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Abstract
In an era of increasingly diverse information
sources, multi-modal clustering (MMC) has be-
come a key technology for processing multi-
modal data. It can apply and integrate the feature
information and potential relationships of differ-
ent modalities. Although there is a wealth of re-
search on MMC, due to the complexity of datasets,
a major challenge remains in how to deeply ex-
plore the complex latent information and interde-
pendencies between modalities. To address this
issue, this paper proposes a method called super
deep contrastive information bottleneck (SDCIB)
for MMC, which aims to explore and utilize all
types of latent information to the fullest extent.
Specifically, the proposed SDCIB explicitly in-
troduces the rich information contained in the en-
coder’s hidden layers into the loss function for the
first time, thoroughly mining both modal features
and the hidden relationships between modalities.
Moreover, the proposed SDCIB performs dual
optimization by simultaneously considering con-
sistency information from both the feature distri-
bution and clustering assignment perspectives, the
proposed SDCIB significantly improves cluster-
ing accuracy and robustness. We conducted exper-
iments on 4 multi-modal datasets and the accuracy
of the method on the ESP dataset improved by
9.3%. The results demonstrate the superiority and
clever design of the proposed SDCIB. The source
code is available on https://github.com/ShizheHu.

1. Introduction
In recent years, with the rapid advancement of information
acquisition technology, data storage capacity has also devel-
oped quickly. The sources of information have gradually
diversified, evolving from traditional single-modal data to
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multi-modal data, while the scale and complexity of the
data have significantly increased (Srivastava & Salakhutdi-
nov, 2012; Baltrusaitis et al., 2019; Ramesh et al., 2021).
“Modality” refers to different types of data obtained from
various perspectives of information acquisition and process-
ing (Hacquard, 2010). For example, a video can capture data
information from both the sound and image perspectives.
However, traditional single-modal data analysis methods
often struggle to comprehensively handle multi-modal data.
Multi-modal clustering (MMC), as a key technology, can
fully mine and integrate information from different modali-
ties, revealing the potential complementarity between them.
It has been widely applied in areas such as cross-modal re-
trieval (Hu et al., 2019; Chun et al., 2021; Yuan et al., 2022),
intelligent recommendation (Liu et al., 2021), and biomedi-
cal science (Acosta et al., 2022; Si et al., 2023). Therefore,
research on MMC methods provides vast prospects for prac-
tical applications.

Existing traditional MMC methods mainly focus on three
categories: subspace learning, graphical models and matrix
decomposition (Cai et al., 2011; Xia et al., 2023). How-
ever, as multi-modal datasets become increasingly complex,
traditional MMC methods are prone to the “curse of dimen-
sionality” in high-dimensional spaces and struggle to handle
high-dimensional data effectively.

At the same time, with the continuous development of deep
learning, deep MMC methods fully integrate the advantages
of deep neural networks, providing more solutions for MMC
(Ngiam et al., 2011; Andrew et al., 2013; Xie et al., 2016;
Liu et al., 2023; Gao et al., 2020). For example, Wang et
al. (Wang et al., 2021) combined the self-supervised t-SNE
module with the self-expression layer to learn a shared low-
dimensional representation. Mao et al. (Mao et al., 2021)
adopted the idea of contrastive learning to maximize the
shared information between modalities and minimize the
redundancy within each modality, achieving efficient clus-
tering by integrating a multi-modal shared encoder with
variational optimization. In recent years, Rong et al. (Rong
et al., 2022) utilized a variational autoencoder architecture
based on the autoencoder and incorporated an attention
mechanism to extract cluster-friendly representations from
multi-omics data. However, the aforementioned methods
fail to deeply understand the complex relationships within
data samples across modalities, neglecting the close connec-
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tions between the data, and may even disrupt the internal
associations.

Therefore, although a large number of MMC methods have
emerged in both traditional and deep learning fields in recent
years, there are still some limitations in the actual clustering
process. On the one hand, most existing MMC methods
simply achieve a consensus between different modalities
to fuse the data. While this improves clustering perfor-
mance to some extent, it fails to deeply explore and capture
the complex latent information and interdependencies be-
tween modalities in multi-modal data. On the other hand,
many deep multi-modal methods often only focus on sin-
gle data information such as clustering or features, without
considering the two simultaneously. As a result, much of
the inherent latent structural information in the data sam-
ples is ignored or even disrupted, failing to capture the
more important heterogeneity between modalities. In this
study, we propose a method called super deep contrastive
information bottleneck for MMC (SDCIB) to address the
aforementioned issues. The proposed SDCIB efficiently
mines the latent information between modalities through the
hidden layers. Meanwhile, it simultaneously considers both
feature distribution and clustering assignment to better cap-
ture the inherent structure of the data. Our main approach
is designed for multi-modal data, where we first combine
the information bottleneck theory to design a variational
IB encoder, then incorporate the concept of contrastive to
optimize the computation of consistency information. And
finally obtain the final clustering results through a clustering
layer. The proposed SDCIB is the first to explicitly intro-
duce the hidden layer information from the encoder into the
clustering task. On one hand, the proposed SDCIB fully
incorporates the concept of “compression” from the infor-
mation bottleneck theory to eliminate redundant information
in the modalities. On the other hand, the proposed SDCIB
simultaneously focuses on consistency information at both
the feature and clustering levels, deeply connecting the hid-
den layer’s latent information to uncover the data’s potential
feature information, thereby better assisting clustering. Fi-
nally, The proposed SDCIB designs a clustering layer to
obtain accurate clustering results. The main contributions
of this work are as follows:

