
To Err is Humanoid; to Collaborate, Divine:
A Transitional Reality Interface for Error Replay

and Correction in Industrial Robotics
Lorian Marshall

School of Engineering
University of Western Australia

Perth, WA, Australia
Lorian.Marshall@uwa.edu.au

Jordan Allspaw
Miner School of CIS

UMass Lowell
Lowell, MA, USA

Jordan Allspaw@uml.edu

Holly A. Yanco
Miner School of CIS

UMass Lowell
Lowell, MA, USA

Holly Yanco@uml.edu

Abstract—Real-time fault detection and error diagnosis are
crucial to enhance trust and reduce process delays in the emerg-
ing landscape of single-human multiple-robot systems (SHMRS)
within the manufacturing industry. In this paper, we propose a
hybrid reality interface that utilizes real-time VR-AR transitions
alongside an action sequence storage system for robot error
replay. An interactive digital twin of the robotic platform,
complemented by visualizations of recorded sensor data, enables
operators to troubleshoot faults and adjust behaviors in an
immersive environment. We also outline a future user study
designed to compare this user-centric interface with traditional
control methods. This work offers significant potential for ad-
vancing human-robot collaboration by facilitating a comprehen-
sive, retrospective analysis of robot behavior.

Index Terms—Failure Detection and Recovery, Virtual Reality
and Interfaces, Industrial Robots, Human-Robot Interaction

I. INTRODUCTION

Amidst the rapidly evolving industrial robotics landscape,
robots are being deployed across a variety of applications,
from assistive devices to delivery systems. This increasingly
only involves human oversight for error correction and pro-
cess optimization. For operators managing numerous robots,
interacting with the machines can be challenging, especially
when immediate attention is needed. Immersive technologies
such as virtual reality (VR) and augmented reality (AR) are
emerging as transformative tools for human-robot collabora-
tion. As the manufacturing industry continues to shift from
a reliance on skilled operators for basic maintenance tasks
to single-human multiple-robot systems (SHMRS), there is
an increasing demand for methods that optimize live error
detection and troubleshooting.

In our previous work, we developed a VR interface that
enabled robot operators to remotely control robots, performing
tasks like navigation and dexterous manipulation [1], [2]. In
this paper, we expand upon that work by introducing two key
advancements: the ability to seamlessly switch between VR
and AR within the same interface and the capability to record

Lorian Marshall conducted this work while a visitor at UMass Lowell. This
work was supported in part by the Office of Naval Research (N00014-23-1-
2124 and N00014-23-1-2744).

and replay robot actions, allowing operators to review past
behaviors.

By integrating VR and AR into a unified, flexible frame-
work, we offer a significant improvement over traditional
diagnostic tools. This approach takes advantage of the human
aptitude for 3D pattern recognition to detect errors in robot
behavior, resulting in a streamlined troubleshooting process.
Furthermore, the system creates a spatially accurate digital
twin of the robotic platform, enabling operators to reconstruct
past events and correlate them with real-time sensor data for
a more comprehensive understanding of system performance.

Beyond diagnostics, this interface serves as a valuable
training tool, enabling iterative simulation and validation of
corrective measures prior to deployment in live environments.
Corrective measures applied by the human can be used by ma-
chine learning to improve the overall system. These corrective
models can also be applied across multiple robot platforms
or the same type, offering potential to reduce production
bottlenecks and enhance the overall reliability and safety of
industrial robots.

II. RELATED WORK

To position our work within the existing body of research,
we first examine key developments in robot control interfaces.
This section gives an overview of existing publications in
augmented and virtual reality in robotics, transitional reality
interfaces, and robot behavior replay. For a detailed perspective
on the basis of this research, reading Han [3] and LeMasurier
et al. [2] is recommended.

A. Augmented Reality

Augmented reality interfaces are frequently employed in
human-robot interaction (HRI) for path planning and infor-
mation overlay. Increased efforts have been made to reduce
the information gap in behavior prediction between the user
and the robot by depicting robot characteristics and live sensor
data. The gulf of evaluation model describes the inability
of robots to provide indication of intent such that human
users can interpret their current state [4]. Avalle et al. [5]



developed a hardware fault management interface that overlays
a highlighted digital twin of the impacted part to indicate
where a fault has occurred with a virtual arrow directing
the user’s gaze. This adaptive model reduces the time for
maintenance workers to identify and respond to common
faults.

