
Published as a conference paper at ICLR 2025

TSRM: A LIGHTWEIGHT ARCHITECTURE
BASED ON TEMPORAL FEATURE ENCODING
FOR TIME SERIES FORECASTING AND IMPUTATION

Anonymized authors

ABSTRACT

We introduce a multilayered representation learning architecture called Time Se-
ries Representation Model (TSRM) for multivariate time series forecasting and
imputation. The architecture is structured around hierarchically ordered encoding
layers, each dedicated to an independent representation learning task. Each en-
coding layer contains a representation layer designed to capture diverse temporal
patterns and an aggregation layer responsible for combining the learned represen-
tations. The architecture is fundamentally based on a Transformer encoder-like
configuration, with self-attention mechanisms at its core. The TSRM architecture
outperforms state-of-the-art approaches on most of the seven established bench-
mark datasets considered in our empirical evaluation for both forecasting and im-
putation tasks while significantly reducing complexity in the form of learnable
parameters. The source code is available at https://anonymous.4open.
science/r/TSRM-D7BE.

1 INTRODUCTION

Time series analysis has high potential in both science and industry. It comprises various disciplines,
including time series forecasting, classification, and imputation. By analyzing time series data, we
can gain deeper insights into various systems, such as sensor networks (Papadimitriou & Yu, 2006),
finance (Zhu & Shasha, 2002), and biological systems like the human body (Ek et al., 2023).

Time series (TS) data often exhibit high dimensionality, with relationships between data points gov-
erned by both temporal order and attribute-level structure. Typically, TS are recorded continuously,
capturing only a few scalar values at each time step. As single time points usually lack sufficient se-
mantic information for in-depth analysis, research primarily emphasizes temporal variations. These
variations offer richer insights into the intrinsic properties of TS, such as continuity and intricate
temporal patterns. Since multiple overlapping variations can exist simultaneously, such modeling of
temporal dynamics is particularly challenging.

Despite advancements in methodologies to tackle those challenges, such as Recurrent Neural
Networks (RNNs) and Convolutional Neural Networks (CNNs), high dimensionality and vanish-
ing/exploding gradients persist, restricting the information flow over long sequences as observed
by Hochreiter et al. (2001). With the work of Vaswani et al. (2017), the Transformer architecture
was proposed and soon applied in the domain of TS analysis (Wu et al., 2020a). However, due
to its design for the domain of Natural Language Processing (NLP) and the resulting use of the
point-wise attention mechanism on word embeddings, approaches based on this architecture could
not adequately capture all relevant TS characteristics, and they suffered from high computational
and memory demands with long-term sequences (Huang et al., 2018; Povey et al., 2018). With
time, more specialized implementations emerged. TS forecasting started with improvements to the
basic Transformer architecture to overcome the memory bottleneck (Li et al., 2019) with sparse-
attention concepts, followed by various enhancements, especially further modifications to the at-
tention part. Examples include Informer (Zhou et al., 2021), Autoformer (Wu et al., 2021), and
FEDFormer (Zhou et al., 2022). Transformer-based TS imputation has evolved around hybrid com-
binations of transformer components with CNN, RNN, auto-encoder, or GAN concepts (Cao et al.,
2018; Fortuin et al., 2020; Luo et al., 2018), with recent successes such as SAITS (Du et al., 2023).
Despite these sophisticated approaches, the recent work of Zeng et al. (2023) presented a simple

1

https://anonymous.4open.science/r/TSRM-D7BE
https://anonymous.4open.science/r/TSRM-D7BE

Published as a conference paper at ICLR 2025

linear model that outperforms all previous models on a number of benchmarks, thus fundamentally
questioning the use of transformer models for time series analysis.

Novel approaches have addressed this challenge by abstracting the input data to exploit the mod-
eling capability of transformers more effectively. Most noteworthy approaches evolved around the
concept of patching, where the input sequence is split into subsequences (Nie et al., 2022; Liu et al.,
2024; Chen et al., 2024). To improve the modeling of temporal variations, other approaches capture
temporal patterns at different abstraction levels to learn representations of a TS (Wu et al., 2022). In
this paper, we extend this concept of learning temporal representations by introducing a lightweight
and adaptive multidimensional framework with a hierarchical design and high configurability to
handle complex temporal variations and be applicable to many datasets. Our approach integrates a
temporal representation learning concept within a multilayered encoding model, where each encod-
ing layer features a distinct representation learning module paired with a symmetrically structured
aggregation layer. This aggregation layer is designed to reverse the learned representations while ag-
gregating key features of the learned representation. Crucially, our encoding layers are designed to
allow independent capturing of representations at a different hierarchical level, restoring the original
input dimensions to enable hierarchical stacking of layers independent of the input dimension.

2 RELATED WORK

Transformer-based models. Since its inception in 2017, Transformer (Vaswani et al., 2017) and
its numerous derivatives (Zhou et al., 2021; Wu et al., 2021; Zhou et al., 2022; Nie et al., 2022;
Du et al., 2023; Zhang & Yan, 2023; Chen et al., 2024; Zhao et al., 2024; Das et al., 2024; Liu
et al., 2024) steadily gained traction and are now a well-established approach to time series model-
ing. One of the more recent works is PatchTST (Nie et al., 2022), which combines the Transformer
encoder with subseries-level patches as input encoding to increase efficiency while demonstrating
strong modeling capacity. While PatchTST processes each channel of multivariate TS indepen-
dently, Crossformer (Zhang & Yan, 2023) captures both temporal and cross-channel dependencies.
To this end, the model unravels the input TS into two dimensions and features a novel attention
layer to learn both types of dependencies efficiently. Pathformer (Chen et al., 2024) is a multiscale
transformer with adaptive dual attention to capture temporal dependencies between TS segments
of varying granularity. TSRM, while using classical multi-head self-attention internally, does not
utilize the Transformer architecture but an adaptation of the Transformer encoder only, to limit the
memory footprint and reduce complexity.

Self-supervised pretraining. Splitting the training process into pretraining and fine-tuning allows
TS models to learn universal representations that can be later utilized for different downstream
tasks (Jiang et al., 2022). One work in this field was proposed by Ekambaram et al. (2023). Their
TSMixer is built around an MLP backbone, while our approach employs a convolution- and self-
attention-based encoder architecture. SimMTM (Dong et al., 2023) and its successor HiMTM (Zhao
et al., 2024) also fall into this category. In contrast, CoST (Woo et al., 2022a) learns disentangled
feature representations by discriminating the trend and seasonal components. Lee et al. (2024)
recently presented PITS. The pre-training approach is very interesting and promising, both in terms
of the performance achieved and the accuracy of the representations learned, but was not investigated
in this work. Nevertheless, it is planned to evaluate the architecture presented in this paper in a
pretraining context in future work.

Foundation models. Similar to self-supervised pretraining, time series foundation models learn uni-
versal representations of TS and use them for different downstream tasks (Bommasani et al., 2021).
However, they are more powerful in that they pretrain on a cross-domain database to generalize
across individual target datasets. In recent years, various approaches have been proposed, including
TF-C (Zhang et al., 2022b), TimesNet (Wu et al., 2022), FPT (Zhou et al., 2023), Lag-Llama (Rasul
et al., 2023), MOMENT (Goswami et al., 2024), MOIRAI (Woo et al., 2024), and TimesFM (Das
et al., 2024). TimesFM and FPT are Transformer-based models. TF-C employs a different em-
bedding stage than TSRM, which is based on time-frequency-consistency and contrastive learning.
Where TimesNet analyses temporal variations in the 1D input sequence by unfolding it into two
dimensions along multiple periods observed over the time axis, TSRM is designed as multilayered
representation architecture and it embeds temporal variations into a one-dimensional vector (sepa-
rately for each layer). MOIRAI follows a patch-based approach with a masked encoder architecture.

2

Published as a conference paper at ICLR 2025

Compared to TSRM, MOMENT differs by using patching, a Transformer encoder directly, and
self-supervised pretraining on a wide range of datasets.

Patch-based models. Patching is a form of input encoding that divides the time series into sub-
sequences, which can be either overlapping or non-overlapping (Nie et al., 2022; Zhang & Yan,
2023; Ekambaram et al., 2023; Zhou et al., 2023; Das et al., 2024; Lee et al., 2024; Chen et al.,
2024; Liu et al., 2024; Goswami et al., 2024; Woo et al., 2024). In the basic form, identical-sized
patches are sliced from the input TS and fed as tokens to the model (Nie et al., 2022). Pathformer’s
multiscale division divides the TS into different temporal resolutions using patches of various, dy-
namically chosen, sizes. Crossformer computes more complex patches encoding both temporal and
cross-channel dependencies. iTransformer (Liu et al., 2024) takes the idea to the extreme, operating
on patches covering an entire channel of the input TS each. What sets TSRM apart from previous
works is the representation learning with multilayered and multidimensional CNN layers, dynam-
ically learned in a novel representation layer, in order to cover different granularities and enable
hierarchical representation learning.

Few/zero-shot learning. Few-shot learning refers to the capability of a model to generalize from the
data domain it is (pre-)trained on to a new target domain using just a few (zero-shot learning: none)
target-training instances (Zhou et al., 2023; Rasul et al., 2023; Das et al., 2024; Lee et al., 2024;
Woo et al., 2024). Lag-Llama is based on a decoder-only Transformer architecture that uses lags as
covariates and processes only univariate TS, while TSRM uses CNN-extracted feature vectors and
can handle multivariate TS. Moreover, Lag-Llama is pretrained on a large corpus of multidomain
TS data, while FPT utilizes a pretrained language model like BERT (Devlin et al., 2018) as basis.
In this work, however, we do not consider the few/zero-shot setting, but instead, we train and op-
timize TSRM on each dataset separately, focusing on deriving profound representation models that
incorporate knowledge about each specific type of TS.