• For the MMC problem, we proposed SDCIB, which
is the first to explicitly introduce the information con-
tained in the encoder’s hidden layers into the loss func-
tion, fully exploring the implicit information in the
modal features.

• The proposed SDCIB performs dual optimization by
simultaneously considering consistency information
from both the feature distribution and clustering assign-
ment perspectives. This approach can better capture
the latent information between modalities, significantly

improving clustering accuracy and robustness.

• In the specific experiments, we selected several clas-
sic multi-modal datasets and compared the proposed
SDCIB with the state-of-the-art traditional and deep
MMC methods. The proposed SDCIB consistently
demonstrated significant advantages in clustering per-
formance.

2. Method
2.1. Revisit: Information Bottleneck

The information bottleneck (IB) principle (Tishby et al.,
1999) is based on information theory and is widely used in
various real-world applications, such as image clustering
(Hu et al., 2021) and classification tasks (Lou et al., 2013).
A detailed discussion of the IB principle can be found in
our survey (Hu et al., 2024). Its core concept is to control
the balance between the amount of information compres-
sion and relevance. Suppose there is a source variable X
and a label Y . The goal of the information bottleneck is
to find a compressed representation T through the source
variable X , which compresses the source variable X as
much as possible while retaining the relevance between the
compressed representation T and the label Y as much as
possible. Therefore, the objective function of the IB theory
can be formulated as:

Lmin = I(T ;X)− βI(T ;Y ). (1)

where I(T ;X) represents the mutual information between
the compressed representation T and the source variable X .
The smaller it is, the greater the compression. I(T ;Y ) rep-
resents the mutual information between the compressed rep-
resentation T and the label Y . The larger it is, the stronger
the retained correlation. β is used to control the balance
between compression and retention.

In recent years, IB theory has been widely used in various
MMC tasks (Federici et al., 2020; Yan et al., 2024; 2025).
For example, Federici et al. (Federici et al., 2020) proposed
a multi-modal IB method that can identify non-shared in-
formation between two modalities, but it only explores the
correlation of different modalities through feature distribu-
tion, ignoring the consistency of cluster assignment, making
the learned feature representation unfriendly to downstream
clustering tasks. Yan et al. (Yan et al., 2024) proposed a
multi-modal IB method that uses shared representations of
multiple modalities to eliminate private information of a
single modality. Yan et al. (Yan et al., 2025) further pro-
posed an incremental IB method that builds acknowledge
base to solve the clustering problem of incremental modali-
ties. Both of the above works considered the consistency of
feature distribution and cluster assignment at the same time,
but they failed to consider the correlation between feature
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Figure 1. Framework of the proposed SDCIB. Given the original
features Xi of different modalities, they are input into the varia-
tional IB encoder to obtain the hidden layer features Hi

1, Hi
2, . . . ,

Hi
l−1 and the compressed representation Hi

L. Hi
L passes through

the clustering layer to obtain the clustering result Y i, which in turn
guides the encoder to compress Xi. In order to make different
modalities as consistent as possible, we compare them from the
perspectives of feature distribution and cluster allocation.

distribution and clustering results. All the above MMC IB
methods ignore the rich information contained in the hidden
layers of the encoder and fail to explicitly utilize it. The
above limitations motivate us to propose SDCIB.

2.2. Problem Definition

For a given MMC task, suppose there are M modalities
and N data samples to be clustered, which can eventually
be clustered into K clusters. Our goal is to learn better
feature representations Hi

L in M modalities through the
proposed SDCIB, to obtain good clustering results Y i for
each modality, and finally combine the clustering results Y i

for each modality to obtain the final clustering result Y by:

yi = argmax
j∈{1,2,...,K}

M∑
m=1

I (ymi = j) (2)

where yi indicates which cluster i-th sample belongs to in
the final clustering partition, and ymi indicates which cluster
i-th sample belongs to in the clustering partition of m-th
modal.

