem (McCloskey & Cohen, 1989), losing their performance on previous classification datasets
abruptly. To address this issue, various continual learning algorithms have been proposed. A class
of methods introduces a way of identifying and retaining parameters most important for the perfor-
mance of the network on previous tasks. Retention of these parameters is usually done by either reg-
ularization or freezing (parameter isolation). Methods such as Elastic Weight Consolidation (EWC)
(Kirkpatrick et al., 2017), Synaptic Intelligence (SI) (Zenke et al., 2017), PackNet (Mallya & Lazeb-
nik, 2018), and one similar to our work, Attention-based Structural Plasticity (Kolouri et al., 2019)
belong to this class of continual learning approaches. Another class of methods such as Learning
without Forgetting (LwF) (Li & Hoiem, 2017) attempt to retain performance on previous tasks via
storing the networks trained for previous tasks and using their output to define a distillation loss on
the output of the network being trained on the current task. Rehearsal is another approach to mitigate
forgetting widely used in continual learning. Rehearsal-based methods such as iCaRL (Rebuffi et al.,
2017), GSS (Aljundi et al., 2019), GEM (Lopez-Paz & Ranzato, 2017), and CLS-ER (Arani et al.,
2022) store a small number of training samples from previous tasks in a memory, while other meth-
ods such as (Shin et al., 2017; Seff et al., 2017) train a generative model to produce training samples
similar to previous tasks. During the training of the current task, the network is concurrently trained
on the current task samples as well as samples from the memory. There have also been promising
meta-learning approaches to continual learning as in Meta Experience Replay (MER) (Riemer et al.,
2018), Online Meta-Learning (OML) (Javed & White, 2019), the Neuromodulated Meta-Learning
Algorithm (ANML) (Beaulieu et al., 2020), and La-MAML Gupta et al., 2020.

While the aforementioned continual learning methods are successful to some extent in mitigating
"forgetting", whether or not the regularization or isolation of parameters, distillation, or meta-

1The source code is provided in the supplementary materials.
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learning will help in learning new unseen tasks is not clear. In fact, in regularization and param-
eter isolation approaches, parameters are identified as important by some forms of evaluation on
past tasks, without attention to whether these parameters will transfer to future tasks. Similarly,
rehearsal-based approaches rely on some forms of regularization or gradient alignment with regard
to past task data to achieve good performance. While recent work Wang et al., 2021; Lin et al.,
2022 considers features learned from new task data, they do not encourage learning of features that
generalize to all tasks seen so far and are more likely to transfer. Likewise, recent meta-learning
approaches like La-MAML (Gupta et al., 2020) use gradient-alignment heuristics to modulate the
plasticity of parameters but pay little attention to redundancy and the contribution of parameters to
generalizability while being computationally expensive compared to other continual learning meth-
ods. Thus, there has been a general lack of attention regarding the transfer of continually learned
knowledge to future tasks. A recent approach named Co2L (Cha et al., 2021) questioned whether
preserved past knowledge generalizes to future tasks and observed that contrastively learned rep-
resentations (Chen et al., 2020; Khosla et al., 2020) transfer better and forget less, compared to
learning based on the cross entropy loss.

Aiming for a continual learning approach that mitigates forgetting while learning representations
that transfer well to unseen data, we were inspired to build upon the contrastive learning framework
(Cha et al., 2021; Khosla et al., 2020). In contrastive learning, we will be working with an encoder
mapping input images to vectors (representations), a projection head mapping representations to
vectors (named embeddings) on which a contrastive loss is defined, and a decoder (linear transfor-
mation) mapping the extracted representations to class probabilities at inference time. We build our
approach around Co2L (Cha et al., 2021), but importantly, we will be regularizing produced embed-
dings and network parameters selectively, based on how likely they are to transfer to future tasks. In
doing so, we revisit assumptions on access to data at each point in time and outline our inspirations
from Event Models theorized to enable update of context representations in the brain.

Task Boundaries and Event Models: Events are how we understand the world around us. While
the world seems to be a continuous stream of twists and turns, evidence suggests we perceive it
as discrete events in various spatiotemporal scales (Radvansky & Zacks, 2011; Stawarczyk et al.,
2021; Zacks et al., 2007). The brain has been theorized to operate and make sense of the world
by updating and maintaining representations of the current situation, also known as Event Models
(Radvansky & Zacks, 2011; Stawarczyk et al., 2021; Zacks et al., 2007). Inspiring to our work,
event models are believed to be updated mainly at event boundaries (Radvansky & Zacks, 2011;
Stawarczyk et al., 2021; Zacks et al., 2007). These boundaries are thought to be detected by a rise in
perceptual prediction error, i.e., when the brain’s visual model makes predictions of the world that
start to diverge from what is actually happening (Radvansky & Zacks, 2011; Stawarczyk et al., 2021;
Zacks et al., 2007). Interestingly, the said boundaries also exist in the field of continual learning at
the moment where the first batch of new task data arrives (or any point in time where the model’s
prediction accuracy drops significantly). We will refer to these boundaries as task boundaries. While
performing various kinds of computation during task boundaries is not new in continual learning,
methods that do such computations (e.g., EWC (Kirkpatrick et al., 2017)) do not make use of all the
information available at task boundaries. In the specific case of EWC (Kirkpatrick et al., 2017), a
regularization strength for each network parameter is calculated using the previous task data, with
no attention to the first batch of data coming from the new task. Until now, continual learning
approaches have been focused on using past task data and models to overcome forgetting. Assuming
a stream data where the data distribution changes, we can mark any time the model’s performance
on a batch of data drops as a task boundary and assign data before this batch to the previous task.
Consequently, the batch of data the model did not perform well will belong to a new task. Accessing
this batch of data is not a new assumption as we are merely choosing to delay the application of
continual learning methods until after the first batch of new task data is received, rather than applying
them after the last batch of the previous task. This way, we also give up access to the last batch of
data from the previous task. Overall, we assume access to one batch of data, some samples in a
memory, and a snapshot of the model taken when training on the new task started, same as previous
work (Cha et al., 2021).