3 METHODOLOGY

To address the above challenges in time series analysis, we propose a Time Series Representation
Model (TSRM). It consists of a modular and dynamic architecture to model temporal patterns de-
rived from different periods while keeping a low memory profile, including a remarkably small
number of trainable parameters. It consists of multiple stacked encoding layers (EncLayer), each
equipped with a learnable multidimensional representation learning process to capture multiple tem-
poral variations within the input data. Similar to PatchTST (Nie et al., 2022), we explore a channel-
independent approach, where each feature channel is processed independently using the same TSRM
backbone. However, recognizing that some time series depend on correlations between features, we
also introduce an alternative version of TSRM, called TSRM IFC, which moves away from the
channel-independent approach to facilitate the learning of inter-feature correlations. Details of this
second architectural variant are provided later in this section.

3.1 MODEL ARCHITECTURE

The multivariate input sequence x1 . . .xT , where xi ∈ RF and F is the amount of input features, is
split into F univariate sequences, where each of them is fed independently into the model according
to our channel-independent setting but shares the same TSRM backbone, as illustrated in Figure 1.

Each univariate input sequence x1,fi . . . xT,fi , where i ∈ {1, ..., F}, undergoes a position-wise op-
eration, which extends the univariate sequence to the dimension d, and is then added to a positional
embedding and normalized with RevIN (Kim et al., 2021), resulting in the embedded sequence
e1,fi . . . eT,fi , where e∗,fi ∈ Rd, as illustrated in Figure 1 (left, in grey). Subsequently, the embed-
ded sequence undergoes processing via N consecutive EncLayers, each tasked with deriving rep-
resentations, learning and encoding temporal features, aggregating encoded features, and restoring
the input dimension. These layers utilize the sequence received from the input TS or the preceding
EncLayer, enabling a hierarchic representation learning. The output of each EncLayer is fed into
the next, as well as a residual connection, marked with dotted lines in Figure 1, bridging represen-
tation matrices across the EncLayers. This layer stacking and the residual connections facilitate a
structured feature extraction, similar to deep CNN frameworks known from computer vision (He
et al., 2016a), and follow the information-flow principals from Hochreiter et al. (2001). Following

3

Published as a conference paper at ICLR 2025

LayerNorm
GeLu

Self-Attention
Dropout

M
erge Layer

R
epresentation

Layer + + +

+Em
bedding

Raw input
series

+
Pos.Encoding

Linear... ...

TransConv1DK

TransConv1D1...

Split

Projection

TransConv1D1 TransConv1D2 TransConv1DK

Projection

Conv1DK

Conv1D1...

C
oncat

Projection

... ...

Conv1D1 Conv1D2 Conv1DK

LayerNorm
GeLu
Linear

Dropout

Nx

Embedded
variate token

Figure 1: Illustration of the proposed Time Series Representation Model (TSRM) framework, pri-
marily composed of N encoding layers (EncLayers) (upper section in blue), accompanied by the
representation layer (ReprLayer) (left, in green) and merge layer (MergeLayer) (right, in orange).

N EncLayers, we utilize a feed-forward layer to deliver the output sequence, leaned against the con-
cept proven by Das et al. (2023). Finally, we denormalize and reshape the sequence to its original
multivariate representation. In the following, we describe each component in detail:

Encoding Layer (EncLayer) Unlike information-rich word embeddings in NLP, which help mod-
els learn language patterns effectively (Selva Birunda & Kanniga Devi, 2021), the informational
value of a single point in time is naturally lower, only gaining context information when com-
bined across time steps or the feature dimension. To mitigate this challenge, we introduce the
self-attention-based EncLayer, which utilizes a potent representation methodology capable of ef-
ficiently encapsulating both local and global contextual information. Furthermore, our approach is
based on multi-level representation learning, where each EncLayer learns a representation of the
input sequence, highlights essential patterns, and returns the representation sequence with the di-
mension of the input, aggregating and embedding essential information. The EncLayer, presented
in Figure 1 (top in blue), is structured as follows: It starts with the representation layer (ReprLayer),
tasked with acquiring representations embedded within the sequence and concludes with the merge
layer (MergeLayer), which aggregates all acquired representations and restores the original input
dimension. Hence, the EncLayers are structured to maintain the dimensionality of the input at the
output, allowing for N (i.e., the number of EncLayer blocks) to be modulated as an independent
hyperparameter unrelated to the initial sequence length. Between both layers there are two blocks of
layers which are comparable to the Transformer Encoder and have self-attention and linear transfor-
mation at their core. Below, we explain each of the two novel layers as well as the two layer blocks
in-between in more detail.

Representation Layer (ReprLayer) The representation layer (ReprLayer) is designed to indepen-
dently learn representations of different abstraction levels from an input sequence and is shown in
Figure 1 (bottom in green). Unlike previous approaches (Nie et al., 2022; Liu et al., 2024), which
rely on static patches, our method employs a setup of K independent 1D CNN layers with varying
kernel sizes, which are designed to capture and integrate representations across different abstrac-

4

Published as a conference paper at ICLR 2025

tion levels. Some of the K CNN layers employ small kernels without dilation for identifying basic
features, such as sequence details, while others use medium-sized kernels with minimal dilation for
intermediate feature recognition, or large kernels with significant dilation for detecting comprehen-
sive features like trends.

To enable a higher level of abstraction, we employ dilation in larger kernels. By default, all kernels
are configured with a stride equal to the kernel size to limit the memory footprint. The number of
individual CNN layers (K), as well as the kernel size and dilation, are hyperparameters and are thus
subject to hyperparameter study to find the right constellation for a specific dataset. The outcomes
from the K CNN layers are concatenated on the sequence dimension, effectively transforming the
input sequence e1,fi . . . eT,fi into the representation r1,fi . . . rD,fi , where D corresponds to the
total length of the concatenated matrices. This aggregation encapsulates the encoded feature in-
formation for each feature fi, spanning varied abstraction levels. The process is comparable to the
representation learning of TimesNet (Wu et al., 2022). However, instead of FFT-based capturing and
embedding different abstractions into a two-dimensional encoding, we use efficient one-dimensional
CNN layers with different abstraction levels and smaller embeddings to enable a low memory profile
and fewer trainable parameters, thus reducing the model complexity. The process of the ReprLayer
for each feature fi is formalized in Equations 1. The index fi is omitted for clarity. δj and sj denote
the dilation and kernel size of the j-th Conv1D layer with its stride equal to the kernel size and
without padding.

E := e1 . . . eT , E ∈ RT×d

Rj = Conv1Dj(E), Rj ∈ RDj×d, j ∈ {1, . . . ,K}

Dj =
⌊T − δj(sj − 1)− 1

sj
+ 1

⌋
R = Concat(R1, . . . ,RK), R ∈ RD×d, D =

∑K
j=1 Dj

r1 . . . rD := R

(1)

Merge Layer The merge layer (MergeLayer), illustrated in Figure 1 (bottom, right in orange) is
designed to reverse the dimensional alterations caused by the ReprLayer and to aggregate the discov-
ered representations. It comprises K 1D transposed convolution layers utilizing transposed kernels
to invert the transformations applied by the corresponding 1D CNN layer of the ReprLayer, thereby
reinstating the original data dimensions. Therefore, for each feature, the sequence r1,fi . . . rD,fi is
segmented in contrast to the concatenation in the ReprLayer. These K matrices are then merged
using a feed-forward projection, resulting in a sequence that has the exact dimensions of the original
input sequence for the ReprLayer, e1,fi . . . eT,fi . The process of the MergeLayer for each feature
fi is formalized in Equations 2. The index fi is omitted for clarity. The resulting dimensions Dj of
the split operation are the same as specified by the 1D CNN layers in the ReprLayer in Equations 1.

R1, . . . ,RK := Split(R), R ∈ RD×d,Rj ∈ RDj×d, j ∈ {1, . . . ,K}
R′

j = TransConv1Dj(Rj), R′
j ∈ RT×d

R′ = Concat(R′
1, . . . ,R

′
K), R′ ∈ RT×dK

E = FeedForwarddK×d(R
′), E ∈ RT×d

e1 . . . eT := E

(2)

Situated between the ReprLayer and the MergeLayer, two blocks of layers facilitate the extraction
and amplification of features from the ReprLayer. Each is encapsulated within a residual skip con-
nection following the pre-activation design paradigm (He et al., 2016b). The initial block starts
with a layer normalization which is succeeded by a GeLu activation function, a multi-head self-
attention mechanism, and a dropout operation. The implementation of the multi-head self-attention
spans conventional attention akin to the Transformer and sparse self-attention mimicking Wu et al.
(2020b). The choice between these two attention mechanisms is adjustable via hyperparameters.

The sequence then advances to the second block, initiating again with a layer normalization, fol-
lowed by a GeLu activation, a linear layer, and a dropout. The linear layer embedded within this

5

Published as a conference paper at ICLR 2025

block differs between the two architecture versions, TSRM and TSRM IFC (Inter Feature Correla-
tion). In TSRM, the linear layer connects all d dimensions, preserving channel-independence. In the
TSRM IFC, however, it spans all F ×d dimensions, thereby facilitating the learning of inter-feature
correlations. The remainder of both architectures maintain feature-separation. Residual connections
interlink all of the learned representations across the EncLayers. These connections are added to the
resultant matrix from the ReprLayer. In addition, the attention and feature-correlation augmented
matrix is fused with the residual connection prior to the introduction of the MergeLayer, aimed to
foster information propagation independent of the ReprLayer and the MergeLayer.

