
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GROKFAST:
GRADIENT FILTERS FOR FASTER GROKKING

Anonymous authors
Paper under double-blind review

ABSTRACT

One puzzling artifact in machine learning, dubbed grokking, refers to the case
where a model exhibits delayed generalization after numerous training iterations
after nearly perfect overfitting. Focusing on the long delay itself on behalf of
machine learning practitioners, our primary goal is to accelerate the generalization
of a model under the grokking phenomenon. By regarding a series of gradients of
a parameter over training iterations as a random signal over time, we can spectrally
decompose the parameter trajectories under gradient descent into two compo-
nents: the fast-varying, overfitting-yielding component, and the slow-varying,
generalization-inducing component. This analysis allows us to accelerate the
grokking phenomenon more than ×50 with only a few lines of code that amplifies
the slow-varying components of the gradients. The experiments show that our algo-
rithm applies to diverse tasks involving images, languages, and graphs, enabling the
practical availability of this peculiar artifact of sudden generalization. Moreover,
we reinterpret momentum hyperparameters in gradient-based optimizers as low-
pass filters with size-1 windows. This bridges between optimization and classical
signal processing literature, suggesting a new type of optimzers augmented with
frequecy-domain filters.

1 INTRODUCTION

Figure 1: GROKFAST interprets training
dynamics of a network parameter as a
stochastic signal and amplify the low fre-
quency variations for faster grokking.

Grokking is a recently discovered phenomenon in which
generalization is achieved long after a model overfits the
training data. The phenomenon was first reported by
Power et al. (2022) for a two-layer Transformer (Vaswani
et al., 2017) trained using a simple algorithmic dataset.
Later, Liu et al. (2022b) has shown that similar artifacts
are observed for various model architectures trained with
a variety of datasets, including images, languages, and
graphs. Many theory-oriented works have tried to justify
the effect by relating the grokking phenomenon to the
previously known double descent phenomenon (Davies
et al., 2023; Huang et al., 2024), yet its cause and sufficient
conditions have not been fully characterized.

Apart from theoretical studies, this work takes a practitioner’s standpoint to take advantage of the
grokking phenomenon. In previous reports on grokking (Power et al., 2022; Liu et al., 2022b),
generalization is observed only after more than hundred times the training iterations after overfitting.
This high demand for computational resources means less practical appeal to general machine learning
practitioners, who are often under dire resource constraints. Therefore, achieving faster generalization
in those overfitting systems is a necessary step to fully exploit the potential of this unusual behavior.
From this perspective, the goal of this work is to accelerate the grokking phenomenon.

In the example training curve of a model under grokking in Figure 2, the dynamics of the validation
loss are a few orders of magnitude slower than the dynamics of the training loss. The change in losses
is a direct consequence of the change in the parameter values throughout the training session. Hence,
Figure 2 suggests that parameter updates under grokking take effect in two different timescales: the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

101 102 103 104 1053.99× 1047.90× 102

Optimization Steps

0.00

0.20

0.40

0.60

0.80

1.00
0.95

A
cc

ur
ac

y

Predict x · y (mod 97) (Training on 50% of data)

baseline train
baseline val
Grokfast train
Grokfast val

×50.49 faster

(a) Accelerated grokking with GROKFAST-MA.

101 102 103 104 1053.99× 1047.90× 102

Optimization Steps

0

2

4

6

8

10

Lo
ss

Predict x · y (mod 97) (Training on 50% of data)

baseline train
baseline val
Grokfast train
Grokfast val

(b) Corresponding loss curves.

Figure 2: Accelerating generalization of a model under grokking phenomenon. Our GROKFAST
is a class of simple algorithmic modifications upon existing optimizers to pull forward the time of
event of sudden generalization after overfitting, also known as the grokking phenomenon.

fast-varying component of parameter updates contributes to the rapid overfitting, and the slow-varying
component contributes to the slow generalization.

We begin by treating the change in value u(t) of each model parameter θ over the training iteration t
of an optimizer as a discrete (random) signal over time. As the optimizer iterates the training data, the
value of each parameter θ(t) , the loss l(t) , and its gradient g(t) := ∂l(t)/∂θ(t) drift with respect to
the guidance from a sequence of randomly selected mini-batches sampled at each iteration t :

θ(t+ 1) = θ(t) + u(g(t), t) = θ(0) +

t∑
τ=0

u(g(τ), τ) . (1)

The parameter update function u(t) = u(g(t), t) = θ(t + 1) − θ(t) provides a simple abstraction
of the underlying optimizer. This notation can describe different instances of iterative optimizers,
including SGD with various hyperparameters, e.g., learning rate, and momentum.

Treating the optimization process as a collection of discrete random signals u(t) allows us to consider
its dual representation U(ω) in the frequency domain. Taking the discrete-time Fourier transform F
of u(t) with respect to the training iteration t , we obtain the spectral representation of the sequence
of changes of a specific parameter θ :

U(ω) = F{u(t)} =
T∑

t=0

u(t)e−iωt , (2)

where T is the total number of training iterations in this specific training session. The slow-varying
part of the parameter updates u(t) which is related to the delayed generalization under grokking is
then the low-frequency component of the dual U(ω) . Furthermore, for gradient-based optimizers,
the parameter update u(g(t), t) is determined by the sample gradients g(t) generated from back-
propagation performed at each training step t . Therefore, we can associate slow generalization
under grokking to the low-frequency part of gradient signals G(ω) =

∑T
t=0 g(t)e

−iωt . This leads
to our main hypothesis: amplifying the low-frequency component of G(ω) accelerates the speed of
generalization under grokking phenomenon. This is to facilitate the research on grokking and to
broaden our understanding on optimization dynamics of grokked models.

In the following sections, we empirically demonstrate this claim with a simple low-frequency gradient
amplifier in various scenarios. These include tasks involving various network architectures including
Transformers (Vaswani et al., 2017), MLPs, RNNs and (Graph-)ConvNets and diverse datasets
such as algorithmic data, images, languages, and graphs that are treated to exhibit the grokking
phenomenon (Liu et al., 2022b). Our method is simple, taking only a few lines of additional code,
and is applicable to most machine learning frameworks such as PyTorch (Paszke et al., 2019), with
×50 faster exhibition of grokking as shown in Figure 2.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Algorithm 1 GROKFAST-EMA (GROKFAST).

1: Param: scalar momentum α , factor λ .
2: Input: initial parameters θ0 , stochastic ob-

jective function f(θ) , optimizer’s parameter
update u(g, t) from gradient g at timestep t .

3: begin: t← 0 ; µ← θ0: EMA of gradients.
4: while θt not converged do
5: t← t+ 1
6: gt ← ∇θf(θt−1) : Calculate gradients.
7: µ← αµ+ (1− α)gt : Calculate EMA.
8: ĝt ← gt + λµ : Filter gradients.
9: ût ← u(ĝt, t) : Calculate update.

10: θt ← θt−1 + ût : Update parameters.
11: end while

Algorithm 2 GROKFAST-MA

1: Param: window size w , scalar factor λ .
2: Input: initial parameters θ0 , stochastic ob-

jective function f(θ) , optimizer’s parameter
update u(g, t) from gradient g at timestep t .

3: begin: t← 0 ; Q← Queue(capacity = w)
4: while θt not converged do
5: t← t+ 1
6: gt ← ∇θf(θt−1) : Calculate gradients.
7: Insert(Q, gt) : Insert gradients to Q .
8: ĝt ← gt + λ ·Avg(Q) : Filter gradients.
9: ût ← u(ĝt, t) : Calculate update.

10: θt ← θt−1 + ût : Update parameters.
11: end while

0 20 40 60 80 100 120

Time [it]

0.0

0.1

0.2

0.3

0.4

0.5

A
m

pl
itu

de
[d

B
]

(a) Time plot of EMA.

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

A
ng

le
[r

ad
]

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Frequency [rad/it]

−10

−5

0

5

10

15

A
m

pl
itu

de
[d

B
]

(b) Freq. plot of EMA.

0 20 40 60 80 100 120

Time [it]

0.0

0.1

0.2

0.3

0.4

0.5

A
m

pl
itu

de
[d

B
]

(c) Time plot of MA.