2.3. Network Architecture

Our network framework is shown in Figure 1, which can
be divided into three parts. 1) Variational IB encoder: The
original features Xi of the ith modality are passed through
the variational IB encoder we designed to obtain the hidden
layer features Hi

1, Hi
2, . . . , Hi

L−1 and the compressed rep-
resentation Hi

L, where L is the number of encoder layers
and Hi

L represents the features output by the encoder of
the ith modality at the Lth layer. Although encoders of
different modalities have the same structure, their training
processes are independent of each other. 2) Contrastive
learning loss: By comparing features Hi

1, Hi
2, . . . , Hi

L−1

between different modalities and the clustering results Y i,
the commonalities between different modalities are explored
to learn features Hi

L that are more conducive to clustering.
3) Clustering layer: The clustering result Y i of i-th modal-
ity is obtained directly through the compressed feature Hi

L

through a linear layer and a softmax function.

2.4. Hidden-layer Information

After the original feature Xi enters the encoder, it will be
gradually compressed into a more compact representation
Hi

L. The hidden layer representation Hi
1, Hi

2, ..., Hi
L−1 is

the intermediate result of the compression behavior. Explic-
itly introducing reasonable hidden layer representations Hi

1,
Hi

2, ..., Hi
L−1 into the objective function has the following

advantages:

• Richer feature representations: As the network depth
increases, each hidden layer gradually refines the fea-
ture representation. This makes the representation
more informative and structured, which is particularly
beneficial for clustering tasks.

• Enhanced model interpretability: Hidden layer rep-
resentations provide insight into how the model grad-
ually transforms the input. This transparency helps
understand the learned hierarchical structure, facilitat-
ing model analysis and fine-tuning.

• Optimization benefits of the information bottleneck
framework: Introducing hidden layer information in
the information bottleneck framework helps regulate
the trade-off between compression and retention of
relevant information, resulting in more discriminative
and generalizable clustering results.

2.5. Objective Function

Information Bottleneck. IB compresses the original fea-
tures Xi to obtain a good compression representation Hi

L,
so as to obtain a better clustering result Y i. The hidden
layer information Hi

1, Hi
2, ..., Hi

L−1 can participate in this
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compression process, helping us to obtain a better compres-
sion representation Hi

L. Therefore, Our method explicitly
introduces the hidden layer information into IB and obtains
the following loss function:

L1 =

v∑
i=1

L∑
l=1

I(Xi;Hi
l )− βI(Y i;Hi

l ) (3)

where I(Xi;Hi
l ) is the mutual information between the

original feature Xi and the feature Hi
l , I(Y i;Hi

l ) is the mu-
tual information between the feature Hi

l and the clustering
result Y i, and the parameter β is used to control the com-
pression and retention of feature information. The smaller
β, the higher the degree of information compression.

Consistency Information. In MMC tasks, it is a common
method to explore the consistency information between mul-
tiple modalities to seek reasonable data parition. In order to
maximize the use of the consistency information between
different modalities, we not only consider the consistency
information at the feature level, but also the consistency
information at the cluster level. At the same time, in or-
der to ensure that the compressed features Hi

L of different
modalities are as consistent as possible, the proposed SD-
CIB keeps the feature information Hi

1, Hi
2, ..., Hi

L−1 of
different modalities consistent as much as possible in the
hidden layer. Therefore, the loss function of the proposed
SDCIB in terms of consistency information is:

L2 =

v∑
i=1

v∑
j=1

Ii ̸=j [I(Y
i;Y j) +

L∑
l=1

I(Hi
l ;H

j
l )] (4)

where I(Hi
l ;H

j
l ) is the mutual information between fea-

tures Hi
l and Hj

l of different modalities, which measures
the consistency of Hi

l and Hj
l . I(Y i;Y j) is the mutual

information between the clustering results Y i and Y j of
different modalities, representing the consistency of Y i and
Y j .

Overall Objective Function. Therefore, the proposed SD-
CIB can compress the original features while maintaining
the consistency between modalities and the correlation be-
tween the compressed features and data partitions. More-
over, compared with the ordinary deep IB method, it further
explicitly utilizes the hidden layer in the encoder. Therefore,
we call it Super Deep Contrastvie Inforamtion Bottleneck.
Its overall loss function is as follows:

LSDCIB = αLSIB − (1 − α)LCon

= α

v∑
i=1

L∑
l=1

[I(X
i
;H

i
l ) − βI(Y

i
;H

i
l )]

− (1 − α)

v∑
i=1

v∑
j=1

Ii̸=j [I(Y
i
;Y

j
) +

L∑
l=1

I(H
i
l ;H

j
l )]

(5)

where α is used to weigh the importance of IB and consis-
tency information in obtaining compressed features.

