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Abstract

Multi-label text classification (MLTC) aims to
assign at least one label from a vast label space
to a document. This task is challenging due
to the large number of labels, which can range
from hundreds to thousands, and the potential
interdependence of labels. While previous ef-
forts have achieved success in fully-supervised
settings, they have limited performance in more
practical weakly-supervised settings. Despite
its potential benefits, an auxiliary task of word-
to-label alignment that aligns words in the input
text to the large label space has been largely
overlooked in existing work. Word-to-label
alignment is significant, as it provides valu-
able insights into how words contribute to the
overall classification of a document. However,
existing MLTC datasets lack ground truth la-
bels for word-to-label alignment for supervised
training. To address this limitation, we propose
a novel framework called OT-CLASS, which
incorporates unsupervised word-to-label align-
ment into MLTC using optimal transport (OT).
Our framework tackles MLTC in a multi-task
setting, comprising a primary task that clas-
sifies documents using a standard text classi-
fication algorithm and an auxiliary task that
identifies corresponding labels for all input
document words via optimal transport. Our
experiments demonstrate that OT-CLASS out-
performs baselines that do not utilize word-to-
label alignment, highlighting its effectiveness.
A detailed analysis reveals that OT-CLASS has
an amplified advantage in fine-grained label
spaces and appropriately influences predictions
through word-to-label alignment.

1 Introduction

Multi-label text classification (MLTC) is a task that
involves assigning at least one label from a vast
label space to a document. MLTC has a wide range
of downstream applications including legal judge-
ment (Nallapati and Manning, 2008; Chalkidis
et al., 2019; Aletras et al., 2016), scientific pub-
lication analysis (Mai et al., 2018; Wang et al.,

2020; Lu, 2011), and e-commerce (Agrawal et al.,
2013; Prabhu et al., 2018) and sentiment analysis
(Cambria et al., 2014).

MLTC is challenging due to the large number
of labels, which can range from hundreds to thou-
sands, and the potential interdependence of labels.
Previous research has attempted to address this
challenge by modeling the label space to capture
relationships between labels. The most common
way is to explicitly model these relationships using
Graph Neural Networks (GNNs) (Kipf and Welling,
2016; Pal et al., 2020; Vu et al., 2023) or implic-
itly using regularization (Zhang et al., 2021; Gopal
and Yang, 2013, 2015). While these efforts have
achieved success in fully-supervised settings, they
have limited performance in more practical weakly-
supervised.

Despite its potential benefits, an auxiliary task
that aligns words in the input text to the label space,
known as word-to-label alignment, has been largely
overlooked in existing work. This task is signif-
icant, as it provides valuable insights into how
words contribute to the overall classification of
a document. However, existing MLTC datasets
lack ground truth labels for word-to-label align-
ment for supervised training. To address this limi-
tation, we propose a novel framework called OT-
CLASS, which incorporates unsupervised word-to-
label alignment into MLTC using optimal transport
(OT) (Figure 1). Our framework tackles MLTC in
a multi-task setting, comprising a primary task that
classifies documents using a standard text classifi-
cation algorithm and an auxiliary task that identifies
corresponding labels for all input document words
via optimal transport. Our experiments demon-
strate that OT-CLASS outperforms baselines that
do not utilize word-to-label alignment, highlight-
ing its effectiveness. A detailed analysis reveals
that OT-CLASS has an amplified advantage in fine-
grained label spaces and appropriately influences
predictions through word-to-label alignment.



2 Related Work

2.1 Multi-label Text Classification

Existing MLTC frameworks exploit the fact that
there are similarities between many labels. Explic-
itly modeling relationships within the label space
is often done by GNNs. Much existing work em-
beds the input documents, either using Transformer
(Vaswani et al., 2017) encoders or Bidirectional
LSTMs (Huang et al., 2015), and the label space
separately (Pal et al., 2020; Vu et al., 2023). Some
existing work creates a joint embedding space be-
tween the labels and the input documents (Chen
et al., 2021; Wang et al., 2018). Other frameworks
incorporate the hierarchy implicitly, primarily by
regularizing the embeddings of each label in the
label space by their parent label (Zhang et al., 2021;
Gopal and Yang, 2013, 2015).

2.2 Optimal Transport in NLP

OT has been applied to many tasks within NLP.
The most common task is measuring textual simi-
larity across sentences (Wang et al., 2022; Lee et al.,
2022; Arase et al., 2023a; Jiang et al., 2020). OT
has also been applied to text summarization where
sentences of a document are matched to potential
summaries (Tang et al., 2022). Other applications
of OT in NLP include natural language generation
(Chen et al., 2020) and multi-lingual representation
learning (Algahtani et al., 2021). To the best of
our knowledge, OTSeq2Set (Cao and Zhang, 2022)
is the only work that has applied OT to MLTC.
However, OTSeq2Set treats MLTC as a sequence-
to-sequence task and uses the optimal transport
distance as a measurement to force the model to
focus on the closest labels for text classification.
OT-CLASS uses optimal transport to learn an unsu-
pervised auxiliary task of word-to-label alignment.