−2

−1

0

1

A
ng

le
[r

ad
]

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Frequency [rad/it]

−30

−20

−10

0

10

A
m

pl
itu

de
[d

B
]

(d) Freq. plot of MA.

Figure 3: Time and frequency domain plots of the gradient filters. Figures (a, b) and (c, d) depict
the impulse responses and the transfer functions of the filters of Algorithm 1 and 2, i.e., the EMA and
the MA filters h(t) . We treat training iterations as discrete timesteps.

2 AMPLIFYING THE LOW-FREQUENCIES OF THE STOCHASTIC GRADIENTS

2.1 FILTERING TIME-VARYING GRADIENT SIGNALS IN FREQUENCY DOMAIN

Amplifying the low-frequencies of the gradients g(t) can be achieved by adding a low-pass filtered
signal g(t) to itself. Let h(t) be a discrete-time low-pass filter (LPF) defined over the training iteration
t . For simplicity, we assume a univariate time-invariant low-pass filter h(t) uniformly applied across
every model parameter θ . Using a convolution operator ∗ , we denote the modified gradient ĝ(t) as:

ĝ(t) = g(t) + h(t) ∗ g(t) , (3)

which can then be plugged into the parameter update function u of the optimizer:

û(t) = u(ĝ(t), t) = u(g(t) + h(t) ∗ g(t), t) . (4)

In the dual domain, equation equation 3 is equivalent to:

Ĝ(ω) = G(ω) +H(ω)G(ω) = (1 +H(ω))G(ω) , (5)

where H(ω) =
∑T

t=0 h(t)e
−iωt is the transfer function of the filter h(t) . Our goal can therefore be

restated as to design a filter h(t) with low-pass characteristics in its transfer function H(ω) .

2.2 GROKFAST WITH EMA GRADIENT FILTER

For the demonstration of our initial claim, we first take the simplest strategy: the LPF h(t) is an
exponential moving average (EMA) with momentum α . The impulse response of the filter becomes:

h(t) = λ(1− α)

t∑
τ=0

ατδ(t− τ) = λαt(1− α) , (6)

where δ(t) is the discrete unit impulse at the origin. This filter also has two hyperparameters: the
scalar factor λ and the scalar momentum α . The time and the frequency responses of the filters are
shown in Figure 3. The resulting Algorithm 1 is implemented by inserting a single line of code as
shown in Appendix C.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

101 102 103 104 1053.99× 1049.10× 102

Optimization Steps

0.00

0.20

0.40

0.60

0.80

1.00
0.95

A
cc

ur
ac

y

baseline train
baseline val
Grokfast train
Grokfast val

×43.84 faster

(a) Accuracy of the modular multiplication task.

101 102 103 104 1053.99× 1049.10× 102

Optimization Steps

0

2

4

6

8

10

Lo
ss

baseline train
baseline val
Grokfast train
Grokfast val

(b) Loss of the modular multiplication task.

0.00

0.20

0.40

0.60

0.80

1.00
0.95

Tr
ai

n
A

cc
ur

ac
y

baseline
λ = 1

λ = 2

λ = 5

101 102 103 104 1058.40× 103 3.99× 104

Optimization Steps

0.00

0.20

0.40

0.60

0.80

1.00
0.95

Va
lA

cc
ur

ac
y ×4.75 faster

baseline
λ = 1

λ = 2

λ = 5

(c) Accuracy w.r.t. amplifier gain λ .

0.00

0.20

0.40

0.60

0.80

1.00
0.95

Tr
ai

n
A

cc
ur

ac
y

baseline
α = 0.8

α = 0.9

α = 0.95

α = 0.98

α = 0.99

101 102 103 104 1054.65× 103 3.99× 104

Optimization Steps

0.00

0.20

0.40

0.60

0.80

1.00
0.95

Va
lA

cc
ur

ac
y ×8.58 faster

baseline
α = 0.8

α = 0.9

α = 0.95

α = 0.98

α = 0.99

(d) Accuracy w.r.t. momentum α .

0.00

0.20

0.40

0.60

0.80

1.00
0.95

Tr
ai

n
A

cc
ur

ac
y

baseline
Grokfast wd = 0

Grokfast wd = 0.002

Grokfast wd = 0.005

Grokfast wd = 0.01

101 102 103 104 1053.99× 1049.10× 102

Optimization Steps

0.00

0.20

0.40

0.60

0.80

1.00
0.95

Va
lA

cc
ur

ac
y ×43.84 faster

baseline
Grokfast wd = 0

Grokfast wd = 0.002

Grokfast wd = 0.005

Grokfast wd = 0.01

(e) Accuracy w.r.t. weight decay.

Figure 4: Acceleration of delayed generation with GROKFAST-EMA (GROKFAST). The task
is the same modular multiplication as in Figure 8. The amount of acceleration relies on three
hyperparameters, the amplifier gain λ , the window size w , and the weight decay wd . Figures 4a
and 4b use α = 0.98 , λ = 2.0 , and wd = 0.005 . Figures 4c and 4d show acceleration results when
wd = 0 . Figures 4c, 4d, and 4e use the same set of hyperparameters unless specified otherwise.

3 EXPERIMENT

Although the grokking phenomenon was first reported in the algorithmic dataset, Omnigrok (Liu
et al., 2022b) shows that such behavior can also be observed in a diverse set of tasks with larger and
more complex datasets. This section validates the efficacy of our accelerating algorithm, GROKFAST,
for those various tasks and models that exhibit the grokking phenomenon.

3.1 ALGORITHMIC DATA

We first train the same task with the same model as in the first report on grokking (Power et al., 2022)
using our new Algorithm 1. Specifically, we train a two-layer decoder-only Transformer (Vaswani
et al., 2017) for a modular binary multiplication x · y (mod 97) , the same task where the grokking
phenomenon is firstly observed (Power et al., 2022). Figure 4 reveals that the simplest implementation
of GROKFAST with exponential moving average effectively captures the slow variation of the gradients
necessary for accelerating the delayed generalization. Under the grokking phenomenon, the validation
loss of the model first increases before it decreases again later during the late generalization stage as
depicted in Figure 4b (baseline). This implies that GROKFAST effectively keeps the model parameters
closer to the global optimum before the generalization happens. This difference in training dynamics
are revisited in Section 5 with more visualization.

We also conduct ablation studies to find out the effect of hyperparameters λ , α , and weight decay
for our GROKFAST algorithm with an EMA filter. The optimal hyperparameters are found with grid
search. Figures 4c through 4e summarizes the results. Recalling that our main idea is at the design of
a low-pass filter, the momentum parameter α of Algorithm 1 (as well as the window size parameter
w of Algorithm 2) is equivalent to the cutoff frequency of the underlying filter. Experiments in
Figures 4c through 4e as well as those in Figures 8 and 11 show that there exists a sweet spot in cutoff
frequency that corresponds to the generalization-inducing gradient signal. From our empirical studies,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

101 102 103 104 1054.4× 1042.0× 103

Optimization Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

0.95 Accval = 0.85

MNIST Image Classification

baseline train
baseline val
Grokfast train
Grokfast val

×22.0 faster

(a) Accuracy of MNIST.

101 102 103 104 1054.4× 1042.0× 103

Optimization Steps

10−5

10−4

10−3

10−2

10−1

100

101

102

103

M
S

E
Lo

ss

MNIST Image Classification

baseline train
baseline val
Grokfast train
Grokfast val

(b) Loss of MNIST.

Figure 5: MNIST results with a three-layer MLP. Grokking
phenomenon is almost gone with proper hyperparameters.

102 103 104

Optimization Steps

10−4

10−3

10−2

10−1

100

101

102

M
S

E
Lo

ss

Min baseline val loss = 6.59E-3

Min Grokfast val loss = 3.48E-3

Thin curve: Raw value
Thick curve: EMA(0.99)

QM9 Molecule Isotropic Polarizability Prediction

baseline train
baseline val
Grokfast train
Grokfast val

Figure 6: QM9 dataset results with a
GCNN. GROKFAST achieves faster
and better convergence.

100 101 102 103 104

Optimization Steps

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1.0

A
cc

ur
ac

y

Best baseline val acc = 0.84

Best Grokfast val acc = 0.90

Thin curve: Raw value
Thick curve: EMA(0.95)

IMDb Binary Sentiment Analysis

baseline train
baseline val
Grokfast train
Grokfast val

(a) Accuracy on IMDb sentiment analysis.

