
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONIC LINEAR UNITS: ORTHOGONAL EQUIVARIANCE
IMPROVES GENERAL-PURPOSE NONLINEARITIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Most activation functions operate component-wise, which restricts the equiv-
ariance of neural networks to permutations. We introduce Conic Linear Units
(CoLU) and generalize the symmetry of neural networks to continuous orthog-
onal groups. By interpreting ReLU as a projection onto its invariant set—the
positive orthant—we propose a conic activation function that uses a Lorentz cone
instead. Its performance can be further improved by considering multi-head struc-
tures, soft scaling, and axis sharing. CoLU associated with low-dimensional cones
maintains state-of-the-art performance compared with component-wise in a wide
range of models—including MLP, ResNet, and UNet, etc., achieving better loss
values and faster convergence. It significantly improves diffusion models’ train-
ing and performance. CoLU originates from a first-principles approach to various
forms of neural networks and fundamentally changes their algebraic structure.

1 INTRODUCTION

Recurrent neural networks (RNNs), convolutional neural networks (CNNs) and Transformers
(Vaswani et al., 2017) are examples of a symmetry principle in neural network architectures: they
capture local patterns and uniformly apply them across the entire space. These architectures have
laid a solid foundation for modern machine learning systems. RNNs repeatedly apply the same
weights to the hidden states. This autoregressive form also inspires diffusion models (Sohl-Dickstein
et al., 2015)—the patterns are uniform across intermediate states. Convolutional layers share the
same weights in a small local window to slide across a large domain—the patterns are uniform at
arbitrary spatial positions. In Transformers, the self-attention function applies its weights homoge-
neously to the word or pixel embedding space—the patterns are uniform in arbitrary directions since
a per-vector rotation or reflection on both the embedded query and key vectors does not change the
attention mask. Different kinds of pattern uniformity are consequences of the associated space ho-
mogeneity. These homogeneities (symmetries) have been a principle that continually inspires new
designs of model architectures. Recent works continue to push the limit of model performance in
vision or language tasks with reduced complexity and different types of symmetry, such as state
space models (Gu & Dao, 2023) and more efficient Transformers (Liu et al., 2023).

The convolution and self-attention functions’ symmetries are characterized by the equivariance un-
der spatial translation and vector rotation—a function λ is equivariant under a group G if and only
if ∀P ∈ G, Pλ = λP , where the operation between them is the composition of functions. The
same principle applies to a basic multi-layer perceptron (MLP). First, the same activation function
is used recurrently in the same space up to a linear embedding layer; second, it applies uniformly to
each vector component (neuron). The first property is the foundation of deep models using the same
activation function. The second one results in permutation symmetry: ReLU is equivariant under
G where G contains compositions of permutations and diagonal matrices with non-negative entries
(positive scaling). The symmetry in models is induced by the symmetry of hidden states’ space: by
substituting the equality λ = P−1λP,∀P ∈ G into a two-layer neural network f(x) = wλ(w′x),
the network stays the same except that the group acts on the weights (w,w′) to obtain (wP−1, Pw′),
which means the order of rows and columns of the weight matrices are exchanged. While permu-
tation symmetry has been a fundamental assumption in neural networks, we take another path to
reflect on this axiomatic assumption and raise the question:

Can symmetry beyond permutation improve neural networks?

1
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The self-attention function in Transformers positively answers this question. We give a second an-
swer and let activation functions be another solution. To further motivate the activation function, in
Appendix G we start from symmetry principles to axiomatically infer the forms of different neural
network structures from scratch, where we essentially modify the hypothesis that activation func-
tions are component-wise. We further show in Appendix B that the proposed activation function and
the self-attention function share the same type of symmetry, associated with Noether’s Theorem.
The symmetry group is related to linear mode connectivity explained in Appendix C, meaning that
the loss landscape of neural networks is empirically convex modulo the group. Generalizing the
group to infinite order fundamentally enlarges the algebraic structure of neural networks.

Contributions We propose Conic Linear Units (CoLU), which introduces orthogonal group sym-
metry to neural networks. CoLU maintains state-of-the-art performance in various models including
ResNet and UNet for recognition and generation, and keeps the training and inference speed. It
achieves remarkable gains in training diffusion models.

2 BACKGROUND

Component-Wise Activations Among the most commonly used activation functions are Rectified
Linear Units (ReLU) and its variants, such as Leaky ReLU and Exponential Linear Units (ELU)
(Clevert et al., 2015). There are also bounded ones, such as the sigmoid function or the hyperbolic
tangent function used in Hochreiter & Schmidhuber (1997). In state-of-the-art vision and language
models, soft approximations of ReLU are preferred for their better performance, such as Gaussian
Error Linear Units (GELU) (Hendrycks & Gimpel, 2016), Sigmoid-Weighted Linear Units (SiLU)
(Elfwing et al., 2018), etc. All these functions are component-wise.

Non-Component-Wise Activations Previous works proposing non-component-wise activation
functions are essentially different from CoLU, such as using layer normalizations (Ni et al., 2024) or
multiplying the input by a radial function (Ganev et al., 2021). In comparison, CoLU is a generaliza-
tion of common activations, keeps the favorable conic-projective property unchanged, and improves
the performance of neural networks.

Equivariance in Linear Layers For symmetries in the linear part of the model, ensuring differ-
ent equivariance improves the performance of recognition (Zhang, 2019) and generation (Karras
et al., 2021) models, which repeatedly confirm the potential benefits of the symmetry principle.
Group equivariant convolutional neural networks (GCNN) (Cohen & Welling, 2016) put symmetry
constraints in the spatial domain so that the model admits spatial group actions such as 2D spa-
tial rotations and reflections. Like in most convolutional neural networks, the channel dimensions
of GCNNs are always fully connected. CoLU’s symmetry assumption is on the channel axis of the
states, which means that CoLU considers the tangent space of GCNN’s symmetry space, and equally
applies to fully connected layers without convolution structures.

Spatial versus Channel Correlations Invariant scattering convolutional networks (Bruna & Mal-
lat, 2013) use wavelet bases as deterministic spatial correlations and only learn the pixel-wise linear
layer or 1× 1 convolution. It indicates that learning channel correlation plays a primary role in rep-
resenting data patterns compared to spatial connections, and it motivates further investigations into
general symmetries in the channel dimensions—the embedding space. Low-rank adaptation (Hu
et al., 2022) and the Query-Key embeddings in the self-attention function are examples of putting
low-rank assumptions in the embedding space to represent patterns efficiently. CoLU considers
another assumption: it assumes potential subspace orthogonalities.

Orthogonality in the Embedding Space Ensuring orthogonality of the embedding space in the
linear layers is twofold. The hard constraint method uses a projection onto the Stiefel manifold dur-
ing training to ensure the orthogonality of the weights (Jia et al., 2019). The soft constraint method
adds a regularization term to the loss function (Wang et al., 2020) and learns the orthogonality ap-
proximately. Orthogonal CNNs outperform conventional CNNs, suggesting that the orthogonality
property helps neural networks gain robustness and generalization ability. The self-attention func-
tion in Transformers is also orthogonal equivariant. CoLU is compatible with these orthogonal
layers to allow layerwise orthogonality in consecutive layers.
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Other Constructions of Nonlinearities Weiler & Cesa (2019) survey nonlinear functions for
equivariant networks, which does not cover the form of CoLU. Liu et al. (2024); Mantri et al. (2024)
propose essentially component-wise nonlinearities by leveraging other properties, where the equiv-
ariance is still restricted to permutations.