The commercialization of AR has resulted in lower man-
ufacturing costs and improved ergonomics for extended use,
making head-mounted devices (HMDs) viable for more ap-
plications. In tandem, the focus of recent projects has shifted
from the historical handheld devices (HHDs) to HMDs [6].
HMDs provide flexibility for operators with their immersive
views of the surrounding environment and increased awareness
of nearby obstacles. In addition, they streamline the control
process, negating the use of an in-hand device and mirroring
natural object interactions. However, Makhataeva [7] noted
that due to volume and power constraints, HMDs can be
limited by latency compared to their hand-held counterparts.
The user study in [8] was able to demonstrate improved task
completion times and increased spatial presence with the use
of an AR control interface for teleoperation.

B. Virtual Reality

Research on VR has become a core focus of HRI for
teleoperation applications. It enables remote user performance
monitoring in hazardous environments [9], or of an entire net-
work of robots in a manufacturing context [10]. Immersive VR
displays have proven to be more intuitive in comparison with
traditional 2D display controllers (i.e keyboard and mouse) [2].
A framework designed by Wozniak et al. [11], utilizes VR with
live camera feeds for users to correct robot perception errors.
VR has proven beneficial as a learning tool, by allowing the
user to test responses to hypothetical scenarios by altering
robot trajectories and the virtual environment without the
requirement of real-world implementation [1]. This user study
concluded that, despite an initial intuitive uptake exists for VR,
it takes some time to overcome ingrained habits of standard
systems, with participants reflecting negligible performance
improvements initially relative to those who used keyboard
and mouse. This observable learning curve was common to
the results of the study in [12], but both hypothesized that
extended training periods would return a greater difference.

C. Transitional Reality Interfaces

Seamless transitions along the reality-virtuality continuum
is a concept that has been around since the MagicBook study
by Billinghurst [13], which integrated 3D spatial displays
with the pages of a book. Interfaces that make use of reality
transitions combine the immersive view and remote operation
capabilities with the real-world reference points captured in
AR. Numerous studies have identified that the major drawback
of multi-modal interfaces lies in inefficient context switching
between devices [14] [7]. For example, a user transitioning
from VR to reality must remove the headset and controllers
before using the keyboard and mouse. As a consequence, ad-
ditional cognitive load is introduced that reduces an operator’s

ability to perform real-time responses, and breaks concen-
tration. Wentzel et al. [14] implemented a series of ”peek-
through” methods that simplify device transitions through pop-
up windows to minimize hardware exchange and ocular re-
immersing. The study was restricted to VR-desktop transitions,
however it showed promise in extending the use case of an
immersive VR environment with limited AR functionality. AR
can enable the operator to review robot sensor alignment with
the real-world environment, but can be restrictive when moni-
toring a network of robots. A new approach is therefore needed
to create a holistic AR-VR interface for HRI applications in
manufacturing. While some papers have investigated AR as a
medium for error detection, there exists a knowledge gap in
hybrid reality interfaces that incorporate transitions between
VR and AR.

D. Behavior Replay

An underexplored area of VAM-HRI is behavior replay. In a
factory setting, human-robot collaboration can be challenging
without effective communication of robot actions. For remote
teleoperators, diagnosing an error and determining the appro-
priate solution can be difficult without observing it in real-
time. The robot’s environment may have changed since the
fault occurred, making the recreation of the action sequence
prone to inaccuracies. This work builds on the findings of
Han [3] and Gad [15] in implementing a replay function for
the operator to understand the source of the fault and correct
it accordingly. It targets the two dominant manipulation and
navigation errors that occurred in the user study in [3], and
is also implemented in the Fetch Robotics robot. While the
AR interface authored by Gad [15] was not designed for fault
replay, it is relevant as it discretizes an action sequence into
isolated tasks that can be accessed via a button interface.
Another key review in this field is by Richards et al. [12],
presents initial positive results from a user study comparing
an AR behavior replay interface with a handheld tablet control
scheme. This was significant as it was the first demonstration
of an interface of this medium.

III. METHODS

In our previous work, we proposed a human-in-the-loop
VR interface for robot teleoperation [1], with a user study
conducted to compare the VR interface against a traditional
screen-based 2D medium (keyboard and mouse) to perform a
series of tasks [2]. Although this prior interface supports both
robot manipulation and navigation control, the improvements
discussed here focus on manipulation.

A. Design Requirements

This proposed interface is significant for showcasing the
usability of behavior replay as a training mechanism for
industrial robotics. It presents a novel interpretation of the
Google hand-eye coordination experiment, conducted with
seven robotic manipulators, to form the foundation for a large-
scale data collection framework [16]. Following a similar
approach, heat map visualizations projected into augmented



reality (AR) can display multiple action sequences that have
been replayed. This helps inform the operator about the
internal biases and tendencies of control algorithms, such as
a preference for right-handed grasping motions.