100 101 102 103 104

Optimization Steps

10−4

10−3

10−2

10−1

100

B
C

E
Lo

ss

Min baseline val loss = 0.517

Min Grokfast val loss = 0.412

Thin curve: Raw value
Thick curve: EMA(0.95)

IMDb Binary Sentiment Analysis

baseline train
baseline val
Grokfast train
Grokfast val

(b) Loss on IMDb sentiment analysis.

Figure 7: IMDb results with a two-layer LSTM. LSTM exhibits grokking phenomenon if the training
begins with larger weight values at initialization. GROKFAST algorithm produces faster generalization
with higher validation accuracy and lower validation loss. We show the exponential moving average
(momentum 0.95) of the curves as thick lines for clearer visualization of the trend.

we recommend λ ∈ [0.1, 5] and α ∈ [0.8, 0.99] . The weight decay is, like in typical optimization
problems, dependent on the task of interest.

3.2 MNIST

Besides the simple algorithmic reasoning task, where the data is relatively simple, Liu et al. (2022b)
report the similar delayed generalization can also be observed in many conventional tasks if the model
goes through a special treatment. To demonstrate the generalizability of our GROKFAST modification
of the optimization process, we try to accelerate the speed of generalization under those reported
models and tasks. The first is a three-layer ReLU-MLP trained for MNIST classification task (Deng,
2012) which exhibits the grokking phenomenon. Figure 5 summarizes the results, showing that
our Algorithm 1 successfully accelerate the delayed generalization. With α = 0.8 , λ = 0.1 , and
wd = 2.0 , the delay until grokking is reduced by ×22.0 . Moreover, the final evaluation accuracy
becomes higher from 89.8% to 91.2%.

3.3 QM9

In the next experiment, we train a graph convolutional neural network (GCNN) trained for a molecule
dataset QM9 (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014). Since this task does not have
an accuracy measure to compare the speed of convergence, we instead compare the convergence
speed of the validation loss. With the same setup as in Omnigrok (Liu et al., 2022b), elaborated in
Appendix B, we apply Algorithm 1 with α = 0.9 , λ = 1.0 , and wd = 0.01 to obtain the results in
Figure 6. The validation loss drops faster and by a larger margin under GROKFAST.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

101 102 103 104 1052.94× 103 3.99× 104

Optimization Steps

0.00

0.20

0.40

0.60

0.80

1.00
0.95

A
cc

ur
ac

y

baseline train
baseline val
λ = 1 train
λ = 2 train
λ = 5 train
λ = 10 train
λ = 1 val
λ = 2 val
λ = 5 val
λ = 10 val

×13.57 faster

(a) Accuracy with respect to amplifier gain λ .

101 102 103 104 1052.94× 103 3.99× 104

Optimization Steps

0

2

4

6

8

10

12

Lo
ss

baseline train
baseline val
λ = 1 train
λ = 2 train
λ = 5 train
λ = 10 train
λ = 1 val
λ = 2 val
λ = 5 val
λ = 10 val

(b) Loss with respect to amplifier gain λ .

101 102 103 104 1052.94× 103 3.99× 104

Optimization Steps

0.00

0.20

0.40

0.60

0.80

1.00
0.95

A
cc

ur
ac

y

baseline train
baseline val
w = 2 train
w = 5 train
w = 10 train
w = 20 train
w = 50 train
w = 100 train
w = 200 train
w = 2 val
w = 5 val
w = 10 val
w = 20 val
w = 50 val
w = 100 val
w = 200 val

×13.57 faster

(c) Accuracy with respect to window size w .

101 102 103 104 1052.94× 103 3.99× 104

Optimization Steps

0

2

4

6

8

10

12

Lo
ss

baseline train
baseline val
w = 2 train
w = 5 train
w = 10 train
w = 20 train
w = 50 train
w = 100 train
w = 200 train
w = 2 val
w = 5 val
w = 10 val
w = 20 val
w = 50 val
w = 100 val
w = 200 val

(d) Loss with respect to window size w .

Figure 8: Acceleration of delayed generation with GROKFAST-MA. The amount of acceleration
relies on the two hyperparameters, amplifier gain λ and window size w . Each hyperparameter has a
sweet spot; increasing one arbitrarily does not guarantee faster acceleration. Figures 8a and 8b use
w = 100 except the baseline. Figures 8c and 8d use λ = 5 except the baseline.

3.4 IMDB

Finally, we train a 2-layer LSTM (Hochreiter & Schmidhuber, 1997) network for sentiment analysis
in the IMDb dataset (Maas et al., 2011) under the grokking phenomenon (Liu et al., 2022b). Figure 7
compares the baseline with the model trained with an optimizer modified by Algorithm 1 with
α = 0.98 , λ = 2.0 , and wd = 10.0. We visualize the convergence speed and quantitatively compare
the best validation loss/accuracy. This experiment section suggests that GROKFAST generally boosts
performance and convergence speed in diverse tasks under the grokking phenomenon.

4 GROKFAST WITH MOVING AVERAGE GRADIENT FILTER

4.1 REINTERPRETATION AND GENERALIZATION OF MOMENTUM IN OPTIMIZERS

Close inspection reveals subtle resemblance between our GROKFAST-EMA filter and a momentum
hyperparameter used in gradient-based optimizers. Specifically, the lines 7-8 of Algorithm 1 take
a form similar to Nesterov’s momentum, except for the small difference in the time of application:
in contrast to Nesterov’s momentum, where the momentum is applied after the optimizer like in
NAdam (Dozat, 2016), our filter is applied before the parameter update calculation.

Momentum hyperparameters for gradient-based optimizers are first introduced to smooth out noisy
parameter updates generated from mini-batch training (Rumelhart et al., 1986). In contrast, our
development of GROKFAST stems from frequency-domain interpretation of the delayed generalization
in Section 1. The similarity between GROKFAST-EMA and momentum hypaerparameters, therefore,
implies an alternative interpretation of momenta in gradient-based optimizers—they stabilize the
training under stochastic gradient-based optimizers by amplifying the low-frequency component of the
parameter updates. Since a momentum can be seen as a low-pass filter with window of size-1, our
new interpretation allows us to generalize the momentum hyperparameter to various types of low-pass

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

filters of nontrivial (> 1) window size. In this paper, we show one simple extension: GROKFAST
with moving average filter.

4.2 GROKFAST WITH MOVING AVERAGE FILTER

We devise a simple extension to GROKFAST using a low-pass filter with a nontrivially-sized (> 1)
window, i.e., a windowed moving average (MA) filter h(t) over a fixed-size window of size w .

h(t) =
λ

w
Π

(
t

w
− 1

2

)
=

{
λ/w , if 0 ≤ t < w .

0 , otherwise.
(7)

The function Π stands for the Heaviside Pi function, which has value of one in the interval [−0.5, 0.5]
and of zero elsewhere. This filter has only two scalar hyperparameters: the scalar factor λ and the
window size w . As shown in Algorithm 2, we implement this filter h with a fixed-capacity queue Q
storing the intermediate parameter updates u(t) into the queue Q . The average of the queue Q is the
low-pass filtered gradients which is added to the current parameter update at each optimizer step.

4.3 EXPERIMENT

We compare the results on the same task with the algorithmic dataset as in Section 3. The training
curve of this task is shown in Figure 2 as ‘baseline.’ Comparing the time to reach the accuracy of 0.95 ,
the generalization, i.e., the late saturation of the validation accuracy, happens after ×97.3 iterations
after the rapid saturation of the training accuracy (the overfitting). Figure 8 shows empirical proof of
effectiveness of Algorithm 2, our GROKFAST-MA algorithm on this task. Choosing the hyperparam-
eters from a simple grid search over λ ∈ {1, 2, 5, 10} and w ∈ {2, 5, 10, 20, 50, 100, 200} , we found
that the filter works best when λ = 5 and w = 100 . As shown in Figure 2, by elongating the window
size of a low-pass filter, our Grokfast-MA algorithm performs even better than the Grokfast-EMA
algorithm in with best possible hyperparameters. This suggests new class of optmizers augmented
with low-pass filters of nontrivially-sized windows that perform better than conventional optimizers
with momentum hyperparameters.