3 CONIC ACTIVATION FUNCTIONS
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(a) Conic projection
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Figure 1: Illustration of a CoLU function λ and an affine transform w of a cone V .
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Figure 2: Connections between neurons in a two-layer neural network y = wλ(w′x) with
component-wise / conic / group-conic / shared-axis group-conic activation functions. In this il-
lustrative example, the network width is C = 6 except that in the last shared-axis case C = 5. The
number of cones is G = 1 when there is one cone and G = 2 in the grouped case. The yellow
arrows denote the maximum norm threshold on the output vector in each group, and the dashed
frames denote the cones’ axis dimensions.

A basic conic activation function is defined as λ : RC → RC

λ(x)i =

{
x1, i = 1

min{max{x1/(|x⊥|+ ε), 0}, 1}xi, i = 2, . . . , C
(1)

where x = (x1, x2, . . . , xC) is the input vector, | · | is the Euclidean norm, ε is a small constant
taken as 10−7 for numerical stability, and x⊥ denotes the normal vector x⊥ = (0, x2, x3, . . . , xC),
so that x = x1e1 + x⊥ holds. Here e1 = (1, 0, . . . , 0) ∈ RC is a unit vector. Figure 1a visualizes
a CoLU function with a red arrow and Figure 1b visualizes a transformed cone with a linear layer
after CoLU. Figure 2 visualizes the connections between neurons of the basic CoLU and its variants
to be defined in the sequel. The complexity of CoLU is O(C), which is the order of component-wise
functions and is negligible compared to matrix multiplications. The design of CoLU is irrelevant to
the choice of the first axis or another one since its adjacent linear layers are permutation equivariant.
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Figure 3: Weighting of hard-
projected ReLU and sigmoid-
weighted SiLU.
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Figure 4: Weighting of the hard-,
firm- and soft-projected conic ac-
tivation functions.

Figure 5: The correlations
between weights cov(w′)
and between states cov(x′).
The bright areas on the top-
left corners are the corre-
lated axes.

3.1 SOFT SCALING

The sigmoid-weighted conic activation function is defined as

λ(x)i =

{
x1, i = 1

sigmoid(x1/(|x⊥|+ ε)− 1/2)xi, i = 2, . . . , C
(2)

where sigmoid(x) = 1/(1 + exp(−x)). Compared with Equation (1), the weighting function
min{max{r, 0}, 1} is replaced by sigmoid(r − 1/2), where r = x1/(|x⊥| + ε) is the cotangent
value of the cone’s opening angle α, r → 1/ tan(α) as ε→ 0.

The soft projection is inspired by the better performance of smooth functions such as SiLU
λ(x) = sigmoid(x)x, compared to the piecewise-linear ReLU λ(x) = 1R≥0

(x)x. Figure 3 com-
pares ReLU weighting with its sigmoid-weighted variant SiLU. Figure 4 compares the hard pro-
jection in Equation (1), firm projection weighted by sigmoid(4r − 2) and sigmoid-weighted soft
projection in Equation (2).

3.2 MULTI-HEAD STRUCTURE

Inspired by group normalization (Wu & He, 2018), group convolution (Krizhevsky et al., 2012),
etc., the channel dimension can be divided into G heads of dimension S = C/G. The group-
conic activation function is defined as a group-wise application of the conic activation function.
Suppose λ : RS → RS is defined in Equation (1) or (2), and πG

i : RC → RS , i = 1, 2, . . . , G
are the G-partition subspace projections, then λ in higher dimension C is uniquely characterized by
πG
i λ = λπG

i , or explicitly,

λ(x) = (λ(πG
1 (x)), λ(π

G
2 (x)), . . . , λ(π

G
G(x))) (3)

In the trivial case G = 0, there is no axis to project towards, and we specify that the activation
function coincides with the identity function. In the special case S = 2 or when the cones are in a
2D space, the 1D cone section degenerates to a line segment with no rotationality, so we specify that
the CoLU coincides with the component-wise activation function.

3.3 AXIS SHARING

The shared-axis group CoLU is also uniquely defined by πG
i λ = λπG

i , i = 1, 2, . . . , G but with the
G-partition subspace projections defined differently:

πG
i = (π1, π(S−1)(i−1)+2, π(S−1)(i−1)+3, . . . , π(S−1)i+1), i = 1, 2, . . . , G (4)

where πj , j = 1, 2, . . . , C are projections to each axis. πG
i is a projection onto the first dimension

(the cone axis) and S − 1 other consecutive dimensions (the cone section). Therefore the relation
among the dimension formula among (C,G, S) is C − 1 = G(S − 1) in the shared-axis case.

Figure 5 illustrates the motivation of axis sharing: the colinear effect in the hidden states. In this
example, w′ is the first linear layer of a VAE’s encoder x ∈ R784 7→ wλ(w′x) ∈ R20 pretrained
on the MNIST dataset, and x′ is the first hidden state x′ = w′x ∈ R500 where the 100 cone axes

4
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are permuted together for visualization. Therefore, the hidden dimension is C = 500, the number
of groups is G = 100, the number of test examples is 10000, w′ ∈ R784×500, x′ ∈ R10000×500 and
cov(w′), cov(x′) ∈ R500×500. The upper-left parts of the matrices are very bright, meaning that the
axis dimensions are highly colinear.

3.4 HOMOGENEOUS AXES

An alternative form of CoLU ensures component homogeneity, by rotating the standard Lorentz
Cone towards the all-one vector, and we call it a rotated conic activation function (RCoLU)

λ(x) = xe +max{min{|xe|/(|x⊥|+ ε), 0}, 1}x⊥ (5)

where xe = x · e, x⊥ = x − xe and e = (1/
√
S, . . . , 1/

√
S). The axis-homogeneous cone avoids

splitting operations in the calculation. It can also be combined with grouping using Equation (4),
and with axis sharing by setting e = (1/

√
C, . . . , 1/

√
C) in Equation (5) instead of using Equation

(4). RCoLU’s performance boost over ReLU is similar to standard CoLU, so we omit it in the
experiment section.

4 WHY CONIC ACTIVATION FUNCTIONS

CoLU is motivated by the conic projection, which generalizes the equivariance in a neural network.
The proofs are provided in Appendix E.

4.1 CONIC PROJECTION

A cone’s structure is characterized by the hyperbolic geometry detailed in Appendix A. We define
the Lorentz cone V = {x ∈ RC : x2

1 − x2
2 − . . . − x2

C ≥ 0, x1 ≥ 0} and the section hyperplane
H(x) = {y ∈ RC : y1 = x1}, and denote Ṽ = R≤0e1 ∪ V , where R≤0e1 = {(t, 0, . . . , 0) ∈ RC :
t ≤ 0}.
Definition 4.1 (Conic Projection). The conic projection is defined as x ∈ RC 7→ πṼ ∩H(x)(x) where
π is the nearest point projection, πA(x) = argminy∈A |y − x|.