Redundancy in Contrastive Learning: Recent work suggests that most continual learning methods
favor stability over plasticity, that is, they focus on not forgetting about past tasks by preserving
learned parameters and sacrificing flexibility to learn new knowledge (Kim & Han, 2023). It is
thus favorable to introduce less regularization into continual learning methods by only retaining
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parts of the learned network that are vital to performance on previous tasks and produce highly
generalizable representations. Research into properties of learned representations and projection
head of networks trained by contrastive loss has shown that over-parameterized (and sufficiently
wide) neural networks learn embeddings with redundancy (Doimo et al., 2022; Gupta et al., 2022;
Jing et al., 2021). Specifically, the vector space where the contrastive loss is defined is believed to
suffer from a dimensional collapse problem (Gupta et al., 2022; Jing et al., 2021), i.e., the produced
embeddings are in a lower-dimensional subspace of their nominal dimensionality. While this has
been identified as an inefficiency in the normal supervised learning setting (Gupta et al., 2022;
Jing et al., 2021), it poses an opportunity for continual learning: regularization of DNN outputs
can be defined only on parts of the embeddings instead of their entirety. Similar to (Doimo et al.,
2022), we observe that a small subset of contrastively learned embeddings (i.e., a subset of output
neurons put together) is able to replicate the performance of the entirety of embeddings on previous
tasks. Moreover, we observe that different subsets of a DNN’s embeddings perform differently.
By sampling random subsets of a DNN’s produced embeddings and evaluating it on previous and
future tasks, we see that variation of performance among subsets is higher on future tasks. These
observations motivated us to define loss/regularization only on a small part of the network’s outputs,
one chosen such that it’s likely to transfer to future tasks.

To choose a highly generalizable subset, we propose to evaluate the network on the first batch of new
task data (as a surrogate of unseen future data) during task boundaries. We introduce a novel process
to identify the parts of the embeddings that perform best (a subset), and a novel loss to regularize
this high-performing subset. We then introduce a novel extension of the Excitation Backprop (Zhang
et al., 2018) to measure the contribution of each network parameter in producing the identified subset
and a novel method to modulate the gradients based on this contribution. We will describe the details
of our methods in the methods section, followed by the experimental setup and results. In ablations
studies, we will justify our design choices and we conclude with a discussion of methods used and
how they can be improved in the future.

2 METHODS

We will use Co2L (Cha et al., 2021) as our baseline and briefly overview its methods. We will then
build our proposed methods around it.

Continual Learning Settings: Continual learning involves training a model on a sequence of tasks
T1, T2, ..., Tn. Each task is defined by its corresponding input and target datasets (Xt, Yt) which are
drawn from a task-specific distribution Dt. Continual learning is mainly studied in three settings:
task-incremental, class-incremental, and domain-incremental. In the task-incremental setting, the
samples in each task are accompanied by a task identifier. As a result, during inference, a model
can use the task identifier to drastically limit target predictions. In the class and domain incremental
setting, there is no knowledge of the task identifier at inference time and the targets to predict can be
among all classes seen so far by the model. While the set of target classes in each task is disjoint in
the task and class incremental settings, the set of classes remains the same in the domain-incremental
setting (Yt distribution stays the same while Xt distribution varies).

Contrastive Learning and Co2L Overview: Supervised contrastive learning (Khosla et al., 2020)
generally involves a feature extractor mapping input samples to representations and a projection
head mapping representations to embeddings. Formally, denoting a feature extractor parameterized
by θ as fθ, representations by r, projection head parameterized by ψ as gψ , and embeddings by e,
supervised contrastive learning (Khosla et al., 2020) and Co2L (Cha et al., 2021) augment each input
sample x in the minibatch twice to get x̂1 and x̂2, known as views. Representations are generated by
passing the views x̂1 and x̂2 to the feature extractor (r1 = fθ(x̂1), r2 = fθ(x̂2)). Embeddings are
then produced by passing the extracted representations to the projection head (e1 = gψ(r1), e2 =
gψ(r2)). Both embeddings and representations are normalized to be of unit length (|r| = 1, |e| = 1).
A contrastive loss is then defined on these embeddings and used to train the network. In the specific
case of Co2L (Cha et al., 2021), this loss is called the Asynchronous Supervised Contrastive Loss
(Async SupCon) and defined as:

LSupCon
Async =

∑
i∈S

−1

|Pi|
∑
j∈Pi

log

(
exp(ei · ej/τ)∑
k ̸=i exp(ei · ek/τ)

)
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Figure 1: During task boundaries, the feature importance module is added on top of the embeddings
to identify the salient subset. The mask marking the salient subset is trained based on a nearest
class-mean classifier and regularized to be minimal (criterion 3).

where S includes the index of views from the current task, Pi holds the index of views in the
minibatch belonging to the same class as the ith view x̂i except for x̂i itself, τ is a temperature
hyperparameter, and ei is the embedding of the ith view. To facilitate comparison with previous
work, we also employ the Async SupCon loss to train the network.