Explainability Due to the lean and less complex architecture design, it is possible to transfer
all attention weights of the EncLayers back and map them to the input time series. This makes
it possible to understand the weighting of the attention layer for each of the N EncLayer and for
each feature separately. This, in turn, permits insight into the functionality and effectiveness of the
representation learning process, thus allowing a level of explainability of the model. This proves
extremely useful during training on a new dataset but also provides valuable insights about essential
patterns in the input sequence for the corresponding task, such as a forecasting. We provide a
detailed example in the Appendix A.2.

4 EXPERIMENTS

In order to assess the effectiveness of our proposed architecture, we conducted a series of exper-
iments using publicly accessible and well established benchmark datasets from different fields:
ECL (Dua et al., 2017), ETT (Zhou et al., 2021) (four subsets: ETTm1, ETTm2, ETTh1, ETTh2),
Weather and Exchange (Wu et al., 2021). All datasets were collected from Wu et al. (2021). For
more details, please see Section A.1.

4.1 EXPERIMENTAL SETUP

For all experiments, we employed early stopping with a threshold of 1% performance increase on the
validation set with a patience of three epochs. Hyperparameter tuning was conducted through a ran-
dom search encompassing various parameters: Count of stacked EncLayers N , number of attention
heads h, encoding dimension d, type of attention mechanism (vanilla and sparse; see Section 3.1),
and configurations of the ReprLayer, including the number of CNN layers, kernel dimensions, di-
lations, and grouping (see Appendix A.4 for details). Learning rates were initially determined with
an automated range test from LightningAI (lightning.ai) and adapted during training with a learning
rate scheduler (ReduceLROnPlateau) from PyTorch with a patience of two epochs. All models were
trained with the Adam optimizer on an Nvidia A100 80GB GPU.

4.2 LONG-TERM TIME SERIES FORECASTING

Time series forecasting is crucial for predicting future trends and making informed decisions in areas
such as finance, healthcare, and supply chain management, enabling better resource planning and
risk management.

Given a multivariate input sequence x1 . . .xT , where xi ∈ RF and F is the number of features,
the goal is to forecast the prediction sequence y1 . . .yH , where yi = xi+T and H denotes the
prediction horizon.

To measure the discrepancy between the prediction sequence ŷ1 . . . ŷH and the ground truth
y1 . . .yH for a horizon H , where ŷi,yi ∈ RF , we chose the sum of the mean average error (MAE)
and mean squared error (MSE) as the loss during training. The loss is calculated and averaged across
all F channels and H timesteps to get the overall objective loss:

LMAE+MSE =
1

FH

H∑
i=1

||(ŷi − yi)||1 + ||(ŷi − yi)||22 (3)

To evaluate the performance of our architecture for long-term TS forecasting, we adopted the proce-
dure of Liu et al. (2024): To support a fair comparison with other approaches, we maintain the input

6

Published as a conference paper at ICLR 2025

Table 1: Performance comparison for the multivariate forecasting task with prediction horizons
H ∈ 96, 192, 336, 720 and fixed lookback window T = 96. Results are averaged over all prediction
horizons. Bold/underline indicate best/second.

Models TSRM TSRM IFC iTransformer RLinear PatchTST Crossformer TimesNet DLinear FEDformer

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ECL 0.193 0.277 0.193 0.277 0.178 0.270 0.219 0.298 0.205 0.290 0.244 0.334 0.193 0.295 0.212 0.300 0.214 0.327
ETTm1 0.381 0.392 0.386 0.394 0.407 0.410 0.414 0.408 0.387 0.400 0.513 0.495 0.400 0.406 0.403 0.407 0.448 0.452
ETTm2 0.277 0.323 0.275 0.320 0.288 0.332 0.286 0.327 0.281 0.326 0.757 0.611 0.291 0.333 0.350 0.401 0.305 0.349
ETTh1 0.438 0.431 0.438 0.437 0.454 0.448 0.446 0.434 0.469 0.455 0.529 0.522 0.458 0.450 0.456 0.452 0.440 0.460
ETTh2 0.375 0.398 0.368 0.396 0.383 0.407 0.374 0.399 0.387 0.407 0.942 0.684 0.414 0.427 0.559 0.515 0.437 0.449
Weather 0.243 0.268 0.240 0.263 0.258 0.278 0.272 0.291 0.259 0.281 0.259 0.315 0.259 0.287 0.265 0.317 0.309 0.360

Exchange 0.353 0.396 0.382 0.413 0.360 0.403 0.379 0.418 0.367 0.404 0.940 0.707 0.416 0.443 0.354 0.414 0.519 0.429

length for all approaches at T = 96, while varying the prediction horizon H ∈ {96, 192, 336, 720},
correspondingly. For the evaluation, we consider seven datasets (i.e., ECL, ETTm1, ETTm2,
ETTh1, ETTh2, Weather, and Exchange) and compare against multiple state-of-the-art (SOTA)
techniques: iTransformer (Liu et al., 2024), RLinear (Li et al., 2023), PatchTST (Nie et al., 2022),
Crossformer (Zhang & Yan, 2023), TimesNet (Wu et al., 2022), DLinear (Zeng et al., 2023), and
FEDformer (Zhou et al., 2022).

Results The results, presented in Table 1, show a solid performance that matches or outperforms
the SOTA approaches, except for the ECL dataset, where our architecture takes the second place,
achieving the same MSE as TimesNet but with an improved MAE. On all other investigated datasets,
our TSRM or TSRM IFC architecture achieves the best results on both metrics. It can also be
seen that some data sets, such as Weather, achieve better results with TSRM IFC than with TSRM.
This could be because, in this dataset, correlations between individual features are crucial for the
prediction, and thus, the TSRM IFC model performs better, as it allows inter-feature learning. We
provide further details with all prediction horizons separated and additional SOTA approaches as
comparison in Appendix A.3 and Table 5. SOTA results presented in Tables 1 and 5 were taken
from Liu et al. (2024).

4.3 IMPUTATION

Time series data from real-world systems often contain missing values, which can arise from sensor
malfunctions or environmental conditions. These missing values complicate downstream analysis,
necessitating imputation techniques in practical applications. For imputation to provide meaningful
replacements for the missing data, the underlying architecture must effectively capture the temporal
patterns inherent in the irregularly and partially observed time series.

For the imputation task, a fixed portion rm ∈ [0, 1] of values in the original multivariate input
sequence is replaced by the masking value −1. The positions of replaced values are indicated by
random imputation masks m1 . . .mT , where mi ∈ {0, 1}F , F is the number of features and
rm = 1

FT

∑T
i=1 m

⊤
i mi. This yields the multivariate masked input sequence x1 . . .xT , where

xi ∈ RF . The prediction sequence ŷ1 . . . ŷH here has the same length as the input sequence, thus
H = T , and is aimed to accurately reconstruct the original multivariate sequence, that is, the ground
truth y1 . . .yT .

To measure the discrepancy between the prediction sequence ŷ1 . . . ŷT and the ground truth
y1 . . .yT , where ŷi,yi ∈ RF , we chose the sum of the mean average error (MAE) and mean
squared error (MSE) as the loss during training. For the masked and unmasked regions separately,
the losses are calculated and averaged across all F channels and T timesteps. We adjust the contri-
bution of the loss for the masked region, that is Lmasked, by weighting factor 1

rm
. Consequently, we

adapt its impact according to the missing ratio. In the following, 1F denotes the 1-vector of length

7

Published as a conference paper at ICLR 2025

Table 2: Performance comparison for the multivariate imputation task with missing ratios rm ∈
{0.125, 0.25, 0.375, 0.5} and a fixed input length of 96. Results are averaged over all missing ratios.
Bold/underline indicate best/second.

Models TSRM TSRM IFC TimesNet LightTS DLinear Stationary Autoformer Pyraformer

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ECL 0.073 0.170 0.073 0.179 0.092 0.210 0.131 0.262 0.132 0.260 0.100 0.218 0.100 0.224 0.296 0.382
ETTm1 0.043 0.130 0.046 0.141 0.027 0.107 0.104 0.218 0.093 0.206 0.036 0.126 0.051 0.151 0.716 0.570
ETTm2 0.028 0.103 0.026 0.103 0.022 0.088 0.046 0.151 0.096 0.208 0.026 0.099 0.028 0.105 0.465 0.508
ETTh1 0.106 0.214 0.086 0.180 0.078 0.187 0.284 0.374 0.201 0.306 0.094 0.202 0.102 0.214 0.842 0.662
ETTh2 0.090 0.188 0.058 0.160 0.050 0.146 0.120 0.250 0.142 0.260 0.053 0.152 0.056 0.156 1.078 0.792
Weather 0.031 0.048 0.029 0.045 0.030 0.054 0.056 0.116 0.052 0.110 0.032 0.059 0.031 0.057 0.152 0.234

F , that is, 1F = (1, ..., 1) ∈ RF :

Lmasked =
1

rmFT

T∑
i=1

||mi ⊙ (ŷi − yi)||1 + ||mi ⊙ (ŷi − yi)||22

Lunmasked =
1

(1− rm)FT

T∑
i=1

||(1F −mi)⊙ (ŷi − yi)||1 + ||(1F −mi)⊙ (ŷi − yi)||22

Limputation =
1

rm
Lmasked + Lunmasked

(4)

To evaluate the performance of our architecture for TS imputation, we adopted the experimental
setup of Wu et al. (2022) and introduced random data omissions into all datasets, resulting in four
distinct missing rates: rm ∈ {12.5%, 25%, 37.5%, 50%}.