The interface also shows promise in being able to establish
teaching scenarios on a wider scale of other robots within
the SHMRS, without the need for a fleet of physical robots
such as that used in the Google study. By enabling detailed
error analysis, increased understanding of the root causes
of aggregate errors can be derived to assist development of
mitigation strategies. Projecting this information into an AR
environment through an HMD adds an interactive element,
which can enhance trust in human-robot collaboration and
provide insights into past behaviors and decisions.

In support of the capability of this proposed interface, three
critical design requirements have been identified to justify the
use case in manufacturing robotics:

1) Demonstrate real-time transitions between AR and VR.
2) Replay functionality of the past robot behavior in the

action sequence where a fault occurred.
3) Visualization of the past sensor data as live outputs in

AR (i.e. point cloud, camera feed, functional waypoints).

B. Interface Architecture

The existing VR interface was migrated to Unity 6000; the
most current version of Unity at the time of writing. The recent
increase in support for VR features in Unity meant that a
dominant portion of the previous functionality was ported from
the custom code developed for the VRTK toolkit [17], to the
open source OpenXR interactions toolkit for Unity Robotics.

Unity’s integration of ROS communication framework in
their ROS TCP Connector [18], drove us to transition from
a dependence on ROS.net [19], a communication framework
we developed in-house. We previously published a compar-
ative analysis of these two frameworks [2]. Although both
frameworks have their respective advantages and use-cases, the
ROS TCP Connector supports ROS2, while ROS.net does not.
At this time, this transitional reality interface utilizes ROS1,
however compatibility with ROS2 will simplify adapting the
interface for newer robots and maintaining viability for Unity.

The prototyping was performed on a Meta Quest Pro
(2022) headset, with two 6DoF controllers. This headset was
preferred to avoid the requirement of an external base station
for processing, as programs could be built as Android apps
on the device, promoting a larger workspace and increased
maneuverability for the user in contrast with the HTC Vive
headset in [1].

The broader OpenXR created by the Khronos group was
selected over the Meta-device specific Meta OpenXR imple-
mentation, to increase the usability of the interface across
a range of industry-standard VR/AR HMDs and to negate
changes in the interface due to hardware. As such, features
such as gaze sensing were restricted.

The interface architecture is comprised of two critical com-
ponents: the Unity-based interface that is run on the HMD, and
the industrial robot. Both run on the same local area network

Fig. 1: A high-level diagram explaining the interface architec-
ture. The Android app is run on the HMD, and communicates
with the ROS server node on the robot through the ROS TCP
Connector package. The rosbag recorder is activated when a
plan is executed in the wristwatch menu goal planner and
stores messages of the relevant topics. Upon entering the
replay mode panel, the recording is selected, initiating the
rosbag replayer. Functional gripper waypoints are spawned
in as static interactable items. Replay items highlighted in
yellow are topics that are monitored throughout runtime.
The passthrough video feed is accessed through space setup
permission on the HMD to provide the AR render.

(LAN) with socket connections to facilitate communications.
This framework is illustrated in Figure 1.

Alongside the general improvements which include reliance
on more open-source frameworks, we have created two major
additions to the interface. The first is the ability to record and
replay action sequences performed by the robot, allowing the
operator to review past behaviors. The second is the ability
to perform real-time reality transitions between AR and VR,
such that the user can control the level of immersion of their
environment. These additions used in combination can take
advantage of additional context peeking in AR via seamless
switching, to plan and execute a task in one reality, then
change to the other reality to replay the action and review
errors.

C. Behavior Replay

The behavior replay mode considers manipulation tasks as
sequences consisting of discrete actions with specific entry and
exit criteria. To store these sequences, the popular rosbag tool
[20] has been harnessed. Upon the robot beginning execution
of a task, a ROS service call is made to snapshot the current
poses of all functional gripper waypoints sent to the MoveIt
planner, and a recording is initialized that publishes the live
sensor data to the relevant ROS topic. This continues to record
until the plan is executed and another service call is made to
stop recording the sensor data. The functional waypoint poses
are static elements and are sampled only once. Table I below
summarizes the ROS topics that are responsible for collecting
live sensor data about the robot’s position, and perception
of its environment. The rosbag recorder and replayer scripts
were written in C++, in contrast with Python, as it is better
suited to handle byte manipulation of the numerous point cloud



(a) in AR (b) in VR

Fig. 2: Replay Digital Twin Visualizations, (a) in AR and (b)
in VR. Both illustrate the red-tinted digital twin that is created
upon loading a recorded rosbag. Blue gripper models represent
the functional waypoints of the replayed task. These can be
reviewed to ascertain when the error occurred. In VR (b), the
recorded point cloud sensor data output can also be seen.

messages without timing out. The code for these scripts is
available for reference at the link below1.