To adapt supervised contrastive learning to solve a continual learning problem and mitigate forget-
ting, Co2L (Cha et al., 2021) uses an Instance-wise relation distillation loss (IRD). IRD computes
a similarity matrix by measuring the similarity of each view with other views in the minibatch (one
row) for both the old model (snapshot of the current model taken when training on the current task
started and parameterized by ω) and the model currently being trained (parameterized by θ). The
resulting two similarity matrices are then regularized to be similar to each other. Formally, the
similarity of views x̂i and x̂j is computed as follows:

Rθ,η1 [i, j] = Sim(x̂i, x̂j , η1, θ) =
exp(ei · ej/η1)∑2N
k ̸=i exp(ei · ek/η1)

(1)

where [i, j] is used to denote the element in the ith row and jth column of the pairwise similarity
matrix, Sim is the similarity function, η1 is a temperature hyperparameter, and N is the number of
samples in the minibatch. The IRD loss is then defined as:

LIRD =

2N∑
i=1

2N∑
j=1

−Rω,η2 [i, j] · log(Rθ,η1 [i, j]) (2)

We believe that this distillation loss is too limiting and diminishes the model’s ability to learn new
generalizable representations since redundant parts of the embeddings are also regularized. We
will modify this distillation loss to be applied only to a subset of embeddings. This subset will
be identified by our novel feature importance module and regularized using our novel selective
distillation loss. Similar to rehearsal-based continual learning approaches, we will employ a small
memory to store samples. The memory size will be similar to previous work for comparison and each
class will be assigned an equal portion of memory. Additionally, we extend the Excitation Backprop
(Zhang et al., 2018) framework to measure the contribution of individual network parameters in
producing the identified salient subset as their salience. Our novel gradient modulation method
will then use these salience values to decrease the gradients for salient network parameters. In the
following sections, we will introduce the building blocks for these methods in more detail.

Proposed Salient Subset Selection: To improve the IRD loss (Cha et al., 2021) we try to identify a
subset of the embeddings that satisfies the following criteria and refer to it as salient:

1. Transfers better to unseen data compared to other subsets (based on performance on unseen
tasks),

2. Contains more information about past tasks compared to other subsets (based on perfor-
mance on previous tasks),
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Figure 2: The Instance-wise Relation Distillation Loss is applied only to a subset of embeddings
deemed to be salient by the feature importance module.

3. Is minimal, i.e., does not have a subset that performs as well on previous and future tasks.

In the general continual learning formulation, criterion 1 and 2 can not be evaluated for a subset
since we can not store all of the samples seen so far and future samples are yet to be seen. In a task
boundary, however, we can use the samples stored in the memory M as a surrogate for previous
tasks and the first batch of new task data Bt (before the model is trained on it) as a surrogate for
future tasks. We can create a dataset DSRS to use for finding the salient subset. This dataset can
be formed by combining M and Bt (the combined setting, DSRS = M ∪ Bt), or using memory
samples only (the onlypast setting, DSRS = M), or using the first batch only (the onlycurrent
setting, DSRS = Bt). These options will be assessed in the ablations studies.

Identifying a salient subset of the embeddings is essentially a search problem. Here, for simplicity
and speed, we adopt an approach similar to a previous work called Neural Similarity Learning (Liu
et al., 2019). Using the same notation as before, let s be a vector the same size as e, σ denote the
sigmoid function, and hs() a Nearest Class Mean Classifier (NCMC) parameterized by s, taking in
embeddings and assigning them to the class with the nearest mean embedding. Before training hs()
we need to compute class means. Let Dc denote samples in dataset DSRS belonging to class c, then
the mean of class c (denoted by mc) can be computed as:

mc =

∑
(x,t)∈Dc

gψ(fθ(x))

|Dc|
where x is a view of an input sample and t is the class it belongs to.

To train hs we will minimize the following loss function:

ℓs(DSRS) =

∑
(x,t)∈DSRS

e⊙σ(s)
|e⊙σ(s)| ·

mt⊙σ(s)
|mt⊙σ(s)|

|DSRS|
+ λ|s|1

where ⊙ denotes the element-wise product. An ℓ1 norm loss (with λ as a hyperparameter controlling
strength) is added on s to ensure it marks a minimal subset (criterion 3). The size of this subset can
vary based on the redundancy of embeddings. After training the NCMC for a number of randomly
initialized mask vectors and selecting the best-performing mask, ŝ = σ(s) can be used to identify
which parts of the embedding should be regularized. Compared to Neural Similarity Learning (Liu
et al., 2019), multiplying ŝ to the output of the encoder and class means is similar to implementing
a weighted dot product, weights that are used to mask parts of the encoder’s output in our case.

Proposed Selective Distillation: Selective Distillation modifies the IRD loss to be applied only on
the salient subset of the produced embeddings. By applying this distillation loss selectively, we try
to keep only parts of the embeddings that are salient, offer the model more flexibility in learning
the new task, and encourage transfer and generalizability. Our proposed variant of IRD forms new
embeddings ê by taking parts of the embeddings where the mask vector ŝ is above a threshold (here
0.5 is simply chosen):

ê =
e[̂s ≤ 0.5]

|e[̂s ≤ 0.5]|
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The instance-wise similarity matrix (equation 1) is then computed using the new embeddings:

Rθ,η1 [i, j] = Sim(x̂i, x̂j , η1, θ) =
exp(êi · êj/η1)∑2N
k ̸=i exp(êi · êk/η1)

(3)

IRD loss (equation 2) is then calculated using the new instance-wise similarity matrices.

Salient Parameter Selection: After identifying the salient subset, the computed salience can be
passed down using a novel extension of excitation backprop (EB) (Zhang et al., 2018). Normally, EB
is a method to attribute the activation of a model’s output neurons to its input. Our goal, however, is
different: we want to attribute the performance of the salient neurons in the output layer to individual
network parameters given a batch of data samples.