5 DISCUSSION

101 102 103 104 105500

Optimization Steps

0.00

0.20

0.40

0.60

0.80

1.00
0.95

A
cc

ur
ac

y

baseline train
baseline val
1-stage (Grokfast) train
1-stage (Grokfast) val
1-stage slow-only train
1-stage slow-only val
2-stage slow-only train
2-stage slow-only val

Figure 9: Although adding the slow com-
ponent of the gradients is effective in ac-
celerating grokking, the slow component
cannot be used alone as a replacement.

Previous sections demonstrate high effectiveness of our ap-
proach. However, few questions are still left unanswered
regarding the modified training dynamics and the com-
bined effect with the weight decay, which is previously
shown to be another important algorithmic factor that gov-
erns the grokking effect (Liu et al., 2022b). We devise
more experiments to answer these questions:

Q1. Are both slow and fast gradients necessary? Our
approach is based on our belief that the low-pass filtered
gradient updates, or the slow gradients, contribute to the
generalization. The most obvious question is then: can we
not use the fast gradients and replace the original sequence
of gradients with the low-pass filtered components? Using
only the slow gradients calculated from a moving average
filter in Algorithm 2 is equivalent to using larger, overlap-
ping minibatches. We conduct an experiment with a modified algorithm that replaces the line 8 of
Algorithm 2 with ĝt ← λ · Avg(Q) . Figure 9 shows the result. 1-stage means that the gradient
replacement happens from the beginning of the training, which is set by default, and 2-stage means
that the effect of GROKFAST happens after the model overfits to the training data at iteration 500 .
The results clearly reveal that removing the original gradients leads to much slower and unstable
training. In conjunction with the result in Figure 8, we can conclude that both the fast and the slow
components of the gradients are necessary for faster grokking.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

101 102 103 104 10529401920

Optimization Steps

0.00

0.20

0.40

0.60

0.80

1.00
0.95

A
cc

ur
ac

y

baseline train
baseline val
1-stage (Grokfast) train
1-stage (Grokfast) val
2-stage train
2-stage val
2-stage slow-only train
2-stage slow-only val

×1.53 faster

Figure 10: We can further accelerate the
grokking effect with a two-staged algo-
rithm, by applying GROKFAST-MA af-
ter the model is overfitted (after 500 its).

Table 1: Summary of results of Fig-
ure 10.

Name ĝt at (A→ B) ĝt at (B→ C) Iterations at acc ≥ 0.95

Baseline gt gt 39,890 [its] (×1)
1-Stage gt + λ ·Avg(Q) gt + λ ·Avg(Q) 2,940 [its] (×13.57)
2-Stage gt gt + λ ·Avg(Q) 1,920 [its] (×20.78)
2-Stage Slow-only gt λ ·Avg(Q) Not converged

Q2. Exploiting state transition in the training of a
model under grokking. We can alternatively interpret
the training dynamics of a model under the grokking phe-
nomenon as a state transition. In this viewpoint, the model
sequentially goes through three distinct stages: (A) ini-
tialized, where both training and validation losses are not
saturated, (B) overfitted, where the training loss is fully
saturated but the validation loss is not, and (C) generalized,
where both losses are fully saturated. In the experimental
setting of Figure 8, state transition of A → B happens
roughly after iteration 500 . This interpretation allows us
to try out a staged strategy for optimization, where dif-
ferent algorithms are applied to the model during the two
transition phases A → B (from iteration 0 to 499) and
B→ C (after iteration 500) as described in Table 1. Fig-
ure 10 and Table 1 summarize the result of the experiment.
As the results show, we can accelerate the grokking effect
further by ×1.53 by separating the training stage of the
model and applying GROKFAST-MA only after the model
becomes overfitted, suggesting an adaptive optimizer.

101 102 103 104 1053.99× 1042.94× 1037.90× 102

Optimization Steps

0.00

0.20

0.40

0.60

0.80

1.00
0.95

A
cc

ur
ac

y

baseline train
baseline val
baseline wd = 0.01 train
baseline wd = 0.01 val
Grokfast wd = 0 train
Grokfast wd = 0 val
Grokfast wd = 0.01 train
Grokfast wd = 0.01 val

×13.57 faster

×50.49 faster

Figure 11: The acceleration effect of GROKFAST-MA is
greatly enhanced when accompanied with appropriate
value of weight decay. However, the weight decay alone
not always yield beneficial results.

Q3. Synergistic effect with weight de-
cay. Besides from our gradient filtering
approach, the authors of Omnigrok (Liu
et al., 2022b) have suggested that the
weight decay hyperparameter is a critical
determinant of the grokking phenomenon.
According to the report, the grokking
phenomenon appears and even becomes
faster when the weight decay becomes
larger. We, therefore, conduct additional
experiments to find out how these two ap-
proaches affect the model when applied
together. The results are summarized in
Figure 11. Compared with the result from
GROKFAST-MA with no weight decay
(orange), applying the weight decay (red)
generally yields even faster generaliza-
tion. The maximum acceleration appears at wd = 0.01 with ×3.72 faster generalization than
GROKFAST-MA with no weight decay. We choose this result of ×50.49 faster grokking to be our
main demonstration in Figure 2a. Interestingly, Figure 11 also reveals that applying the same weight
decay with no GROKFAST-MA (brown) makes the training unstable. The results demonstrates that
applying our gradient filtering and setting up a proper weight decay together gives synergistic benefits.

5.1 VISUALIZING TRAJECTORIES

In this final section, we elaborate on our state transition interpretation of grokking introduced in
Section 5. Our signal space model of the training dynamics allows us to interpret the training of a
model as a random drift of the state in the parameter space. To visualize the dynamics, we collect
all the 423k parameters of the Transformer decoder (Vaswani et al., 2017) used in the experiment in
Figure 2 for all iterations, and conduct the PCA to obtain the most salient projection of the parameter
space. The sequence of evolving models are projected onto the space as in Figure 13a.

Regarding state transition interpretation of grokking, we can observe the followings: First, Figure 12
suggests that, in the baseline setup, the model drifts through a significantly longer pathway from
the overfitting (state B , 500 steps) to its full generalization (state C , 300k steps), compared to the
initial state (state A , 0 steps) to the overfitting state (state B). However, under GROKFAST, the ratio
between the two distances AB and BC in the parameter space becomes more even. This is further
acknowledged by Figure 12b and Table 2 showing the distances between the models at each state.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0

1st Principal Axis

0.00

0.02

0.04

0.06

0.08

0.10

2n
d

P
rin

ci
pa

lA
xi

s

Grokfast Trajectory

common A (init)
baseline B

baseline CGrokfast B
Grokfast C

Trajectory in the Parameter Space

10

20

50

100

200

500

1k

2k

5k

10k

20k

50k

100k

200k
300k

Grokfast

baseline

(a) Parameter trajectories.

1 101 102 103 104 1051 500 3.00× 105

Optimization Steps

10−2

10−1

100

101

102

103

` 2
D

is
ta

nc
e
×

10
0
0

Curve=mean, Area=std, #Samples=5

Distance in Parameter Space from Initial Weights

baseline
Grokfast

st
at

e
A

st
at

e
B

st
at

e
C

(b) Deviation from initial weights.

Figure 12: Trajectories of model parameters from experiments of
Figure 2 projected onto two principal axes of the PCA of the interme-
diate model parameters of the baseline. The two models travel along
distinct pathways in the parameter space with different pace.

Table 2: Parameter space dis-
tances between the intermedi-
ate models of experiments in
Figure 2. Each state corre-
sponds to each of the mark-
ers of Figure 12. Average and
standard deviations of five in-
stances are shown. GROKFAST
converges to a nearer point in
the parameter space, and the
baseline model travels longer
to reach the final state.