This data is stored in a new rosbag that can be called. When
the replay of a sequence commences, the original functional
waypoints are reloaded so that the operator can visualize
the intended goals of the robot. These recorded waypoints
serve the same role as the normal ones created in the goal
planner, and can be similarly interacted with. As a result of
this, all preexisting waypoints from the planner are deleted
to minimize confusion. A digital twin of the robot is also
displayed that performs the actual trajectory that the robot
performed. This can be differentiated from the typical twin
created in the goal planner, as it has a red tint. To prevent a
misrepresentation of the executed trajectory, the JointstateMsg
type is used. Unlike the JointtrajectoryMsg type that is utilized
by the digital twin in the manipulation goal planning mode,
this message type only characterizes the position of each
individual joint at the instant sampling occurs. Rather than
interpolating a motion path from the series of future joint states
as in the JointtrajectoryMsg, the digital twin jumps between
set poses. However, as the sampling frequency is relatively
high at 60fps, the human eye perceives it as smooth motion
rather than individual images. The position calibrated digital
twin and example functional waypoints in both reality render
modes are shown in Figure 2.

The operator is able to review the saved sensor outputs and
adjust a failed plan. The waypoints can be altered, reposi-
tioned, or added/deleted to create a new plan. Throughout this,
the user can switch between the replay and manipulation goal
planning mode before they plan and execute the new task.
The naming convention for re-playable ROS topics inserts the
’/replay/’ tag at the beginning of the name to separate it from
its predecessor.

Output sensor visualizations of the recorded point cloud
and camera can be layered with the live data or toggled for

1https://github.com/uml-robotics/vr bag replay.git

Fig. 3: Example Use of Live (green border) and Recorded
Camera (red border) Feeds. The failed status of the observed
pick-and-place task can be explained by the misalignment of
the closed gripper position with the block seen in the pop-up
’Replay’ display.

comparison during the review and error inspection phase of
the workflow. Since the live and recorded image quads can
be observed simultaneously, a red border has been added to
the replay. These visualizations offer a more comprehensive
spatial awareness, giving the operator insight into how the
robot interpreted what it saw and its environment. This can
assist in diagnosing issues with its behavior that may not be
obvious on the macroscopic scale provided by the digital twin
(see Figure 3).

D. Reality Transitions

Reality transitions between VR and AR are achieved
through the native pass-through video capability on some
HMDs. On the Meta Quest Pro, this is a 106° horizontal
field-of-view that utilizes the suite of sensors on front facing
cameras on the device to provide a live camera feed to the
user. This permits the operator increased awareness of their
surrounding environment and live comparisons between the
digital twin and real-world robot, and negates the removal of
the HMD to do so (refer to Figure 2a). The reality transition
feature of the interface is reliant on the boundary being set
prior to start-up. Android system permission for OpenXR at
runtime is obtained through a MonoBehavior script in Unity
to access data associated with the device’s space setup [21].
This includes the work boundary set by the user in the front-
end HMD mode that sets the height of the ground plane, and
geometry of the workspace.

When the user toggles between AR and VR, controller
locomotion inputs are disabled. This is done to prevent the user
from attempting to manipulate the real-world in AR as if it was



TABLE I: Recorded Robot ROS Topics

Topic Name Purpose Message Type

/base scan Laser range finder data LaserscanMsg
/joint states Poses of all robot joints JointstateMsg
/head camera/depth registered/points/filtered/throttled Point cloud data PointCloud2Msg
/head camera/rgb/image raw/compressed RGB-d camera data CompressedImageMsg

TABLE II: Replay Interface ROS Topics

Topic Name Purpose Message Type

/replay duration Duration of rosbag TimeMsg
/replay time Current time in rosbag TimeMsg
/list of replays List of rosbags StringMsg
/set current time Sets current time in rosbag Int32Msg
/set current replay Sets rosbag recording StringMsg
/set replay mode Playback settings StringMsg
/set replay speed Sets speed Float32Msg
/replay/gripper goal/current List of waypoints PoseArrayMsg
/replay/functional gripper goal Pose of active waypoint JointStateMsg

the VR environment, to coincide with the primary use-case of
aligning the virtual world with that of the robot’s surroundings.
As this was a technology demonstration, the position of the
character controller relative to the VR environment is carried
across into AR. Hence, performing quick, successive reality
transitions could introduce some cognitive dissonance if the
user moves a great distance away from the robot in VR, only
to teleport next to it as they activate AR.