2.6. Optimization

In high-dimensional continuous space, the calculation of
mutual information has always been a difficult problem. In
order to obtain a good representation of mutual information,
we adopted three different strategies to estimate mutual
information, namely the variational method, Information
Noise-Contrastive Estimation (InfoNCE)(Song & Ermon,
2020) and Mutual Information Neural Estimation (MINE)
(Belghazi et al., 2018).

Variational method is used to calculate the amount of in-
formation I(Xi;Hi

l ) retained by the compressed variable
Hi

l of the original feature Xi. From the definition of mutual
information, we can get the calculation formula of mutual
information as follows:

I(Xi;Hi
l ) =

∫
xi,hi

l

p(xi, hi
l)log

p(xi, hi
l)

p(xi)p(hi
l)

=

∫
xi,hi

l

p(xi, hi
l)log

p(hi
l|xi)

p(hi
l)

(6)

Since p(hi
l) is difficult to obtain, we use q(hi

l) to approxi-
mate p(hi

l). According to the non-negativity of Kullback-
Leibler (KL) divergence, we can get:

KL[p(hi
l)|q(hi

l)] =

∫
hi
l

p(hi
l)log

p(hi
l)

q(hi
l)

> 0

⇒
∫
hi
l

p(hi
l)log p(h

i
l) >

∫
hi
l

p(hi
l)log q(h

i
l)

(7)

Rewrite I(Xi;Hi
l ) into the following inequality form:

I(Xi;Hi
l ) =

∫
xi,hi

l

p(xi, hi
l)log

p(hi
l|xi)

p(hi
l)

<

∫
xi,hi

l

p(xi, hi
l)log

p(hi
l|xi)

q(hi
l)

<

∫
xi,hi

l

p(hi
l|xi)p(xi)log

p(hi
l|xi)

q(hi
l)

(8)

To simplify the formula, we use Monte Carlo sampling
(Von Ahn & Dabbish, 2005) to replace p(xi) with 1

N and
get:

I(Xi;Hi
l ) <

1

N

N∑
i

∫
hi
l

p(hi
l|xi)p(xi)log

p(hi
l|xi)

q(hi
l)

(9)

Where N is the number of data samples.

Assuming that p(hi
l|xi) obeys a Gaussian distribution, its

mean µ and standard deviation σ can be obtained by the
variational IB encoder, where ϵ obeys a standard normal
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Algorithm 1 Algorithm for Optimizing the proposed SD-
CIB

1: Input: Dataset with M modalities {Xi}mi=1, the num-
ber of clusters K, the parameter α, β.

2: Output: Final partition Y .
3: Random Initialization: Randomly initialize the pa-

rameters of M modality-specific encoders and M ∗ L
mutual information estimators.

4: repeat
5: Calculate LMINE by Eq. (12)
6: Optimize the parameters of mutual information esti-

mators
7: Obtain I(Y i;Hi

l ) by mutual information estimators
8: Calculate I(Xi;Hi

l ) by Eq. (8)
9: Calculate I(Hi

l ;H
j
l ) and I(Y i;Y j) and by Eq. (11)

10: Optimize the parameters of modality-specific en-
coders

11: until Convergence
12: Obtain partition Y i

13: Obtain final partition Y by Eq. (2)

distribution. Now I(Xi;Hi
l ) can be rewritten as:

I(Xi;Hi
l ) <

1

N

N∑
i

Eϵlog
p(hi

l|xi)

q(hi
l)

<
1

N

N∑
i

EϵKL[p(hi
l|xi), q(hi

l)]

(10)

InfoNCE is used when calculating mutual information
I(Hi

l ;H
j
l ) between compressed variables of different

modalities and mutual information I(Y i;Y j) between clus-
tering results. InfoNCE estimates the mutual information
by contrastive loss:

I(Y i;Y j) ≈ Ep(yi,yj)

[
log

exp(fθ(y
i, yj))∑N

n=1 exp(fθ(y
i, yjn))

]
+logN

(11)
where fθ represents the similarity, (yi, yj) is a positive sam-
ple pair, (yi, yjn) is a negative sample pair, and N is the
total number of samples. Similarly, the mutual information
I(Hi

l ;H
j
l ) can also be calculated by Eq. (11).