State Pair ℓ2 Distances (×1000)
Baseline GROKFAST

AB 0.97± 2.2 7.7± 0.42
BC 563.7± 199.4 15.3± 0.84
AC 570.7± 199.8 35.8± 0.98

Moreover, Table 2 suggests that the distances AC between the initial and the final state becomes much
(×16) shorter with our GROKFAST algorithm. Although the generalization accuracy, the training
accuracy, the training loss, and the validation loss at the final state (state C) are similar in both
the baseline and GROKFAST as showcased in Figure 2, we cannot simply say that the states C of
baseline and of GROKFAST belong to the same network state. Likewise the state B of the baseline
and of GROKFAST are different. Figure 12b shows average deviation of parameter weights from
the initialization point during training of the model under grokking phenomenon. Interestingly, at
achieving overfitting at state B , the model under our algorithm deviates ×8 further from the initial
point than the baseline does, with ×5 smaller standard deviation in distances from the initial state
A . This suggests that although both algorithms exhibit overfitted behavior at state B , intermediate
model instances at these states form distinct set of parameters with possibly different topologies.
These observations support our interpretation to regard the grokking phenomenon as a state transition
between at least three distinct states. The role of GROKFAST is then to provide supervision towards
an alternative optimum much nearer from the initial points than the baseline optimizer.

Lastly, the model trained with our GROKFAST algorithm shows hundredfold smaller variances of
the distances than the baseline as claimed in Table 2. This implies that training under GROKFAST
algorithm is much more deterministic than under typical first-order optimizers. This is possibly
related to the similarity between the low-pass filtered gradients from small minibatches with normal
gradients from larger minibatches. However, we have also demonstrated in Section 5 that using only
the slow, more deterministic component of gradients and completely neglecting the original gradients
lead to instability. Therefore, further investigation is needed to find out the source and the role of this
determinism from our GROKFAST algorithm, and the reason of its benefits when jointly applied with
the faster, more stochastic gradients from baseline optimizers.

5.2 LIMITATIONS

Although Algorithm 2 shows highly effective results, it requires w times more memory to store all
the previous gradients, limiting its utilization. Replication of the model parameters also makes the
training slower; using w = 100 , the training time per iteration is increased by ×2.4 measured with a
single 1080 Ti GPU. Still, the reduction of wall clock time before the delayed generalization of the
results in Figure 11 is ×20.5 , which is also a notable reduction of time. Though the computation
time does not scale linearly with the memory requirements, Algorithm 2 is not generally applicable
to the larger models. However, performing better than EMA filters in terms of number of training
iterations, our results suggest a sweet spot of optimal window size between 1 (EMA) and 100 (MA).
We leave this search for the optimal filters for optimizers for future work.

6 RELATED WORK

Grokking. The recently discovered grokking phenomenon (Power et al., 2022) signifies one
possibility of overparameterized neural networks generalizing (and reasoning) beyond memorization

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

of the given dataset. Most of the works, thereafter, focus on identifying its mechanism. Recent
studies associated grokking with a double descent phenomenon in the DNN mapping geometry
training dynamics (Humayun et al., 2023), the speed of pattern learning (Davies et al., 2023), and
the sizes of models and datasets (Huang et al., 2024), wherein the validation error initially increases
and then decreases with the expansion of model parameters (Nakkiran et al., 2021; Belkin et al.,
2019). To investigate the internal roles of each model component during grokking, Nanda et al.
(2023) employed mechanistic interpretability, a technique from the XAI domain, and revealed that
grokking may not occur abruptly but rather exhibits an internal progress measure. Their assertion
posits that the model captures slow, generalizing patterns, underscoring the critical role of proper
optimization. Interestingly, while weight decay amplifies the double descent effect (Pezeshki et al.,
2022), it contributes to enhanced generalization in grokking scenarios (Power et al., 2022). Liu et al.
(2022b) found more examples of grokking in various tasks and analyzed their training mechanism
through loss landscape analysis. Thilak et al. (2022) found a similarity between grokking and the
slingshot mechanism in adaptive optimizers. Barak et al. (2022) argued that optimizers reach delayed
generalization by amplifying sparse solutions through hidden progress. Regularizers such as weight
decay (Nanda et al., 2023) and the choice of the optimizer (Liu et al., 2022a) are highlighted as
important factors in training a model that groks. Our work is a continuation of this discussion by
providing a generalizable tool for the practical study of the grokking phenomenon. Through our
discussion, we suggest a state transition model of the grokking and visualize the trajectory of the
model weights in the parameter space during training.

Optimization techniques. At the core of the study of grokking lies optimization techniques (Thi-
lak et al., 2022). Studies have shown that generalization patterns of the model vary significantly
depending on various optimization methods (Power et al., 2022; Gromov, 2023). Power et al. (2022)
demonstrated that various factors related to optimization, such as (mini-)batch training (Li et al.,
2014), the choice of optimizer, weight decay (Loshchilov & Hutter, 2018), noise injection (Zur et al.,
2009), dropout (Srivastava et al., 2014), and learning rate, influence the model’s grokking pattern.
Nanda et al. (2023) argued that grokking does not occur without proper regularization. Further, they
demonstrated that techniques such as weight decay, L2 norm, and dropout induce grokking, but
L1 norm does not. On the other hand, Thilak et al. (2022) argued that grokking can occur without
explicit regularization, attributing this to the optimizer’s “visible slingshot mechanism” acting as an
implicit regularizer. Liu et al. (2022a) suggested using a larger learning rate for the input embedding
segment, facilitating unified learning of the generalization pattern. Unlike these revisiting of the
known training techniques, we started from a state space model and a dual domain of the training
dynamics. This led us to develop an optimizer augmentation algorithm, GROKFAST, that can be
applied to any existing first-order optimizers to accelerate the grokking effect for practical usage.

7 CONCLUSION

Our reinterpretation of the deviation of each model parameter into a random signal over training
iteration allows us to separate gradient updates into fast-varying and slow-varying components.
By amplifying the latter with low-pass filtering, we can bring forward the moment of sudden late
generalization, i.e., grokking, reducing the number of required training iterations by up to ×50 . Our
comprehensive experiments and analyses suggest that our state space interpretation and the frequency
representation of the training dynamics is useful for studying the grokking phenomenon. Further
discussions have revealed that momentum hyperparameters in optimizers can be regarded as low-pass
gradient filters with size-1 windows. Our GROKFAST extends the momentum to general low-pass
filters with nontrivially sized windows, bridging the gap between machine learning optimization and
classical signal processing literature, suggesting a new class of optimizers based on the well-studied
field of signal processing.

REFERENCES

Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Hidden
progress in deep learning: Sgd learns parities near the computational limit. In NeurIPS, 2022. 10

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning
practice and the classical bias–variance trade-off. Proceedings of the National Academy of Sciences,

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

116(32):15849–15854, 2019. 10

Xander Davies, Lauro Langosco, and David Krueger. Unifying grokking and double descent. arXiv
preprint arXiv:2303.06173, 2023. 1, 10

Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
web]. IEEE signal processing magazine, 29(6):141–142, 2012. 5, 15

Timothy Dozat. Incorporating nesterov momentum into adam. In ICLR Workshop, 2016. 6

Andrey Gromov. Grokking modular arithmetic. arXiv preprint arXiv:2301.02679, 2023. 10

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification. In ICCV, 2015. 15, 16

Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUs). arXiv preprint
arXiv:1606.08415, 2016. 15

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):
1735–1780, nov 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https:
//doi.org/10.1162/neco.1997.9.8.1735. 6, 16

Yufei Huang, Shengding Hu, Xu Han, Zhiyuan Liu, and Maosong Sun. Unified view of grokking,
double descent and emergent abilities: A perspective from circuits competition. arXiv preprint
arXiv:2402.15175, 2024. 1, 10

Ahmed Imtiaz Humayun, Randall Balestriero, and Richard Baraniuk. Training dynamics of deep
network linear regions. arXiv preprint arXiv:2310.12977, 2023. 10

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 12, 15

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization. In Advances in
NIPS 2016 Deep Learning Symposium, 2016. 15

Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J Smola. Efficient mini-batch training for
stochastic optimization. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 661–670, 2014. 10

Ziming Liu, Ouail Kitouni, Niklas Nolte, Eric J Michaud, Max Tegmark, and Mike Williams. Towards
understanding grokking: An effective theory of representation learning. In NeurIPS, 2022a. 10

Ziming Liu, Eric J Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data.
arXiv preprint arXiv:2210.01117, 2022b. 1, 2, 4, 5, 6, 7, 8, 10, 15