For the evaluation, we consider six datasets (i.e., ECL, ETTm1, ETTm2, ETTh1, ETTh2, Weather)
and compare against multiple SOTA techniques: TimesNet (Wu et al., 2022), LightTS (Zhang et al.,
2022a), DLinear (Zeng et al., 2022), Stationary (Liu et al., 2022b), Autoformer (Wu et al., 2021),
and Pyraformer (Liu et al., 2021).

Results We present the results of our proposed architecture in Table 2. On the ECL and Weather
dataset, our architecture performs considerably well, whereas on the ETT datasets we were not able
to match current SOTA results. Despite the good results with 20.65% performance increase on the
MSE metric for ECL compared to TimesNet, we report comparable decreases in performance on
the ETT datasets. Despite this, our TSRM approach outperforms LightTS, DLinear, and Pyraformer
across all datasets for both averaged metrics. Similar to the forecasting experiments’ results, the
Weather dataset performs better with the TSRM IFC than with the TSRM, which reinforces the
suspicion that inter-feature correlation plays a major role in this dataset’s modeling performance.
We provide further details with all missing ratios separated and additional SOTA approaches as
comparison in Appendix A.5 and Table 8. All reported results in Tables 2 and 8 were taken from Wu
et al. (2022).

4.4 COMPLEXITY ANALYSIS

Our results show stable results that meet or even exceed SOTA results, especially for TS forecasting.
However, in addition to the pure performance metrics, a model’s complexity should also play an es-
sential role in assessing an architecture’s quality, not least to maintain its economy and applicability
in practice. Our architecture is based on simple and less complex layers that require only a compa-
rably small number of trainable parameters. Furthermore, it is designed for memory efficiency to
have a smaller memory footprint. For example, a model for the ETTh1 dataset in the prediction task
(96/96) with 8 batches requires only 500 MB of GPU memory in total. In Table 3, we compare the
number of trainable parameters of SOTA architectures most similar to ours as an indicator for com-
plexity. The values shown for the SOTA approaches originate from the work of Wang et al. (2024),
the Time-Series-Library1, and were collected separately for all datasets and the corresponding con-
figuration. All reported trainable parameters of TSRM were collected from the corresponding TS
forecasting models reported in Table 1. 96 was always selected as both the lookback and prediction

1https://github.com/thuml/Time-Series-Library

8

Published as a conference paper at ICLR 2025

Table 3: Amount of trainable parameters in million. Lookback window is fixed to 96.
Model ETTh1 ETTm2 ECL Exchange Weather Average

TimesNet 0.605 1.191 150.304 4.708 1.193 31.600
Autoformer 10.535 10.535 12.143 10.541 10.607 10.872
Transformer 10.540 10.540 10.518 10.543 10.590 10.546
PatchTST 3.751 10.056 6.903 6.903 6.903 6.903

Crossformer 42.176 42.139 9.261 0.437 0.123 18.827
iTransformer 0.224 4.833 4.833 0.224 4.833 2.989

TSRM 0.857 2.781 0.161 0.382 0.338 0.904

N=0 N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=80.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

 S
co

re
s

0.
40

6

0.
38

1

0.
39

5

0.
40

1

0.
39

8

0.
40

3

0.
38

4

0.
37

9

0.
39

6

0.
21

7

0.
16

3

0.
16

2

0.
16

2

0.
16

1

0.
16

2

0.
16

2

0.
16

7

0.
16

8

Variation of N for the TSRM architecture

ETTh1 MSE
Weather MSE

TSRM TSRM_IFC R1 R0 no_merge no_merge
+R1

no_merge
+R0

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

 S
co

re
s

0.
37

9

0.
38

7

0.
39

0

0.
40

0

0.
38

2

0.
39

8

0.
40

5

0.
16

1

0.
15

3

0.
16

5

0.
16

5

0.
16

5

0.
16

5

0.
16

6

Architectural variations of the TSRM model

ETTh1 MSE
Weather MSE

Figure 2: Ablation study results for the architecture variations (right) and sensitivity study for the
hyperparameter N (left) on the datasets Weather and ETTh1.

horizon to ensure comparability. The last column shows the average number of parameters across
datasets. While most models, on average, have more than 10 million trainable parameters (median
6.903M ± 27.648M), TSRM exhibits a much lower complexity with only a few hundred thousand
trainable parameters, with the exception of the ETTm2 dataset. However, it is worth noting that
despite this low complexity of the TSRM architecture, the DLinear model of Zeng et al. (2022)
requires only about 0.018M trainable parameters and still performs very well on most datasets, as
shown in Table 1.

5 ABLATION STUDY

To evaluate the contribution of different modules within TSRM, we conduct ablation studies cen-
tered on our proposed EncLayer. Specifically, we examine the effect of varying the number of
stacked EncLayers through a sensitivity analysis of N . Additionally, to further explore the role
of the EncLayer in learning time series representations, we modify its configuration to remove the
MergeLayer (no merge) and include only a single CNN layer in the ReprLayer (R = 1). For all ex-
periments, we use ETTh1 as the dataset, which performs well without feature interaction (TSRM),
and Weather, which shows better results when used with TSRM IFC, i.e. with feature interaction.
Note that all experiments were carried out with the TSRM variant, not with TSRM IFC.

Varying the number of EncLayers. We investigate the sensitivity of our architecture towards
the amount of EncLayers (N). Therefore, we picked the best hyperparamter constellations of the
forecasting task and run experiments with N ∈ {0, 1, 2, . . . 8}. Figure 2 (left) shows the results of
all variations. The configuration of N = 0 means that no EncLayer is involved. For both datasets,
we observe a plateau of the MSE metric in certain ranges. For example, the ETTh1 dataset performs
best with a fairly high number of N , while Weather performs best with N = 4 and then gets worse
as N increases. For both datasets, however, the results are significantly improved with at least one
EncLayer and with an increasing number the result can be further improved until a plateau is formed.
This shows the benefit of stacked EncLayers for these two datasets. The configuration without any
EncLayer (N = 0) yields the worst result on the ETTh1 dataset. However, it is worth noting that
despite the lack of any complex logic in the case of N = 0, the result is comparable to DLinear
on the weather dataset on the ETTh1 dataset. This can be explained by the fact that the remaining
architecture is comparable to that of DLinear. More details can be found in the Appendix A.6.

9

Published as a conference paper at ICLR 2025

Architecture variations We explore the influence of various architectural components on the per-
formance of TSRM. Specifically, we assess the effect of the MergeLayer by blocking gradient flow
to prevent the layer from learning aggregations in the experiment no merge. As a result, the di-
mensional changes caused by the transposed CNN layer are preserved to allow further stacking of
the encoding layer, but without trainable parameters. Additionally, we reduce R to a single CNN
layer with a kernel size of three and a dilation of one in the experiment R1 and with a deactivated
MergeLayer in the experiment R1+no merge. In a further step, we restrict the CNN layer to a ker-
nel size of one, eliminating any structural learning effects and limiting its function to position-wise
weighting, as tested in the experiment R0, and with a deactivated MergeLayer in the experiment
no merge+R0. Figure 2 (right) shows the results of all ablation experiments. A decline in perfor-
mance of the TSRM architecture is evident throughout the ablation experiments. The most notable
drop occurs between the original TSRM architecture and the R0 experiment, where a considerable
loss in performance highlights the critical role of the CNN layers withing the ReprLayer. However,
it is important to note that although the performance changes without the trainable merge layer are
not significant compared to the original TSRM architecture, the role of the merge layer is mainly
to undo the dimensional changes caused by the representation layer and thus allow stacking of the
encoding layer regardless of the input length. Reducing the number of 1D convolutions (i.e., R = 1)
and preventing structural learning with a kernel size of 1 further reduces performance, although the
drop is less pronounced than between the scenarios with and without merge layers. Interestingly,
the experiment no merge+R0, in which the architectural structure is changed, is very similar to that
of iTransformer (Liu et al., 2024) and leads to comparable performance results, as shown in the ap-
pendix A.3 (Table 5). The weather dataset shows no performance changes between the experiments
no merge and no merge+R1, which can be explained by the fact that the most powerful model
in this setup and thus the configuration used in this experiment uses the same CNN configuration
as in R1, which accordingly leads to no performance changes. More details can be found in the
Appendix A.6.

6 CONCLUSION

We introduced a new architecture for time series prediction and imputation, the Time Series Rep-
resentation Model (TSRM). This model uses hierarchically organized encoding layers (EncLayer)
designed to independently learn representations from the input sequence at different levels of ab-
straction, with each layer passing learned and aggregated features to the next. The EncLayer is
largely based on the concept of self-attention and consists of a representation layer and an aggrega-
tion layer, which are responsible for representing the input sequence at different levels of abstraction
as well as aggregating and embedding the learned or highlighted representations. The architecture
is designed to be of low complexity while supporting explainability in the form of detailed attention
highlighting. Our empirical evaluation showed that TSRM is able to outperform SOTA approaches
on a number of well-established benchmark datasets in the area of time series forecasting and im-
putation while significantly reducing complexity in form of the number of trainable parameters. In
future work, we plan to evaluate the architecture regarding a pretraining/fine-tuning, few/zero-shot
learning and foundation model approach, as well as further tasks such as classification and anomaly
detection.