3 Methodology

We propose OT-CLASS, an optimal transport-
enhanced framework to solve multi-label text clas-
sification. OT-CLASS (Figure 1) is a multi-task
framework: one task attempts to learn the corre-
sponding label a given document should be catego-
rized under, while the other learns which tokens of
the input document correspond to which labels.

3.1 Background

Problem Formulation The objective of multi-
label text classification is to categorize a given doc-
ument into a subset of labels in the label space.

Since there are multiple labels a document can be
categorized under, we operate in the multi-label
classification setting. Mathematically, given an
input document D = {t; : Vi € [1,|D|]} con-
sisting of |D| tokens ¢;, the objective is to assign
labels y C Y from label space Y to the input doc-
ument. The set of all documents D is denoted by
X ={D;:Viell,|X|]}

Optimal Transport Optimal Transport is used
to move mass from one distribution to another dis-
tribution as efficient as possible. Efficiency is mea-
sured by minimizing the total transportation cost
across m inputs of one distribution and n inputs
of another distribution. This transportation cost
is denoted by C € R™*", which indicates the
(dis)similarity of elements across both distributions.
Identifying which elements should be aligned is
the responsibility of the transport plan 7 € R"*",
which can be viewed as a joint probability distribu-
tion across all sets of inputs. The set of all transport
plans is denoted by IT = {7 € R"" : 71, =
a,wT]lm = b}, where 1,, and 1,, are the vector
of ones with length m and n, respectively. The
two constraints 71,, = a and 71 1,, = b enforce
that 7 is a joint probability distribution. a € R™
and b € R" are probability measures that assign
weight to the mass of each element in their respec-
tive probability distributions. Concretely, we can
define the OT problem as the following constrained
minimization problem:

min  (C,m)
w€ell(a,b)
st. wl,=a (1
a1, =b

There are multiple algorithms to solve this opti-
mization problem; however, the most common so-
lution is a method based on Sinkhorn’s algorithm
(Cuturi, 2013).

3.2 OT-Enhanced Multi-task Architecture

Multi-label Text Classification Given a set of in-
put documents X, we first extract its [CLS] embed-
dings, which represent the embeddings of the doc-
uments, using a Transformer encoder-based LLM:

E = LLM(X) € RI¥Ixd 2)

where d is the dimensionality of each embedding.
We then map the feature space to the label space by
applying a linear layer on the [CLS] embeddings:

j=c(EWT)+b (3)
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Figure 1: OT-CLASS architecture. The primary document classification task utilizes uses a given document’s
embedding and inputs it to a linear classifier. For the word-to-label alignment auxiliary task, both the label and
document embeddings are used to form the OT plan. The yellow boxes indicate an alignment between the given

document word and the label.

where W € RIV1*4 is a learnable weight matrix,
b € RIYI*¥1 s a learnable bias vector, and o is the
Sigmoid activation layer. For each document, we
then apply binary cross-entropy loss to achieve the
document classification loss:

li = [yi-log(gi) + (1 —wi) - log(1 —wi)]  (4)

where ¢ and y; are the predicted and ground truth
labels for document D;, respectively. The final
document classification loss across all inputs is the
average loss across all instances:

(&)

Word-to-Label Alignment Optimal transport, as
discussed in Section 3.1, aligns masses from differ-
ent distributions. The distributions that OT-CLASS
align are the tokens in the documents and the label
space. Specifically, we align each token of the in-
put document to any label in the label space. To do
this, we first initialize the cost tensor C € RIDIxIYI
using pairwise cosine similarity:

C= {cos(ti,yi) :Vt; € D,Vyi S y} (6)

Since we wish to capture semantic similarity, we
choose cosine similarity as the similarity metric, as
it is one of the most common semantic similarity
metrics in NLP. We then solve equation (1) using
Sinkhorn’s algorithm, resulting in the optimal plan
m* € II. Given the OT plan, we then compute the

Dataset | #Train | #Test | #Labels | Depth
Amazon-531 | 29487 | 19685 | 531 | 3
DBPedia-298 | 196,665 | 49,167 | 298 | 3

Table 1: Dataset statistics for Amazon-531 and
DBPedia-298, outlining the number of data points and
the depth of the hierarchy.

transportation loss as the inner product between the
transport plan and the cost tensor:

Lo = (C,7") (N
Putting together the document classification loss
from equation (5), we get the overall loss that spans
both tasks:

L = Lcls + >\L0t (8)

where A € [0, 1] is a hyper-parameter dictating the
influence of the transportation alignment. It should
be noted that there aren’t any learnable parameters
within the OT algorithm itself: The influence of
our transportation alignment is seen by updating
the weights of the linear layer W and bias vector b
listed in equation (3).

4 Experiments

4.1 Experimental Setup

Dataset We conduct experiments on two multi-
label text classification datasets (Table 1): Amazon-
531 (McAuley and Leskovec, 2013) and DBPedia-
298 (Lehmann et al., 2015). Amazon-531 contains



Table 2: Main results of OT-CLASS on Amazon-531
and DBPedia-298 in %. The best results are bolded.