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2018. 10, 12,
15, 16

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the
association for computational linguistics: Human language technologies, pp. 142–150, 2011. 6,
16

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. Journal of Statistical Mechanics: Theory
and Experiment, 2021(12):124003, 2021. 10

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023. 10

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019. 2, 14, 15, 16

11

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Mohammad Pezeshki, Amartya Mitra, Yoshua Bengio, and Guillaume Lajoie. Multi-scale feature
learning dynamics: Insights for double descent. In ICML, 2022. 10

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: General-
ization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177, 2022.
1, 4, 9, 10, 15

Raghunathan Ramakrishnan, Pavlo O. Dral, Matthias Rupp, and O. Anatole von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific Data, 1(1):140022, Aug 2014.
ISSN 2052-4463. doi: 10.1038/sdata.2014.22. URL https://doi.org/10.1038/sdata.
2014.22. 5, 15

Lars Ruddigkeit, Ruud van Deursen, Lorenz C. Blum, and Jean-Louis Reymond. Enumeration
of 166 billion organic small molecules in the chemical universe database GDB-17. Journal
of Chemical Information and Modeling, 52(11):2864–2875, Nov 2012. ISSN 1549-9596. doi:
10.1021/ci300415d. URL https://doi.org/10.1021/ci300415d. 5, 15

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, Oct 1986. 6

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014. 10

Vimal Thilak, Etai Littwin, Shuangfei Zhai, Omid Saremi, Roni Paiss, and Joshua M Susskind. The
slingshot mechanism: An empirical study of adaptive optimizers and the grokking phenomenon.
In Has it Trained Yet? NeurIPS 2022 Workshop, 2022. 10

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention Is All You Need. In NIPS, 2017. 1, 2, 4, 8, 15, 17

Richard M Zur, Yulei Jiang, Lorenzo L Pesce, and Karen Drukker. Noise injection for training
artificial neural networks: A comparison with weight decay and early stopping. Medical physics,
36(10):4810–4818, 2009. 10

A FREQUENCY RESPONSES OF THE PARAMETER UPDATES UNDER GROKFAST

In Section 1, we have assumed that under a first-order optimizer u(g(t), t) , amplifying the low-
frequency components of the gradient signal g(t) of an arbitrary parameter θ(t) over a discrete
timestep t has the same effect of amplifying the low-frequency component of the parameter updates
u(t) = u(g(t), t) . This section mathematically elaborates on the effect of gradient filters h(t) to the
parameter update signals u(t) in the most frequently-used type of optimizers: SGD with momentum.
For more complicated optimizers such as Adam (Kingma & Ba, 2014) and AdamW (Loshchilov &
Hutter, 2018) which cannot be interpreted as linear systems, we take an indirect approach: we show
that filtering g(t) instead of u(t) works as it can be seen in the experiments in Section 3.

Stochastic gradient descent with optional momentum term is the simplest and the most widely
used optimization algorithm in the deep learning communities. Here, the parameter update u(t) =
θ(t+ 1)− θ(t) of a parameter θ(t) at timestep t and its intermediate momentum m(t) is defined as:

m(t) = µm(t− 1) + (1− τ)g(t) , (8)
u(t) = −ηm(t) , (9)

where µ is the scalar momentum, τ is the dampening constant for the momentum, and η is the learning
rate. This class of optimizers can be thought of as linear systems with state m(t) that receives an
input g(t) to produce an output u(t) .

To compare the difference between the frequency responses of the parameter update u(t) and of
the modified update û(t) in equation equation 4, we can think of an equivalent filter ĥ(t) defined to
satisfy the following relationship in addition to equations equation 3 and equation 4:

û(t) = u(ĝ(t), t) = u(g(t) + h(t) ∗ g(t), t) = u(t) + ĥ(t) ∗ u(t) . (10)

12

https://doi.org/10.1038/sdata.2014.22
https://doi.org/10.1038/sdata.2014.22
https://doi.org/10.1021/ci300415d


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

From our assumption of the linear time-invariant, scalar filters h(t) and the linear optimizer, we can
deduce the equivalence between h(t) and ĥ(t) . The following theorem is a generalized claim that
applies to any SGD-based first-order optimizers including Nesterov’s momentum.

Theorem A.1. Let g(t) be a scalar signal defined over a discrete time t ∈ {0, 1, . . . , T} . Let h(t) be
a univariate time-invariant filter defined over the same domain t . A linear optimizer O is defined as:

x(t) = Ax(t− 1) +Bg(t) , t > 0 , (11)
u(t) = Cx(t) +Dg(t) , t ≥ 0 , (12)

with scalar coefficients A,B,C, and D , and x(0) = g(0) . The output of the system u(t) is, therefore,
a function of g(t) and t , i.e., u(t) = u(g(t), t) . Let the modified input ĝ(t) , the modified output û(t) ,
and the equivalent filter ĥ(t) be defined to satisfy the equations equation 3 and equation 10. Then,

ĥ(t) = h(t) , (13)

for t ∈ {0, 1, . . . , T} .

Proof of Theorem A.1. For simplicity, we first adopt discrete-time Fourier transform over t ∈ Z .
That is, we assume that the signals are defined across every positive and negative integer t . Since the
value of u(t) can be defined arbitrarily outside the interval [0, T ] without modifying the optimization
algorithm, we can manually assign g(t) and x(t) for t /∈ [0, T ] as:

g(t) = 0 t /∈ [0, T ] , (14)

x(t) =

{
At(1−B)g(0) t < 0 ,

At−Tx(T ) t > T .
(15)

Then, equations equation 11 and equation 12 hold for t /∈ [0, T ] . Note that to make the optimizer O
stable, the scalar coefficient A should satisfy 0 < A < 1 . Therefore, the signals g(t) and x(t) are
well-defined.

Consider a discrete-time Fourier transform F defined as:

F{f(t)}(ω) =
∞∑

t=−∞
f(t)e−iωt . (16)

In the frequency domain, with G(ω) = F{g(t)} , U(ω) = F{u(t)} , and X(ω) = F{x(t)} , the
optimizer O can be equivalently represented as:

X(ω) = Ae−iωX(ω) +BG(ω) , (17)
U(ω) = CX(ω) +DG(ω) . (18)

We can obtain the transfer functions Hin-state and Hin-out that converts G to X and then to U :

Hin-state(ω) :=
X(ω)

G(ω)
=

B

1−Ae−iω
, (19)

Hin-out(ω) :=
U(ω)

G(ω)
= C

X(ω)

G(ω)
+D =

BC

1−Ae−iω
+D . (20)

If the input g(t) is filtered with a convolutional filter h(t) and then added to itself as equations equa-
tion 3 and equation 5, the state x(t) and the output u(t) of the optimizer O is changed accordingly
while keeping equations equation 11 and equation 12 hold. We denote x̂(t) and û(t) as the modified
state and output of the system and X̂(ω) and Û(ω) as their spectra. If the filter h(t) is causal, that is
h(t) = 0 for t < 0 , then we can similarly let x̂(0) = ĝ(0) and replace x(t) and u(t) with x̂(t) and
û(t) in equations equation 14 and equation 15 to define an IIR system suitable for the infinite-window
discrete-time Fourier transform F :

X̂(ω) = Ae−iωX̂(ω) +BĜ(ω) , (21)

Û(ω) = CX̂(ω) +DĜ(ω) . (22)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Since the coefficients of the linear systems are the same, the transfer functions are identical:

Ĥin-state(ω) :=
X̂(ω)

Ĝ(ω)
=

B

1−Ae−iω
≡ Hin-state(ω) , (23)

Ĥin-out(ω) :=
Û(ω)

Ĝ(ω)
=

BC

1−Ae−iω
+D ≡ Hin-out(ω) . (24)

From equation equation 5, the transfer function of the filter Hamp(ω) is:

Hamp(ω) =
Ĝ(ω)

G(ω)
= 1 +H(ω) , (25)

where H(ω) = F{h(t)} . The equivalent post-filter ĥ(t) defined by equation equation 10 gives
another transfer function between the outputs u(t) and û(t) of the system:

Ĥamp(ω) =
Û(ω)

U(ω)
= 1 + Ĥ(ω) . (26)

From equations equation 20 and equation 24, we have:

Ĥamp(ω) =
Û(ω)

U(ω)
=

Ĝ(ω)

G(ω)
= Hamp(ω) . (27)

Therefore, we get:
Ĥ(ω) ≡ H(ω) . (28)

This completes the proof.