E. User Interactions

The user study in [2] concluded that a steeper learning
curve exists for the VR interface relative to that of his-
torical 2D control methods. As such, it was a priority to
use intuitive control methods and common GUI icons where
possible, to minimize added complexity. During run-time, all
user interactions are accessed through a hierarchical system
of wristwatch menu panels. Upon entering the program, the
user is prompted to choose their dominant hand. This ensures
that the wristwatch menu is attached to their non-dominant
controller to avoid accidental activation when interacting with
objects in the scene. Diegetic interfaces have been estab-
lished in video games such as the spinal tank health bar in
Dead Space as a method to reduce context switching and
create a more immersive environment [22]. For this paper,
a diegetic wrist-mounted menu UI was designed, that could
be activated by the operator looking at their wrist as if
they were viewing a watch. It was theorized that this format
would be more instinctual, as watches are already associated
as objects for information references in daily life. It also
was thought to reduce unnecessary complexity from multiple
source notifications along the peripherals of the display. The
current benefits of such an interface could be extended by
introducing an avatar into the virtual environment, with passive
information displays like small error flag icons notifying the
user that a fault has occurred without having to open the full
menu. Alternatively, this passive information display could
direct the user to where the robot is currently located with

Fig. 4: Replay Mode UI Panel. The playback speed of the
replay is changed by setting the delay between ROS messages.
The current time in the recording can be set by dragging the
scrollbar to the desired instant. The point cloud and RGB-d
camera feeds are available as outputs for detailed analysis.

an arrow, for scenarios where a network of robots may be
in operation, such as a manufacturing line. To mitigate the
effects of visually induced motion-sickness (VIMS) that is
prevalent in extended wear use-cases of HMDs, spatial blur in
stereoscopic 3D stimuli has been used [23] to help mimic the
natural way human eyes perceive depth. A similar application
of this has been implemented in this interface by reducing
the requirement for peripheral vision focus, and hence, visual
fatigue, by restricting the wristwatch panels to being head-
pointing activated. Haptic feedback alerts the operator when
the controllers are hovering over an interactable object with a
’bump’ sensation.

A stored rosbag is reloaded in the interface by using the
wristwatch menu to switch to the replay tab, and selecting a
replay from the dropdown list. Once selected, the initial data
is replayed, and the user can use the play, pause, stop, and
speed settings to control the playback, as seen in Figure 4.

The playback is varied by changing the delay between
publishing ROS messages. A central scrollbar tool that should
be a familiar format to users with video playback is adopted
for control of skipping to specific time stamps in the recording.
This scrollbar is scaled to the duration of the recording. When
dragged, it enacts an automatic pause function to prevent the
replay from continuing and republishes the current time to up-
date the current replay time respectively. Table II summarizes
the ROS topics that control the replay mode functions for the
interface.



IV. IMPLEMENTATION

The Github repository with code for this interface can be
referenced as seen below2. A demonstration video showcasing
the functionality of the transitional reality interface can be
found below3.

A. Robot Platform

A Fetch Mobile Manipulation Robot platform was chosen
for implementation of the interface, as it was viable with
ROS1, and made task planning comparable to past work
[3] [1] [2]. Fetch is representative of the most common
archetype of manufacturing robotics: articulated robots [24],
and with basic traversal capabilities, can emulate most factory
scenarios involving a collaborative human-robot space. Fetch
has a single 7DoF arm that includes a gripper end effector.
Fetch has a ground-level LiDAR for obstacle detection during
navigation, and a head-mounted RGB-D camera for vision.
For the purposes of this investigation, the MoveIt standard
package [25] was employed for manipulation scenarios and
ROS Navigation Stack for SLAM and autonomous navigation
[26]. During the prototyping phase, a Gazebo-based simulated
Fetch was used for testing. It should be noted that due to the
nature of the physics engine in Gazebo, a minute amount of
positional drifting of the Fetch model occurred over long run
times, or when idle. This was not considered an issue when
run on the real Fetch with the real-time calibration of visual
fiducials to the AR model.

