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Abstract
Multi-label text classification (MLTC) aims to001
assign at least one label from a vast label space002
to a document. This task is challenging due003
to the large number of labels, which can range004
from hundreds to thousands, and the potential005
interdependence of labels. While previous ef-006
forts have achieved success in fully-supervised007
settings, they have limited performance in more008
practical weakly-supervised settings. Despite009
its potential benefits, an auxiliary task of word-010
to-label alignment that aligns words in the input011
text to the large label space has been largely012
overlooked in existing work. Word-to-label013
alignment is significant, as it provides valu-014
able insights into how words contribute to the015
overall classification of a document. However,016
existing MLTC datasets lack ground truth la-017
bels for word-to-label alignment for supervised018
training. To address this limitation, we propose019
a novel framework called OT-CLASS, which020
incorporates unsupervised word-to-label align-021
ment into MLTC using optimal transport (OT).022
Our framework tackles MLTC in a multi-task023
setting, comprising a primary task that clas-024
sifies documents using a standard text classi-025
fication algorithm and an auxiliary task that026
identifies corresponding labels for all input027
document words via optimal transport. Our028
experiments demonstrate that OT-CLASS out-029
performs baselines that do not utilize word-to-030
label alignment, highlighting its effectiveness.031
A detailed analysis reveals that OT-CLASS has032
an amplified advantage in fine-grained label033
spaces and appropriately influences predictions034
through word-to-label alignment.035

1 Introduction036

Multi-label text classification (MLTC) is a task that037

involves assigning at least one label from a vast038

label space to a document. MLTC has a wide range039

of downstream applications including legal judge-040

ment (Nallapati and Manning, 2008; Chalkidis041

et al., 2019; Aletras et al., 2016), scientific pub-042

lication analysis (Mai et al., 2018; Wang et al.,043

2020; Lu, 2011), and e-commerce (Agrawal et al., 044

2013; Prabhu et al., 2018) and sentiment analysis 045

(Cambria et al., 2014). 046

MLTC is challenging due to the large number 047

of labels, which can range from hundreds to thou- 048

sands, and the potential interdependence of labels. 049

Previous research has attempted to address this 050

challenge by modeling the label space to capture 051

relationships between labels. The most common 052

way is to explicitly model these relationships using 053

Graph Neural Networks (GNNs) (Kipf and Welling, 054

2016; Pal et al., 2020; Vu et al., 2023) or implic- 055

itly using regularization (Zhang et al., 2021; Gopal 056

and Yang, 2013, 2015). While these efforts have 057

achieved success in fully-supervised settings, they 058

have limited performance in more practical weakly- 059

supervised. 060

Despite its potential benefits, an auxiliary task 061

that aligns words in the input text to the label space, 062

known as word-to-label alignment, has been largely 063

overlooked in existing work. This task is signif- 064

icant, as it provides valuable insights into how 065

words contribute to the overall classification of 066

a document. However, existing MLTC datasets 067

lack ground truth labels for word-to-label align- 068

ment for supervised training. To address this limi- 069

tation, we propose a novel framework called OT- 070

CLASS, which incorporates unsupervised word-to- 071

label alignment into MLTC using optimal transport 072

(OT) (Figure 1). Our framework tackles MLTC in 073

a multi-task setting, comprising a primary task that 074

classifies documents using a standard text classifi- 075

cation algorithm and an auxiliary task that identifies 076

corresponding labels for all input document words 077

via optimal transport. Our experiments demon- 078

strate that OT-CLASS outperforms baselines that 079

do not utilize word-to-label alignment, highlight- 080

ing its effectiveness. A detailed analysis reveals 081

that OT-CLASS has an amplified advantage in fine- 082

grained label spaces and appropriately influences 083

predictions through word-to-label alignment. 084
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2 Related Work085