In other words, applying any filter h(t) to the sequence of gradients g(t) is equivalent to the same
filter h(t) applied to the parameter update u(t) for any linear optimizer O . This implies that a
low-pass gradient filter h(t) guarantees the same low-pass property in the modified parameter update
signal û(t) . In many off-the-shelf autograd packages such as PyTorch (Paszke et al., 2019), filtering
the gradients is easier and more straightforward than filtering the intermediate parameter updates.
The former only adds a few more lines to the outermost application code1, whereas the latter requires
full implementation of the dedicated optimizer object. Note that the above proof holds regardless of
the design of the filter h(t) unless there exists a one-to-one correspondence between Hamp and H .

The followings are direct consequences of the Theorem A.1.

Proposition A.2 (SGD with momentum). Let t ∈ {0, 1, . . . , T} be a discrete timestep. Let g(t) be
a sequence of gradients of a parameter θ sampled from a stochastic machine learning framework
g(t) ∼M(θ(t), t) and a stochastic gradient descent optimizer O(µ, τ, η) with a parameter update
function u(g(t), t) = u(t) = θ(t+1)− θ(t) , a momentum µ , a damping constant τ , and a learning
rate η . The parameter update u(t) is, therefore, defined as:

m(t) = µm(t− 1) + (1− τ)g(t) , (29)
u(t) = −ηm(t) , (30)

with a scalar momentum term m(t) for each parameter θ with m(0) = g(0) . Let h(t) be a scalar,
time-invariant, convolutional gradient filter. Let the modified input ĝ(t) , the modified output û(t) ,
and the equivalent filter ĥ(t) be defined to satisfy the equations equation 3 and equation 10. Then,

ĥ(t) = h(t) , (31)

for t ∈ {0, 1, . . . , T} .

Proof of Proposition A.2. Let A = µ , B = 1 − τ , C = −η , and D = 0 . By Theorem A.1,
equation equation 31 holds.

1See our implementation in the Supplementary Material.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Proposition A.3 (SGD with Nesterov’s momentum). Let t ∈ {0, 1, . . . , T} be a discrete timestep.
Let g(t) be a sequence of gradients of a parameter θ sampled from a stochastic machine learning
framework g(t) ∼M(θ(t), t) and a stochastic gradient descent optimizer O(µ, τ, η) with a parameter
update function u(g(t), t) = u(t) = θ(t+ 1)− θ(t) , a momentum µ , a damping constant τ , and a
learning rate η . The parameter update u(t) is, therefore, defined as:

m(t) = µm(t− 1) + (1− τ)g(t) , (32)
u(t) = −η(g(t) + µm(t)) , (33)

with a scalar momentum term m(t) for each parameter θ with m(0) = g(0) . Let h(t) be a scalar,
time-invariant, convolutional gradient filter. Let the modified input ĝ(t) , the modified output û(t) ,
and the equivalent filter ĥ(t) be defined to satisfy the equations equation 3 and equation 10. Then,

ĥ(t) = h(t) , (34)

for t ∈ {0, 1, . . . , T} .

Proof of Proposition A.3. Let A = µ , B = 1 − τ , C = −ηµ , and D = −η . By Theorem A.1,
equation equation 34 holds.

B TASK DETAILS

For completeness, this section summarizes the implementation details of each task dealt in Section 3.
The readers can also consult our official implementation in PyTorch (Paszke et al., 2019).

B.1 BINARY OPERATION (ALGORITHMIC DATA)

This is the description of algorithmic data used throughout the manuscript. Following the first report
on the grokking phenomenon (Power et al., 2022), we demonstrate our acceleration algorithms
with a binary operation x · y (mod p) , with p = 97 . The network is a two-layer decoder-only
Transformer (Vaswani et al., 2017) with hidden dimension of 128 and 4 heads in its attention.
The positional embedding has length of 5, and GELU (Hendrycks & Gimpel, 2016) and layer
normalization (Lei Ba et al., 2016) is used throughout the network. After the Transformer blocks, the
output is fed into a layer normalization and a linear output layer to return logits. We use cross entropy
loss to train the network and an Adam (Kingma & Ba, 2014) with betas (β1, β2) = (0.9, 0.98) , a
constant learning rate of 10−3 , batch size of 512 , and linear learning rate warmup schedule over the
first 10 iterations.

B.2 MNIST

We train a three-layer MLP with hidden width of 200 and ReLU activations for the MNIST classi-
fication task (Deng, 2012). Under ×8 larger weight initialization than Kaiming initialization (He
et al., 2015), the network is known to exhibit the grokking phenomenon (Liu et al., 2022b). The
network receives flattened grayscale images of size 28 × 28 and outputs 10-dimensional logits to
calculate MSE losses between one-hot encoded labels. We use the batch size of 200 and trained with
an AdamW optimizer (Loshchilov & Hutter, 2018) with a constant learning rate of 10−3 until 105
training iterations. We use a smaller subset of 1000 images from training images to train the network
in order to simulate overfitting environment. All the other hyperparameters are set by default.

B.3 QM9

To demonstrate the effectiveness of our algorithm on a graph convolutional neural network, we use
QM9 small molecules dataset (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014) to estimate the
isotropic polarizability. Our Graph ConvNet has two graph convolution layers with input channel of
11 (QM9 edge features), output channel of 16, and hidden channel of 32. Each graph convolution
is followed by a ReLU. Each convolution layer consists of two linear layers with an internal ReLU
activation with hidden channel of 32. The output of the Graph ConvNet is a global average pooling,
followed by a two-layer MLP with a ReLU and hidden channel of 32. To simulate the overfitting
environment, we use the first 100 samples from the data. The data is again randomly split into train

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

and validation sets with 50:50 size ratio. We use batch size of 32, an AdamW optimizer (Loshchilov
& Hutter, 2018) with a constant learning rate of 10−3 . The network is initialized with weights ×3
larger than that of Kaiming initialization (He et al., 2015) and trained for 50k iterations.

B.4 IMDB

For IMDb dataset (Maas et al., 2011), we use LSTM (Hochreiter & Schmidhuber, 1997) with two
layers, embedding dimension of 64, hidden dimension of 256, and vocabulary size of 1001, including
the padding token. The network is followed by a single fully connected layer with output dimension
of 1 with sigmoid activation to classify the positive/negative sentiment of each review string. The
dataset was preprocessed by tokenizing the 1000 most frequent words from the review. The list of
integer tokens are padded by zeros to form an array of reviews with the same length of 500. The
network was trained by a binary cross entropy loss and an AdamW optimizer (Loshchilov & Hutter,
2018) with learning rate of 3× 10−4 and batch size of 50. We trained the model with the first 1000
rows from the dataset, split into train and validation sets with 75:25 size ratio. We stopped the training
at 10k iterations as shown in Figure 7.

C IMPLEMENTATION GUIDE

We have argued that our implementation of Algorithm 2 and 1 costs only a few additional lines of
code. We demonstrate this by presenting the exact code we developed with the PyTorch (Paszke et al.,
2019) autograd package. The readers who are interested can also consult our official implementation
in the Supplementary Material.