MINE is used to calculate the amount of information that
the compressed variable Hi

l retains about the label Y i. The
dimensions of Hi

l and Y i are not consistent, where the di-
mension of Hi

l is higher than that of Y i. The variational
method requires manual alignment of the dimensions of
Hi

l and Y i, which may cause information loss during the
alignment process. The InfoNCE method requires the con-
struction of a large number of negative samples, and due
to the small dimension of Y i, which may lead to insuffi-
cient discrimination between positive and negative samples,

thus affecting the accuracy of the estimation. In contrast,
MINE provides a more robust mutual information estima-
tion method that obtains the lower bound of the mutual
information by optimizing the loss:

LMINE = −Ep(x,y)[Tθ(x, y)]+logEp(x)p(y)[exp(Tθ(x, y))]
(12)

where T is the function that the neural network needs to fit,
and θ is the learnable parameter.

For the specific optimization process, see Algorithm 1.

3. Experiment
3.1. Datasets

We selected 4 datasets of different scales for experimental
evaluation, with detailed datasets information presented in
Table 1.

Caltech-2V(Fei-Fei et al., 2004) contains 1,440 image sam-
ples, categorized into 7 classes based on WM and CEN-
TRIST modalities. Event (Li & Fei-Fei, 2007) encompasses
1,579 sports event image samples, divided into 8 categories
based on 3 modalities: Color Attention, SIFT, and TPLBP.
IAPR (Grubinger et al., 2006) includes 7,855 image sam-
ples, accompanied by natural language descriptions, and
is divided into 6 categories using SIFT representation and
BoW model modalities. ESP (Von Ahn & Dabbish, 2005)
sourced from a social image collection on an image an-
notation game website, comprises 11,032 image samples,
categorized into 7 classes.

3.2. Compared Methods

To evaluate the effectiveness of the proposed SDCIB, we
adopt fourteen baseline methods as comparisons. Fourteen
of these methods span three major categories of modality
clustering approaches.

Single-Modal Clustering / Full-Modal Clustering Meth-
ods: K-Means (KM) and Normalized Cuts (Ncuts) are two
classic and widely used single-modal clustering methods.
Based on single-modal clustering, full-modal versions are
developed by splicing multiple modalities into a unified
representation, ultimately leading to All-modal K-Means
(AmKM) and All-modal Ncuts (AmNcuts).

Traditional MMC Methods: Below are 4 representative
traditional MMC methods. These methods enhance the

Table 1. Details of various kinds of multi-modal datasets.

DATASET MODALITIES SAMPLES CLUSTERS DIMENSIONALITY

CALTECH-2V 2 1440 7 (40,254)
EVENT 3 1579 8 (1000,1000,1000)
IAPR 2 7855 6 (1200,500)
ESP 3 11032 7 (300,300,300)

5



Super Deep Contrastive Information Bottleneck for Multi-modal Clustering

robustness of clustering from different methodological per-
spectives.

(1) CoregMVSC (Kumar et al., 2011):A multi-modal spec-
tral clustering method that applies co-regularization to the
clustering results.

(2) RMKMC (Cai et al., 2013): A multi-modal k-means
clustering method that adaptively adjusts modality weights
to handle differences in modal quality.

(3) SwMC (Nie et al., 2017): A totally self-weighted multi-
modal clustering method for automatic modality weighting.

(4) ONMSC (Zhou et al., 2020): A multi-modal clustering
method that integrates the neighborhood information of first-
order and high-order Laplacian matrices.

Deep MMC Methods: Below are 6 representative state-of-
the-art methods in the field of deep MMC, demonstrating
significant progress in recent years.

(1) SiMVC and CoMVC (Trosten et al., 2021): The paper
introduces two multi-modal clustering models. SiMVC is a
simple baseline model for deep clustering that performs clus-
tering by learning a weighted fusion of representations from
different modalities via linear combination. CoMVC builds
on this by introducing a contrastive alignment module to
overcome the limitations of traditional alignment methods.

(2) MFLVC (Xu et al., 2022): A hierarchical feature learn-
ing clustering method that efficiently integrates multi-level
feature learning and contrastive learning.

(3) DealMVC (Yang et al., 2023): A clustering method
that ensures the consistency of similar samples using a dual

contrastive calibration network.

(4) ICMVC (Chao et al., 2024): An end-to-end clustering
method that handles missing data through multi-modal con-
sistency transfer and graph convolutional networks, and
combines contrastive learning.

(5) DIVICE (Lu et al., 2024): A multi-modal clustering
method based on decoupled contrastive learning and high-
order random walks, and integrates the idea of contrastive
learning to improve clustering performance.

3.3. Settings of Experiments

The experiments adopts two commonly used clustering eval-
uation metrics, accuracy (ACC) and normalized mutual in-
formation (NMI), to assess clustering performance. Higher
values of these metrics indicate better clustering quality. For
single-modal clustering methods, the clustering result of
the best-performing modality is selected as the final result.
For other MMC methods, the parameter configurations in
our experiments follow the original settings provided in
their respective papers, and the optimal results under the
recommended parameters are chosen for comparison.