B. Task Design

To demonstrate basic functionality of the transitional real-
ity interface, a simple pick-and-place manipulation task was
performed. The user first created a manipulation sequence for
Fetch in VR that incorporated reaching for a Jenga block on
the workbench, closing the gripper, picking up the block, and
releasing (refer to Figure 5). The user then executed this plan
to see that the robot failed to carry out a successful grasp
of the block. Following this, the user would enter behavior
replay mode in AR to observe the failed task, and edit the
gripper degree of openness, before uploading the new plan and
executing. Han [3] observed that a common failure in Fetch
manipulation tasks occurred from the use of rough plywood
tables as a workspace surface, which led Fetch to recognize
rough features as interactable items. For the purposes of
a tool investigation, errors were considered simple single-
source failures. This meant that review and diagnosis could
be treated as manipulation-specific. A future application of
this task could include visualization of sensor outputs from
multiple action sequences to view a 3D cost-map of aggregate
errors. This summary of robot failures could inform future
manipulation plans and feature-recognition protocols for other
robots.

2The code for this project is in a pre release version. It is accessible at
https://github.com/uml-robotics/VRRInterface.git

3YouTube playlist: https://tinyurl.com/32f2suxb

Fig. 5: Live Robot Planning Example Task in AR. The green-
tinted digital twin for the manipulation planner is observed
following the trajectory of a grab task defined by two gripper
waypoints. The point cloud overlay is used to confirm that the
robot’s perception of its environment is calibrated with reality.

C. AR Environment Alignment

Manual adjustments were implemented to combat the ob-
servable parallax between the digital twin of Fetch and the
real world model in AR. A known limitation of the Meta
suite of HMDs is the camera permission restrictions that block
third-party developers access to the front-facing cameras.
Hence, without live image data, typical calibration methods
like fiducial marker processing libraries are ineffective tools
for the Meta HMDs. Some methods of bypassing restrictions
through screen recording may exist as suggested in [27] and
require further investigation.

Fine tuning of the alignment was conducted to ensure that
the digital twin pose was calibrated with that of Fetch, and the
position saved. Whenever the AR render mode was entered,
the camera central position in the scene was reset to the saved
pose, such that the operator ‘snaps’ to the aligned position.
This enabled the user to still utilize locomotion within VR
for inspection of the robot from multiple perspectives when
correcting faults that may be otherwise unobtainable due to
spatially constrained environments such as warehouse aisles.

If deemed useful then future work targeting the expansion
of alignment accuracy and exploration of alternative methods
to AprilTags would be beneficial.

D. Performance Considerations

Some performance considerations were made to increase
the feasibility of the transitional reality interface. In contrast
with our previous work on the HTC Vive, with an umbilical
cord connection to a PC with a dedicated GPU, the Meta



(a) in AR (b) in VR

Fig. 6: Point Cloud Sensor Outputs. In (a), the operator is
limited to viewing the robot from cleared areas but has more
contextual awareness of the placement of the workspace in the
real world. Increased flexibility in terms of remote teleopera-
tion and monitoring is possible through the VR rendering (b).

Quest Pro is constrained by its graphical processing power.
The compressed image camera feeds were given a threshold
frame rate of 10, such that they could still give useful visual
context without introducing a performance bottleneck. Similar
to this, the point cloud data was down-sampled using a voxel
filter to a leaf size of 0.05, and the publishing rate down to
0.5 fps. From a distance this decrease in points should be
negligible to users, however it reduced the transfer rate from
110Mb/s to a more reasonable 256kb/s. A comparison of the
point cloud overlay can be seen in Figure 6. Significant lag
was observed when both the live and recorded point clouds
were loaded in simultaneously. To prevent this problem, the
UI switch was altered so that only one could be viewed at a
time.

V. FUTURE WORK

In future iterations of this work, reviewing the robot be-
havior prior to the action sequence where the error occurred
will be beneficial, as suggested in [12], dependent on the
type of error that caused the failure. Addition of functionality
supporting an extended rosbag recording could prove useful
for minute errors which compound over time. A collapsible
mini-map is an additional feature that would assist the adaption
of this interface for a scenario with a human supervisor of
a network of robots. This could pinpoint the location of the
specific known workspace robot which encountered an error
and direct the user to that location. If, for example, the robot’s
path was blocked by fallen boxes in a warehouse, seeing
that the robot had been stopped in a narrow aisle could help
diagnose the fault without needing to move to the physical
location.