7 REPRODUCIBILITY STATEMENT

In Section 3, we have strictly formalized the model architecture with equations. The Appendix
includes all the implementation details, including dataset descriptions, detailed metrics, and con-
figurations. The source code is available at https://anonymous.4open.science/r/
TSRM-D7BE.

10

https://anonymous.4open.science/r/TSRM-D7BE
https://anonymous.4open.science/r/TSRM-D7BE

Published as a conference paper at ICLR 2025

REFERENCES

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. Brits: Bidirectional recurrent
imputation for time series. In Advances in Neural Information Processing Systems, pp. 6775–
6785, 2018.

Peng Chen, Yingying Zhang, Yunyao Cheng, Yang Shu, Yihang Wang, Qingsong Wen, Bin Yang,
and Chenjuan Guo. Pathformer: Multi-scale transformers with adaptive pathways for time series
forecasting. In International Conference on Learning Representations, 2024.

Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan Mathur, Rajat Sen, and Rose Yu. Long-term
forecasting with tide: Time-series dense encoder. arXiv preprint arXiv:2304.08424, 2023.

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
time-series forecasting. arXiv preprint arXiv:2310.10688, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Jiaxiang Dong, Haixu Wu, Haoran Zhang, Li Zhang, Jianmin Wang, and Mingsheng Long.
Simmtm: A simple pre-training framework for masked time-series modeling. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 29996–30025. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/5f9bfdfe3685e4ccdbc0e7fb29cccf2a-Paper-Conference.pdf.

Wenjie Du, David Côté, and Yan Liu. Saits: Self-attention-based imputation for time series. Expert
Systems with Applications, 219:119619, 2023.

Dheeru Dua, Casey Graff, et al. Uci machine learning repository. 2017.

Sannara Ek, François Portet, and Philippe Lalanda. Transformer-based models to deal with hetero-
geneous environments in human activity recognition. Personal and Ubiquitous Computing, 27
(6):2267–2280, 2023.

Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam.
Tsmixer: Lightweight mlp-mixer model for multivariate time series forecasting. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 459–469,
New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701030. doi:
10.1145/3580305.3599533.

Vincent Fortuin, Dmitry Baranchuk, Gunnar Rätsch, and Stephan Mandt. Gp-vae: Deep probabilis-
tic time series imputation. In International conference on artificial intelligence and statistics, pp.
1651–1661. PMLR, 2020.

Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.
MOMENT: A family of open time-series foundation models. In Forty-first International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
FVvf69a5rx.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In ECCV, October 2016b.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, et al. Gradient flow in
recurrent nets: the difficulty of learning long-term dependencies, 2001.

11

https://proceedings.neurips.cc/paper_files/paper/2023/file/5f9bfdfe3685e4ccdbc0e7fb29cccf2a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/5f9bfdfe3685e4ccdbc0e7fb29cccf2a-Paper-Conference.pdf
https://openreview.net/forum?id=FVvf69a5rx
https://openreview.net/forum?id=FVvf69a5rx

Published as a conference paper at ICLR 2025

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Curtis Hawthorne, An-
drew M Dai, Matthew D Hoffman, and Douglas Eck. An improved relative self-attention mech-
anism for transformer with application to music generation. arXiv preprint arXiv:1809.04281, 2,
2018.

Junguang Jiang, Yang Shu, Jianmin Wang, and Mingsheng Long. Transferability in deep learning:
A survey. arXiv preprint arXiv:2201.05867, 2022.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
versible instance normalization for accurate time-series forecasting against distribution shift. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=cGDAkQo1C0p.

Seunghan Lee, Taeyoung Park, and Kibok Lee. Learning to embed time series patches indepen-
dently. In The International Conference on Learning Representations (ICLR), 2024.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. Advances in neural information processing systems, 32, 2019.

Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. Revisiting long-term time series forecasting: An
investigation on linear mapping. arXiv preprint arXiv:2305.10721, 2023.

Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
Time series modeling and forecasting with sample convolution and interaction. Advances in
Neural Information Processing Systems, 35:5816–5828, 2022a.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar.
Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and fore-
casting. In International conference on learning representations, 2021.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
the stationarity in time series forecasting. Advances in Neural Information Processing Systems,
35:9881–9893, 2022b.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2024.

Yonghong Luo, Xiangrui Cai, Ying Zhang, Jun Xu, et al. Multivariate time series imputation with
generative adversarial networks. Advances in neural information processing systems, 31, 2018.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.

Spiros Papadimitriou and Philip Yu. Optimal multi-scale patterns in time series streams. In Proceed-
ings of the 2006 ACM SIGMOD international conference on Management of data, pp. 647–658,
2006.

Daniel Povey, Hossein Hadian, Pegah Ghahremani, Ke Li, and Sanjeev Khudanpur. A time-
restricted self-attention layer for asr. In 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 5874–5878. IEEE, 2018.

Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Arian Khorasani, George Adamopoulos,
Rishika Bhagwatkar, Marin Biloš, Hena Ghonia, Nadhir Vincent Hassen, Anderson Schnei-
der, et al. Lag-llama: Towards foundation models for time series forecasting. arXiv preprint
arXiv:2310.08278, 2023.

S Selva Birunda and R Kanniga Devi. A review on word embedding techniques for text classifi-
cation. Innovative Data Communication Technologies and Application: Proceedings of ICIDCA
2020, pp. 267–281, 2021.

12

https://openreview.net/forum?id=cGDAkQo1C0p
https://openreview.net/forum?id=cGDAkQo1C0p

Published as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Yong Liu, Mingsheng Long, and Jianmin Wang. Deep
time series models: A comprehensive survey and benchmark. 2024.

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. CoST: Contrastive
learning of disentangled seasonal-trend representations for time series forecasting. In Interna-
tional Conference on Learning Representations, 2022a. URL https://openreview.net/
forum?id=PilZY3omXV2.

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Etsformer: Exponential
smoothing transformers for time-series forecasting. arXiv preprint arXiv:2202.01381, 2022b.

Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.
Unified training of universal time series forecasting transformers. In Forty-first International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
Yd8eHMY1wz.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in Neural Information
Processing Systems, 34:22419–22430, 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Tem-
poral 2d-variation modeling for general time series analysis. arXiv preprint arXiv:2210.02186,
2022.

Neo Wu, Bradley Green, Xue Ben, and Shawn O’Banion. Deep transformer models for time series
forecasting: The influenza prevalence case. arXiv preprint arXiv:2001.08317, 2020a.

Sifan Wu, Xi Xiao, Qianggang Ding, Peilin Zhao, Ying Wei, and Junzhou Huang. Adversarial sparse
transformer for time series forecasting. Advances in Neural Information Processing Systems, 33,
2020b.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? arXiv preprint arXiv:2205.13504, 2022.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121–11128, 2023.

Tianping Zhang, Yizhuo Zhang, Wei Cao, Jiang Bian, Xiaohan Yi, Shun Zheng, and Jian Li. Less is
more: Fast multivariate time series forecasting with light sampling-oriented mlp structures. arXiv
preprint arXiv:2207.01186, 2022a.

Xiang Zhang, Ziyuan Zhao, Theodoros Tsiligkaridis, and Marinka Zitnik. Self-supervised con-
trastive pre-training for time series via time-frequency consistency. Advances in Neural Informa-
tion Processing Systems, 35:3988–4003, 2022b.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The eleventh international conference on learning
representations, 2023.

Shubao Zhao, Ming Jin, Zhaoxiang Hou, Chengyi Yang, Zengxiang Li, Qingsong Wen, and
Yi Wang. Himtm: Hierarchical multi-scale masked time series modeling for long-term fore-
casting. arXiv preprint arXiv:2401.05012, 2024.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

13

https://openreview.net/forum?id=PilZY3omXV2
https://openreview.net/forum?id=PilZY3omXV2
https://openreview.net/forum?id=Yd8eHMY1wz
https://openreview.net/forum?id=Yd8eHMY1wz

Published as a conference paper at ICLR 2025

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International Conference
on Machine Learning, pp. 27268–27286. PMLR, 2022.

Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series analysis
by pretrained lm. Advances in neural information processing systems, 36:43322–43355, 2023.

Yunyue Zhu and Dennis Shasha. Statstream: Statistical monitoring of thousands of data streams
in real time. In VLDB’02: Proceedings of the 28th International Conference on Very Large
Databases, pp. 358–369. Elsevier, 2002.

14

Published as a conference paper at ICLR 2025

A APPENDIX

A.1 DATASETS

Below, we provide more details on the datasets used in our experiments. Please find a detailed
overview of all employed benchmark datasets in Table 4.

Electricity Load Diagram (ECL): The Electricity dataset, available at UCI (Dua et al., 2017),
contains electricity consumption data measured in kilowatt-hours (kWh). It includes data from 370
clients collected every 15 minutes for 48 months, starting from January 2011 to December 2014.

Weather: The weather dataset contains the recordings of 21 meteorological factors, such as temper-
ature, humidity, and air pressure, collected every 10 minutes from the Weather Station of the Max
Planck Biogeochemistry Institute in Jena, Germany in 2020 (Wu et al., 2021).

Exchange: This dataset collects the daily exchange rates of 8 different currencies (Australia, British,
Canada, Switzerland, China, Japan, New Zealand, and Singapore) from 1990 to 2016 (Wu et al.,
2021).

Electricity Transformer Temperature (ETT): The ETT dataset comprises data collected from
electricity transformers over a time period from July 1, 2016, to June 26, 2018. ETT consists of 4
subsets, where ETTh1 and ETTh2 contain records with hourly resolution, while ETTm1 and ETTm2
are recorded every 15 minutes. In total, ETT includes 69,680 data points without any missing values.
Each record contains seven features, including oil temperature and six different types of external
power load features (Zhou et al., 2021).