In the implementation of the proposed SDCIB, parame-
ters α and β are defined. α takes values from the range
{0.1, 0.2, 0.4, 0.6, 0.8}, and β takes values from the range
{1, 10, 100, 1000, 10000}. The specific choices of α and β
will be presented in detail in subsequent chapters. The en-
tire training process of the experiment is completed within
40 epochs, with a batch size of 32. The proposed SDCIB
consists of M modality-specific encoders, 4 ∗ M mutual
information estimators, and M clustering layers. Each

Table 2. Clustering performance with Acc and NMI on various kinds of datasets (the bold and underlined values in the table represent the
best and second-best results respectively).

METHODS
CALTECH-2V EVENT IAPR ESP
ACC NMI ACC NMI ACC NMI ACC NMI

KM 41.6 30.5 34.7 20.7 38.9 17.2 48.4 33.5
NCUTS (TPAMI’00) 39.9 31.2 34.8 15.5 41.9 18.9 45.7 29.8

AMKM 46.4 31.4 28.7 11.6 40.4 17.0 35.0 20.7
AMNCUTS (TPAMI’00) 42.8 25.2 35.2 20.3 42.2 18.9 32.5 19.0

COREGMVSC (NIPS’11) 49.2 39.6 35.5 22.2 35.1 18.4 45.2 30.7
RMKMC (IJCAI’13) 51.4 33.5 39.5 25.1 36.4 15.9 35.1 20.8

SWMC (IJCAI’17) 34.2 26.6 16.7 2.2 30.2 23.1 37.8 22.8
ONMSC (AAAI’20) 34.2 26.6 48.6 33.8 21.6 11.1 21.2 12.2

SIMVC (CVPR’21) 51.1 36.9 36.8 23.1 42.7 18.5 33.6 14.6
COMVC (CVPR’21) 59.2 49.2 49.1 35.5 46.7 21.5 43.4 27.3
MFLVC (CVPR’22) 61.5 53.6 48.5 34.9 47.3 22.6 52.1 36.9

DEALMVC (ACM MM’23) 47.6 37.9 26.5 9.3 35.0 10.8 43.4 27.4
ICMVC (AAAI’24) 49.6 37.9 36.4 30.3 37.1 16.8 46.7 30.0
DIVICE (AAAI’24) 64.1 52.9 31.4 12.4 45.6 23.0 47.2 28.8

SDCIB 67.5 59.2 56.5 36.4 52.9 28.7 61.4 44.7
OURS VS BEST COMPARED 3.4↑ 5.6↑ 7.4↑ 0.9↑ 5.6↑ 5.6↑ 9.3↑ 7.8↑
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modality-specific encoder contains 4 fully connected layers
with dimensions of 1024, 1024, 1024, and 128, respectively.
Each fully connected layer is followed by a BatchNorm
layer for representation normalization and a ReLU layer as
the activation function. MINE continuously optimizes the
correlation between two features to obtain a more accurate
mutual information measure, laying a solid foundation for
subsequent clustering. The clustering layer consists of a
fully connected layer and a softmax layer to obtain the final
clustering results. Meanwhile, we use the Adam optimizer
for parameter optimization, with an initial learning rate set
to 0.0001.

3.4. Results and Analysis

In this chapter, we conduct comprehensive experiments on
4 datasets of different sizes, with the ACC and NMI values
for fourteen comparison methods and the proposed SDCIB
are listed in Table 2. In the specific numerical comparison,
the proposed SDCIB demonstrates strong competitiveness.

• Compared to single-modal clustering and full-modal
clustering methods, the proposed SDCIB significantly
outperforms in clustering performance. Specifically,
on the Caltech-2V dataset, the ACC metric of the pro-
posed SDCIB exceeds the single-modal KM method
and Ncuts method by 25.9% and 27.6%, respectively.
The ESP dataset also outperforms the full-modality
AmKM and AmNcuts methods in terms of the NMI
metric by 24.0% and 25.7%, in turn. Meanwhile, com-
pared to the performance of single-modal and full-
modal methods, there is no significant advantage in
numerical terms. This is because in single-modal clus-
tering, the optimal modal clustering result is selected,

which does not fully represent the entire dataset.

• Compared to traditional MMC methods, the proposed
SDCIB demonstrates a clear advantage in clustering
performance. For example, on the Caltech-2V and
IAPR datasets, the proposed method improves the
best ACC results of traditional methods by 16.1%
and 16.5%, respectively. At the same time, tradi-
tional MMC methods generally outperform full-modal
methods, which suggests that the simple full-modal ap-
proach, formed by splicing individual modalities, does
not properly apply the information within the modality.