Assuming a simple neuron computes al+1
i = ϕ(

∑
j w

l
j,i a

l
j) where al+1

i is the activation value of
the ith neuron in the (l+ 1)th layer, wlj,i the weight connecting the jth neuron in the lth layer to the
ith neuron in the (l+1)th layer, and ϕ is a non-linear activation function, EB defines salience of the
activation of a neuron as its winning probability P (a). To compute the salience, it uses Marginal
Winning Probability (MWP) of a neuron given neurons in the upper layer:

P (aj) =
∑
ai∈Pj

P (aj |ai)P (ai) (4)

Pj denotes the neurons in the layer above (closer to output) of aj . Given certain assumptions (see
(Zhang et al., 2018), holds when ReLU activation function is being used), the MWP for a neuron alj
can be computed based on the salience of neurons al+1

i in the upper layer:

P (alj |al+1
i ) =

{
Zia

l
jw

l
j,i if wlj,i ≥ 0,

0 otherwise.
(5)

Where Zi is a normalization factor and is equal to 1∑
j,wl

j,i
≥0

aljw
l
j,i

. Using MWPs computed from

(5), the salience of each neuron can be computed in the top-down order based on (4).

To attribute the salience of output neurons to the model’s parameters, similar to (Kolouri et al.,
2019) we first employ EB to compute salience for activation maps in each layer. Next, similar to
Oja’s rule (Oja, 1982), the salience of each network weight can be computed using the salience of
its two ends:

γ(wli,j) =
√
P (ali)P (a

l+1
j )

where γ represents salience. The output of this salient parameter selection process is essentially a
salience value for each network parameter. These salience values will be used in the next step to
modulate gradients.

Gradient Modulation: Inspired by neuromodulation processes in the brain where the plasticity
of neurons can change based on the task at hand (Mei et al., 2022), we attempt to limit change in
network weights that are deemed to be salient. In the domain of neural networks, that translates
to modifying the gradients so that the more salient a network weight is, the smaller the gradient is
modified to be. To achieve this, we modify the gradients as follows:

dw = dw × (1−min(1, γ(w))) (6)

where dw denotes the gradient with respect to parameter w. This process aims to guide the net-
work during training by shifting its focus on learning the task at hand using parameters that did not
contribute to the performance of the salient subset.

3 RESULTS

Evaluating Random Subsets: Motivating our work, we test the hypothesis of whether using the
first batch of new task data during task boundaries is beneficial. Specifically, we want to see whether
subsets of network-generated embeddings have the same discrimination power regarding past versus
future tasks. At each task boundary, we extract 10 random neurons of the network-generated embed-
ding to form a subset. Using only the selected subset, we first train a linear classifier to discriminate
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Table 1: Comparing our proposed methods with published methods. All of our proposed methods
were run using the onlycurrent setting of salient subset selection. Accuracy of the proposed methods
was obtained by averaging across 5 independent trials. The highest accuracy marked in bold. ‘-
’ denotes settings where evaluation was impossible due to incompatibility or intractable training
processes. Previous results listed are based on (Cha et al., 2021). Data are presented as mean (SD).

Memory
Size

Dataset SplitCIFAR10 SplitTinyImageNet R-MNIST

Scenario Class-IL Task-IL Class-IL Task-IL Domain-IL

200

ER 44.79 (1.86) 91.19 (0.94) 8.49 (0.16) 38.17 (2.00) 93.53 (1.15)
GEM 25.54 (0.76) 90.44 (0.94) - - 89.86 (1.23)
A-GEM 20.04 (0.34) 83.88 (1.49) 8.07 (0.08) 22.77 (0.03) 89.03 (2.76)
iCaRL 49.02 (3.20) 88.99 (2.13) 7.53 (0.79) 28.19 (1.47) -
FDR 30.91 (2.74) 91.01 (0.68) 8.70 (0.19) 40.36 (0.68) 93.71 (1.51)
GSS 39.07 (5.59) 88.80 (2.89) - - 87.10 (7.23)
HAL 32.36 (2.70) 82.51 (3.20) - - 89.40 (2.50)
DER 61.93 (1.79) 91.40 (0.92) 11.87 (0.78) 40.22 (0.67) 96.43 (0.59)
DER++ 64.88 (1.17) 91.92 (0.60) 10.96 (1.17) 40.87 (1.16) 95.98 (1.06)
Co2L 65.57 (1.37) 93.43 (0.78) 13.88 (0.40) 42.37 (0.74) 97.90 (1.92)
SD (ours) 73.72 (0.52) 96.10 (0.09) 16.02 (0.39) 44.07 (0.66) 98.80 (0.26)
GM (ours) 71.30 (1.15) 95.84 (0.25) 12.46 (0.43) 38.33 (0.90) 97.29 (0.59)
SD + GM (ours) 70.64 (0.98) 95.28 (0.46) 12.93 (0.55) 38.47 (0.68) 96.68 (0.55)

500

ER 57.75 (0.27) 93.61 (0.27) 9.99 (0.29) 48.64 (0.46) 94.89 (0.95)
GEM 26.20 (1.26) 92.16 (0.64) - - 92.55 (0.85)
A-GEM 22.67 (0.57) 89.48 (1.45) 8.06 (0.04) 25.33 (0.49) 89.04 (7.01)
iCaRL 47.55 (3.95) 88.22 (2.62) 9.38 (1.53) 31.55 (3.27) -
FDR 28.71 (3.23) 93.29 (0.59) 10.54 (0.21) 49.88 (0.71) 95.48 (0.68)
GSS 49.73 (4.78) 91.02 (1.57) - - 89.38 (3.12)
HAL 41.79 (4.46) 84.54 (2.36) - - 92.35 (0.81)
DER 70.51 (1.67) 93.40 (0.39) 17.75 (1.14) 51.78 (0.88) 97.57 (1.47)
DER++ 72.70 (1.36) 93.88 (0.50) 19.38 (1.41) 51.91 (0.68) 97.54 (0.43)
Co2L 74.26 (0.77) 95.90 (0.26) 20.12 (0.42) 53.04 (0.69) 98.65 (0.31)
SD (ours) 76.49 (0.63) 96.39 (0.20) 21.49 (0.50) 52.69 (0.45) 98.43 (0.38)
GM (ours) 74.63 (0.95) 96.15 (0.14) 17.54 (0.44) 48.21 (0.54) 97.17 (0.50)
SD + GM (ours) 73.82 (0.42) 95.67 (0.14) 19.01 (0.31) 48.06 (0.71) 96.49 (1.15)