Table 4: Details of the used benchmark datasets. The assignment to train, validation, or test follows
the established procedure (Wu et al., 2021).

Dataset Channels Size (train / val / test) Frequency Information

ECL 321 18317 / 2633 / 5261 Hourly Electricity
ETTm1,ETTm2 7 34465 / 11521 / 11521 15min Electricity
ETTh1,ETTh2 7 8545 / 2881 / 2881 Hourly Electricity
Exchange 8 5120 / 665 / 1422 Daily Economy
Weather 21 36792 / 5271 / 10540 10min Weather

A.2 EXPLAINABILITY WITH ATTENTION WEIGHT HIGHLIGHTING

Our methodology’s fundamental architectural principle is predicated on utilizing the attention mech-
anism as its central component and maintaining dimensional consistency throughout all EncLayers.
As detailed in Section 3, the attention layers play a pivotal role in enhancing the representations
from the representation layers.This approach, combined with the low complexity of our architec-
ture, enables us to extract and investigate the attention weights of all EncLayers, offering valuable
insights into our architecture’s functioning and decision making. Due to its design, we are able to
extract and analyze individual attention weights for all N EncLayers’ attention layers and all F
features individually. This means that separate attention weights can be generated for each feature
and EncLayer, thereby enabling their analysis in isolation and combined. For this, it is impera-
tive to revert the matrix dimensions dictated by the ReprLayers back to those of the input TS. This
transformation employs the identical transpose CNN layer utilized in the MergeLayers, albeit with
static weight matrices, designed to calculate the mean attention weight for each value. The N back-
transformed attention matrices can then be visualized together with the output sequence to analyze
the architecture’s weighting during imputation, or prediction. This can be done for all N EncLayers
and features individually or as a sum over all EncLayers to get an overview of all weights.

Figure 3 shows an example with the ETTh1 dataset on the first feature during a forecasting task with
all three EncLayer separately visualized, including the combined attention weights at the bottom.
The solid green line represents the initial input series, followed by a dotted blue line after the 96th
value. This dotted blue trajectory delineates the target horizon. The red line indicates the prediction
of the model. The emphasis of attention is subject to a threshold value of 0.85 (normalized) in order
to emphasize only the most important aspects of attention. We can observe that the attention from
the first EncLayer is more distributed and mainly focuses on high and low points in the sequence.

15

Published as a conference paper at ICLR 2025

Table 5: Performance comparison for the multivariate forecasting task with prediction horizons
H ∈ 96, 192, 336, 720 and fixed lookback window T = 96. AVG shows the averaged result over all
prediction horizons per dataset and model. Bold/underline indicate best/second.

Models TSRM TSRM IFC iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Stationary Autoformer

H MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
C

L

96 0.168 0.255 0.168 0.255 0.148 0.240 0.201 0.281 0.181 0.270 0.219 0.314 0.237 0.329 0.168 0.272 0.197 0.282 0.247 0.345 0.193 0.308 0.169 0.273 0.201 0.317
192 0.176 0.262 0.176 0.262 0.162 0.253 0.201 0.283 0.188 0.274 0.231 0.322 0.236 0.330 0.184 0.289 0.196 0.285 0.257 0.355 0.201 0.315 0.182 0.286 0.222 0.334
336 0.192 0.278 0.192 0.278 0.178 0.269 0.215 0.298 0.204 0.293 0.246 0.337 0.249 0.344 0.198 0.300 0.209 0.301 0.269 0.369 0.214 0.329 0.200 0.304 0.231 0.338
720 0.234 0.312 0.234 0.312 0.225 0.317 0.257 0.331 0.246 0.324 0.280 0.363 0.284 0.373 0.220 0.320 0.245 0.333 0.299 0.390 0.246 0.355 0.222 0.321 0.254 0.361

AVG 0.193 0.277 0.193 0.277 0.178 0.270 0.219 0.298 0.205 0.290 0.244 0.334 0.252 0.344 0.193 0.295 0.212 0.300 0.268 0.365 0.214 0.327 0.193 0.296 0.227 0.338

E
T

T
m

1

96 0.314 0.352 0.314 0.354 0.334 0.368 0.355 0.376 0.329 0.367 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372 0.418 0.438 0.379 0.419 0.386 0.398 0.505 0.475
192 0.367 0.379 0.369 0.383 0.377 0.391 0.391 0.392 0.367 0.385 0.450 0.451 0.398 0.404 0.374 0.387 0.380 0.389 0.439 0.450 0.426 0.441 0.459 0.444 0.553 0.496
336 0.393 0.401 0.398 0.403 0.426 0.420 0.424 0.415 0.399 0.410 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413 0.490 0.485 0.445 0.459 0.495 0.464 0.621 0.537
720 0.448 0.435 0.461 0.437 0.491 0.459 0.487 0.450 0.454 0.439 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453 0.595 0.550 0.543 0.490 0.585 0.516 0.671 0.561

AVG 0.381 0.392 0.386 0.394 0.407 0.410 0.414 0.408 0.387 0.400 0.513 0.495 0.419 0.419 0.400 0.406 0.403 0.407 0.486 0.481 0.448 0.452 0.481 0.456 0.588 0.517

E
T

T
m

2

96 0.173 0.257 0.169 0.253 0.180 0.264 0.182 0.265 0.175 0.259 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292 0.286 0.377 0.203 0.287 0.192 0.274 0.255 0.339
192 0.239 0.301 0.236 0.297 0.250 0.309 0.246 0.304 0.241 0.302 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.362 0.399 0.445 0.269 0.328 0.280 0.339 0.281 0.340
336 0.297 0.338 0.292 0.332 0.311 0.348 0.307 0.342 0.305 0.343 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427 0.637 0.591 0.325 0.366 0.334 0.361 0.339 0.372
720 0.398 0.397 0.404 0.397 0.412 0.407 0.407 0.398 0.402 0.400 1.730 1.042 0.558 0.524 0.408 0.403 0.554 0.522 0.960 0.735 0.421 0.415 0.417 0.413 0.433 0.432

AVG 0.277 0.323 0.275 0.32 0.288 0.332 0.286 0.327 0.281 0.326 0.757 0.611 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.305 0.349 0.306 0.347 0.327 0.371

E
T

T
h1

96 0.379 0.394 0.387 0.401 0.386 0.405 0.386 0.395 0.414 0.419 0.423 0.448 0.479 0.464 0.384 0.402 0.386 0.400 0.654 0.599 0.376 0.419 0.513 0.491 0.449 0.459
192 0.433 0.425 0.426 0.428 0.441 0.436 0.437 0.424 0.460 0.445 0.471 0.474 0.525 0.492 0.436 0.429 0.437 0.432 0.719 0.631 0.420 0.448 0.534 0.504 0.500 0.482
336 0.464 0.446 0.463 0.451 0.487 0.458 0.479 0.446 0.501 0.466 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459 0.778 0.659 0.459 0.465 0.588 0.535 0.521 0.496
720 0.474 0.459 0.477 0.466 0.503 0.491 0.481 0.470 0.500 0.488 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516 0.836 0.699 0.506 0.507 0.643 0.616 0.514 0.512

AVG 0.438 0.431 0.438 0.437 0.454 0.448 0.446 0.434 0.469 0.455 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.440 0.460 0.570 0.537 0.496 0.487

E
T

T
h2

96 0.286 0.334 0.296 0.345 0.297 0.349 0.288 0.338 0.302 0.348 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387 0.707 0.621 0.358 0.397 0.476 0.458 0.346 0.388
192 0.370 0.388 0.371 0.391 0.380 0.400 0.374 0.390 0.388 0.400 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476 0.860 0.689 0.429 0.439 0.512 0.493 0.456 0.452
336 0.417 0.428 0.405 0.420 0.428 0.432 0.415 0.426 0.426 0.433 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541 1.000 0.744 0.496 0.487 0.552 0.551 0.482 0.486
720 0.427 0.443 0.399 0.426 0.427 0.445 0.420 0.440 0.431 0.446 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657 1.249 0.838 0.463 0.474 0.562 0.560 0.515 0.511

AVG 0.375 0.398 0.368 0.396 0.383 0.407 0.374 0.399 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.437 0.449 0.526 0.516 0.450 0.459

W
ea

th
er

96 0.161 0.202 0.153 0.200 0.174 0.214 0.192 0.232 0.177 0.218 0.158 0.230 0.202 0.261 0.172 0.220 0.196 0.255 0.221 0.306 0.217 0.296 0.173 0.223 0.266 0.336
192 0.207 0.245 0.202 0.245 0.221 0.254 0.240 0.271 0.225 0.259 0.206 0.277 0.242 0.298 0.219 0.261 0.237 0.296 0.261 0.340 0.276 0.336 0.245 0.285 0.307 0.367
336 0.261 0.285 0.264 0.268 0.278 0.296 0.292 0.307 0.278 0.297 0.272 0.335 0.287 0.335 0.280 0.306 0.283 0.335 0.309 0.378 0.339 0.380 0.321 0.338 0.359 0.395
720 0.343 0.339 0.342 0.34 0.358 0.347 0.364 0.353 0.354 0.348 0.398 0.418 0.351 0.386 0.365 0.359 0.345 0.381 0.377 0.427 0.403 0.428 0.414 0.410 0.419 0.428

AVG 0.243 0.268 0.240 0.263 0.258 0.278 0.272 0.291 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.309 0.360 0.288 0.314 0.338 0.382