At the time of writing, the rosbag recorder script tracks all
plans that are executed without sorting. A future improvement
is to add the rosbag dropdown selector visuals to direct
attention towards sequences where an error has occurred. In
combination with this, noting the time stamp in relation to
the system time as part of the identification number would

help to understand the frequency and context of occurrence
for common errors within the robot’s operational period. More
extensive work on this interface should consider transitioning
to the use of ROS actions for most function monitors, sav-
ing processing power, with tasks updated as needed to the
requesting node rather than as a continuous stream used in
ROS topics.

A migration away from manual alignment of the virtual
environment to a robust fiducial marker system that makes use
of the apriltag ros package would also be an improvement. A
viable candidate for this technique would be an April Tag
placed on the workspace floor, optimizing for applications
that may incorporate partial occlusion and varied lighting
such as that found in a warehouse. The received transform
frame of the AprilTag could be applied to the simulated
environment coordinate system via the AR floor plane object
that is created upon completion of the work boundary setup.
An alternative pathway could implement wearable calibration
tags on the operator, for Fetch’s onboard image sensors to
recognize. Alignment of the world render should be a priority
to increase the versatility of the interface in tasks that introduce
navigation.

A. Proposed User Study

While our current work demonstrates the feasibility of a
transitional reality interface for error replay, an important next
step is to assess how real users interact with the system.
This future study could explore how different user interfaces
affect task completion time and accuracy of fault diagnosis.
Importantly, this will involve investigating whether a VR
specific, AR specific or joint VR-AR interface streamlines
the error recognition process for a simulated manufacturing
human-robot collaborative environment in comparison with
a traditional keyboard and mouse interface. We will collect
quantitative data on the accuracy of error diagnosis and
correction from a discrete set of error types, the time taken for
users to recognize the error, along with qualitative data from
questionnaires to determine the level of operator satisfaction
and perceived ease of use for each format. Given the findings
from previous studies [12] [3] [2] that a steeping learning
curve exists for immersive reality interfaces, we aim to better
understand with this study if the increased spatial awareness
sourced from a transitional reality interface is conducive to
the natural pattern recognition of humans in a 3D space
and helpful to explaining past robot behaviors. We predict
that both reality modes are independently limited in how
they represent the workspace of the robot, but that by using
seamless transitions between the two, the interface can become
a promising tool for use in industry.

VI. CONCLUSION

This novel AR-VR interface has been designed to address
the challenges of fault diagnosis in manufacturing robotics.
The interface architecture utilizes reality transitions with the
pass-through video feed of a HMD and rosbags for retrospec-
tive analysis of manipulation tasks performed by the Fetch



robot. This transitional reality approach also opens up possi-
bilities for broader applications across human-robot interaction
research where real-time analysis and visualization of previous
actions are critical as training mechanisms to inform robot
behavior. Technical implementation and interaction scenarios
of the interface were demonstrated and a future user study
to compare its effectiveness against traditional methods has
been proposed. Despite the limitations sourced from HMD
permissions restrictions, autonomous error recognition and
virtual environment alignment, this work presents valuable
advances to the current research on robot control interfaces.

REFERENCES

[1] G. LeMasurier, J. Allspaw, and H. A. Yanco, “Semi-autonomous
planning and visualization in virtual reality,” arXiv preprint
arXiv:2104.11827, 2021.

[2] G. LeMasurier, J. Tukpah, M. Wonsick, J. Allspaw, B. Hertel, J. Epstein,
R. Azadeh, T. Padir, H. A. Yanco, and E. Phillips, “Comparing a 2d key-
board and mouse interface to virtual reality for human-in-the-loop robot
planning for mobile manipulation,” in 2024 33rd IEEE International
Conference on Robot and Human Interactive Communication (ROMAN),
pp. 2197–2203, IEEE, 2024.

[3] Z. Han, T. Williams, and H. A. Yanco, “Mixed-reality robot behavior
replay: A system implementation,” arXiv preprint arXiv:2210.00075,
2022.

[4] M. Walker, T. Phung, T. Chakraborti, T. Williams, and D. Szafir,
“Virtual, augmented, and mixed reality for human-robot interaction: A
survey and virtual design element taxonomy,” J. Hum.-Robot Interact.,
vol. 12, July 2023.

[5] G. Avalle, F. De Pace, C. Fornaro, F. Manuri, and A. Sanna, “An
augmented reality system to support fault visualization in industrial
robotic tasks,” Ieee Access, vol. 7, pp. 132343–132359, 2019.

[6] N. Leins, J. Gonnermann-Müller, and M. Teichmann, “Comparing head-
mounted and handheld augmented reality for guided assembly,” Journal
on Multimodal User Interfaces, vol. 18, 09 2024.