between classes in the entirety of past tasks’ data and then train another linear classifier using the
same subset of neurons to discriminate between classes in the entirety of unseen tasks’ data. We
repeat this process 100 times and record the accuracy of the selected subset on past and unseen task
data. We then compute the mean and variance of subset accuracy among these 100 subsets. We ob-
served a higher variance when evaluating on unseen tasks (see appendix A.1 for details) suggesting
that generalizability of subsets varies more than their captured knowledge of past tasks.

Proposed Method Results: To allow comparison with previous results (Cha et al., 2021), we con-
duct experiments in the task-incremental, class-incremental, and domain-incremental settings on
CIFAR-10 (Krizhevsky et al., 2009), TinyImageNet (Le & Yang, 2015), and R-MNIST datasets
(Lopez-Paz & Ranzato, 2017) (for experimental setup details see A.2). We compare our results with
rehearsal-based continual learning methods including Co2L (Cha et al., 2021), ER (Riemer et al.,
2018), iCaRL (Rebuffi et al., 2017), GEM (Lopez-Paz & Ranzato, 2017), A-GEM (Chaudhry et al.,
2018), FDR (Benjamin et al., 2018), GSS (Aljundi et al., 2019), HAL (Chaudhry et al., 2021), DER
(Buzzega et al., 2020), and DER++ (Buzzega et al., 2020). A low (200 samples) and a high memory
setting (500 samples) were considered. Results are average test-set classification accuracy on all
seen classes at the end of training.

We compare the results of our proposed methods to previous work in table 1. We will use SD to
refer to our selective distillation method, GM to refer to our gradient modulation method when the
IRD loss is applied the same as (Cha et al., 2021) and not selectively as in SD, and SD + GM to refer
to the use of both gradient modulation and selective distillation at the same time. SD improves upon
baselines and state-of-the-art for both task and class-incremental settings on the SplitCIFAR10 and
SplitTinyImageNet datasets. It is also superior to previous work in the domain-incremental setting
on the R-MNIST dataset when a small memory is being employed. GM and SD+GM also improved
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Table 2: Comparison of SD performance for different settings of the salient subset selection process.
The onlycurrent setting uses the first batch of the new task, onlypast uses samples in the memory,
and combined uses both for identification of the salient subset in embeddings. Adding the first batch
of new task data improves SD performance in virtually all scenarios and datasets. Five independent
experiments were conducted for each case to report the mean and variance. A memory buffer of 500
samples was used in all experiments.

Dataset SplitCIFAR10 SplitTinyImageNet

Setting Class-IL Task-IL Class-IL Task-IL

onlypast 75.33 (0.53) 96.28 (0.15) 21.42 (0.25) 52.64 (0.55)
combined 75.20 (0.88) 96.29 (0.17) 22.07 (0.37) 52.78 (0.35)
onlycurrent 76.49 (0.63) 96.39 (0.20) 21.49 (0.50) 52.69 (0.45)

state-of-the-art on the SplitCIFAR10 dataset but did not surpass SD. A discussion of GM is provided
in appendix A.3. These results show that SD can successfully mitigate forgetting while freeing up
the remaining parts of the model to learn new tasks. In the next section, we will analyze the choice
of selecting the salient subset only based on the new batch of data rather than memory samples or
combined. We will also go over the effect of embedding size for our method (SD) as it depends on
the redundant units in the output of the projection head (embeddings).

4 ABLATION STUDIES

Identifying the Salient Subset of Embeddings, onlycurrent, onlypast, or combined: Although
the proposed methods outperformed published methods, it was unclear which parts of our approach
contributed to the performance gain. In salient subset selection, three settings were used to generate
DSRS. The salient subset was then chosen based on the classification performance of subsets on
DSRS. Initially, we hypothesized that including the first batch of new task data would help the salient
subset selection identify parts of the embeddings that not only perform well on previous tasks but
also generalize well to unseen tasks. To examine this hypothesis, we conducted experiments (Results
in Table 2) on the SplitTinyImageNet and SplitCIFAR10 datasets in these three settings using the
selective distillation method.

For the SplitCIFAR10 dataset, the onlycurrent setting where DSRS = Bt outperformed the onlypast
and combined settings. The lower performance of the combined setting compared to the onlypast
setting can be explained by the low number of classes in the CIFAR10 dataset. Added memory sam-
ples in the DSRS dataset may be misleading as a significant portion of memory samples will belong
to the task the model was just trained on. The performance of various parts of embeddings on the
previous task may be less informative as it measures neither resilience to forgetting nor generaliz-
ability. Experimenting on the SplitTinyImageNet dataset, we observed that both the onlycurrent and
combined settings outperformed the onlypast setting. It is worth emphasizing that the onlycurrent
setting outperformed the onlypast setting on both datasets and continual learning scenarios, suggest-
ing that using a batch of new task data may be useful for identifying the salient subset. Also note that
all accuracies listed in Table 2 were higher than previous state-of-the-art results (Cha et al., 2021),
demonstrating that while changing the default continual learning protocol to use the first batch of
new task data may improve model performance to some extent, the main performance gains were
results of the selective distillation (SD) method itself.