The restriction of the projection on its image Ṽ is the identity function, which means it satisfies the
idempotent property λ2 = λ. Constraining the projection in H(x) simplifies the computation while
maintaining essential equivariance properties—it guarantees that the projection is always towards
the cone axis. Since V ∩H(x) = ∅ when x1 < 0, the projection is not feasible in the negative half-
space, so V is extended to Ṽ for the well-definedness—on the negative half-space, the projection is
degenerate, πṼ ∩H(x)(x) = (x1, 0, . . . , 0). In other words, the past Light Cone has zero light speed
and thus zero opening angle.

Lemma 4.2 (CoLU is Conic Projection). Suppose λ is defined in Equation (1), then it coincides
with a conic projection.

lim
ε→0

λ(x) = πṼ ∩H(x)(x) = πmax{x1,0}D+min{x1,0}e1(x) (6)

where D = {x ∈ RC : x1 = 1,
∑C

i=2 xi ≤ 1} is the (C − 1)-dimensional disk.

We note that V is the conic hull of D, and D is isometric to a hyperball in dimension C − 1, and
therefore it has the symmetry group O(C − 1). In comparison, the invariant set of ReLU is the
convex hull of the C − 1 simplex ∆C−1, defined as the convex hull of the unit vectors {ei ∈ RC :
i = 1, 2, . . . , C}. Next, we discuss the general link between algebraic and geometric symmetry.

4.2 GENERALIZED SYMMETRY GROUP

Inspired by the Erlangen program (Klein, 1893) bridging algebraic groups with geometric forms,
the equivariant groups of neural networks are more intuitively motivated by the symmetry of the
projections’ invariant sets.

5
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Definition 4.3 (Invariant Set). The invariant set of a function λ : RC → RC is defined as

Iλ = {x ∈ RC : λ(x) = x}
Moreover, the symmetry group G and the isometric symmetry group G∗ of a set A is the group of
affine and rigid functions that preserves the set:

GA = {P ∈ GA(C) : P (A) = A}, G∗A = GA ∩ E(n)
where GA(C) is the general affine group, and E(n) = {P ∈ Map(RC) : |P (x) − P (y)| =
|x− y|,∀x, y ∈ RC} denotes the Euclidean group.
Definition 4.4 (Symmetry Group). The equivariance group and the isometric equivariance group
of a function λ : RC → RC is defined as

Gλ = {P ∈ GA(C) : Pλ = λP}, G∗λ = Gλ ∩ E(n)
Lemma 4.5 (Projective-Type Operators). If λ is either ReLU or CoLU, then Gλ = GIλ

, and G∗λ =
G∗Iλ

.

This algebra-geometry duality applies to more general neural network architectures, such as the
self-attention function. The relation with Noether’s theorem is discussed in Appendix B.
Corollary 4.6 (Permutation Symmetry). Suppose λ is the component-wise ReLU, then Iλ = RC

+,
Gλ = GIλ

= S(C) and G∗λ = G∗Iλ
= Perm(C), where RC

+ = {x ∈ RC : xi ≥ 0, i = 1, 2, . . . , C}
is the positive orthant, and S(C) = {PΛ ∈ GL(C) : P ∈ Perm(C),Λ ∈ Diag(C)} is the scaled
permutation group in dimension C, where Perm is the permutation group and Diag is the group of
diagonal matrices with non-negative entries.
Theorem 4.7 (Conic Symmetry). The symmetry groups of CoLU defined by Equation (3) or (4) are

Gλ = GIλ
= S(G)×OG(S − 1), G∗λ = G∗Iλ

= Perm(G)×OG(S − 1) (7)

where Iλ = Ṽ G. In the shared-axis case, Iλ = Ṽ G/ ∼ where the relation ∼ is defined as x ∼ y if
and only if ∃i, j ∈ {1, 2, . . . , G} such that πG

i (x)1 = πG
j (y)1 and ∀k ∈ {2, 3, . . . , S}, πG

i (x)k =

πG
j (y)k = 0.

In Equation (7), S(G) represents the permutations among different cones and O(S − 1) represents
rotations or reflections within each cone. The motivation is that matrix conjugation modulo permu-
tations reduce to block diagonal form, and we assume there are low-dimensional block sub-spaces
that can hold orthogonal equivariance. The symmetry group is continuous and thus of order infinity,
unprecedented in component-wise activations. We use the following construction to illustrate that
it improves neural networks’ generalization ability since component-wise activations fail to hold
orthogonal equivariance whereas conic activations do.
Lemma 4.8 (Layerwise Orthogornal Equivariance). Assume a two-layer neural network y =
fθ(x) = wλ(w′x) with fixed width C and the training data D satisfies subspace orthogonal
symmetry: ∀(x, y) ∈ D,∀P ∈ G, (Px, Py) ∈ G, where G = {P ∈ GL(C) : P [1, 2; 1, 2] ∈
O(2), P [3, . . . , C; 3, . . . , C] = IC−2, P [1, 2; 3, . . . , C] = P [3, . . . , C; 1, 2]⊤ = 0} ≃ O(2). Then,

(1) (ReLU excludes orthogonal equivariance) If λ is component-wise activation function, then ∀θ ∈
(RC2\{0})2, ∃x ∈ RC and P ∈ G such that Pfθ(x) ̸= fθ(Px).

(2) (CoLU holds orthogonal equivariance) If λ is that of Equation (1), then ∃θ† = (w†, w′†) such
that ∀x ∈ RC ,∀P ∈ G, Pfθ†(x) = fθ†(Px).

As a remark, we explain the sufficiency of rigid alignments with a compact group G∗ (without the
unbounded rescaling part) by adding a regularization term (or weight decay), to justify the common
practice in the literature, which answers the open imitation of the sufficiency of permutation-only
alignments in previous works, described in for example Bökman & Kahl (2024).
Remark 4.9 (Sufficiency of Compact Group Alignments). Suppose L is the alignment objec-
tive defined in the algorithms in Appendix F, then ∃η > 0 such that the regularized alignment
coincides with isometric alignment: argminP∈Gλ

(L(P ) − η∥P∥) = argminP∈G∗
λ
L(P ), where

∥θ∥ = −∑
w(

∑
i w

p
i )

1/p is some norm of order p ≥ 1.

6
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5 EXPERIMENTS

5.1 SYNTHETIC DATA
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Iteration
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ss

ReLU Train
ReLU Test
CoLU Train
CoLU Test

(a) Train and test loss curves
(b) Forward pass of MLP. Top: ReLU. Bottom: RCoLU

Figure 6: Input, activations, output, and ground truth of a learned hemisphere rotation.

To demonstrate the advantage of the generalized symmetry of CoLU in the embedding space, we
use a two-layer MLP to learn the rotation of a 2D hemisphere. The MLP is defined as x ∈ R3 7→
wλ(w′x), where w,w′ ∈ R3×3. The dataset D consists of 40K polar grid points and their rotated
counterparts (x, y = Rx) randomly split into train and test sets, where R represents a rotation of 45◦
around each of the three coordinate axes. Figure 6a shows the learning curve and maximum error in
the test set. As shown in Figure 6b, ReLU does not capture orthogonal equivariance (rotation around
the hemisphere axis) near the equator, instead projecting the boundary onto a triangle. In contrast,
RCoLU successfully preserves rotational symmetry at every latitude, including the boundary. This is
due to the geometry of the projection boundary: ReLU cuts the hemisphere with the positive orthant
and produces a boundary of the 2-simplex ∆2, while CoLU projects onto a cone that naturally
preserves the circular pattern.