E
xc

ha
ng

e 96 0.080 0.198 0.088 0.208 0.086 0.206 0.093 0.217 0.088 0.205 0.256 0.367 0.094 0.218 0.107 0.234 0.088 0.218 0.267 0.396 0.148 0.278 0.111 0.237 0.197 0.323
192 0.168 0.291 0.179 0.307 0.177 0.299 0.184 0.307 0.176 0.299 0.470 0.509 0.184 0.307 0.226 0.344 0.176 0.315 0.351 0.459 0.271 0.315 0.219 0.335 0.300 0.369
336 0.315 0.406 0.381 0.439 0.331 0.417 0.351 0.432 0.301 0.397 1.268 0.883 0.349 0.431 0.367 0.448 0.313 0.427 1.324 0.853 0.460 0.427 0.421 0.476 0.509 0.524
720 0.849 0.688 0.879 0.698 0.847 0.691 0.886 0.714 0.901 0.714 1.767 1.068 0.852 0.698 0.964 0.746 0.839 0.695 1.058 0.797 1.195 0.695 1.092 0.769 1.447 0.941

AVG 0.353 0.396 0.382 0.413 0.360 0.403 0.379 0.418 0.367 0.404 0.940 0.707 0.370 0.414 0.416 0.443 0.354 0.414 0.750 0.626 0.519 0.429 0.461 0.454 0.613 0.539

Later, attention seems to be more dense and switches on selected representatives of repeating sub-
areas in the time series, e.g. the pattern around 75, as well as on the last known value before the
horizon, giving the impression that it is focusing on these areas more closely. However, it should be
noted that this is not an evaluation but rather an interpretation of a snapshot, and cannot be taken as
evidence of true explainability.

A.3 FORECASTING

We extend our evaluation from Section 4.2 with a more detailed evaluation, including more SOTA
approaches for the comparison, and we provide the results of all prediction lengths separately. For
the evaluation, we consider seven datasets (i.e., ECL, ETTm1, ETTm2, ETTh1, ETTh2, Weather,
and Exchange) and compare against multiple SOTA techniques: iTransformer (Liu et al., 2024),
RLinear (Li et al., 2023), PatchTST (Nie et al., 2022), Crossformer (Zhang & Yan, 2023), TiDE (Das
et al., 2023), TimesNet (Wu et al., 2022), DLinear (Zeng et al., 2023), SCINet (Liu et al., 2022a),
FEDformer (Zhou et al., 2022), Stationary (Liu et al., 2022b), and Autoformer (Wu et al., 2021).

Table 5 shows the extended results with all four prediction horizons (H) separated. We further report
the training and inference time for the ETTh1 dataset with the best configuration (see table 6) and a
horizon of 96 with 28 seconds/epoch for training and 6 seconds/epoch for inference. For the weather
dataset, also with the best configuration and a horizon of 96, we report 194 seconds/epoch during
training and 52 seconds/epoch during inference.

To enhance the reproducibility of our experiments, we also report the best hyperparameter configu-
rations for the TSRM architecture for the forecasting task. Table 6 shows all configurations for all
prediction horizons.

Multiple random runs To evaluate the significance of our forecasting experiments, we provide
the mean and standard deviation (STD) for two exemplary datasets, ETTh2 and Weather, in Table 7.
To calculate the mean and the STD for MSE and MAE, we performed all runs five times with
different seeds.

A.4 EXPERIMENTAL DETAILS

This section gives additional details about our forecasting and imputation related experiments. All
experiments were part of a hyperparameter study utilizing a random search methodology. We exam-
ined the subsequent hyperparameters within these specified ranges:

16

Published as a conference paper at ICLR 2025

N = 0

N = 1

N = 2

Summed and normalized combination over all N

Figure 3: Highlighted attention weights during an ETTh1 forecasting task for all 3 EncLayers,
starting with the first EncLayer at the top and concluding with the the combined version over all
EncLayer at the bottom.

17

Published as a conference paper at ICLR 2025

Table 6: Best hyperparamter configurations for the TSRM model for the forecasting task.

Dataset Config N d h R (kernel size, dilation,
groups [-1=depthwise-convolution]) attention

ELC T=96, H=96 4 16 8 [[3, 1, -1], [5, 2, -1], [10, 3, -1]] entmax15
ETTm1 T=96, H=96 4 128 16 [[3, 1, 1], [10, 2, 1], [15, 3, 1]] entmax15
ETTm2 T=96, H=96 8 64 32 [[3, 1, 1], [10, 2, 1], [15, 3, 1]] entmax15
ETTh1 T=96, H=96 4 128 16 [[3, 1, -1], [5, 2, -1], [10, 3, -1]] entmax15
ETTh2 T=96, H=96 3 64 16 [[3, 1, -1], [5, 2, -1], [10, 3, -1]] entmax15
Weather T=96, H=96 4 128 32 [[3, 1, 1]] entmax15

Exchange T=96, H=96 4 64 16 [[3, 1, 1], [5, 2, 1], [10, 3, 1]] entmax15
ELC T=96, H=192 3 32 8 [[3, 1, -1], [5, 2, -1], [10, 3, -1]] entmax15

ETTm1 T=96, H=192 5 128 16 [[3, 1, 1], [10, 2, 1], [15, 3, 1]] entmax15
ETTm2 T=96, H=192 4 128 64 [[3, 1, -1], [5, 2, -1], [10, 3, -1]] entmax15
ETTh1 T=96, H=192 4 64 16 [[3, 1, 1], [10, 2, 1], [15, 3, 1]] entmax15
ETTh2 T=96, H=192 4 128 32 [[3, 1, 1], [10, 2, 1], [15, 3, 1]] entmax15
Weather T=96, H=192 2 128 4 [[3, 1, 1], [5, 2, 1], [10, 3, 1]] entmax15

Exchange T=96, H=192 4 64 4 [[3, 1, 1], [5, 2, 1], [10, 3, 1]] entmax15
ELC T=96, H=336 3 32 8 [[3, 1, -1], [5, 2, -1], [10, 3, -1]] entmax15

ETTm1 T=96, H=336 4 128 32 [[3, 1, 1], [10, 2, 1], [15, 3, 1]] entmax15
ETTm2 T=96, H=336 8 64 16 [[3, 1, -1], [5, 2, -1], [10, 3, -1]] entmax15
ETTh1 T=96, H=336 4 128 16 [[3, 1, 1], [10, 2, 1], [15, 3, 1]] entmax15
ETTh2 T=96, H=336 3 128 16 [[3, 1, 1], [10, 2, 1], [15, 3, 1]] entmax15
Weather T=96, H=336 4 128 4 [[3, 1, 1], [5, 2, 1], [10, 3, 1]] entmax15

Exchange T=96, H=336 2 64 32 [[3, 1, -1], [5, 2, -1], [10, 3, -1]] entmax15
ELC T=96, H=720 4 32 8 [[3, 1, -1], [5, 2, -1], [10, 3, -1]] entmax15

ETTm1 T=96, H=720 4 128 32 [[3, 1, 1], [10, 2, 1], [15, 3, 1]] entmax15
ETTm2 T=96, H=720 2 128 16 [[3, 1, 1], [10, 2, 1], [15, 3, 1]] entmax15
ETTh1 T=96, H=720 4 64 32 [[3, 1, -1], [5, 2, -1], [10, 3, -1]] entmax15
ETTh2 T=96, H=720 6 64 16 [[3, 1, 1], [10, 2, 1], [15, 3, 1]] entmax15
Weather T=96, H=720 2 64 8 [[3, 1, 1], [5, 2, 1], [10, 3, 1]] entmax15

Exchange T=96, H=720 2 128 4 [[3, 1, 1], [5, 2, 1], [10, 3, 1]] entmax15

Table 7: Mean and STD of MSE and MAE across 5 runs for the ETTh2 and Weather datasets in the
format Mean± STD.

Dataset MSE MAE

ETTh2 0.289±0.028 0.336±0.018
Weather 0.162±0.013 0.204±0.016

18

Published as a conference paper at ICLR 2025

Table 8: Performance comparison for the multivariate imputation task with missing ratios rm ∈
0.125, 0.25, 0.375, 0.5 and a fixed input length of 96. Bold/underline indicate best/second.