The Effect of the Embedding Size: In our first experiments, we noticed that SD outperformed
Co2L (Cha et al., 2021) on all datasets except for SplitTinyImageNet. Our hypothesis was that SD
relied on redundancy in the embeddings and when the generated embeddings were dense, it was
reasonable to apply the IRD loss on entire embeddings rather than a subset. Moreover, since in
contrastive learning the projection head is discarded after training and is generally small (MLP, 512
hidden units, 128 output units in Co2L), increasing embedding size to induce redundancy comes with
virtually no computational cost, especially at inference time. To test our hypothesis, we compared
SD to Co2L (Cha et al., 2021) with different embedding sizes on the SplitCIFAR10 and SplitTinyIm-
ageNet datasets. For SplitCIFAR10, the embeddings seemed to be dense when the embedding size
was around 16 and started to involve some redundancy starting from 32 units in the output (figure
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Figure 3: Comparing SD (ours) and Co2L (Cha et al., 2021) using different embeddings sizes on the
SplitCIFAR10 and SplitImagenNet datasets. The memory size is the same (500) for both methods.
Shading depicts standard deviation. Increasing embedding size and redundancy benefits SD on both
datasets.

3 left). As we increased the embedding size starting with 32 units, we noticed that SD consistently
outperforms Co2L (Cha et al., 2021).

When testing our hypothesis on the SplitTinyImageNet dataset (which is generally more difficult to
solve with 200 classes), we noticed that embeddings appeared to be dense until an embedding size
of 256 and SD was unable to outperform Co2L (Cha et al., 2021). However, with an embedding
size of 512, redundancy began to materialize in embeddings and SD achieved higher task- and class-
incremental accuracy (figure 3 right). We did not increase the embedding size further as it would
have gotten larger than the hidden layer’s size and could have caused complications unrelated to
this ablation study. Overall, these results showed that as the embedding size grows larger, SD can
leverage the increased redundancy and improve continual learning performance in both task and
class-incremental settings.

5 CONCLUSION

Inspired by Event Models, we proposed to look differently at the continual learning setting and focus
on task boundaries. We hypothesized that the first batch of new task data could be used to identify
parts of the neural network that enable generalization to unseen tasks. Observing the redundancy-
inducing effects of the contrastive loss on embeddings, we first introduced a salient subset selection
process where a subset performing similarly to the entirety of embeddings was identified. Secondly,
we proposed a selective distillation method that regularized only the salient parts of the embeddings.
Thirdly, we introduced an attribution method that assigned salience to network parameters based
on their contribution to the computation of the salient subset. Fourthly, we proposed a gradient
modulation method that modified gradients according to the salience of parameters. Our methods
did not increase parameters linearly with the number of tasks or assume that additional memory was
available in the form of a second snapshot of the model or more samples in the memory. Moreover, in
alignment with our hypothesis, the selective distillation method was able to leverage redundancy in
embeddings and demonstrated superior performance when compared to previous work. Our analysis
suggested that research into the properties of projection heads in representation learning can induce
more redundancy within the network and open new doors to challenges in continual learning.

REFERENCES

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection
for online continual learning. Advances in neural information processing systems, 32, 2019.

Elahe Arani, Fahad Sarfraz, and Bahram Zonooz. Learning fast, learning slow: A general continual
learning method based on complementary learning system. arXiv preprint arXiv:2201.12604,
2022.

9



Under review as a conference paper at ICLR 2024

Shawn Beaulieu, Lapo Frati, Thomas Miconi, Joel Lehman, Kenneth O Stanley, Jeff Clune, and
Nick Cheney. Learning to continually learn. arXiv preprint arXiv:2002.09571, 2020.

Ari S Benjamin, David Rolnick, and Konrad Kording. Measuring and regularizing networks in
function space. arXiv preprint arXiv:1805.08289, 2018.

Prashant Bhat, Bahram Zonooz, and Elahe Arani. Task-aware information routing from common
representation space in lifelong learning. arXiv preprint arXiv:2302.11346, 2023.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark ex-
perience for general continual learning: a strong, simple baseline. Advances in neural information
processing systems, 33:15920–15930, 2020.

Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Contrastive continual learning. In Proceedings of
the IEEE/CVF International conference on computer vision, pp. 9516–9525, 2021.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. arXiv preprint arXiv:1812.00420, 2018.

Arslan Chaudhry, Albert Gordo, Puneet Dokania, Philip Torr, and David Lopez-Paz. Using hind-
sight to anchor past knowledge in continual learning. In Proceedings of the AAAI conference on
artificial intelligence, volume 35, pp. 6993–7001, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Anurag Daram, Angel Yanguas-Gil, and Dhireesha Kudithipudi. Exploring neuromodulation for
dynamic learning. Frontiers in Neuroscience, 14:928, 2020.

Diego Doimo, Aldo Glielmo, Sebastian Goldt, and Alessandro Laio. Redundant representations help
generalization in wide neural networks. Advances in Neural Information Processing Systems, 35:
19659–19672, 2022.

Gunshi Gupta, Karmesh Yadav, and Liam Paull. Look-ahead meta learning for continual learn-
ing. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in
Neural Information Processing Systems, volume 33, pp. 11588–11598. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/85b9a5ac91cd629bd3afe396ec07270a-Paper.pdf.

Kartik Gupta, Thalaiyasingam Ajanthan, Anton van den Hengel, and Stephen Gould. Under-
standing and improving the role of projection head in self-supervised learning. arXiv preprint
arXiv:2212.11491, 2022.

Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan Pascanu. Embracing change: Continual
learning in deep neural networks. Trends in cognitive sciences, 24(12):1028–1040, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Khurram Javed and Martha White. Meta-learning representations for continual learning. Advances
in neural information processing systems, 32, 2019.

Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional collapse in
contrastive self-supervised learning. arXiv preprint arXiv:2110.09348, 2021.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Advances in neural
information processing systems, 33:18661–18673, 2020.

Dongwan Kim and Bohyung Han. On the stability-plasticity dilemma of class-incremental learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
20196–20204, 2023.

10

https://proceedings.neurips.cc/paper_files/paper/2020/file/85b9a5ac91cd629bd3afe396ec07270a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/85b9a5ac91cd629bd3afe396ec07270a-Paper.pdf


Under review as a conference paper at ICLR 2024

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Soheil Kolouri, Nicholas Ketz, Xinyun Zou, Jeffrey Krichmar, and Praveen Pilly. Attention-based
structural-plasticity. arXiv preprint arXiv:1903.06070, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

Guoliang Lin, Hanlu Chu, and Hanjiang Lai. Towards better plasticity-stability trade-off in incre-
mental learning: A simple linear connector. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 89–98, June 2022.

Weiyang Liu, Zhen Liu, James M Rehg, and Le Song. Neural similarity learning. Advances in
Neural Information Processing Systems, 32, 2019.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pp. 7765–7773, 2018.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Jie Mei, Eilif Muller, and Srikanth Ramaswamy. Informing deep neural networks by multiscale
principles of neuromodulatory systems. Trends in Neurosciences, 45(3):237–250, 2022.

Jie Mei, Rouzbeh Meshkinnejad, and Yalda Mohsenzadeh. Effects of neuromodulation-inspired
mechanisms on the performance of deep neural networks in a spatial learning task. Iscience, 26
(2), 2023.

Thomas Miconi, Aditya Rawal, Jeff Clune, and Kenneth O Stanley. Backpropamine: training
self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint
arXiv:2002.10585, 2020.

Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of mathematical
biology, 15:267–273, 1982.

Gabriel A Radvansky and Jeffrey M Zacks. Event perception. Wiley Interdisciplinary Reviews:
Cognitive Science, 2(6):608–620, 2011.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald
Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing interfer-
ence. arXiv preprint arXiv:1810.11910, 2018.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

11



Under review as a conference paper at ICLR 2024

Fahad Sarfraz, Elahe Arani, and Bahram Zonooz. Error sensitivity modulation based expe-
rience replay: Mitigating abrupt representation drift in continual learning. arXiv preprint
arXiv:2302.11344, 2023.

Ari Seff, Alex Beatson, Daniel Suo, and Han Liu. Continual learning in generative adversarial nets.
arXiv preprint arXiv:1705.08395, 2017.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. Advances in neural information processing systems, 30, 2017.

David Stawarczyk, Matthew A Bezdek, and Jeffrey M Zacks. Event representations and predictive
processing: The role of the midline default network core. Topics in Cognitive Science, 13(1):
164–186, 2021.

Nicolas Vecoven, Damien Ernst, Antoine Wehenkel, and Guillaume Drion. Introducing neuromod-
ulation in deep neural networks to learn adaptive behaviours. PloS one, 15(1):e0227922, 2020.

Liyuan Wang, Mingtian Zhang, Zhongfan Jia, Qian Li, Chenglong Bao, Kaisheng Ma, Jun Zhu, and
Yi Zhong. Afec: Active forgetting of negative transfer in continual learning. Advances in Neural
Information Processing Systems, 34:22379–22391, 2021.

Jeffrey M Zacks, Nicole K Speer, Khena M Swallow, Todd S Braver, and Jeremy R Reynolds. Event
perception: a mind-brain perspective. Psychological bulletin, 133(2):273, 2007.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In International conference on machine learning, pp. 3987–3995. PMLR, 2017.

Jianming Zhang, Sarah Adel Bargal, Zhe Lin, Jonathan Brandt, Xiaohui Shen, and Stan Sclaroff.
Top-down neural attention by excitation backprop. International Journal of Computer Vision, 126
(10):1084–1102, 2018.

12



Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 VARIANCE IN SUBSET ACCURACY

For the purposes of this analysis only, we will deviate from the standard continual learning protocol.
Note that our main proposed methods follow the standard continual learning protocol. Training a
linear classifier on previous and upcoming task data using 100 random embedding subsets of size
10 we observed that the performance of different random subsets has a noticeable variation on both
past and future tasks, but the variance is generally higher on future tasks (table 3). Taking accuracy
on future tasks as an indicator for generalizability of a subset, this also shows that not all subsets
are equal in terms of how generalizable they are, and thus regularizing parts of the embeddings that
do not transfer well is limiting the network’s ability to learn new tasks. These results support our
decision to include the first batch of new task data to identify the salient subset.

Table 3: Mean (std) of subset accuracy on previous and upcoming tasks are evaluated at each task
boundary. The results are computed based on three independent trials on the SplitCIFAR10 dataset.
The standard deviation for these results is calculated based on trials.

Task 1 Task 2 Task 3 Task 4

Mean subset accuracy on past tasks 99.18 (0.06) 74.19 (0.34) 63.09 (4.35) 54.08 (0.97)
Mean subset accuracy on future tasks 30.50 (0.53) 38.65 (0.62) 60.56 (0.40) 76.81 (0.69)
Std of subset accuracy on past tasks 0.23 (0.01) 3.75 (0.10) 2.70 (0.40) 2.92 (0.09)
Std of subset accuracy on future tasks 2.10 (0.03) 2.54 (0.08) 3.82 (0.42) 4.99 (0.45)