5.2 TOY VAE

The toy generative model is a VAE with a two-layer encoder and a two-layer decoder, trained on
the binarized MNIST dataset. The test loss is compared since CoLU is hypothesized to increase the
model’s generalization ability.

Experimental Settings We use the Adam optimizer with a weight decay of 10−2 and train 10
epochs for each run. The global batch size is set to 128 and the learning rate is set to 10−3. Each
configuration is trained for 10 times with different random seeds. More detailed settings are provided
in Appendix D.

Results Table 1 compares hard-projected or soft-projected CoLU with ReLU or CoLU when the
axes are shared. Table 2 compares the improvement from adding axis sharing in the soft projection
case. The test losses at the best early-stopping steps are reported. The highlighted cases correspond
to the hyperparameters where CoLU outperforms component-wise activation functions. Further-
more, Appendix D complements the learning curves of these hyperparameters. Combining axis
sharing and soft projection effectively stabilizes the training when cone dimensions are low in the
VAE experiments.

5.3 TOY MLP

According to the hyperparameter search above, we set the cone dimensions to S = 4, which com-
plies with the number of chips in hardware platforms. We compare test accuracies in the MNIST
recognition tasks to test the hypothesis of CoLU’s generalization ability.

7
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Table 1: Comparisons of CoLU model with soft and hard projections with axis sharing. Unstable
means some of the initializations do not converge.

Width C Group G Dim C Soft? Train Loss (×102) Test Loss (×102)
Identity 1.1086± 0.0060 1.1982± 0.0011

2401 0 ∞ Identity 1.1072± 0.0031 1.1981± 0.0010
✓ 1.0804± 0.0108 1.1740± 0.0009

2401 1 2401
✗ 1.0835± 0.0048 1.1656± 0.0013
✓ 1.0302± 0.0065 1.1216± 0.0016

2401 2 1201
✗ 1.0226± 0.0057 1.1137± 0.0026
✓ 0.9181± 0.0060 1.0106± 0.0017

2401 10 241
✗ 0.9166± 0.0041 1.0073± 0.0015
✓ 0.8698± 0.0055 0.9688± 0.0016

2401 50 49
✗ 0.8736± 0.0040 0.9742± 0.0024
✓ 0.8424± 0.0084 0.9643± 0.0015

2401 200 13
✗ 0.8430± 0.0052 0.9742± 0.0019
✓ 0.8388± 0.0268 0.9764± 0.013

2401 800 4
✗ Unstable Unstable
✓ 0.8334± 0.0232 0.9765± 0.0071

2401 1200 3
✗ Unstable Unstable

SiLU 0.8429± 0.0034 0.9814± 0.0007
2401 - - ReLU 0.8195± 0.0039 0.9892± 0.0011

Table 2: Comparisons of soft-projected CoLU with or without axis sharing.

Width C Group G Dim C Share Axis? Train Loss (×102) Test Loss (×102)

2401 Identity 1.1086± 0.0060 1.1982± 0.0011
2400

0 ∞ Identity 1.1098± 0.0129 1.1985± 0.0015
2401 ✓ 1.0804± 0.0108 1.1740± 0.0009
2401

1 2401
✗ 1.0828± 0.0080 1.1733± 0.0008

2401 ✓ 1.0302± 0.0065 1.1216± 0.0016
2402

2 1201
✗ 1.0207± 0.0088 1.1179± 0.0029

2401 ✓ 0.9181± 0.0060 1.0106± 0.0017
2410

10 241
✗ 0.9111± 0.0041 1.0096± 0.0013

2401 ✓ 0.8698± 0.0055 0.9688 ± 0.0016
2450

50 49
✗ 0.8783± 0.0045 0.9864± 0.0015

2401 ✓ 0.8424± 0.0084 0.9643 ± 0.0015
2600

200 13
✗ 0.8718± 0.0062 0.9833± 0.0021

2401 ✓ 0.8388± 0.0268 0.9764 ± 0.0139
3200

800 4
✗ 0.8801± 0.0073 0.9893± 0.0021

2401 ✓ 0.8334± 0.0232 0.9765 ± 0.0071
3600

1200 3
✗ 0.8808± 0.0099 0.9930± 0.0018

2401 SiLU 0.8429± 0.0034 0.9814± 0.0007
4800

- - SiLU 0.8402± 0.0041 0.9856± 0.0008

Experimental Settings We set the global batch size to 1024 and the learning rate to 10−3. Each
configuration is trained 7 times with different random seeds. More detailed settings are provided in
Appendix D.

Table 3: Comparisons between ReLU and CoLU in two-layer MLP.

Activation Width C Dim S Axis Sharing Soft Projection Train Loss Test Accuracy

ReLU 512 - - ✗ 0.0000 ± 0.0000 0.9576 ± 0.0017
CoLU 512 4 ✗ ✗ 0.0000 ± 0.0000 0.9644 ± 0.0010
CoLU 511 4 ✓ ✓ 0.0000 ± 0.0000 0.9652 ± 0.0013
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Results Table 3 compares ReLU with CoLU of low-dimensional orthogonal subspaces and shows
the improvement from using axis sharing combined with soft projection.

5.4 RESNET

To test the performance of CoLU in deeper models, we scale up the network to ResNet-56 and train
them on the CIFAR10 dataset. Axis sharing and soft projection are omitted for clean comparisons
with ReLU in the sequel.

Experimental Settings The ResNet architecture and the training recipe follow He et al. (2016).
The runs are repeated for 10 times with different random seeds each lasting 180 epochs, and use the
Adam optimizer with a batch size of 128, a learning rate of 10−3, and a weight decay coefficient of
10−2. Finer training settings will achieve better baselines, and CoLU remains superior to ReLU.

Table 4: Comparisons between ReLU and CoLU in ResNet-56.

Activation Cone Dimension S Train Loss Test Accuracy Forward FLOPs

ReLU - 0.0071097 ± 0.00039 93.5851 ± 0.442 0.252B
CoLU 4 0.0067262 ± 0.00032 92.7282 ± 0.357 0.257B

Results Table 4 shows that CoLU is on par with ReLU and the training is stable across different
initializations.

5.5 DIFFUSION MODELS

We compare CoLU and ReLU in unconditional generation with diffusion models (Sohl-Dickstein
et al., 2015) trained on the CIFAR10 and Flowers datasets. Then we show the possibility of borrow-
ing a pretrained text-to-image model (Rombach et al., 2022) and fine-tuning it to a CoLU model.
Detailed settings are in Appendix D.
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Figure 7: Learning curves of ReLU and CoLU diffusion models.

Table 5: Comparisons between ReLU and CoLU in diffusion UNet.