Methodology EF1 P@l P@3
Dataset: Amazon-531
OT-CLASS 8549 9576 84.04
Fully Supervised 8348 9520 82.66
Dataset: DBPedia-298
OT-CLASS 97.33 9949 97.33
Fully Supervised 97.30 99.40 97.30

Table 3: OT-CLASS results of using TELEClass weak
labels on the Amazon-531 and DBPedia-298.

Methodology EF1 P@l1 P@3
Dataset: Amazon-531

OT-CLASS 48.78 66.78 48.34

TELEClass (Zhang et al., 2024)  46.49 64.30 46.11
Dataset: DBPedia-298

OT-CLASS 50.08 71.78 50.08

TELECIass (Zhang et al., 2024)  49.59 69.84 49.59

reviews of various Amazon products, where the
label space corresponds to various product cate-
gories. DBPedia-298 consists of Wikipedia articles
and the label space represents the topics that each
document could be classified as.

Baselines The baseline we compare against is a
Transformer model fine-tuned on the groud-truth
labels in the aforementioned datasets, denoted as
"Fully Supervised". We also provide analysis under
the weakly supervised setting, where the ground
truth labels are acquired not from human annota-
tion but from weak labels provided by TELEClass
(Zhang et al., 2024).

Evaluation Metrics We use the Example-F1
(Sorensen, 1948) and the Precision at k metrics.
More details are in Appendix B.

4.2 Results

Main Results Our main results are listed in Ta-
ble 2, which shows that OT-CLASS outperforms all
baselines on all datasets. OT-CLASS does signif-
icantly better on Amazon-531 than DBPedia-298,
which can also be seen when using OT-CLASS in
the weakly-supervised scenario, using weak labels
from TELEC]lass (Table 3). We hypothesize this
is due to some words in the input document being
fairly indicative of the corresponding labels.

Multiple Granularity Analysis We study the ef-
fectiveness of OT-CLASS across different levels of
the Amazon-531 taxonomy (Table 4). OT-CLASS

Table 4: OT-CLASS performance across all levels of the
Amazon-531 hierarchy.

Methodology EF1 P@l P@3
Level 1

OT-CLASS 46.28 83.69 30.85

Fully Supervised 46.08 8296 30.72
Level 2

OT-CLASS 75.05 96.29 62.53

Fully Supervised 75.54 9593  62.93
Level 3

OT-CLASS 39.79 71.28 26.53

Fully Supervised  28.56 47.79 19.04
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Figure 2: Analysis of multiple values of A over the
Amazon-531 dataset.

performs starkly better than the baseline at the most
granular level. We hypothesize this is because our
auxiliary task narrows the search space of labels for
our primary document classification task, which is
more pronounced at granular.

Word-to-label Alignment Influence To under-
stand the impact of OT on the final performance,
we evaluate OT-CLASS over a series of A values.
Figure 2 shows this analysis on the Amazon-531
dataset. It appears that the optimal value of A lies
on a spectrum: too small of ) indicates that the lack
of alignment between words in the document and
the label space hurt performance, whereas too large
A indicates that OT-CLASS is paying too much
attention to the word alignment.

5 Conclusion

We propose OT-CLASS, a novel optimal transport-
enhanced framework to tackle MLTC. The OT-
CLASS architecture encodes dual objectives: The
primary task performs document classification
while the auxiliary task performs word-to-label
alignment. Experiments show that OT-CLASS
achieves better performance across all baselines.



Ethics Statement

Our work follows the ethical standards set by ACL.
As we don’t deal with sensitive data or domains, we
do not expect and potential risks using OT-CLASS;
however, we do not condone usage of our frame-
work for any malicious motivations. We utilized
all pre-trained models and datasets in a manner
consistent with their existence.

Limitations

While OT-CLASS outperforms canonical fine-
tuning, we don’t inject the hierarchical structure
of the label space. Additionally, we speculate that
finding more meaningful representations for each
label, perhaps retrieving label descriptions, would
let OT-CLASS better comprehend which tokens
of the input document align with the label space.
Furthermore, we make the assumption that each
input token has a corresponding label. This maybe
too harsh of an assumption, as not every token is
guaranteed to have a matching label. Thus inves-
tigating variations of Optimal Transport, such as
Partial Optimal Transport and Unbalanced Opti-
mal Transport (Arase et al., 2023b), could result in
better performance.
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A Implementation Details

The optimal value of X\ is 0.6 and 0.8 for the
Amazon-531 and the DBPedia-298 datasets, respec-
tively. We use RoBERTa-base (Liu et al., 2019) as
our encoder model from the HuggingFace Trans-
former library!. All of our experiments were con-
ducted using 2 NVIDIA A40 GPUs.

B Evaluation Metrics

Following TELEClass (Zhang et al., 2024), we use
the following two evaluation metrics below:

* Example-F1 (Sorensen, 1948) evaluates multi-
label classification without ranking:

|yz myz
9
T A& Z Y3l + (7]

* Precision at k captures the precision of predic-
tions ranked by score:

‘yz N yz k’
Pak = g 1
rmn min(k, y;]) (10)

where y; .;, represents the top-k predicted labels
for document D;.

"https://github.com/huggingface/transformers