2.1 Multi-label Text Classification086

Existing MLTC frameworks exploit the fact that087

there are similarities between many labels. Explic-088

itly modeling relationships within the label space089

is often done by GNNs. Much existing work em-090

beds the input documents, either using Transformer091

(Vaswani et al., 2017) encoders or Bidirectional092

LSTMs (Huang et al., 2015), and the label space093

separately (Pal et al., 2020; Vu et al., 2023). Some094

existing work creates a joint embedding space be-095

tween the labels and the input documents (Chen096

et al., 2021; Wang et al., 2018). Other frameworks097

incorporate the hierarchy implicitly, primarily by098

regularizing the embeddings of each label in the099

label space by their parent label (Zhang et al., 2021;100

Gopal and Yang, 2013, 2015).101

2.2 Optimal Transport in NLP102

OT has been applied to many tasks within NLP.103

The most common task is measuring textual simi-104

larity across sentences (Wang et al., 2022; Lee et al.,105

2022; Arase et al., 2023a; Jiang et al., 2020). OT106

has also been applied to text summarization where107

sentences of a document are matched to potential108

summaries (Tang et al., 2022). Other applications109

of OT in NLP include natural language generation110

(Chen et al., 2020) and multi-lingual representation111

learning (Alqahtani et al., 2021). To the best of112

our knowledge, OTSeq2Set (Cao and Zhang, 2022)113

is the only work that has applied OT to MLTC.114

However, OTSeq2Set treats MLTC as a sequence-115

to-sequence task and uses the optimal transport116

distance as a measurement to force the model to117

focus on the closest labels for text classification.118

OT-CLASS uses optimal transport to learn an unsu-119

pervised auxiliary task of word-to-label alignment.120

3 Methodology121

We propose OT-CLASS, an optimal transport-122

enhanced framework to solve multi-label text clas-123

sification. OT-CLASS (Figure 1) is a multi-task124

framework: one task attempts to learn the corre-125

sponding label a given document should be catego-126

rized under, while the other learns which tokens of127

the input document correspond to which labels.128

3.1 Background129

Problem Formulation The objective of multi-130

label text classification is to categorize a given doc-131

ument into a subset of labels in the label space.132

Since there are multiple labels a document can be 133

categorized under, we operate in the multi-label 134

classification setting. Mathematically, given an 135

input document D = {ti : ∀i ∈ [1, |D|]} con- 136

sisting of |D| tokens ti, the objective is to assign 137

labels y ⊂ Y from label space Y to the input doc- 138

ument. The set of all documents D is denoted by 139

X = {Di : ∀i ∈ [1, |X |]}. 140

Optimal Transport Optimal Transport is used 141

to move mass from one distribution to another dis- 142

tribution as efficient as possible. Efficiency is mea- 143

sured by minimizing the total transportation cost 144

across m inputs of one distribution and n inputs 145

of another distribution. This transportation cost 146

is denoted by C ∈ Rm×n, which indicates the 147

(dis)similarity of elements across both distributions. 148

Identifying which elements should be aligned is 149

the responsibility of the transport plan π ∈ Rm×n
+ , 150

which can be viewed as a joint probability distribu- 151

tion across all sets of inputs. The set of all transport 152

plans is denoted by Π = {π ∈ Rm×n
+ : π1n = 153

a, πT
1m = b}, where 1n and 1m are the vector 154

of ones with length m and n, respectively. The 155

two constraints π1n = a and πT
1m = b enforce 156

that π is a joint probability distribution. a ∈ Rm 157

and b ∈ Rn are probability measures that assign 158

weight to the mass of each element in their respec- 159

tive probability distributions. Concretely, we can 160

define the OT problem as the following constrained 161

minimization problem: 162

min
π∈Π(a,b)

⟨C, π⟩

s.t. π1n = a

πT
1m = b

(1) 163

There are multiple algorithms to solve this opti- 164

mization problem; however, the most common so- 165

lution is a method based on Sinkhorn’s algorithm 166

(Cuturi, 2013). 167

3.2 OT-Enhanced Multi-task Architecture 168

Multi-label Text Classification Given a set of in- 169

put documents X , we first extract its [CLS] embed- 170

dings, which represent the embeddings of the doc- 171

uments, using a Transformer encoder-based LLM: 172

E = LLM(X ) ∈ R|X |×d (2) 173

where d is the dimensionality of each embedding. 174

We then map the feature space to the label space by 175

applying a linear layer on the [CLS] embeddings: 176

ŷ = σ(EWT ) + b (3) 177
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Figure 1: OT-CLASS architecture. The primary document classification task utilizes uses a given document’s
embedding and inputs it to a linear classifier. For the word-to-label alignment auxiliary task, both the label and
document embeddings are used to form the OT plan. The yellow boxes indicate an alignment between the given
document word and the label.