[7] Z. Makhataeva and H. A. Varol, “Augmented reality for robotics: A
review,” Robotics, vol. 9, no. 2, 2020.

[8] R. Schwenk and S. Smith, “An immersive spatially consistent multi-
modal augmented virtuality human-machine interface for telerobotic
systems,” Computers in Industry, vol. 167, p. 104260, 2025.

[9] K. A. Szczurek, R. M. Prades, E. Matheson, J. Rodriguez-Nogueira, and
M. Di Castro, “Multimodal multi-user mixed reality human–robot inter-
face for remote operations in hazardous environments,” IEEE Access,
vol. 11, pp. 17305–17333, 2023.

[10] Z. Kemény, J. Váncza, L. Wang, and X. V. Wang, Human-Robot
Collaboration in Manufacturing: A Multi-agent View, pp. 3–41. Springer
International Publishing, 2021.

[11] M. K. Wozniak, R. Stower, P. Jensfelt, and A. Pereira, “Happily error
after: Framework development and user study for correcting robot
perception errors in virtual reality,” in 2023 32nd IEEE International
Conference on Robot and Human Interactive Communication (RO-
MAN), pp. 1573–1580, IEEE, 2023.

[12] L. Richards, Y. S. Ku, A. Calvert, J. Migdal, G. Hebert, E. Croft,
and A. Cosgun, “Replayable augmented reality visualization for robot
fault diagnosis: A comparative study,” International Journal of Social
Robotics, 2025.

[13] M. Billinghurst, H. Kato, and I. Poupyrev, “The magicbook-moving
seamlessly between reality and virtuality,” IEEE Computer Graphics
and applications, vol. 21, no. 3, pp. 6–8, 2001.

[14] J. Wentzel, F. Anderson, G. Fitzmaurice, T. Grossman, and D. Vogel,
“Switchspace: Understanding context-aware peeking between vr and
desktop interfaces,” in Proceedings of the CHI Conference on Human
Factors in Computing Systems, pp. 1–16, 2024.

[15] D. Gad, “Robot plan visualization using hololens2,” master’s
thesis, Chalmers University of Technology, Gothenburg, Sweden,
2024. Available at https://odr.chalmers.se/bitstreams/ddf7768c-d6e4-
4a80-942c-c75cf4255ad2/download.

[16] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning
hand-eye coordination for robotic grasping with deep learning and large-
scale data collection,” The International Journal of Robotics Research,
vol. 37, no. 4-5, pp. 421–436, 2018.

[17] Extend Reality Ltd, “VRTK - Virtual Reality Toolkit,” 2025. https:
//vrtoolkit.readme.io/docs/summary.

[18] Unity Robotics, “ROS TCP Connector,” 2020. https://github.com/
Unity-Technologies/ROS-TCP-Connector, accessed 1-27-2025.

[19] E. McCann, “ROS.NET,” 2014. https://github.com/uml-robotics/ROS.
NET, accessed 1-11-2025.

[20] T. Field, J. Leibs, J. Bowman, and D. Thomas, “ROS rosbag wiki,”
2012. https://wiki.ros.org/rosbag, accessed 1-17-2025.

[21] Unity Technologies, “Scene Setup - Meta OpenXR Plugin,” 2025.
https://docs.unity3d.com/Packages/com.unity.xr.meta-openxr@2.0/
manual/project-setup/scene-setup.html#permissions, accessed 2-2-2025.

[22] A. Khazanehdarloo and K. Mohamed, “The impact of diegetic and non-
diegetic user interfaces on the player experience in fps games,” 2022.

[23] R. Hussain, M. Chessa, and F. Solari, “Mitigating cybersickness in
virtual reality systems through foveated depth-of-field blur,” Sensors
(Basel, Switzerland), 2021.

[24] Z. Liu, Q. Liu, W. Xu, L. Wang, and Z. Zhou, “Robot learning to-
wards smart robotic manufacturing: A review,” Robotics and Computer-
Integrated Manufacturing, vol. 77, p. 102360, 2022.

[25] Moveit.AI, “The MoveIt Motion Planning Framework for ROS,” 2011.
https://github.com/moveit/moveit, accessed 1-9-2025.

[26] E. Marder-Eppstein, “ROS Navigation Stack,” 2015. https://wiki.ros.org/
navigation, accessed 1-9-2025.

[27] J. Triveri, “Quest Display Access Demo Github Repository,” 2024. https:
//github.com/trev3d/QuestDisplayAccessDemo, accessed 1-29-2025.