Activation Cone Dimension S Train Loss (CIFAR10) Train Loss (Flowers)

ReLU - 0.1606 0.01653
CoLU 4 0.1593 0.01458

Training Results Figure 7 shows that CoLU-based UNets converge faster and achieve lower
losses than the ReLU-based baselines. On the small dataset CIFAR10, the convergence is observed
to be much faster. On the larger Flowers dataset, the loss of the CoLU model is significantly lower
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Table 6: Mean ± Std Table for ReLU and CoLU with Activations as Rows

Test Accuracy Test Loss Train Accuracy Train Loss

ReLU 93.7359 ± 0.3474 0.2672 ± 0.0161 99.8351 ± 0.0194 0.0072 ± 0.0003
CoLU 92.7705 ± 0.3388 0.3176 ± 0.0175 99.8817 ± 0.0159 0.0066 ± 0.0002

than the ReLU model throughout the training. Table 5 shows quantitative improvement of CoLU in
diffusion UNets. Appendix D shows generated samples on the Flowers dataset.

Fine-Tuning Results We replace all activation functions in the UNet with soft-projected conic
activation functions of G = 32 without axis sharing. Appendix D shows generated samples from
the fine-tuned model and visually compares the original activation and CoLU models.

5.6 MLP IN GPT2

CoLU is better than ReLU in the MLP part of a Generative Pretrained Transformer (GPT2) trained
on Shakespeare’s play corpus. Appendix D reports a comparison in the test loss. We also observe
that CoLU achieves slower overfitting and lower test loss with the same training loss.

5.7 LINEAR MODE CONNECTIVITY

CoLU enlarges the group of neural networks’ linear mode connectivity, explained in Appendix C.

Convolution Filter Symmetry Diffusion models with ReLU and CoLU have different symmetry
patterns in the convolution filters. We show in Appendix D that between the last layer of two
diffusion UNets trained with different initialization on CIFAR10, a ReLU model’s convolution filters
can be permuted to match each other, whereas a CoLU model cannot since the orthogonal symmetry
relaxes to additional color rotations.

Generative Model Alignment For completeness, we show alignment results on the ReLU and
CoLU-based models in Appendix D. In the literature on linear mode connectivity, few works study
generative models, and we show that the generative VAEs also reveal linear mode connectivity under
the equivariance groups of activation functions.

6 CONCLUSION

In this work, we introduced Conic Linear Units (CoLU) to let neural networks hold layerwise or-
thogonal equivariance. CoLU works on par with common component-wise activation functions and
scales to a broad range of large models.
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A HYPERBOLIC GEOMETRY

Definition A.1 (Minkowski). A point (called an event) x is defined in the C-dimensional Euclidean
space (called space-time). A scalar product on RC is defined as

⟨x, y⟩M = x1y1 − x2y2 − . . .− xCyC (8)

The hyperbolic geometry can be understood by the fact that along a rotation in the space, the quantity
x2
1 − x2

2 − . . . x2
C is unchanged. This scalar product induces a norm |x|M =

√
⟨x, x⟩M , and the

Lorentz cone is defined as V = {x ∈ RC : |x|M ≥ 0, x1 ≥ 0}. It is usually called a light cone
since if we regard x1 := t as the time axis where the constant c is the speed of light and t is the
time of the event x, then the cone is characterized by

√
|x⊥| = ct, and c is the tangent value of the

opening angle of the cone, and we set c = 1 without loss of generality. More precisely it is a future
light cone since t ≥ 0, and the past light cone associates to the case when t ≤ 0. CoLU sets the
past light cone with c = 0. The plane of simultaneity (under the rest frame of reference) is defined
as H(x) = π−1

1 (x1e1) = {y ∈ RC : y1 = x1}. In Figure 1a, CoLU is intuitively understood as
the closest point to the input within the light cone and the plane of simultaneity. The meaning of the
weight w after the activation function is visualized in Figure 1b, where the previous space-time is
tilted by a linear transform (called Lorentz transform). In the grouped CoLU case, gluing the axes
together is motivated by equalizing the time axes of each light cone (called an observer).

B RELATION WITH NOETHER’S THEOREM

In this section, we associate the CoLU equivariance with the conserved quantity in the tangent space
of the spatial domain and show that CoLU and self-attention have the same type of symmetry.
Definition B.1 (Lagrangian). A Lagrangian functional is defined as an integral L : TM −→ R
such that

L(x, ẋ,L) =
∫ L

0

L(x, ẋ, ℓ) dℓ (9)

Theorem B.2 (Noether). Suppose ∀s ∈ R the Lagrangian L(x, ẋ, L) is invariant over a transfor-
mation hs parameterized by s, then the following quantity is constant over time.

I =
dL

dẋ

dhs

ds
(10)

Corollary B.3 (Translation Momentum). Assume ω ∈ Ω = [−1, 1]2, e1 = (1, 0) is a unit vector,
and L(ω, ω̇, t) = ω̇2/2. If hs(ω) = ω + se1 then I = ω̇1 is conserved.

The convolution function commutes with hs and associates with the translation momentum on Ω.
Corollary B.4 (Angular Momentum). Assume x ∈ RΣ with Σ = {1, 2, 3},|Σ| = C = 3, e2, e3 ∈
RC are unit vectors of starting and ending directions of a rotation R around e1. If hs : x(σ) ∈
RΣ 7→ R2s/πx(σ), then I = ẋ× e1.
Proposition B.5 (Attention Invariance). The self-attention function commutes with hs, so the La-
grangian of attention dynamics admits the orthogonal group. Therefore the attention dynamics in
Equation (39) conserves the angular momentum for rotations in RC .
Proposition B.6 (Conic-Activation Invariance). For the same reason as above, if the activation func-
tion is conic, The ResNet dynamics in Equation (40) conserves the angular momentum for rotations
around the cone axis.

C RELATION WITH LINEAR MODE CONNECTIVITY

The equivariance of activation functions is linked to the linear mode connectivity phenomenon:
two neural networks trained with different initializations and (usually) on the same dataset can
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be aligned to be very close to each other (Izmailov et al., 2018; Singh & Jaggi, 2020; Entezari
et al., 2022; Ainsworth et al., 2023). This phenomenon implies that neural network optimization
is approximately convex modulo a group. The group characterizes the permutation symmetry of
component-wise activation functions, and the proposed conic activation functions generalize the
type of symmetry. This aligned representation phenomenon across different models at a larger scale
is discussed in (Huh et al., 2024). Note that there are other types of mode connectivity (Garipov
et al., 2018), which does not leverage permutation symmetry and requires more complicated paths
such as piece-wise linear or Bézier spline, and we do not discuss here.

Given the loss function L(θ) on two sets of model parameters θ0, θ1, the closeness of the two models
is measured by the loss barrier. There are different definitions of loss barriers, and we define it as

sup
s∈[0,1]

Bθ0,θ1(s) = L((1− s)θ0 + sθ1)/((1− s)L(θ0) + sL(θ1)))− 1 (11)

The loss barrier signifies the relative loss increase of the linearly interpolated weights. With one
model θ0 fixed, an alignment on the other one θ1 refers to finding the optimal permutation on each
layer by matching either intermediate states or weights (Jordan et al., 2023; Ainsworth et al., 2023).
The proposed activation function generalizes permutations to orthogonal matrices (where permuta-
tions are special cases). The orthogonal symmetry is continuous, meaning that there are infinitely
many ways of alignment. This results in a loss landscape with infinite local minima forming con-
nected components. The alignment matrices are associated with different manifold constraints.