where W ∈ R|Y|×d is a learnable weight matrix,178

b ∈ R|Y|×1 is a learnable bias vector, and σ is the179

Sigmoid activation layer. For each document, we180

then apply binary cross-entropy loss to achieve the181

document classification loss:182

li = [yi · log(ŷi) + (1− yi) · log(1− yi)] (4)183

where ŷ and yi are the predicted and ground truth184

labels for document Di, respectively. The final185

document classification loss across all inputs is the186

average loss across all instances:187

Lcls =
1

|X |

|X |∑
i=1

li (5)188

Word-to-Label Alignment Optimal transport, as189

discussed in Section 3.1, aligns masses from differ-190

ent distributions. The distributions that OT-CLASS191

align are the tokens in the documents and the label192

space. Specifically, we align each token of the in-193

put document to any label in the label space. To do194

this, we first initialize the cost tensor C ∈ R|D|×|Y|195

using pairwise cosine similarity:196

C = {cos(ti, yi) : ∀ti ∈ D, ∀yi ∈ Y} (6)197

Since we wish to capture semantic similarity, we198

choose cosine similarity as the similarity metric, as199

it is one of the most common semantic similarity200

metrics in NLP. We then solve equation (1) using201

Sinkhorn’s algorithm, resulting in the optimal plan202

π∗ ∈ Π. Given the OT plan, we then compute the203

Dataset # Train # Test # Labels Depth

Amazon-531 29,487 19,685 531 3

DBPedia-298 196,665 49,167 298 3

Table 1: Dataset statistics for Amazon-531 and
DBPedia-298, outlining the number of data points and
the depth of the hierarchy.

transportation loss as the inner product between the 204

transport plan and the cost tensor: 205

Lot = ⟨C, π∗⟩ (7) 206

Putting together the document classification loss 207

from equation (5), we get the overall loss that spans 208

both tasks: 209

L = Lcls + λLot (8) 210

where λ ∈ [0, 1] is a hyper-parameter dictating the 211

influence of the transportation alignment. It should 212

be noted that there aren’t any learnable parameters 213

within the OT algorithm itself: The influence of 214

our transportation alignment is seen by updating 215

the weights of the linear layer W and bias vector b 216

listed in equation (3). 217

4 Experiments 218

4.1 Experimental Setup 219

Dataset We conduct experiments on two multi- 220

label text classification datasets (Table 1): Amazon- 221

531 (McAuley and Leskovec, 2013) and DBPedia- 222

298 (Lehmann et al., 2015). Amazon-531 contains 223
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Table 2: Main results of OT-CLASS on Amazon-531
and DBPedia-298 in %. The best results are bolded.

Methodology EF1 P@1 P@3

Dataset: Amazon-531
OT-CLASS 85.49 95.76 84.04

Fully Supervised 83.48 95.20 82.66

Dataset: DBPedia-298
OT-CLASS 97.33 99.49 97.33

Fully Supervised 97.30 99.40 97.30

Table 3: OT-CLASS results of using TELEClass weak
labels on the Amazon-531 and DBPedia-298.