Algorithms 2 and 1 are implemented as follows:

1 # Grokfast-MA (Algorithm 1)
2 def gradfilter_ma(
3 m: nn.Module,
4 grads: Optional[Dict[str, deque]] = None,
5 window_size: int = 100,
6 lamb: float = 5.0,
7 filter_type: Literal[’mean’, ’sum’] = ’mean’,
8 warmup: bool = True,
9 ) -> Dict[str, deque]:

10 if grads is None:
11 grads = {n: deque(maxlen=window_size) for n, p in

m.named_parameters() if p.requires_grad}
12

13 for n, p in m.named_parameters():
14 if p.requires_grad:
15 grads[n].append(p.grad.data.detach())
16

17 if not warmup or len(grads[n]) == window_size:
18 if filter_type == "mean":
19 avg = sum(grads[n]) / len(grads[n])
20 elif filter_type == "sum":
21 avg = sum(grads[n])
22 else:
23 raise ValueError(f"Unrecognized filter_type

{filter_type}")
24 p.grad.data = p.grad.data + avg * lamb
25

26 return grads
27

28 # Grokfast (Algorithm 2)
29 def gradfilter_ema(
30 m: nn.Module,
31 grads: Optional[Dict[str, torch.Tensor]] = None,
32 alpha: float = 0.98,
33 lamb: float = 2.0,
34 ) -> Dict[str, torch.Tensor]:

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

35 if grads is None:
36 grads = {n: p.grad.data.detach() for n, p in m.named_parameters()

if p.requires_grad}
37

38 for n, p in m.named_parameters():
39 if p.requires_grad:
40 grads[n] = grads[n] * alpha + p.grad.data.detach() * (1 - alpha)
41 p.grad.data = p.grad.data + grads[n] * lamb
42

43 return grads

This helper method can be applied to any optimization framework involving the autograd package by
inserting a single line between the calculation of the gradients and the optimizer call as follows:

1 # ... any initialization code before starting the training loop.
2 grads = None
3

4 # Training loop.
5 for batch in dataloader:
6 model.zero_grad()
7 output = model(batch)
8 loss = criteria(output)
9

10 # Calculate the gradients.
11 loss.backward()
12

13 # Option 1: Grokfast (has argument alpha, lamb)
14 grads = gradfilter_ema(model, grads=grads, alpha=alpha, lamb=lamb)
15 # Option 2: Grokfast-MA (has argument window_size, lamb)
16 # grads = gradfilter_ma(model, grads=grads, window_size=window_size,

lamb=lamb)
17

18 # Call the optimizer.
19 optimizer.step()
20

21 # ... any additional logging codes.

Note that line 2 and line 14 in the code above are the only modification we made.

D TIME AND MEMORY REQUIREMENTS

This section delivers additional demonstration of the efficiency of our GROKFAST algorithm. As
we have argued in Section 5.2, the additional computational burden from our augmentation is
compensated by the larger-scale acceleration of the delayed generalization. The additional cost of
VRAM memory is also negligible compared the baseline. The time and the memory requirements in
the Tables 3 through 6 are measured with a single GTX 1080 Ti GPU.

E MORE VISUALIZATION

We finally provide more visualization in addition to Section 5 in order to understand the training
dynamics under our GROKFAST algorithm. Figure 13 shows five more runs from the same experiments
in Figure 2 and 12 with different seeds. We saved all the 423k parameters of the Transformer
decoder (Vaswani et al., 2017) from every training iteration, likewise in Figure 12. The parameters
of a model checkpoint from each run at each iteration are reshaped into a single long vector. The
vectorized parameters are then normalized by subtracting them by the model’s initialized weights.
This way, we can align the trajectories by centering the initial states (state A) of all the experiments
at the origin. The sequence of parameter differences of the ten runs from the two algorithms, i.e.,
baseline and GROKFAST, forms a tensor of shape ((Number of Runs) · (Number of Iterations))
× (Number of Parameters) = ((Number of Sampled Iterations) × 422784) . From this we perform

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 3: Quantitative results of GROKFAST with a Transformer decoder trained for the algorithmic
data (modular multiplication). The experiments corresponds to that of Figure 2 and 4a & 4b.

Algorithm Iterations @ 95% Val. Acc. Wall Clock Time @ 95% Val. Acc. (s) VRAM (MB) Latency Per Iteration (s)

Baseline 39890 5984 290 0.15
GROKFAST-MA 790 (× 50.49 ↓) 292 (× 20.49 ↓) 458 0.37
GROKFAST 910 (× 43.84 ↓) 137 (× 43.79 ↓) 294 0.15

Table 4: Quantitative results of GROKFAST with an MLP trained for MNIST (Figure 5).

Algorithm Iterations @ 95% Val. Acc. Wall Clock Time @ 95% Val. Acc. (s) VRAM (MB) Latency Per Iteration (ms)

Baseline 44022 1928 196 43.8
GROKFAST 2001 (× 22.00 ↓) 87.8 (× 21.96 ↓) 198 43.9

Table 5: Quantitative results of GROKFAST
with a G-CNN trained for QM9 (Figure 6).

Algorithm Minimum Val. Loss VRAM (MB) Latency Per Iteration (ms)

Baseline 0.00659 216 40.2
GROKFAST 0.00348 216 41.4

Table 6: Quantitative results of GROKFAST with an
LSTM trained for IMDb (Figure 7).

Algorithm Best Val. Acc. Minimum Val. Loss VRAM (MB) Latency Per Iteration (ms)

Baseline 0.84 0.517 754 20.4
GROKFAST 0.90 0.412 762 21.2

−0.2 0.0 0.2 0.4 0.6 0.8

1st Principal Axis

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

2
n

d
P

rin
ci

pa
lA

xi
s

common A (init)baseline B (run1)
baseline C (run1)

Grokfast B (run1)Grokfast C (run1)baseline B (run2)

baseline C (run2)

Grokfast B (run2)Grokfast C (run2)baseline B (run3)

baseline C (run3)

Grokfast B (run3)Grokfast C (run3)baseline B (run4)

baseline C (run4)

Grokfast B (run4)Grokfast C (run4)baseline B (run5)

baseline C (run5)

Grokfast B (run5)Grokfast C (run5)

Grokfast Trajectory

Trajectory in the Parameter Space

10

20

50

100

200

500

1k

2k

5k

10k

20k

50k

100k

200k
300k

Grokfast

baseline

(a) Parameter trajectories.

−0.015 −0.010 −0.005 0.000 0.005 0.010

1st Principal Axis

−0.020

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

2n
d

P
rin

ci
pa

lA
xi

s

common A (init)
baseline B

Grokfast B

Grokfast C

Magnified Trajectory in the Parameter Space

10

20

50

100

200

500

1k

2k

5k

10k

20k

50k

100k

200k
300k

Grokfast

baseline

(b) Magnification of the orange box.

Figure 13: Normalized trajectories of model parameters from five runs of the experiment of
Figure 2. The baseline optimization algorithm without GROKFAST guide the model to the
overfitting states (state B) relatively closer to the initialization states (state A). After reaching
the overfitting state, however, the model parameters travel far away to reach the generalization
states (state C). GROKFAST instead guide the model parameters to the alternative generalization
states (state C), which are much closer to the initialization states (state A).

the PCA to obtain the projection matrix of shape 422784× 2 . This matrix projects the parameter
differences from each of the model checkpoint onto the two most salient directions of variations.
We mark the initialization state (state A), the overfitting state (state B , 500 iterations), and the
generalization state (state C) from each run in the two-dimensional plot. The results are Figure 13.

We first notice that the overfitting states (state B) from each of the two optimizers are clearly different.
The baseline algorithm without GROKFAST reaches the overfitting states (state B), which are relatively
nearer to the initialization states (state A) than those of GROKFAST algorithm. However, as soon as
the model overfits, the weights continue to deviate far from the points where overfitting first occured
(state B). As a result, the final generalization (state C) happens much far away from the initialized
weights (state A). It is notable that the five generalization states (state C) from different instances
of the baseline optimizer vary significantly. The difference between the states C of the baseline is
much larger than that of the baseline’s overfitting states (state B) and that of the states B and C from
our GROKFAST algorithm. In contrast, the training dynamics from GROKFAST results in a distinct
set of trajectories that lead to the generalization states (state C) much closer to the initial weights.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Moreover, difference within the trajectories from GROKFAST is much smaller than that of the baseline
algorithms. This conclusion is also verifiable from Figure 13b and Table 2 in a quantitative manner.

19


	Introduction
	Amplifying the low-frequencies of the stochastic gradients
	Filtering time-varying gradient signals in frequency domain
	Grokfast with EMA gradient filter

	Experiment
	Algorithmic data
	MNIST
	QM9
	IMDb

	Grokfast with moving average gradient filter
	Reinterpretation and generalization of momentum in optimizers
	Grokfast with moving average filter
	Experiment

	Discussion
	Visualizing trajectories
	Limitations

	Related work
	Conclusion
	Frequency responses of the parameter updates under Grokfast
	Task details
	Binary operation (Algorithmic data)
	MNIST
	QM9
	IMDb

	Implementation guide
	Time and memory requirements
	More visualization