D MORE EXPERIMENTS

D.1 TOY VAE

Experimental Settings The VAE’s encoder and generator’s parameters are θE = (wE, w
′
E) and

θG = (wG, w
′
G). The inputs, latents and outputs are x, z, x̂, where z = wEλ(w

′
Ex) and x̂ =

wGλ(w
′
Gz). The dimension of input and output is 28 × 28 = 784 and the dimension of the hidden

state z is fixed to d = 20. The loss function is defined as
L(θ) = H(x, x̂) + αDKL(pz|p0) (12)

where H(x, x̂) = −∑
n xn(log(x̂n) + (1 − xn) log(1 − x̂n)) is the binary cross-entropy, and

DKL(pz|p0) is the Kullback-Leibler Divergence from a standard Gaussian distribution p0 ∼ N (0, 1)
to the latent distribution pz ∼ N (µz, σz)

DKL(pz|p0) = −
∫
x

p0(x) log(pz(x)/p0(x)) dx =
1

2

d∑
j=1

(
1 + log(σz

2
j )− µz

2
j − σz

2
j

)
(13)

The last equality is obtained by setting µz = (
∑N

n=1 zn)/N and σz = ((
∑N

n=1(zn − µz)
2)/(N −

1))1/2 with sample size N . The hyperparameter α is set to 1 so that the impact of the KL term is
relatively small, given that the magnitude of the cross-entropy term is around 100 times larger.

More Results Figure 8 visualizes the test loss curves when the granularity of grouping varies. In
summary, as the cone dimension S reduces, the performance of grouped conic activation func-
tions improves until it outperforms component-wise activation functions. In the figures, only
one case for high and low dimensional cones is shown for clarity.The cone dimension is among
S ∈ {∞, 2400, 600, 4, 2}, or equivalently, the number of groups is among G ∈ {0, 1, 4, 800, 2400}.
In the shared-axis case, the network width is fixed to C = 2401 so that the number of parameters is
the same. In the no-sharing case, the network width is C = 2400 +G. Specifically, G = 0 reduces
to the identity function, while S = 2 (or G = 2400) is specified as the component-wise activation of
ReLU for hard projection and SiLU for soft projection since there is no orthogonality. The dashed
line in the hard-projected shared-axis case means that the training is unstable over different random
seeds: about 80% of the initializations do not converge, so only one converged training instance is
visualized. Sharing the axes increases the performance of the activation function on toy examples
when the projection is soft and the cones are low dimensional (S being small). In practice, this com-
bination is the most meaningful one since it has the best performance and saves the most number of
parameters. Intuitively, soft projection effectively stabilizes the training of CoLU models, which is
the most obvious in the early training stage of the highest-dimensional conic functions (the single
cone case). Especially, it makes the VAE with shared-axis activation functions easier to train.
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(d) Soft Shared

Figure 8: Test loss curves of a VAE with two-layer encoder and decoder with standard deviation
regions. The left and right figures correspond to hard and soft projections, and the top and bottom
correspond to hard projection and soft projection.

D.2 TOY MLP

Experimental Settings The model is parameterized by θ = (w,w′) and defined as x ∈ R28×28 7→
ŷ = softmax(wλ(w′x)) ∈ ∆9, which is a two-layer MLP whose output is mapped to the probability
simplex by a softmax function. The MNIST dataset is denoted as a collection of data pairs (x, y),
where x is flattened as vectors and y is a unit vector among 10 classes. The network width is fixed
to C = 512. The loss function is the cross entropy of the predicted probability relative to the label

H(ŷ, y) =
∑
i

yi log ŷi (14)

D.3 DIFFUSION MODELS

Training Experimental Settings The UNet structure follows the Stable Diffusion model
(LDM) (Rombach et al., 2022) without the VAE part. The network block widths are set to
(128, 256, 256, 256) and the numbers of ResNet blocks are set to 1 for CIFAR10 (2 for Flowers).
For unconditional generation, the cross-attention function is replaced with the self-attention func-
tion. All runs last 100K steps and use the Adam optimizer with a batch size of 128 for CIFAR10
(16 for Flowers), a learning rate of 10−4, and a weight decay coefficient of 10−2. Figure 9 shows
comparisons on the Flowers dataset.

Fine-Tuning Experimental Settings The pretrained model has 835 million parameters and is
trained on the LAION dataset. The architecture is identical to the Stable Diffusion model with
block width (320, 640, 1280, 1280). The training details are the same as above. The pre-trained
SiLU model and the text-to-image Pokémon dataset are from the diffusers library (von Platen et al.).
Figure 11 visualizes the comparisons between a fine-tuned SiLU model and a fine-tuned soft CoLU
model with the same text prompt and initial noise in the diffusion model. Figure 10 shows more
samples of the fine-tuned model with text prompts generated by a large language model.
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(a) ReLU (b) CoLU

Figure 9: Samples of diffusion models trained on the Flower Dataset.

Figure 10: More CoLU text-to-image samples.

D.4 MLP IN GPT2

Experimental Settings The Transformer follows Vaswani et al. (2017) with the block size of 64,
an embedding size of 256, a number of heads 8, head size 32 and number of layers 6. Each run
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Figure 11: LDM samples of a fine-tuned Soft CoLU model and a fine-tuned SiLU model.

lasts 20K steps and uses the Adam optimizer with a batch size of 512, a learning rate of 10−4, and
a weight decay coefficient of 10−2.

Table 7: Comparisons between ReLU and CoLU on GPT2’s MLP.

Activation Cone Dimension S Train Loss Eval Loss

ReLU - 1.256 1.482
CoLU 4 1.263 1.481

Results Table 7 shows that CoLU is on par with ReLU in GPT2’s MLP. We also observe a faster
drop in the test loss and slower overfitting.

D.5 LINEAR MODE CONNECTIVITY

The latent state’s permutation symmetry is studied qualitatively on diffusion UNets and quantita-
tively on toy models.

Convolution Filter Symmetry We train individual diffusion UNets on the CIFAR10 dataset with
different random seeds and qualitatively show that the palette filters (the last convolution layer of the
generative model) in a ReLU-model can be permuted to match each other, whereas a CoLU-model
cannot, showing that the symmetric pattern is essentially different from permutation. The diffusion
model implementation is based on (Salimans & Ho, 2022) and we only change the activation func-
tion to be conic with G = 32 without axis sharing. We take a global batch size of 128 and a learning
rate of 10−4. After around 5K steps the generated images are perceptually visible. Figure 15 visu-
alizes the last convolution layer w (which we call a palette) of dimension 256× 3× 3× 3 in SiLU

GT

Model 0

Model 1

Merge VAE

+ Alignment

Merge Generator

+ Alignment

Figure 12: Random samples of
ground truth, VAE outputs, merged
VAE, and merged generator with
fixed latents.
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Figure 13: Loss barriers be-
tween the aligned models by
state or weight matching.
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tweenN (µz, σz) andN (0, 1)
on the interpolation paths.
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(a) SiLU, 1st initialization. (b) SiLU, 2nd initialization.

(c) soft CoLU, 1st initialization. (d) soft CoLU, 2nd initialization.

Figure 15: Palettes of diffusion models with SiLU and soft CoLU. The first row can be permuted to
match each other whereas the second row cannot.

model and soft CoLU model, each with two different initializations. The colors are linearly scaled
for better visualization. The left two sets of filters can be permuted to match each other, whereas the
right two sets cannot since they are orthogonal symmetric except for the axes. We observe that the
last layer has more visually plausible patterns than the first layer in the denoising UNet, different
from most works in the literature do for recognition models.