Methodology EF1 P@1 P@3

Dataset: Amazon-531
OT-CLASS 48.78 66.78 48.34

TELEClass (Zhang et al., 2024) 46.49 64.30 46.11

Dataset: DBPedia-298
OT-CLASS 50.08 71.78 50.08

TELEClass (Zhang et al., 2024) 49.59 69.84 49.59

reviews of various Amazon products, where the224

label space corresponds to various product cate-225

gories. DBPedia-298 consists of Wikipedia articles226

and the label space represents the topics that each227

document could be classified as.228

Baselines The baseline we compare against is a229

Transformer model fine-tuned on the groud-truth230

labels in the aforementioned datasets, denoted as231

"Fully Supervised". We also provide analysis under232

the weakly supervised setting, where the ground233

truth labels are acquired not from human annota-234

tion but from weak labels provided by TELEClass235

(Zhang et al., 2024).236

Evaluation Metrics We use the Example-F1237

(Sorensen, 1948) and the Precision at k metrics.238

More details are in Appendix B.239

4.2 Results240

Main Results Our main results are listed in Ta-241

ble 2, which shows that OT-CLASS outperforms all242

baselines on all datasets. OT-CLASS does signif-243

icantly better on Amazon-531 than DBPedia-298,244

which can also be seen when using OT-CLASS in245

the weakly-supervised scenario, using weak labels246

from TELEClass (Table 3). We hypothesize this247

is due to some words in the input document being248

fairly indicative of the corresponding labels.249

Multiple Granularity Analysis We study the ef-250

fectiveness of OT-CLASS across different levels of251

the Amazon-531 taxonomy (Table 4). OT-CLASS252

Table 4: OT-CLASS performance across all levels of the
Amazon-531 hierarchy.

Methodology EF1 P@1 P@3

Level 1
OT-CLASS 46.28 83.69 30.85

Fully Supervised 46.08 82.96 30.72

Level 2
OT-CLASS 75.05 96.29 62.53

Fully Supervised 75.54 95.93 62.93

Level 3
OT-CLASS 39.79 71.28 26.53

Fully Supervised 28.56 47.79 19.04

Figure 2: Analysis of multiple values of λ over the
Amazon-531 dataset.

performs starkly better than the baseline at the most 253

granular level. We hypothesize this is because our 254

auxiliary task narrows the search space of labels for 255

our primary document classification task, which is 256

more pronounced at granular. 257

Word-to-label Alignment Influence To under- 258

stand the impact of OT on the final performance, 259

we evaluate OT-CLASS over a series of λ values. 260

Figure 2 shows this analysis on the Amazon-531 261

dataset. It appears that the optimal value of λ lies 262

on a spectrum: too small of λ indicates that the lack 263

of alignment between words in the document and 264

the label space hurt performance, whereas too large 265

λ indicates that OT-CLASS is paying too much 266

attention to the word alignment. 267

5 Conclusion 268

We propose OT-CLASS, a novel optimal transport- 269

enhanced framework to tackle MLTC. The OT- 270

CLASS architecture encodes dual objectives: The 271

primary task performs document classification 272

while the auxiliary task performs word-to-label 273

alignment. Experiments show that OT-CLASS 274

achieves better performance across all baselines. 275
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Ethics Statement276

Our work follows the ethical standards set by ACL.277

As we don’t deal with sensitive data or domains, we278

do not expect and potential risks using OT-CLASS;279

however, we do not condone usage of our frame-280

work for any malicious motivations. We utilized281

all pre-trained models and datasets in a manner282

consistent with their existence.283

Limitations284

While OT-CLASS outperforms canonical fine-285

tuning, we don’t inject the hierarchical structure286

of the label space. Additionally, we speculate that287

finding more meaningful representations for each288

label, perhaps retrieving label descriptions, would289

let OT-CLASS better comprehend which tokens290

of the input document align with the label space.291

Furthermore, we make the assumption that each292

input token has a corresponding label. This maybe293

too harsh of an assumption, as not every token is294

guaranteed to have a matching label. Thus inves-295

tigating variations of Optimal Transport, such as296

Partial Optimal Transport and Unbalanced Opti-297

mal Transport (Arase et al., 2023b), could result in298

better performance.299
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A Implementation Details481

The optimal value of λ is 0.6 and 0.8 for the482

Amazon-531 and the DBPedia-298 datasets, respec-483

tively. We use RoBERTa-base (Liu et al., 2019) as484

our encoder model from the HuggingFace Trans-485

former library1. All of our experiments were con-486

ducted using 2 NVIDIA A40 GPUs.487

B Evaluation Metrics488

Following TELEClass (Zhang et al., 2024), we use489

the following two evaluation metrics below:490

• Example-F1 (Sorensen, 1948) evaluates multi-491

label classification without ranking:492

EF1 =
2

|X |

|X |∑
i=1

|yi ∩ ŷi|
|yi|+ |ŷi|

(9)493

• Precision at k captures the precision of predic-494

tions ranked by score:495

P@k =
1

k

|X |∑
i=1

|yi ∩ ŷi,:k|
min(k, |yi|)

(10)496

where yi,:k represents the top-k predicted labels497

for document Di.498

1https://github.com/huggingface/transformers
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