Models TSRM TSRM IFC TimesNet ETSformer LightTS DLinear FEDformer Stationary Autoformer Pyraformer Informer LogTrans

rm MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
E

C
L

0.125 0.057 0.146 0.060 0.166 0.085 0.202 0.196 0.321 0.102 0.229 0.092 0.214 0.107 0.237 0.093 0.210 0.089 0.210 0.297 0.383 0.218 0.326 0.164 0.296
0.250 0.065 0.166 0.067 0.168 0.089 0.206 0.207 0.332 0.121 0.252 0.118 0.247 0.120 0.251 0.097 0.214 0.096 0.220 0.294 0.380 0.219 0.326 0.169 0.299
0.375 0.072 0.166 0.083 0.191 0.094 0.213 0.219 0.344 0.141 0.273 0.144 0.276 0.136 0.266 0.102 0.220 0.104 0.229 0.296 0.381 0.222 0.328 0.178 0.305
0.50 0.098 0.203 0.082 0.191 0.100 0.221 0.235 0.357 0.160 0.293 0.175 0.305 0.158 0.284 0.108 0.228 0.113 0.239 0.299 0.383 0.228 0.331 0.187 0.312
AVG 0.073 0.170 0.073 0.179 0.092 0.210 0.214 0.338 0.131 0.262 0.132 0.260 0.130 0.260 0.100 0.218 0.100 0.224 0.296 0.382 0.222 0.328 0.174 0.303

E
T

T
m

1

0.125 0.039 0.123 0.033 0.119 0.019 0.092 0.067 0.188 0.075 0.180 0.058 0.162 0.035 0.135 0.026 0.107 0.034 0.124 0.670 0.541 0.047 0.155 0.041 0.141
0.250 0.039 0.123 0.034 0.121 0.023 0.101 0.096 0.229 0.093 0.206 0.080 0.193 0.052 0.166 0.032 0.119 0.046 0.144 0.689 0.553 0.063 0.180 0.044 0.144
0.375 0.043 0.130 0.046 0.139 0.029 0.111 0.133 0.271 0.113 0.231 0.103 0.219 0.069 0.191 0.039 0.131 0.057 0.161 0.737 0.581 0.079 0.200 0.052 0.158
0.50 0.051 0.142 0.072 0.185 0.036 0.124 0.186 0.323 0.134 0.255 0.132 0.248 0.089 0.218 0.047 0.145 0.067 0.174 0.770 0.605 0.093 0.218 0.063 0.173
AVG 0.043 0.130 0.046 0.141 0.027 0.107 0.120 0.253 0.104 0.218 0.093 0.206 0.061 0.178 0.036 0.126 0.051 0.151 0.716 0.570 0.070 0.188 0.050 0.154

E
T

T
m

2

0.125 0.025 0.091 0.020 0.087 0.018 0.080 0.108 0.239 0.034 0.127 0.062 0.166 0.056 0.159 0.021 0.088 0.023 0.092 0.394 0.470 0.133 0.270 0.103 0.229
0.250 0.027 0.095 0.021 0.096 0.020 0.085 0.164 0.294 0.042 0.143 0.085 0.196 0.080 0.195 0.024 0.096 0.026 0.101 0.421 0.482 0.135 0.272 0.120 0.248
0.375 0.029 0.109 0.024 0.102 0.023 0.091 0.237 0.356 0.051 0.159 0.106 0.222 0.110 0.231 0.027 0.103 0.030 0.108 0.478 0.521 0.155 0.293 0.138 0.260
0.50 0.033 0.118 0.037 0.127 0.026 0.098 0.323 0.421 0.059 0.174 0.131 0.247 0.156 0.276 0.030 0.108 0.035 0.119 0.568 0.560 0.200 0.333 0.117 0.247
AVG 0.028 0.103 0.026 0.103 0.022 0.088 0.208 0.328 0.046 0.151 0.096 0.208 0.100 0.215 0.026 0.099 0.028 0.105 0.465 0.508 0.156 0.292 0.120 0.246

E
T

T
h1

0.125 0.091 0.199 0.046 0.146 0.057 0.159 0.126 0.263 0.240 0.345 0.151 0.267 0.070 0.190 0.060 0.165 0.074 0.182 0.857 0.609 0.114 0.234 0.229 0.330
0.250 0.104 0.212 0.052 0.158 0.069 0.178 0.169 0.304 0.265 0.364 0.180 0.292 0.106 0.236 0.080 0.189 0.090 0.203 0.829 0.672 0.140 0.262 0.207 0.323
0.375 0.112 0.221 0.066 0.173 0.084 0.196 0.220 0.347 0.296 0.382 0.215 0.318 0.124 0.258 0.102 0.212 0.109 0.222 0.830 0.675 0.174 0.293 0.210 0.328
0.50 0.117 0.225 0.181 0.245 0.102 0.215 0.293 0.402 0.334 0.404 0.257 0.347 0.165 0.299 0.133 0.240 0.137 0.248 0.854 0.691 0.215 0.325 0.230 0.348
AVG 0.106 0.214 0.086 0.180 0.078 0.187 0.202 0.329 0.284 0.374 0.201 0.306 0.116 0.246 0.094 0.202 0.102 0.214 0.842 0.662 0.161 0.278 0.219 0.332

E
T

T
h2

0.125 0.060 0.156 0.045 0.141 0.040 0.130 0.187 0.319 0.101 0.231 0.100 0.216 0.095 0.212 0.042 0.133 0.044 0.138 0.976 0.754 0.305 0.431 0.173 0.308
0.250 0.068 0.166 0.046 0.149 0.046 0.141 0.279 0.390 0.115 0.246 0.127 0.247 0.137 0.258 0.049 0.147 0.050 0.149 1.037 0.774 0.322 0.444 0.175 0.310
0.375 0.069 0.168 0.067 0.170 0.052 0.151 0.400 0.465 0.126 0.257 0.158 0.276 0.187 0.304 0.056 0.158 0.060 0.163 1.107 0.800 0.353 0.462 0.185 0.315
0.50 0.165 0.261 0.073 0.178 0.060 0.162 0.602 0.572 0.136 0.268 0.183 0.299 0.232 0.341 0.065 0.170 0.068 0.173 1.193 0.838 0.369 0.472 0.212 0.339
AVG 0.090 0.188 0.058 0.160 0.050 0.146 0.367 0.436 0.120 0.250 0.142 0.260 0.163 0.279 0.053 0.152 0.056 0.156 1.078 0.792 0.337 0.452 0.186 0.318

W
ea

th
er

0.125 0.025 0.044 0.024 0.043 0.025 0.045 0.057 0.141 0.047 0.101 0.039 0.084 0.041 0.107 0.027 0.051 0.026 0.047 0.140 0.220 0.037 0.093 0.037 0.072
0.250 0.029 0.046 0.026 0.040 0.029 0.052 0.065 0.155 0.052 0.111 0.048 0.103 0.064 0.163 0.029 0.056 0.030 0.054 0.147 0.229 0.042 0.100 0.038 0.074
0.375 0.031 0.049 0.029 0.047 0.031 0.057 0.081 0.180 0.058 0.121 0.057 0.117 0.107 0.229 0.033 0.062 0.032 0.060 0.156 0.240 0.049 0.111 0.039 0.078
0.50 0.038 0.054 0.037 0.051 0.034 0.062 0.102 0.207 0.065 0.133 0.066 0.134 0.183 0.312 0.037 0.068 0.037 0.067 0.164 0.249 0.053 0.114 0.042 0.082
AVG 0.031 0.048 0.029 0.045 0.030 0.054 0.076 0.171 0.056 0.116 0.052 0.110 0.099 0.203 0.032 0.059 0.031 0.057 0.152 0.234 0.045 0.104 0.039 0.076

Table 9: Hyperparameter sensitivity study for N .
Dataset N=0 N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETTh1 0.406 0.411 0.381 0.395 0.393 0.401 0.383 0.394 0.398 0.403 0.398 0.403 0.384 0.397 0.379 0.394 0.396 0.407
Weather 0.217 0.248 0.163 0.205 0.162 0.204 0.162 0.204 0.161 0.204 0.162 0.204 0.162 0.205 0.167 0.298 0.168 0.210

• Number of EncLayers: N ∈ [0, 1, . . . 12]

• Number of heads in the self-attention module: h ∈ {2, 4, 8, 16, 32}
• Feature embedding size: d ∈ {8, 16, 32, 64, 128}
• Attention function: attention func ∈ {classic (vanilla) Vaswani et al. (2017), sparse-

attention (entmax15) Wu et al. (2020b)}.
• Amount and configuration of the CNN layers in the ReprLayer: We varied the amount of

CNN layers between 1 and 4. The configuration was designed such that the smallest kernel
covered around 3 values and the biggest around 50% - 80% of the input sequence. The
kernels in between covered middle sized sequences. We also experimented with different
amounts of groups in the CNN layers, as well as with depthwise-convolution to further
decrease the memory footprint.

A.5 IMPUTATION

We extend our evaluation from Section 4.3 with a more detailed evaluation, including more SOTA
approaches for the comparison, and we provide the results of all missing ratios (rm) separately.
Please see Table 8. For the evaluation, we consider six datasets(i.e., ECL, ETTm1, ETTm2,
ETTh1, ETTh2, Weather) and compare against multiple SOTA techniques: TimesNet (Wu et al.,
2022), ETSformer (Woo et al., 2022b), LightTS (Zhang et al., 2022a), DLinear (Zeng et al.,
2022), FEDformer Zhou et al. (2022), Stationary (Liu et al., 2022b), Autoformer (Wu et al., 2021),
Pyraformer (Liu et al., 2021), Informer (Zhou et al., 2021), and LogTrans Li et al. (2019).

A.6 ABLATION STUDY

In addition to the ablation study results in Section 5, we provide more detailed results for each
experiment. Table 9 shows all details, including MSE and MAE metrics for both datasets, of the
sensitivity study for the parameter N . We further provide the exact results of the architecture varia-
tion study in Table 10. Here, we provide the MSE and MAE metrics for both datasets, Weather and
ETTh1.

19

Published as a conference paper at ICLR 2025

Table 10: Ablation study with different architectural variations.
Dataset TSRM TSRM IFC no merge no merge+R1 no merge+R0

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETTh1 0.379 0.394 0.387 0.401 0.382 0.394 0.398 0.403 0.405 0.416
Weather 0.161 0.202 0.153 0.200 0.165 0.206 0.165 0.206 0.166 0.206

20

	Introduction
	Related Work
	Methodology
	Model Architecture

	Experiments
	Experimental Setup
	Long-Term Time Series Forecasting
	Imputation
	Complexity Analysis

	Ablation Study
	Conclusion
	Reproducibility Statement
	Appendix
	Datasets
	Explainability with Attention Weight Highlighting
	Forecasting
	Experimental Details
	Imputation
	Ablation Study