Generative Model Alignment We show linear mode connectivity results for the same toy model
in Section 5.2, and we find out that linear mode connectivity also holds in generative models, which
is rarely discussed in the literature.

Weight matching and state matching algorithms in Appendix F are applied to align the VAE model,
and the results are shown in Figure 12. They have different advantages: weight matching produces
a flatter barrier in our toy experiment, and state matching requires no data as the model input. Their
convergence is analyzed in (Ainsworth et al., 2023; Jordan et al., 2023). The difference in the conic
case is that the symmetry group is relaxed, so the Stiefel manifold optimization problem replaces
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the sum of bilinear assignment problem (SOBLAP). Figure 13 and 14 visualize the loss barrier and
the KL Divergence barrier.

E PROOFS

Proof of Proposition 4.2. If |x⊥| ̸= 0, Equation (6) holds component-wise, and the set {x ∈ RC :
|x⊥| = 0} is negligible.

Proof of Lemma 4.5. We assume P ∈ GA(C) To prove Gλ ⊂ GIλ
, it suffices to show ∀P ∈

Gλ, Iλ = PP−1Iλ = PIλ ⊂ Iλ. The last inclusion comes from ∀P ∈ G, there holds ∀x ∈
Iλ, λ(Px) = Pλ(x) = Px, so Px ∈ Iλ. The first equality is from P ∈ Gλ and the second
one is from x ∈ Iλ. Conversely, to prove GIλ

⊂ Gλ, we need to strengthen the condition on λ
to ∃A a convex set such that ∀x, λ(x) = PA(x). ∀z ∈ Iλ, ⟨z − Pλ(x), Px − Pλ(x)⟩ ≥ 0, so
λ(Px) = Pλx

Proof of Proposition 4.8. (1) is proven by taking x and P such that

w′x = (1, 0, 0, . . . , 0), P [1, 2; 1, 2] =

[√
2
2 −

√
2
2√

2
2

√
2
2

]
(2) is proven by taking

w† =

[
0 I2

IC−2 0

]
, w′† =

[
0 IC−2

I2 0

]

Proof of Remark 4.9. It suffices to take η large enough so that D ∈ Diag(C) is determined by
argminPD∈Gλ

∥PDθ∥, since P ∈ Perm(C) does not change ∥Pθ∥.

F ALGORITHMS

Algorithm 1 and 2 from Jordan et al. (2023); Ainsworth et al. (2023) are applied to achieve linear
mode connectivity of the toy VAE model.

Algorithm 1 Weight Matching

Require: θ0, θ1 ▷ Pre-Trained Weights from different random initializations
Require: x ∈ X ▷ Intermediate states ordered by forward pass
Require: θprev(x), θnext(x) ▷ Linear weights prior to and after the state
Require: G ▷ Symmetry group of the activation function
Ensure: P = {Px : x ∈ X} ▷ Optimal alignment

1: Initialize Px = Idim(x) ▷ Identity matrices with the same dimension of x
2: repeat
3: for x in RandPerm(X) do ▷ Shuffle the order of the states
4: L(P ) = 0
5: for w′ in θprev(x) do
6: for w in θnext(x) do
7: L(P )← L(P ) + tr(w′

0
⊤
Pw′

1)/|θprev(x)|+ tr(w0P
⊤w⊤

1 )/|θnext(x)|
8: end for
9: end for

10: Solve Px ← argminP∈G L(P )
11: end for
12: until P Converges
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Algorithm 2 State Matching

Require: θ0, θ1, θprev(x), θnext(x),G ▷ Same as above
Require: x(0) ▷ Data as model input
Require: x ∈ X(θ, x(0)) ▷ Following the order of the forward pass
Ensure: P = {Px : x ∈ X(θ, x(0))} ▷ Optimal alignment

1: Initialize Px = Idim(x)

2: for (x0, x1) in (X(θ0, x(0)), X(θ1, x(0))) do
3: Solve Pℓ ← argminP∈G L(P ) = x0

⊤Px1

4: for w′ in θprev(x) do
5: w1 ← Pℓw1

6: end for
7: for w in θnext(x) do
8: w1 ← Pℓw1

9: end for
10: end for

G UNIFICATION OF NEURAL NETWORKS

This section aims to establish a bottom-up framework from first principles to infer the form of neural
network architectures, including the proposed activation function. For simplicity, we assume that
each state is defined in a vector space with a fixed dimension M = RC . We separate the construc-
tion into several parts, including a general Neural Network, a Residual Network, a Convolutional
Network, and an Attention Network.
Proposition G.1 (Derivation of a Neural Network). The assumptions on the left of the following
equations characterize the neural network in Equation (20).

x(1) = Λ(x(0)) (15)
Process Decomposition

=⇒ x(L) = ΛLΛL−1 . . .Λ1(x(0)) (16)
Linear Kernel Space

=⇒ x(L) = w(L)ΛL(w
′(L) . . . w(1)Λ1(w

′(1)(x(0)) . . .)) (17)
Time Homogeneity

=⇒ x(L) = w(L)Λ(w′(L) . . . w(1)Λ(w′(1)(x(0)) . . .)) (18)
Component-Wise

=⇒ x(L) = w(L)λ(w′(L) . . . w(1)λ(w′(1)(x(0)) . . .)) (19)
Iterative Form⇐⇒ x(ℓ) = w(ℓ)λ(w′(ℓ)x(ℓ− 1)), ℓ = 1, 2, . . . L (20)

In the derivation above, equation (15) denotes an arbitrary function Λ with input x(0) and output
x(1). Equation (16) holds by assuming the function decomposes into several ones, resulting in a
process or a sequence of states x(0), x(1), . . . , x(L) ∈M , where the terminal states x(0) and x(L)
are the input and output. Equation (17) follows from assuming the sequence of functions to perform
in a linear kernel space. Suppose the linear kernel function at layer ℓ parameterized by w′

Φ : M −→Mλ

x 7−→ w′(ℓ)x

on the kernel space, there is a function Λ : Mλ → Wλ where Wλ is the range of the activation
function. Then the inverse kernel function is parameterized by w

Φ̂ : Wλ −→M

x 7−→ w(ℓ)x

Again we assume for simplicity that the dimensionality of each kernel space is fixed: Mλ = M =
RC . Equation (17) is obtained by replacing x ∈ M with x′ ∈ Mλ in equation (16) and plugging in
the change of variable x′ = wxw′. Equation (18) is obtained by assuming time homogeneity modulo
a linear group of the nonlinear functions: the function Λ is on the lifted space Mλ in Equation (17)
instead of M , where the lifting is determined by assuming that there exist proper w,w′ in each space
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such that the functions are uniform over time, meaning Λ1 = Λ2 = . . . = ΛL = Λ. Equation (19)
assumes that there exists a function λ : R → R so that the nonlinear function is represented as
Λ(x1e1 + . . .+ xnen) = λ(x1)e1 + . . .+ λ(xn)en. In this paper, we replace this assumption with
orthogonal symmetry instead. Note that the component-wise λ : Mλ → Mλ is equivariant under
any permutation P . Equation (20) rewrites the process into steps between adjacent states.
Proposition G.2 (Derivation of a Residual Network). Adding more assumptions, we continue to
derive the form of a Residual Network in Equation (27).