A.2 EXPERIMENTAL DETAILS

We conduct experiments in three common continual learning scenarios: Task-Incremental (Task-
IL), Class-Incremental (Class-IL), and Domain-Incremental (Domain-IL). For class and task-
incremental settings, CIFAR-10 (Krizhevsky et al., 2009) and TinyImageNet (Le & Yang, 2015)
datasets were used, while for the domain-incremental setting, we used Rotational MNIST (R-
MNIST) (Lopez-Paz & Ranzato, 2017). CIFAR-10 and TinyImageNet will be divided across classes
into 5 and 10 sub-datasets to create SplitCIFAR10 and SplitTinyImageNet respectively. Each task
will then be to solve an image classification task on 2 classes for SplitCIFAR10 and 20 classes for
SplitTinyImageNet. The order of classes is the same across experiments. The R-MNIST dataset will
consist of 20 tasks, where for each task the MNIST (LeCun et al., 1998) dataset is rotated using a
random degree in the range of [0, π) (uniformly sampled). Similar to (Cha et al., 2021), when train-
ing on R-MNIST, the same digits rotated by a random degree will be treated as different classes in
the Async SupCon loss. The implementation for this work is based on the implementation of (Cha
et al., 2021). Unless otherwise stated, all choices of optimizer, architecture, and hyperparameters
were kept the same.

For training on SplitCIFAR10 and SplitTinyImageNet, we use the ResNet-18 (He et al., 2016) ar-
chitecture while for R-MNIST, the same smaller architecture as in (Cha et al., 2021) is employed for
comparison. A two-layer linear network is used for the projection head. Importantly, we increase the
embedding size (output of projection head) for the SplitTinyImageNet dataset. We have explained
this design choice in the ablation study 4. Evaluation is according to contrastive learning framework
(Cha et al., 2021; Khosla et al., 2020) which trains a classifier on top of the encoder using last task
samples and samples in the memory (as if the classifier was trained immediately after learning a
task, according to samples available at the time).

A.3 DISCUSSION ON GRADIENT MODULATION

Neuromodulation-inspired mechanisms have enabled continual adaptation in a wide range of tasks,
including navigation (Vecoven et al., 2020; Mei et al., 2023), language modeling Miconi et al.
(2020), and image classification (Daram et al., 2020). Similarly, our approach used saliency in-
formation to modify the gradients for parameters that are identified as salient. While our Gradient
modulation surpassed state-of-the-art performance on the SplitCIFAR10 dataset with or without
selective distillation, it did not perform better than SD. Although it may seem that GM is not a
promising technique for continual learning, it is worth noting that our extension of the Excitation
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Figure 4: Using the mask vector ŝ to pass down salience to each network weight using our extended
version of Excitation Backprop (Zhang et al., 2018). The computed parameter importance is then
used to modulate gradients.

Backprop (Zhang et al., 2018) provides useful saliency and attribution information. It can compute
for each network parameter a salience value describing its contribution in forming a specific sub-
set in the embeddings. We used the parameter salience information produced by this framework to
modulate gradients to encourage learning new tasks using parts of the network that did not seem
to contribute to salient features in the embeddings. However, the parameter salience information
can be used in many different ways, e.g., identifying parameters to regularize and preserve, finding
sub-networks that are capable of performing similarly to the whole network, or finding the least
salient parameters. To our knowledge, this method is the only variant of Excitation Backprop Zhang
et al., 2018 that can be used in networks where the loss function is defined on representations or
embeddings (representation learning). It is also worth noting that this method can assign salience
based on the performance of the generated embeddings and representations, not just the activations
of certain neurons. Overall, we believe GM is a multi-purpose tool with use cases that go beyond
continual learning.

A.4 DISCUSSION ON MEMORY AND COMPUTE USAGE

Following the general continual learning desiderata (Hadsell et al., 2020) we focused on using a
fixed-capacity model. As a result, we did not include model-growing approaches such as Progressive
Neural Networks (Rusu et al., 2016) and TAMiL (Bhat et al., 2023) in our reported results. We also
did not consider multiple memory approaches where the memory usage goes further than a copy of
the main model and a memory of samples. These approaches include a recent promising work called
CLS-ER (Arani et al., 2022) where two exponentially averaged copies of the model are maintained.
Although our approach outperforms CLS-ER on the SplitCIFAR10 dataset, we believe methods with
two memory systems should be compared with each other, and single memory systems should be
compared with one another for a fair comparison. A copy of the ResNet-18 architecture is typically
40 MB in size, while each image in the TinyImageDataset is about 3 KB. The low memory setting
assumes access to memory is so limited that only 200 samples (one per class) can be stored. The
addition of a copy of a ResNet-18 model is similar to adding more than 10,000 samples to this
memory and thus gives a significant advantage compared to a method that employs one copy only.

Furthermore, empirical results in recent work (Arani et al., 2022; Bhat et al., 2023; Sarfraz et al.,
2023) suggest that using an exponentially averaged model over the trajectory of learning is more
robust in mitigating forgetting compared to using a static snapshot of the model from a single point in
time. However, to emphasize the robustness of our methods, we decided to test them in a standalone
manner and did not use this technique. We leave it to future work to combine our methods with
CLS-ER (Arani et al., 2022) or ESMER (Sarfraz et al., 2023) and study the effects.

A.5 COMPUTATIONAL COMPLEXITY OF THE GRADIENT MODULATION METHOD

The proposed GM is implemented based on Excitation Backprop (Zhang et al., 2018), computing
importance for weights in addition to activations. To compute the importance of activations, first,
a forward pass takes the inputs to the network and computes layer activations. EB (Zhang et al.,
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2018) then performs a backward pass, computing the importance of activations from top to bottom.
In each layer, EB computes raw importance values for the lower layer and then performs a mini-
forward pass to normalize these importance values. We perform an additional mini-forward and a
mini-backward pass to attribute the importance of activations to layer weights. This is independent
of the layer type and works based on Pytorch’s autograd functionality. As a result, GM performs
two forward and backward passes to compute the salience of the network parameters. Note that this
computation is performed only once during task boundaries and does not occur during training on a
task.
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