• Compared to deep MMC methods, the proposed SD-
CIB still demonstrates outstanding clustering perfor-
mance. For example, on the Event dataset, the pro-
posed method outperforms the deep MMC methods
SiMVC, CoMVC, MFLVC, DealMVC, ICMVC, and
DIVICE in ACC by values of 19.7%, 7.4%, 8.0%,
30.0%, 20.1%, and 25.1%. This is attributed to our
approach of fully leveraging the internal information
within the data and innovatively using hidden layer
information to assist in clustering, thereby better ex-
ploiting the advantages of deep learning. Additionally,
the proposed SDCIB incorporates the information bot-
tleneck principle and introduces contrastive learning to
jointly guide the clustering process.

3.5. Parameter Selection

Hyperparameters α and β. We analyze the the parameters
α and β of the proposed SDCIB. The values of parame-
ter α are {0.1, 0.2, 0.4, 0.6, 0.8}, and the values of β are
{1, 10, 100, 1000, 10000}. The parameters form all possi-
ble combinations through the Cartesian product. For each

Figure 2. The parameter analysis of our extended the proposed SDCIB on the Caltech-2V, Event, IAPR and ESP datasets is presented,
with each bar in the figure corresponding to a specific pair of (α, β) values.
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Table 3. Model network layer evaluation on Caltech-2V and Event datasets (the bold values in the table represent the best).

HIDDEN LAYERS
CALTECH-2V EVENT IAPR ESP
ACC NMI ACC NMI ACC NMI ACC NMI

2 62.6 54.8 50.1 30.3 52.7 27.2 62.1 42.5
3 64.4 54.2 55.0 36.6 51.8 28.0 61.6 44.7
4 67.5 59.2 56.5 36.4 52.9 28.7 61.4 44.7
5 65.7 58.3 47.1 30.3 49.4 26.1 58.8 42.1
6 64.5 57.1 50.5 31.3 52.4 38.5 62.0 43.8
7 65.3 58.3 44.5 27.6 47.6 27.3 61.2 43.7

Table 4. Ablation results of the Caltech-2V, Event, IAPR, and ESP datasets (the bold values in the table represent the best).

METHODS
CALTECH-2V EVENT IAPR ESP
ACC NMI ACC NMI ACC NMI ACC NMI

REMOVING I(Y i;Y j) 41.8 33.2 30.3 15.5 38.5 20.1 36.3 27.6
REMOVING I(Hi

l ;H
j
l ) 63.1 52.2 45.0 25.3 48.8 23.5 62.3 43.4

REMOVING I(Y i;Y j) AND I(Hi
l ;H

j
l ) 32.2 23.6 21.6 9.1 30.0 6.8 27.1 16.3

SDCIB 67.5 59.2 56.5 36.4 52.9 28.7 61.4 44.7

set of parameters, we record the ACC and NMI values, as
shown in Figure 2. It is observed that when the parameters
α = 0.1 and β = 1, the ACC and NMI values across various
datasets generally outperform other parameter settings. This
indicates that the proposed SDCIB demonstrates universal-
ity and stability under these parameters. The combination of
α = 0.1 and β = 1 effectively balances the key factors within
the method, highlighting the effectiveness and rationality of
the proposed SDCIB design.

Number of encoder layers. The hidden layers in the pro-
posed SDCIB represent a highly ingenious design. To in-
vestigate the impact of the number of network layers on
clustering performance, we conducted experiments on the
Caltech-2V, Event, IAPR, and ESP datasets, varying the
number of network layers to 2, 3, 4, 5, 6, and 7. The exper-
imental results are shown in Table 3. The results indicate
that having more or fewer layers does not necessarily lead
to better performance. Notably, the optimal results for the
four datasets are generally achieved with a 4-layer network.
Therefore, in the architecture of the proposed SDCIB, we
adopt a 4-layer network with dimensions set to 1024, 1024,
1024, and 128.

3.6. Ablation Study

In this chapter, we conduct ablation studies to evaluate the
contribution of different components in the objective func-
tion of the proposed SDCIB. Specifically, two terms are
subject to removal: (1) mutual information between Y i and
Y j , denoted as I(Y i;Y j), and (2) mutual information be-
tween Hi

l and Hj
l , denoted as I(Hi

l ;H
j
l ). Table 4 presents

the results of the ablation experiments, leading to the fol-

lowing conclusions.