Linear Splitting⇐⇒ x(ℓ) = λ(w′(ℓ)x(ℓ− 1)) + (w(ℓ)− 1)λ(w′(ℓ)x(ℓ− 1)) (21)
Re-Parameterization

=⇒ x(ℓ) = λ(w′(ℓ)x(ℓ− 1)) + w(ℓ)λ(w′(ℓ)x(ℓ− 1)) (22)
Linear Branching

=⇒ x(ℓ) = λ(w′′(ℓ)x(ℓ− 1)) + w(ℓ)λ(w′(ℓ)x(ℓ− 1)) (23)
Nonlinear Branching

=⇒ x(ℓ) = λ′(w′′(ℓ)x(ℓ− 1)) + w(ℓ)λ(w′(ℓ)x(ℓ− 1)) (24)
w′′=1
=⇒ x(ℓ) = λ′(x(ℓ− 1)) + w(ℓ)λ(w′(ℓ)x(ℓ− 1)) (25)
w′=1
=⇒ x(ℓ) = λ′(x(ℓ− 1)) + w(ℓ)λ(x(ℓ− 1)) (26)

Residualization
=⇒ x(ℓ) = x(ℓ− 1) + w(ℓ)λ(x(ℓ− 1)) (27)

In the derivation above, Equation (21) splits the inverse kernel function’s weight w into the identity
(zeroth-order) part and the first-order part w − 1. Equation (22) re-parameterize the weights by de-
noting 1−w as w without loss of generality. Equation (23) modifies the assumption in Equation (17)
so that two copies of kernel functions are parameterized by w′′, w′, and the inverse kernel function
remains the same. Equation (24) modifies the assumption in equation (18) different functions λ′, λ
applies on each one. Equation (25) assumes that the first kernel function w′′ is identity. Equation
(26) further assumes w′ is identity to simplify equations in the sequel. Equation (27) assumes that
the function associating to the zeroth-order kernel space is identity.
Proposition G.3 (Derivation of a Convolutional Network). Given a basic neural network, the form
of a convolutional neural network in Equation (33) is determined by the following additional as-
sumptions on the left.

Space Indexation⇐⇒ x(ℓ) = x(ℓ− 1) + w(ℓ, ω, ω′, σ, σ′)λ(x(ℓ− 1, ω′, σ′)) (28)
Summation Form⇐⇒ x(ℓ) = x(ℓ− 1) +

∑
ω′∈Ω

w(ℓ, ω, ω′, σ, σ′)λ(x(ℓ− 1, ω′, σ′)) (29)

Equivariance
=⇒ x(ℓ) = x(ℓ− 1) +

∑
ω′∈Z2

w(ℓ, ω′ − ω, σ, σ′)λ(x(ℓ− 1, ω′, σ′)) (30)

Change of Variable⇐⇒ x(ℓ) = x(ℓ− 1) +
∑

ω′∈Z2

w(ℓ, ω′, σ, σ′)λ(x(ℓ− 1, ω′ + ω, σ′)) (31)

3×3 Window
=⇒ x(ℓ) = x(ℓ− 1) +

∑
ω∈{−1,0,1}2

w(ℓ, ω + ω′, σ, σ′)λ(x(ℓ− 1, ω′, σ′)) (32)

Convolution Notation⇐⇒ x(ℓ) = x(ℓ− 1) + w(ℓ) ⋆ λ(x(ℓ− 1)) (33)

In the derivation above, Equation (28) stacks the states of dimension n = CHW into a tensor
whose space dimensions is indexed by ω ∈ Ω = [H] × [W ] ⊂ Z2 (with the bracket notation
[n] = {1, 2, . . . , n}) and the channel dimension indexed by σ ∈ [C]. Equation (29) write the matrix-
vector product in the form of a summation. In Equation (30) we imposes core assumption of the
Convolutional Neural Network, namely the spatial translation equivariance, so that (wx)(ω−ω′′) =
(wx(ω−ω′′)),∀ω′′. This results in w(ω, ω′+ω′′) = w(ω−ω′′, ω′),∀ω′′, so w(ω, ω′) must take the
form of w(±ω ∓ ω′), and we set w(ω′ − ω) without loss of generality. Equation (31) is a change of
variable, replacing ω′ − ω with ω′. Equation (32) imposes the condition that the spatial dependency
on Ω is within a 3× 3 neighbourhood. Note that the family of neighbourhoods defines the Topology
of the space Ω. Finally, Equation (33) denotes the linear function with the ⋆ notation.
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Proposition G.4 (Derivation of an Attention Network). The construction of the cross-attention func-
tion is proceeded by imposing further assumptions.

1×1 Window
=⇒ x(ℓ) = x(ℓ− 1) + λ(x(ℓ− 1, ω, σ′))w(ℓ, σ′, σ) (34)

Condition kT k
=⇒ x(ℓ) = x(ℓ− 1) + λ(x(ℓ− 1, ω, σ′))k(ℓ, σ′′, σ′)T k(ℓ, σ′′, σ′)w(ℓ, σ′, σ) (35)
λ=1
=⇒ x(ℓ) = x(ℓ− 1) + x(ℓ− 1, ω, σ′)k(ℓ, σ′′, σ′)T k(ℓ, σ′′, σ′)w(ℓ, σ′, σ) (36)

Scaling
=⇒ x(ℓ) = x(ℓ− 1) + softmax(x(ℓ− 1, ω, σ′)k(ℓ, σ′′, σ′)T )k(ℓ, σ′′, σ′)w(ℓ, σ′, σ)

(37)
Q,K,V Notations⇐⇒ x(ℓ) = x(ℓ− 1) + w(ℓ) softmax(QKT )V (38)

In the above derivation, Equation (34) assumes the Topology to be discrete, or the neighbourhood
of a spatial point is itself, which restricts the convolution to be on a 1 × 1 window. For the matrix
w(ℓ, σ, σ′) with σ, σ′ ∈ [C], Equation (35) applies the linear transform kT k, where k(ℓ, σ′′, σ) can
be regarded as a set of C ′′ condition “pixels” of dimension C, or ω ∈ [C], ω′′ = [C ′′]. Equation (36)
assumes λ to be identity function denoted as 1. Equation (37) scales xwT with a softmax function
softmax(x(σ, σ′′)) = exp(x(σ, σ′′))/

∑
σ′′∈[C′′] exp(x(σ, σ

′′)). Finally, Equation (37) is obtained
from setting the Query-Key-Value notations Q = x(ℓ − 1, ω, σ′),K = V = k(ℓ, σ′, σ′′). Note
that by cancelling the assumption in Equation (26), we may also take in Q = wQ(ℓ, σ, σ

′)Q′,K =
wK(ℓ, σ, σ′)K ′, V = wV (ℓ, σ, σ

′)V ′.

Proposition G.5 (Attention Network Dynamics).
Attention Dynamics

=⇒ ẋ = softmax(QKT )V (39)

Equation (39) is obtained by setting w(ℓ) as identity and consider ℓ ∈ [0, L].
Proposition G.6 (ResNet Dynamics). By assuming the continuation ℓ ∈ [0, L], we obtain the con-
tinuous dynamics of ResNet

ResNet Dynamics
(39) =⇒ ẋ = λ(x) (40)
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