First, when we remove term (1), the ACC and NMI values
for the 4 datasets decrease significantly, especially for the
Event dataset, where the ACC value drops by 26.2%. This is
mainly because the I(Y i;Y j) term considers clustering in-
formation between different modalities, which is beneficial
for modality fusion. Second, when we remove term (2), both
ACC and NMI show a noticeable decline, except for the ESP
dataset, where the ACC value increases slightly by 0.9%
compared to the proposed SDCIB. Finally, when (1) and
(2) are deleted at the same time, the clustering performance
of the four datasets is almost halved. For example, on the
Caltech-2V dataset, the ACC drops by 35.3%. The above
experiments validate the significant contribution of each
component in the proposed SDCIB to the final clustering
performance, fully proving its effectiveness.

3.7. Necessity of hidden layer information

To verify the necessity of hidden layer information, we con-
ducted experimental investigations in this chapter. Under
the condition that the parameter settings are consistent, we
designed two groups of experiments. One experiment ig-
nores the information from the hidden layers and focuses
only on the final output layer Hi

L, while the other experi-
ment retains the hidden layer information extraction part
of the proposed SDCIB. The specific experimental results
are presented in Table 5, where it can be observed that the
proposed SDCIB demonstrates varying degrees of improve-
ment across different datasets. Notably, on the Event dataset,
the ACC value increased by 10.6%, and the NMI value im-
proved by 7.3%. The experiments provide strong evidence

8



Super Deep Contrastive Information Bottleneck for Multi-modal Clustering

Table 5. Experimental results on the Caltech-2V, Event, IAPR, and ESP datasets with and without the application of hidden layer
information (the bold values in the table represent the best).

METHODS
CALTECH-2V EVENT IAPR ESP
ACC NMI ACC NMI ACC NMI ACC NMI

SDCIB-NO-HIDDEN 63.6 55.8 45.9 29.1 48.9 26.9 57.9 40.0
SDCIB 67.5 59.2 56.5 36.4 52.9 28.7 61.4 44.7

IMPROVEMENT 3.9↑ 3.4↑ 10.6↑ 7.3↑ 4.0↑ 1.8↑ 3.5↑ 4.7↑

for the crucial role of hidden layer information. Moreover,
they indicate that fully mining and utilizing hidden layer
information helps to more deeply explore the intrinsic re-
lationships and latent structures among modalities, thereby
enhancing the accuracy and robustness of clustering results.

3.8. Convergence Analysis

To study the convergence of the proposed SDCIB, we
present the total loss function variation curves of the Caltech-
2V and IAPR datasets in a chart. As shown in Figure 3, We
observe its loss value, which shows an overall downward
trend. At about 500 epochs, the function basically converges
to a relatively stable value. Therefore, the proposed SD-
CIB demonstrates rapid convergence within a certain range,
which not only validates the effectiveness of the proposed
SDCIB but also demonstrates the reliability and stability of
the proposed SDCIB.

3.9. Visualization Validation

In this chapter, we use t-distributed stochastic neighbor em-
bedding (t-SNE) to visualize the Caltech-2V, Event, IAPR,
and ESP datasets. As shown in Figure 4 different colors
represent different clusters. It is evident that the proposed
SDCIB shows a more compact distribution of data sam-
ples within the same cluster, while the samples from dif-
ferent clusters are more dispersed. Overall, the distribution
is clearer and more intuitive. This visualization directly
demonstrates the advantages of the proposed SDCIB clus-
tering performance, highlighting its ability to capture fine-
grained patterns in complex datasets.

0 200 400
30

15

0

Caltech-2V

0 200 400

30

15

0

IAPR

Figure 3. The loss function variation curves of the Caltech-2V and
IAPR datasets.

(a) Caltech-2V (b) Event

(c) IAPR (d) ESP

Figure 4. Visualization of the Caltech-2V, Event, IAPR, and ESP
datasets (different colors represent different clusters).

4. Conclusion
This paper innovatively proposes the super deep contrastive
information bottleneck (SDCIB) for MMC method to ad-
dress the challenges currently faced by MMC, enabling
a more thorough extraction of data information. Specifi-
cally, the proposed SDCIB not only incorporates the rich
information contained in the encoder’s hidden layers into
the clustering process, but also performs dual optimization
from two consistency information perspectives: feature dis-
tribution and clustering assignment. Compared to fourteen
advanced MMC methods, the superiority of the proposed
SDCIB has been repeatedly validated on the Caltech-2V,
Event, IAPR, and ESP datasets.

However, the proposed SDCIB still faces several challenges,
such as limited performance on incomplete data samples
(Liu et al., 2024), reliance on a predetermined number of
clusters, and the use of a batch learning strategy. These
factors may limit the flexibility of the proposed SDCIB
in practical applications, especially in complex scenarios
involving unknown structures, missing data, or real-time
requirements. Addressing these issues will be the focus of
our future work.
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